Sparc32: remove unused variable, spotted by clang
[qemu.git] / hw / onenand.c
blobc1e7e4d608270dd5da80678b25a82e394be832f3
1 /*
2 * OneNAND flash memories emulation.
4 * Copyright (C) 2008 Nokia Corporation
5 * Written by Andrzej Zaborowski <andrew@openedhand.com>
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License as
9 * published by the Free Software Foundation; either version 2 or
10 * (at your option) version 3 of the License.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License along
18 * with this program; if not, see <http://www.gnu.org/licenses/>.
21 #include "qemu-common.h"
22 #include "flash.h"
23 #include "irq.h"
24 #include "sysemu.h"
25 #include "block.h"
27 /* 11 for 2kB-page OneNAND ("2nd generation") and 10 for 1kB-page chips */
28 #define PAGE_SHIFT 11
30 /* Fixed */
31 #define BLOCK_SHIFT (PAGE_SHIFT + 6)
33 typedef struct {
34 uint32_t id;
35 int shift;
36 target_phys_addr_t base;
37 qemu_irq intr;
38 qemu_irq rdy;
39 BlockDriverState *bdrv;
40 BlockDriverState *bdrv_cur;
41 uint8_t *image;
42 uint8_t *otp;
43 uint8_t *current;
44 ram_addr_t ram;
45 uint8_t *boot[2];
46 uint8_t *data[2][2];
47 int iomemtype;
48 int cycle;
49 int otpmode;
51 uint16_t addr[8];
52 uint16_t unladdr[8];
53 int bufaddr;
54 int count;
55 uint16_t command;
56 uint16_t config[2];
57 uint16_t status;
58 uint16_t intstatus;
59 uint16_t wpstatus;
61 ECCState ecc;
63 int density_mask;
64 int secs;
65 int secs_cur;
66 int blocks;
67 uint8_t *blockwp;
68 } OneNANDState;
70 enum {
71 ONEN_BUF_BLOCK = 0,
72 ONEN_BUF_BLOCK2 = 1,
73 ONEN_BUF_DEST_BLOCK = 2,
74 ONEN_BUF_DEST_PAGE = 3,
75 ONEN_BUF_PAGE = 7,
78 enum {
79 ONEN_ERR_CMD = 1 << 10,
80 ONEN_ERR_ERASE = 1 << 11,
81 ONEN_ERR_PROG = 1 << 12,
82 ONEN_ERR_LOAD = 1 << 13,
85 enum {
86 ONEN_INT_RESET = 1 << 4,
87 ONEN_INT_ERASE = 1 << 5,
88 ONEN_INT_PROG = 1 << 6,
89 ONEN_INT_LOAD = 1 << 7,
90 ONEN_INT = 1 << 15,
93 enum {
94 ONEN_LOCK_LOCKTIGHTEN = 1 << 0,
95 ONEN_LOCK_LOCKED = 1 << 1,
96 ONEN_LOCK_UNLOCKED = 1 << 2,
99 void onenand_base_update(void *opaque, target_phys_addr_t new)
101 OneNANDState *s = (OneNANDState *) opaque;
103 s->base = new;
105 /* XXX: We should use IO_MEM_ROMD but we broke it earlier...
106 * Both 0x0000 ... 0x01ff and 0x8000 ... 0x800f can be used to
107 * write boot commands. Also take note of the BWPS bit. */
108 cpu_register_physical_memory(s->base + (0x0000 << s->shift),
109 0x0200 << s->shift, s->iomemtype);
110 cpu_register_physical_memory(s->base + (0x0200 << s->shift),
111 0xbe00 << s->shift,
112 (s->ram +(0x0200 << s->shift)) | IO_MEM_RAM);
113 if (s->iomemtype)
114 cpu_register_physical_memory_offset(s->base + (0xc000 << s->shift),
115 0x4000 << s->shift, s->iomemtype, (0xc000 << s->shift));
118 void onenand_base_unmap(void *opaque)
120 OneNANDState *s = (OneNANDState *) opaque;
122 cpu_register_physical_memory(s->base,
123 0x10000 << s->shift, IO_MEM_UNASSIGNED);
126 static void onenand_intr_update(OneNANDState *s)
128 qemu_set_irq(s->intr, ((s->intstatus >> 15) ^ (~s->config[0] >> 6)) & 1);
131 /* Hot reset (Reset OneNAND command) or warm reset (RP pin low) */
132 static void onenand_reset(OneNANDState *s, int cold)
134 memset(&s->addr, 0, sizeof(s->addr));
135 s->command = 0;
136 s->count = 1;
137 s->bufaddr = 0;
138 s->config[0] = 0x40c0;
139 s->config[1] = 0x0000;
140 onenand_intr_update(s);
141 qemu_irq_raise(s->rdy);
142 s->status = 0x0000;
143 s->intstatus = cold ? 0x8080 : 0x8010;
144 s->unladdr[0] = 0;
145 s->unladdr[1] = 0;
146 s->wpstatus = 0x0002;
147 s->cycle = 0;
148 s->otpmode = 0;
149 s->bdrv_cur = s->bdrv;
150 s->current = s->image;
151 s->secs_cur = s->secs;
153 if (cold) {
154 /* Lock the whole flash */
155 memset(s->blockwp, ONEN_LOCK_LOCKED, s->blocks);
157 if (s->bdrv && bdrv_read(s->bdrv, 0, s->boot[0], 8) < 0)
158 hw_error("%s: Loading the BootRAM failed.\n", __FUNCTION__);
162 static inline int onenand_load_main(OneNANDState *s, int sec, int secn,
163 void *dest)
165 if (s->bdrv_cur)
166 return bdrv_read(s->bdrv_cur, sec, dest, secn) < 0;
167 else if (sec + secn > s->secs_cur)
168 return 1;
170 memcpy(dest, s->current + (sec << 9), secn << 9);
172 return 0;
175 static inline int onenand_prog_main(OneNANDState *s, int sec, int secn,
176 void *src)
178 if (s->bdrv_cur)
179 return bdrv_write(s->bdrv_cur, sec, src, secn) < 0;
180 else if (sec + secn > s->secs_cur)
181 return 1;
183 memcpy(s->current + (sec << 9), src, secn << 9);
185 return 0;
188 static inline int onenand_load_spare(OneNANDState *s, int sec, int secn,
189 void *dest)
191 uint8_t buf[512];
193 if (s->bdrv_cur) {
194 if (bdrv_read(s->bdrv_cur, s->secs_cur + (sec >> 5), buf, 1) < 0)
195 return 1;
196 memcpy(dest, buf + ((sec & 31) << 4), secn << 4);
197 } else if (sec + secn > s->secs_cur)
198 return 1;
199 else
200 memcpy(dest, s->current + (s->secs_cur << 9) + (sec << 4), secn << 4);
202 return 0;
205 static inline int onenand_prog_spare(OneNANDState *s, int sec, int secn,
206 void *src)
208 uint8_t buf[512];
210 if (s->bdrv_cur) {
211 if (bdrv_read(s->bdrv_cur, s->secs_cur + (sec >> 5), buf, 1) < 0)
212 return 1;
213 memcpy(buf + ((sec & 31) << 4), src, secn << 4);
214 return bdrv_write(s->bdrv_cur, s->secs_cur + (sec >> 5), buf, 1) < 0;
215 } else if (sec + secn > s->secs_cur)
216 return 1;
218 memcpy(s->current + (s->secs_cur << 9) + (sec << 4), src, secn << 4);
220 return 0;
223 static inline int onenand_erase(OneNANDState *s, int sec, int num)
225 /* TODO: optimise */
226 uint8_t buf[512];
228 memset(buf, 0xff, sizeof(buf));
229 for (; num > 0; num --, sec ++) {
230 if (onenand_prog_main(s, sec, 1, buf))
231 return 1;
232 if (onenand_prog_spare(s, sec, 1, buf))
233 return 1;
236 return 0;
239 static void onenand_command(OneNANDState *s, int cmd)
241 int b;
242 int sec;
243 void *buf;
244 #define SETADDR(block, page) \
245 sec = (s->addr[page] & 3) + \
246 ((((s->addr[page] >> 2) & 0x3f) + \
247 (((s->addr[block] & 0xfff) | \
248 (s->addr[block] >> 15 ? \
249 s->density_mask : 0)) << 6)) << (PAGE_SHIFT - 9));
250 #define SETBUF_M() \
251 buf = (s->bufaddr & 8) ? \
252 s->data[(s->bufaddr >> 2) & 1][0] : s->boot[0]; \
253 buf += (s->bufaddr & 3) << 9;
254 #define SETBUF_S() \
255 buf = (s->bufaddr & 8) ? \
256 s->data[(s->bufaddr >> 2) & 1][1] : s->boot[1]; \
257 buf += (s->bufaddr & 3) << 4;
259 switch (cmd) {
260 case 0x00: /* Load single/multiple sector data unit into buffer */
261 SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
263 SETBUF_M()
264 if (onenand_load_main(s, sec, s->count, buf))
265 s->status |= ONEN_ERR_CMD | ONEN_ERR_LOAD;
267 #if 0
268 SETBUF_S()
269 if (onenand_load_spare(s, sec, s->count, buf))
270 s->status |= ONEN_ERR_CMD | ONEN_ERR_LOAD;
271 #endif
273 /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages)
274 * or if (s->bufaddr & 1) + s->count was > 2 (1k-pages)
275 * then we need two split the read/write into two chunks.
277 s->intstatus |= ONEN_INT | ONEN_INT_LOAD;
278 break;
279 case 0x13: /* Load single/multiple spare sector into buffer */
280 SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
282 SETBUF_S()
283 if (onenand_load_spare(s, sec, s->count, buf))
284 s->status |= ONEN_ERR_CMD | ONEN_ERR_LOAD;
286 /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages)
287 * or if (s->bufaddr & 1) + s->count was > 2 (1k-pages)
288 * then we need two split the read/write into two chunks.
290 s->intstatus |= ONEN_INT | ONEN_INT_LOAD;
291 break;
292 case 0x80: /* Program single/multiple sector data unit from buffer */
293 SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
295 SETBUF_M()
296 if (onenand_prog_main(s, sec, s->count, buf))
297 s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
299 #if 0
300 SETBUF_S()
301 if (onenand_prog_spare(s, sec, s->count, buf))
302 s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
303 #endif
305 /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages)
306 * or if (s->bufaddr & 1) + s->count was > 2 (1k-pages)
307 * then we need two split the read/write into two chunks.
309 s->intstatus |= ONEN_INT | ONEN_INT_PROG;
310 break;
311 case 0x1a: /* Program single/multiple spare area sector from buffer */
312 SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
314 SETBUF_S()
315 if (onenand_prog_spare(s, sec, s->count, buf))
316 s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
318 /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages)
319 * or if (s->bufaddr & 1) + s->count was > 2 (1k-pages)
320 * then we need two split the read/write into two chunks.
322 s->intstatus |= ONEN_INT | ONEN_INT_PROG;
323 break;
324 case 0x1b: /* Copy-back program */
325 SETBUF_S()
327 SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
328 if (onenand_load_main(s, sec, s->count, buf))
329 s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
331 SETADDR(ONEN_BUF_DEST_BLOCK, ONEN_BUF_DEST_PAGE)
332 if (onenand_prog_main(s, sec, s->count, buf))
333 s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
335 /* TODO: spare areas */
337 s->intstatus |= ONEN_INT | ONEN_INT_PROG;
338 break;
340 case 0x23: /* Unlock NAND array block(s) */
341 s->intstatus |= ONEN_INT;
343 /* XXX the previous (?) area should be locked automatically */
344 for (b = s->unladdr[0]; b <= s->unladdr[1]; b ++) {
345 if (b >= s->blocks) {
346 s->status |= ONEN_ERR_CMD;
347 break;
349 if (s->blockwp[b] == ONEN_LOCK_LOCKTIGHTEN)
350 break;
352 s->wpstatus = s->blockwp[b] = ONEN_LOCK_UNLOCKED;
354 break;
355 case 0x27: /* Unlock All NAND array blocks */
356 s->intstatus |= ONEN_INT;
358 for (b = 0; b < s->blocks; b ++) {
359 if (b >= s->blocks) {
360 s->status |= ONEN_ERR_CMD;
361 break;
363 if (s->blockwp[b] == ONEN_LOCK_LOCKTIGHTEN)
364 break;
366 s->wpstatus = s->blockwp[b] = ONEN_LOCK_UNLOCKED;
368 break;
370 case 0x2a: /* Lock NAND array block(s) */
371 s->intstatus |= ONEN_INT;
373 for (b = s->unladdr[0]; b <= s->unladdr[1]; b ++) {
374 if (b >= s->blocks) {
375 s->status |= ONEN_ERR_CMD;
376 break;
378 if (s->blockwp[b] == ONEN_LOCK_LOCKTIGHTEN)
379 break;
381 s->wpstatus = s->blockwp[b] = ONEN_LOCK_LOCKED;
383 break;
384 case 0x2c: /* Lock-tight NAND array block(s) */
385 s->intstatus |= ONEN_INT;
387 for (b = s->unladdr[0]; b <= s->unladdr[1]; b ++) {
388 if (b >= s->blocks) {
389 s->status |= ONEN_ERR_CMD;
390 break;
392 if (s->blockwp[b] == ONEN_LOCK_UNLOCKED)
393 continue;
395 s->wpstatus = s->blockwp[b] = ONEN_LOCK_LOCKTIGHTEN;
397 break;
399 case 0x71: /* Erase-Verify-Read */
400 s->intstatus |= ONEN_INT;
401 break;
402 case 0x95: /* Multi-block erase */
403 qemu_irq_pulse(s->intr);
404 /* Fall through. */
405 case 0x94: /* Block erase */
406 sec = ((s->addr[ONEN_BUF_BLOCK] & 0xfff) |
407 (s->addr[ONEN_BUF_BLOCK] >> 15 ? s->density_mask : 0))
408 << (BLOCK_SHIFT - 9);
409 if (onenand_erase(s, sec, 1 << (BLOCK_SHIFT - 9)))
410 s->status |= ONEN_ERR_CMD | ONEN_ERR_ERASE;
412 s->intstatus |= ONEN_INT | ONEN_INT_ERASE;
413 break;
414 case 0xb0: /* Erase suspend */
415 break;
416 case 0x30: /* Erase resume */
417 s->intstatus |= ONEN_INT | ONEN_INT_ERASE;
418 break;
420 case 0xf0: /* Reset NAND Flash core */
421 onenand_reset(s, 0);
422 break;
423 case 0xf3: /* Reset OneNAND */
424 onenand_reset(s, 0);
425 break;
427 case 0x65: /* OTP Access */
428 s->intstatus |= ONEN_INT;
429 s->bdrv_cur = NULL;
430 s->current = s->otp;
431 s->secs_cur = 1 << (BLOCK_SHIFT - 9);
432 s->addr[ONEN_BUF_BLOCK] = 0;
433 s->otpmode = 1;
434 break;
436 default:
437 s->status |= ONEN_ERR_CMD;
438 s->intstatus |= ONEN_INT;
439 fprintf(stderr, "%s: unknown OneNAND command %x\n",
440 __FUNCTION__, cmd);
443 onenand_intr_update(s);
446 static uint32_t onenand_read(void *opaque, target_phys_addr_t addr)
448 OneNANDState *s = (OneNANDState *) opaque;
449 int offset = addr >> s->shift;
451 switch (offset) {
452 case 0x0000 ... 0xc000:
453 return lduw_le_p(s->boot[0] + addr);
455 case 0xf000: /* Manufacturer ID */
456 return (s->id >> 16) & 0xff;
457 case 0xf001: /* Device ID */
458 return (s->id >> 8) & 0xff;
459 /* TODO: get the following values from a real chip! */
460 case 0xf002: /* Version ID */
461 return (s->id >> 0) & 0xff;
462 case 0xf003: /* Data Buffer size */
463 return 1 << PAGE_SHIFT;
464 case 0xf004: /* Boot Buffer size */
465 return 0x200;
466 case 0xf005: /* Amount of buffers */
467 return 1 | (2 << 8);
468 case 0xf006: /* Technology */
469 return 0;
471 case 0xf100 ... 0xf107: /* Start addresses */
472 return s->addr[offset - 0xf100];
474 case 0xf200: /* Start buffer */
475 return (s->bufaddr << 8) | ((s->count - 1) & (1 << (PAGE_SHIFT - 10)));
477 case 0xf220: /* Command */
478 return s->command;
479 case 0xf221: /* System Configuration 1 */
480 return s->config[0] & 0xffe0;
481 case 0xf222: /* System Configuration 2 */
482 return s->config[1];
484 case 0xf240: /* Controller Status */
485 return s->status;
486 case 0xf241: /* Interrupt */
487 return s->intstatus;
488 case 0xf24c: /* Unlock Start Block Address */
489 return s->unladdr[0];
490 case 0xf24d: /* Unlock End Block Address */
491 return s->unladdr[1];
492 case 0xf24e: /* Write Protection Status */
493 return s->wpstatus;
495 case 0xff00: /* ECC Status */
496 return 0x00;
497 case 0xff01: /* ECC Result of main area data */
498 case 0xff02: /* ECC Result of spare area data */
499 case 0xff03: /* ECC Result of main area data */
500 case 0xff04: /* ECC Result of spare area data */
501 hw_error("%s: imeplement ECC\n", __FUNCTION__);
502 return 0x0000;
505 fprintf(stderr, "%s: unknown OneNAND register %x\n",
506 __FUNCTION__, offset);
507 return 0;
510 static void onenand_write(void *opaque, target_phys_addr_t addr,
511 uint32_t value)
513 OneNANDState *s = (OneNANDState *) opaque;
514 int offset = addr >> s->shift;
515 int sec;
517 switch (offset) {
518 case 0x0000 ... 0x01ff:
519 case 0x8000 ... 0x800f:
520 if (s->cycle) {
521 s->cycle = 0;
523 if (value == 0x0000) {
524 SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
525 onenand_load_main(s, sec,
526 1 << (PAGE_SHIFT - 9), s->data[0][0]);
527 s->addr[ONEN_BUF_PAGE] += 4;
528 s->addr[ONEN_BUF_PAGE] &= 0xff;
530 break;
533 switch (value) {
534 case 0x00f0: /* Reset OneNAND */
535 onenand_reset(s, 0);
536 break;
538 case 0x00e0: /* Load Data into Buffer */
539 s->cycle = 1;
540 break;
542 case 0x0090: /* Read Identification Data */
543 memset(s->boot[0], 0, 3 << s->shift);
544 s->boot[0][0 << s->shift] = (s->id >> 16) & 0xff;
545 s->boot[0][1 << s->shift] = (s->id >> 8) & 0xff;
546 s->boot[0][2 << s->shift] = s->wpstatus & 0xff;
547 break;
549 default:
550 fprintf(stderr, "%s: unknown OneNAND boot command %x\n",
551 __FUNCTION__, value);
553 break;
555 case 0xf100 ... 0xf107: /* Start addresses */
556 s->addr[offset - 0xf100] = value;
557 break;
559 case 0xf200: /* Start buffer */
560 s->bufaddr = (value >> 8) & 0xf;
561 if (PAGE_SHIFT == 11)
562 s->count = (value & 3) ?: 4;
563 else if (PAGE_SHIFT == 10)
564 s->count = (value & 1) ?: 2;
565 break;
567 case 0xf220: /* Command */
568 if (s->intstatus & (1 << 15))
569 break;
570 s->command = value;
571 onenand_command(s, s->command);
572 break;
573 case 0xf221: /* System Configuration 1 */
574 s->config[0] = value;
575 onenand_intr_update(s);
576 qemu_set_irq(s->rdy, (s->config[0] >> 7) & 1);
577 break;
578 case 0xf222: /* System Configuration 2 */
579 s->config[1] = value;
580 break;
582 case 0xf241: /* Interrupt */
583 s->intstatus &= value;
584 if ((1 << 15) & ~s->intstatus)
585 s->status &= ~(ONEN_ERR_CMD | ONEN_ERR_ERASE |
586 ONEN_ERR_PROG | ONEN_ERR_LOAD);
587 onenand_intr_update(s);
588 break;
589 case 0xf24c: /* Unlock Start Block Address */
590 s->unladdr[0] = value & (s->blocks - 1);
591 /* For some reason we have to set the end address to by default
592 * be same as start because the software forgets to write anything
593 * in there. */
594 s->unladdr[1] = value & (s->blocks - 1);
595 break;
596 case 0xf24d: /* Unlock End Block Address */
597 s->unladdr[1] = value & (s->blocks - 1);
598 break;
600 default:
601 fprintf(stderr, "%s: unknown OneNAND register %x\n",
602 __FUNCTION__, offset);
606 static CPUReadMemoryFunc * const onenand_readfn[] = {
607 onenand_read, /* TODO */
608 onenand_read,
609 onenand_read,
612 static CPUWriteMemoryFunc * const onenand_writefn[] = {
613 onenand_write, /* TODO */
614 onenand_write,
615 onenand_write,
618 void *onenand_init(uint32_t id, int regshift, qemu_irq irq)
620 OneNANDState *s = (OneNANDState *) qemu_mallocz(sizeof(*s));
621 DriveInfo *dinfo = drive_get(IF_MTD, 0, 0);
622 uint32_t size = 1 << (24 + ((id >> 12) & 7));
623 void *ram;
625 s->shift = regshift;
626 s->intr = irq;
627 s->rdy = NULL;
628 s->id = id;
629 s->blocks = size >> BLOCK_SHIFT;
630 s->secs = size >> 9;
631 s->blockwp = qemu_malloc(s->blocks);
632 s->density_mask = (id & (1 << 11)) ? (1 << (6 + ((id >> 12) & 7))) : 0;
633 s->iomemtype = cpu_register_io_memory(onenand_readfn,
634 onenand_writefn, s);
635 if (!dinfo)
636 s->image = memset(qemu_malloc(size + (size >> 5)),
637 0xff, size + (size >> 5));
638 else
639 s->bdrv = dinfo->bdrv;
640 s->otp = memset(qemu_malloc((64 + 2) << PAGE_SHIFT),
641 0xff, (64 + 2) << PAGE_SHIFT);
642 s->ram = qemu_ram_alloc(0xc000 << s->shift);
643 ram = qemu_get_ram_ptr(s->ram);
644 s->boot[0] = ram + (0x0000 << s->shift);
645 s->boot[1] = ram + (0x8000 << s->shift);
646 s->data[0][0] = ram + ((0x0200 + (0 << (PAGE_SHIFT - 1))) << s->shift);
647 s->data[0][1] = ram + ((0x8010 + (0 << (PAGE_SHIFT - 6))) << s->shift);
648 s->data[1][0] = ram + ((0x0200 + (1 << (PAGE_SHIFT - 1))) << s->shift);
649 s->data[1][1] = ram + ((0x8010 + (1 << (PAGE_SHIFT - 6))) << s->shift);
651 onenand_reset(s, 1);
653 return s;
656 void *onenand_raw_otp(void *opaque)
658 OneNANDState *s = (OneNANDState *) opaque;
660 return s->otp;