util: remove support -chardev tty and -chardev parport
[qemu.git] / hw / intc / arm_gicv3_cpuif.c
blobb17b29288c73f56cc5e83be5001eca3949ed069e
1 /*
2 * ARM Generic Interrupt Controller v3 (emulation)
4 * Copyright (c) 2016 Linaro Limited
5 * Written by Peter Maydell
7 * This code is licensed under the GPL, version 2 or (at your option)
8 * any later version.
9 */
11 /* This file contains the code for the system register interface
12 * portions of the GICv3.
15 #include "qemu/osdep.h"
16 #include "qemu/bitops.h"
17 #include "qemu/log.h"
18 #include "qemu/main-loop.h"
19 #include "trace.h"
20 #include "gicv3_internal.h"
21 #include "hw/irq.h"
22 #include "cpu.h"
23 #include "target/arm/cpregs.h"
26 * Special case return value from hppvi_index(); must be larger than
27 * the architecturally maximum possible list register index (which is 15)
29 #define HPPVI_INDEX_VLPI 16
31 static GICv3CPUState *icc_cs_from_env(CPUARMState *env)
33 return env->gicv3state;
36 static bool gicv3_use_ns_bank(CPUARMState *env)
38 /* Return true if we should use the NonSecure bank for a banked GIC
39 * CPU interface register. Note that this differs from the
40 * access_secure_reg() function because GICv3 banked registers are
41 * banked even for AArch64, unlike the other CPU system registers.
43 return !arm_is_secure_below_el3(env);
46 /* The minimum BPR for the virtual interface is a configurable property */
47 static inline int icv_min_vbpr(GICv3CPUState *cs)
49 return 7 - cs->vprebits;
52 static inline int ich_num_aprs(GICv3CPUState *cs)
54 /* Return the number of virtual APR registers (1, 2, or 4) */
55 int aprmax = 1 << (cs->vprebits - 5);
56 assert(aprmax <= ARRAY_SIZE(cs->ich_apr[0]));
57 return aprmax;
60 /* Simple accessor functions for LR fields */
61 static uint32_t ich_lr_vintid(uint64_t lr)
63 return extract64(lr, ICH_LR_EL2_VINTID_SHIFT, ICH_LR_EL2_VINTID_LENGTH);
66 static uint32_t ich_lr_pintid(uint64_t lr)
68 return extract64(lr, ICH_LR_EL2_PINTID_SHIFT, ICH_LR_EL2_PINTID_LENGTH);
71 static uint32_t ich_lr_prio(uint64_t lr)
73 return extract64(lr, ICH_LR_EL2_PRIORITY_SHIFT, ICH_LR_EL2_PRIORITY_LENGTH);
76 static int ich_lr_state(uint64_t lr)
78 return extract64(lr, ICH_LR_EL2_STATE_SHIFT, ICH_LR_EL2_STATE_LENGTH);
81 static bool icv_access(CPUARMState *env, int hcr_flags)
83 /* Return true if this ICC_ register access should really be
84 * directed to an ICV_ access. hcr_flags is a mask of
85 * HCR_EL2 bits to check: we treat this as an ICV_ access
86 * if we are in NS EL1 and at least one of the specified
87 * HCR_EL2 bits is set.
89 * ICV registers fall into four categories:
90 * * access if NS EL1 and HCR_EL2.FMO == 1:
91 * all ICV regs with '0' in their name
92 * * access if NS EL1 and HCR_EL2.IMO == 1:
93 * all ICV regs with '1' in their name
94 * * access if NS EL1 and either IMO or FMO == 1:
95 * CTLR, DIR, PMR, RPR
97 uint64_t hcr_el2 = arm_hcr_el2_eff(env);
98 bool flagmatch = hcr_el2 & hcr_flags & (HCR_IMO | HCR_FMO);
100 return flagmatch && arm_current_el(env) == 1
101 && !arm_is_secure_below_el3(env);
104 static int read_vbpr(GICv3CPUState *cs, int grp)
106 /* Read VBPR value out of the VMCR field (caller must handle
107 * VCBPR effects if required)
109 if (grp == GICV3_G0) {
110 return extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR0_SHIFT,
111 ICH_VMCR_EL2_VBPR0_LENGTH);
112 } else {
113 return extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR1_SHIFT,
114 ICH_VMCR_EL2_VBPR1_LENGTH);
118 static void write_vbpr(GICv3CPUState *cs, int grp, int value)
120 /* Write new VBPR1 value, handling the "writing a value less than
121 * the minimum sets it to the minimum" semantics.
123 int min = icv_min_vbpr(cs);
125 if (grp != GICV3_G0) {
126 min++;
129 value = MAX(value, min);
131 if (grp == GICV3_G0) {
132 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR0_SHIFT,
133 ICH_VMCR_EL2_VBPR0_LENGTH, value);
134 } else {
135 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR1_SHIFT,
136 ICH_VMCR_EL2_VBPR1_LENGTH, value);
140 static uint32_t icv_fullprio_mask(GICv3CPUState *cs)
142 /* Return a mask word which clears the unimplemented priority bits
143 * from a priority value for a virtual interrupt. (Not to be confused
144 * with the group priority, whose mask depends on the value of VBPR
145 * for the interrupt group.)
147 return ~0U << (8 - cs->vpribits);
150 static int ich_highest_active_virt_prio(GICv3CPUState *cs)
152 /* Calculate the current running priority based on the set bits
153 * in the ICH Active Priority Registers.
155 int i;
156 int aprmax = ich_num_aprs(cs);
158 for (i = 0; i < aprmax; i++) {
159 uint32_t apr = cs->ich_apr[GICV3_G0][i] |
160 cs->ich_apr[GICV3_G1NS][i];
162 if (!apr) {
163 continue;
165 return (i * 32 + ctz32(apr)) << (icv_min_vbpr(cs) + 1);
167 /* No current active interrupts: return idle priority */
168 return 0xff;
171 static int hppvi_index(GICv3CPUState *cs)
174 * Return the list register index of the highest priority pending
175 * virtual interrupt, as per the HighestPriorityVirtualInterrupt
176 * pseudocode. If no pending virtual interrupts, return -1.
177 * If the highest priority pending virtual interrupt is a vLPI,
178 * return HPPVI_INDEX_VLPI.
179 * (The pseudocode handles checking whether the vLPI is higher
180 * priority than the highest priority list register at every
181 * callsite of HighestPriorityVirtualInterrupt; we check it here.)
183 ARMCPU *cpu = ARM_CPU(cs->cpu);
184 CPUARMState *env = &cpu->env;
185 int idx = -1;
186 int i;
187 /* Note that a list register entry with a priority of 0xff will
188 * never be reported by this function; this is the architecturally
189 * correct behaviour.
191 int prio = 0xff;
193 if (!(cs->ich_vmcr_el2 & (ICH_VMCR_EL2_VENG0 | ICH_VMCR_EL2_VENG1))) {
194 /* Both groups disabled, definitely nothing to do */
195 return idx;
198 for (i = 0; i < cs->num_list_regs; i++) {
199 uint64_t lr = cs->ich_lr_el2[i];
200 int thisprio;
202 if (ich_lr_state(lr) != ICH_LR_EL2_STATE_PENDING) {
203 /* Not Pending */
204 continue;
207 /* Ignore interrupts if relevant group enable not set */
208 if (lr & ICH_LR_EL2_GROUP) {
209 if (!(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) {
210 continue;
212 } else {
213 if (!(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG0)) {
214 continue;
218 thisprio = ich_lr_prio(lr);
220 if (thisprio < prio) {
221 prio = thisprio;
222 idx = i;
227 * "no pending vLPI" is indicated with prio = 0xff, which always
228 * fails the priority check here. vLPIs are only considered
229 * when we are in Non-Secure state.
231 if (cs->hppvlpi.prio < prio && !arm_is_secure(env)) {
232 if (cs->hppvlpi.grp == GICV3_G0) {
233 if (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG0) {
234 return HPPVI_INDEX_VLPI;
236 } else {
237 if (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1) {
238 return HPPVI_INDEX_VLPI;
243 return idx;
246 static uint32_t icv_gprio_mask(GICv3CPUState *cs, int group)
248 /* Return a mask word which clears the subpriority bits from
249 * a priority value for a virtual interrupt in the specified group.
250 * This depends on the VBPR value.
251 * If using VBPR0 then:
252 * a BPR of 0 means the group priority bits are [7:1];
253 * a BPR of 1 means they are [7:2], and so on down to
254 * a BPR of 7 meaning no group priority bits at all.
255 * If using VBPR1 then:
256 * a BPR of 0 is impossible (the minimum value is 1)
257 * a BPR of 1 means the group priority bits are [7:1];
258 * a BPR of 2 means they are [7:2], and so on down to
259 * a BPR of 7 meaning the group priority is [7].
261 * Which BPR to use depends on the group of the interrupt and
262 * the current ICH_VMCR_EL2.VCBPR settings.
264 * This corresponds to the VGroupBits() pseudocode.
266 int bpr;
268 if (group == GICV3_G1NS && cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR) {
269 group = GICV3_G0;
272 bpr = read_vbpr(cs, group);
273 if (group == GICV3_G1NS) {
274 assert(bpr > 0);
275 bpr--;
278 return ~0U << (bpr + 1);
281 static bool icv_hppi_can_preempt(GICv3CPUState *cs, uint64_t lr)
283 /* Return true if we can signal this virtual interrupt defined by
284 * the given list register value; see the pseudocode functions
285 * CanSignalVirtualInterrupt and CanSignalVirtualInt.
286 * Compare also icc_hppi_can_preempt() which is the non-virtual
287 * equivalent of these checks.
289 int grp;
290 uint32_t mask, prio, rprio, vpmr;
292 if (!(cs->ich_hcr_el2 & ICH_HCR_EL2_EN)) {
293 /* Virtual interface disabled */
294 return false;
297 /* We don't need to check that this LR is in Pending state because
298 * that has already been done in hppvi_index().
301 prio = ich_lr_prio(lr);
302 vpmr = extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT,
303 ICH_VMCR_EL2_VPMR_LENGTH);
305 if (prio >= vpmr) {
306 /* Priority mask masks this interrupt */
307 return false;
310 rprio = ich_highest_active_virt_prio(cs);
311 if (rprio == 0xff) {
312 /* No running interrupt so we can preempt */
313 return true;
316 grp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0;
318 mask = icv_gprio_mask(cs, grp);
320 /* We only preempt a running interrupt if the pending interrupt's
321 * group priority is sufficient (the subpriorities are not considered).
323 if ((prio & mask) < (rprio & mask)) {
324 return true;
327 return false;
330 static bool icv_hppvlpi_can_preempt(GICv3CPUState *cs)
333 * Return true if we can signal the highest priority pending vLPI.
334 * We can assume we're Non-secure because hppvi_index() already
335 * tested for that.
337 uint32_t mask, rprio, vpmr;
339 if (!(cs->ich_hcr_el2 & ICH_HCR_EL2_EN)) {
340 /* Virtual interface disabled */
341 return false;
344 vpmr = extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT,
345 ICH_VMCR_EL2_VPMR_LENGTH);
347 if (cs->hppvlpi.prio >= vpmr) {
348 /* Priority mask masks this interrupt */
349 return false;
352 rprio = ich_highest_active_virt_prio(cs);
353 if (rprio == 0xff) {
354 /* No running interrupt so we can preempt */
355 return true;
358 mask = icv_gprio_mask(cs, cs->hppvlpi.grp);
361 * We only preempt a running interrupt if the pending interrupt's
362 * group priority is sufficient (the subpriorities are not considered).
364 if ((cs->hppvlpi.prio & mask) < (rprio & mask)) {
365 return true;
368 return false;
371 static uint32_t eoi_maintenance_interrupt_state(GICv3CPUState *cs,
372 uint32_t *misr)
374 /* Return a set of bits indicating the EOI maintenance interrupt status
375 * for each list register. The EOI maintenance interrupt status is
376 * 1 if LR.State == 0 && LR.HW == 0 && LR.EOI == 1
377 * (see the GICv3 spec for the ICH_EISR_EL2 register).
378 * If misr is not NULL then we should also collect the information
379 * about the MISR.EOI, MISR.NP and MISR.U bits.
381 uint32_t value = 0;
382 int validcount = 0;
383 bool seenpending = false;
384 int i;
386 for (i = 0; i < cs->num_list_regs; i++) {
387 uint64_t lr = cs->ich_lr_el2[i];
389 if ((lr & (ICH_LR_EL2_STATE_MASK | ICH_LR_EL2_HW | ICH_LR_EL2_EOI))
390 == ICH_LR_EL2_EOI) {
391 value |= (1 << i);
393 if ((lr & ICH_LR_EL2_STATE_MASK)) {
394 validcount++;
396 if (ich_lr_state(lr) == ICH_LR_EL2_STATE_PENDING) {
397 seenpending = true;
401 if (misr) {
402 if (validcount < 2 && (cs->ich_hcr_el2 & ICH_HCR_EL2_UIE)) {
403 *misr |= ICH_MISR_EL2_U;
405 if (!seenpending && (cs->ich_hcr_el2 & ICH_HCR_EL2_NPIE)) {
406 *misr |= ICH_MISR_EL2_NP;
408 if (value) {
409 *misr |= ICH_MISR_EL2_EOI;
412 return value;
415 static uint32_t maintenance_interrupt_state(GICv3CPUState *cs)
417 /* Return a set of bits indicating the maintenance interrupt status
418 * (as seen in the ICH_MISR_EL2 register).
420 uint32_t value = 0;
422 /* Scan list registers and fill in the U, NP and EOI bits */
423 eoi_maintenance_interrupt_state(cs, &value);
425 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_LRENPIE) &&
426 (cs->ich_hcr_el2 & ICH_HCR_EL2_EOICOUNT_MASK)) {
427 value |= ICH_MISR_EL2_LRENP;
430 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP0EIE) &&
431 (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG0)) {
432 value |= ICH_MISR_EL2_VGRP0E;
435 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP0DIE) &&
436 !(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) {
437 value |= ICH_MISR_EL2_VGRP0D;
439 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP1EIE) &&
440 (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) {
441 value |= ICH_MISR_EL2_VGRP1E;
444 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP1DIE) &&
445 !(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) {
446 value |= ICH_MISR_EL2_VGRP1D;
449 return value;
452 void gicv3_cpuif_virt_irq_fiq_update(GICv3CPUState *cs)
455 * Tell the CPU about any pending virtual interrupts.
456 * This should only be called for changes that affect the
457 * vIRQ and vFIQ status and do not change the maintenance
458 * interrupt status. This means that unlike gicv3_cpuif_virt_update()
459 * this function won't recursively call back into the GIC code.
460 * The main use of this is when the redistributor has changed the
461 * highest priority pending virtual LPI.
463 int idx;
464 int irqlevel = 0;
465 int fiqlevel = 0;
467 idx = hppvi_index(cs);
468 trace_gicv3_cpuif_virt_update(gicv3_redist_affid(cs), idx,
469 cs->hppvlpi.irq, cs->hppvlpi.grp,
470 cs->hppvlpi.prio);
471 if (idx == HPPVI_INDEX_VLPI) {
472 if (icv_hppvlpi_can_preempt(cs)) {
473 if (cs->hppvlpi.grp == GICV3_G0) {
474 fiqlevel = 1;
475 } else {
476 irqlevel = 1;
479 } else if (idx >= 0) {
480 uint64_t lr = cs->ich_lr_el2[idx];
482 if (icv_hppi_can_preempt(cs, lr)) {
483 /* Virtual interrupts are simple: G0 are always FIQ, and G1 IRQ */
484 if (lr & ICH_LR_EL2_GROUP) {
485 irqlevel = 1;
486 } else {
487 fiqlevel = 1;
492 trace_gicv3_cpuif_virt_set_irqs(gicv3_redist_affid(cs), fiqlevel, irqlevel);
493 qemu_set_irq(cs->parent_vfiq, fiqlevel);
494 qemu_set_irq(cs->parent_virq, irqlevel);
497 static void gicv3_cpuif_virt_update(GICv3CPUState *cs)
500 * Tell the CPU about any pending virtual interrupts or
501 * maintenance interrupts, following a change to the state
502 * of the CPU interface relevant to virtual interrupts.
504 * CAUTION: this function will call qemu_set_irq() on the
505 * CPU maintenance IRQ line, which is typically wired up
506 * to the GIC as a per-CPU interrupt. This means that it
507 * will recursively call back into the GIC code via
508 * gicv3_redist_set_irq() and thus into the CPU interface code's
509 * gicv3_cpuif_update(). It is therefore important that this
510 * function is only called as the final action of a CPU interface
511 * register write implementation, after all the GIC state
512 * fields have been updated. gicv3_cpuif_update() also must
513 * not cause this function to be called, but that happens
514 * naturally as a result of there being no architectural
515 * linkage between the physical and virtual GIC logic.
517 ARMCPU *cpu = ARM_CPU(cs->cpu);
518 int maintlevel = 0;
520 gicv3_cpuif_virt_irq_fiq_update(cs);
522 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_EN) &&
523 maintenance_interrupt_state(cs) != 0) {
524 maintlevel = 1;
527 trace_gicv3_cpuif_virt_set_maint_irq(gicv3_redist_affid(cs), maintlevel);
528 qemu_set_irq(cpu->gicv3_maintenance_interrupt, maintlevel);
531 static uint64_t icv_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
533 GICv3CPUState *cs = icc_cs_from_env(env);
534 int regno = ri->opc2 & 3;
535 int grp = (ri->crm & 1) ? GICV3_G1NS : GICV3_G0;
536 uint64_t value = cs->ich_apr[grp][regno];
538 trace_gicv3_icv_ap_read(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
539 return value;
542 static void icv_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
543 uint64_t value)
545 GICv3CPUState *cs = icc_cs_from_env(env);
546 int regno = ri->opc2 & 3;
547 int grp = (ri->crm & 1) ? GICV3_G1NS : GICV3_G0;
549 trace_gicv3_icv_ap_write(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
551 cs->ich_apr[grp][regno] = value & 0xFFFFFFFFU;
553 gicv3_cpuif_virt_irq_fiq_update(cs);
554 return;
557 static uint64_t icv_bpr_read(CPUARMState *env, const ARMCPRegInfo *ri)
559 GICv3CPUState *cs = icc_cs_from_env(env);
560 int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1NS;
561 uint64_t bpr;
562 bool satinc = false;
564 if (grp == GICV3_G1NS && (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR)) {
565 /* reads return bpr0 + 1 saturated to 7, writes ignored */
566 grp = GICV3_G0;
567 satinc = true;
570 bpr = read_vbpr(cs, grp);
572 if (satinc) {
573 bpr++;
574 bpr = MIN(bpr, 7);
577 trace_gicv3_icv_bpr_read(ri->crm == 8 ? 0 : 1, gicv3_redist_affid(cs), bpr);
579 return bpr;
582 static void icv_bpr_write(CPUARMState *env, const ARMCPRegInfo *ri,
583 uint64_t value)
585 GICv3CPUState *cs = icc_cs_from_env(env);
586 int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1NS;
588 trace_gicv3_icv_bpr_write(ri->crm == 8 ? 0 : 1,
589 gicv3_redist_affid(cs), value);
591 if (grp == GICV3_G1NS && (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR)) {
592 /* reads return bpr0 + 1 saturated to 7, writes ignored */
593 return;
596 write_vbpr(cs, grp, value);
598 gicv3_cpuif_virt_irq_fiq_update(cs);
601 static uint64_t icv_pmr_read(CPUARMState *env, const ARMCPRegInfo *ri)
603 GICv3CPUState *cs = icc_cs_from_env(env);
604 uint64_t value;
606 value = extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT,
607 ICH_VMCR_EL2_VPMR_LENGTH);
609 trace_gicv3_icv_pmr_read(gicv3_redist_affid(cs), value);
610 return value;
613 static void icv_pmr_write(CPUARMState *env, const ARMCPRegInfo *ri,
614 uint64_t value)
616 GICv3CPUState *cs = icc_cs_from_env(env);
618 trace_gicv3_icv_pmr_write(gicv3_redist_affid(cs), value);
620 value &= icv_fullprio_mask(cs);
622 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT,
623 ICH_VMCR_EL2_VPMR_LENGTH, value);
625 gicv3_cpuif_virt_irq_fiq_update(cs);
628 static uint64_t icv_igrpen_read(CPUARMState *env, const ARMCPRegInfo *ri)
630 GICv3CPUState *cs = icc_cs_from_env(env);
631 int enbit;
632 uint64_t value;
634 enbit = ri->opc2 & 1 ? ICH_VMCR_EL2_VENG1_SHIFT : ICH_VMCR_EL2_VENG0_SHIFT;
635 value = extract64(cs->ich_vmcr_el2, enbit, 1);
637 trace_gicv3_icv_igrpen_read(ri->opc2 & 1 ? 1 : 0,
638 gicv3_redist_affid(cs), value);
639 return value;
642 static void icv_igrpen_write(CPUARMState *env, const ARMCPRegInfo *ri,
643 uint64_t value)
645 GICv3CPUState *cs = icc_cs_from_env(env);
646 int enbit;
648 trace_gicv3_icv_igrpen_write(ri->opc2 & 1 ? 1 : 0,
649 gicv3_redist_affid(cs), value);
651 enbit = ri->opc2 & 1 ? ICH_VMCR_EL2_VENG1_SHIFT : ICH_VMCR_EL2_VENG0_SHIFT;
653 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, enbit, 1, value);
654 gicv3_cpuif_virt_update(cs);
657 static uint64_t icv_ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri)
659 GICv3CPUState *cs = icc_cs_from_env(env);
660 uint64_t value;
662 /* Note that the fixed fields here (A3V, SEIS, IDbits, PRIbits)
663 * should match the ones reported in ich_vtr_read().
665 value = ICC_CTLR_EL1_A3V | (1 << ICC_CTLR_EL1_IDBITS_SHIFT) |
666 ((cs->vpribits - 1) << ICC_CTLR_EL1_PRIBITS_SHIFT);
668 if (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VEOIM) {
669 value |= ICC_CTLR_EL1_EOIMODE;
672 if (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR) {
673 value |= ICC_CTLR_EL1_CBPR;
676 trace_gicv3_icv_ctlr_read(gicv3_redist_affid(cs), value);
677 return value;
680 static void icv_ctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
681 uint64_t value)
683 GICv3CPUState *cs = icc_cs_from_env(env);
685 trace_gicv3_icv_ctlr_write(gicv3_redist_affid(cs), value);
687 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VCBPR_SHIFT,
688 1, value & ICC_CTLR_EL1_CBPR ? 1 : 0);
689 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VEOIM_SHIFT,
690 1, value & ICC_CTLR_EL1_EOIMODE ? 1 : 0);
692 gicv3_cpuif_virt_irq_fiq_update(cs);
695 static uint64_t icv_rpr_read(CPUARMState *env, const ARMCPRegInfo *ri)
697 GICv3CPUState *cs = icc_cs_from_env(env);
698 int prio = ich_highest_active_virt_prio(cs);
700 trace_gicv3_icv_rpr_read(gicv3_redist_affid(cs), prio);
701 return prio;
704 static uint64_t icv_hppir_read(CPUARMState *env, const ARMCPRegInfo *ri)
706 GICv3CPUState *cs = icc_cs_from_env(env);
707 int grp = ri->crm == 8 ? GICV3_G0 : GICV3_G1NS;
708 int idx = hppvi_index(cs);
709 uint64_t value = INTID_SPURIOUS;
711 if (idx == HPPVI_INDEX_VLPI) {
712 if (cs->hppvlpi.grp == grp) {
713 value = cs->hppvlpi.irq;
715 } else if (idx >= 0) {
716 uint64_t lr = cs->ich_lr_el2[idx];
717 int thisgrp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0;
719 if (grp == thisgrp) {
720 value = ich_lr_vintid(lr);
724 trace_gicv3_icv_hppir_read(ri->crm == 8 ? 0 : 1,
725 gicv3_redist_affid(cs), value);
726 return value;
729 static void icv_activate_irq(GICv3CPUState *cs, int idx, int grp)
731 /* Activate the interrupt in the specified list register
732 * by moving it from Pending to Active state, and update the
733 * Active Priority Registers.
735 uint32_t mask = icv_gprio_mask(cs, grp);
736 int prio = ich_lr_prio(cs->ich_lr_el2[idx]) & mask;
737 int aprbit = prio >> (8 - cs->vprebits);
738 int regno = aprbit / 32;
739 int regbit = aprbit % 32;
741 cs->ich_lr_el2[idx] &= ~ICH_LR_EL2_STATE_PENDING_BIT;
742 cs->ich_lr_el2[idx] |= ICH_LR_EL2_STATE_ACTIVE_BIT;
743 cs->ich_apr[grp][regno] |= (1 << regbit);
746 static void icv_activate_vlpi(GICv3CPUState *cs)
748 uint32_t mask = icv_gprio_mask(cs, cs->hppvlpi.grp);
749 int prio = cs->hppvlpi.prio & mask;
750 int aprbit = prio >> (8 - cs->vprebits);
751 int regno = aprbit / 32;
752 int regbit = aprbit % 32;
754 cs->ich_apr[cs->hppvlpi.grp][regno] |= (1 << regbit);
755 gicv3_redist_vlpi_pending(cs, cs->hppvlpi.irq, 0);
758 static uint64_t icv_iar_read(CPUARMState *env, const ARMCPRegInfo *ri)
760 GICv3CPUState *cs = icc_cs_from_env(env);
761 int grp = ri->crm == 8 ? GICV3_G0 : GICV3_G1NS;
762 int idx = hppvi_index(cs);
763 uint64_t intid = INTID_SPURIOUS;
765 if (idx == HPPVI_INDEX_VLPI) {
766 if (cs->hppvlpi.grp == grp && icv_hppvlpi_can_preempt(cs)) {
767 intid = cs->hppvlpi.irq;
768 icv_activate_vlpi(cs);
770 } else if (idx >= 0) {
771 uint64_t lr = cs->ich_lr_el2[idx];
772 int thisgrp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0;
774 if (thisgrp == grp && icv_hppi_can_preempt(cs, lr)) {
775 intid = ich_lr_vintid(lr);
776 if (!gicv3_intid_is_special(intid)) {
777 icv_activate_irq(cs, idx, grp);
778 } else {
779 /* Interrupt goes from Pending to Invalid */
780 cs->ich_lr_el2[idx] &= ~ICH_LR_EL2_STATE_PENDING_BIT;
781 /* We will now return the (bogus) ID from the list register,
782 * as per the pseudocode.
788 trace_gicv3_icv_iar_read(ri->crm == 8 ? 0 : 1,
789 gicv3_redist_affid(cs), intid);
791 gicv3_cpuif_virt_update(cs);
793 return intid;
796 static uint32_t icc_fullprio_mask(GICv3CPUState *cs)
799 * Return a mask word which clears the unimplemented priority bits
800 * from a priority value for a physical interrupt. (Not to be confused
801 * with the group priority, whose mask depends on the value of BPR
802 * for the interrupt group.)
804 return ~0U << (8 - cs->pribits);
807 static inline int icc_min_bpr(GICv3CPUState *cs)
809 /* The minimum BPR for the physical interface. */
810 return 7 - cs->prebits;
813 static inline int icc_min_bpr_ns(GICv3CPUState *cs)
815 return icc_min_bpr(cs) + 1;
818 static inline int icc_num_aprs(GICv3CPUState *cs)
820 /* Return the number of APR registers (1, 2, or 4) */
821 int aprmax = 1 << MAX(cs->prebits - 5, 0);
822 assert(aprmax <= ARRAY_SIZE(cs->icc_apr[0]));
823 return aprmax;
826 static int icc_highest_active_prio(GICv3CPUState *cs)
828 /* Calculate the current running priority based on the set bits
829 * in the Active Priority Registers.
831 int i;
833 for (i = 0; i < icc_num_aprs(cs); i++) {
834 uint32_t apr = cs->icc_apr[GICV3_G0][i] |
835 cs->icc_apr[GICV3_G1][i] | cs->icc_apr[GICV3_G1NS][i];
837 if (!apr) {
838 continue;
840 return (i * 32 + ctz32(apr)) << (icc_min_bpr(cs) + 1);
842 /* No current active interrupts: return idle priority */
843 return 0xff;
846 static uint32_t icc_gprio_mask(GICv3CPUState *cs, int group)
848 /* Return a mask word which clears the subpriority bits from
849 * a priority value for an interrupt in the specified group.
850 * This depends on the BPR value. For CBPR0 (S or NS):
851 * a BPR of 0 means the group priority bits are [7:1];
852 * a BPR of 1 means they are [7:2], and so on down to
853 * a BPR of 7 meaning no group priority bits at all.
854 * For CBPR1 NS:
855 * a BPR of 0 is impossible (the minimum value is 1)
856 * a BPR of 1 means the group priority bits are [7:1];
857 * a BPR of 2 means they are [7:2], and so on down to
858 * a BPR of 7 meaning the group priority is [7].
860 * Which BPR to use depends on the group of the interrupt and
861 * the current ICC_CTLR.CBPR settings.
863 * This corresponds to the GroupBits() pseudocode.
865 int bpr;
867 if ((group == GICV3_G1 && cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_CBPR) ||
868 (group == GICV3_G1NS &&
869 cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR)) {
870 group = GICV3_G0;
873 bpr = cs->icc_bpr[group] & 7;
875 if (group == GICV3_G1NS) {
876 assert(bpr > 0);
877 bpr--;
880 return ~0U << (bpr + 1);
883 static bool icc_no_enabled_hppi(GICv3CPUState *cs)
885 /* Return true if there is no pending interrupt, or the
886 * highest priority pending interrupt is in a group which has been
887 * disabled at the CPU interface by the ICC_IGRPEN* register enable bits.
889 return cs->hppi.prio == 0xff || (cs->icc_igrpen[cs->hppi.grp] == 0);
892 static bool icc_hppi_can_preempt(GICv3CPUState *cs)
894 /* Return true if we have a pending interrupt of sufficient
895 * priority to preempt.
897 int rprio;
898 uint32_t mask;
900 if (icc_no_enabled_hppi(cs)) {
901 return false;
904 if (cs->hppi.prio >= cs->icc_pmr_el1) {
905 /* Priority mask masks this interrupt */
906 return false;
909 rprio = icc_highest_active_prio(cs);
910 if (rprio == 0xff) {
911 /* No currently running interrupt so we can preempt */
912 return true;
915 mask = icc_gprio_mask(cs, cs->hppi.grp);
917 /* We only preempt a running interrupt if the pending interrupt's
918 * group priority is sufficient (the subpriorities are not considered).
920 if ((cs->hppi.prio & mask) < (rprio & mask)) {
921 return true;
924 return false;
927 void gicv3_cpuif_update(GICv3CPUState *cs)
929 /* Tell the CPU about its highest priority pending interrupt */
930 int irqlevel = 0;
931 int fiqlevel = 0;
932 ARMCPU *cpu = ARM_CPU(cs->cpu);
933 CPUARMState *env = &cpu->env;
935 g_assert(qemu_mutex_iothread_locked());
937 trace_gicv3_cpuif_update(gicv3_redist_affid(cs), cs->hppi.irq,
938 cs->hppi.grp, cs->hppi.prio);
940 if (cs->hppi.grp == GICV3_G1 && !arm_feature(env, ARM_FEATURE_EL3)) {
941 /* If a Security-enabled GIC sends a G1S interrupt to a
942 * Security-disabled CPU, we must treat it as if it were G0.
944 cs->hppi.grp = GICV3_G0;
947 if (icc_hppi_can_preempt(cs)) {
948 /* We have an interrupt: should we signal it as IRQ or FIQ?
949 * This is described in the GICv3 spec section 4.6.2.
951 bool isfiq;
953 switch (cs->hppi.grp) {
954 case GICV3_G0:
955 isfiq = true;
956 break;
957 case GICV3_G1:
958 isfiq = (!arm_is_secure(env) ||
959 (arm_current_el(env) == 3 && arm_el_is_aa64(env, 3)));
960 break;
961 case GICV3_G1NS:
962 isfiq = arm_is_secure(env);
963 break;
964 default:
965 g_assert_not_reached();
968 if (isfiq) {
969 fiqlevel = 1;
970 } else {
971 irqlevel = 1;
975 trace_gicv3_cpuif_set_irqs(gicv3_redist_affid(cs), fiqlevel, irqlevel);
977 qemu_set_irq(cs->parent_fiq, fiqlevel);
978 qemu_set_irq(cs->parent_irq, irqlevel);
981 static uint64_t icc_pmr_read(CPUARMState *env, const ARMCPRegInfo *ri)
983 GICv3CPUState *cs = icc_cs_from_env(env);
984 uint32_t value = cs->icc_pmr_el1;
986 if (icv_access(env, HCR_FMO | HCR_IMO)) {
987 return icv_pmr_read(env, ri);
990 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_is_secure(env) &&
991 (env->cp15.scr_el3 & SCR_FIQ)) {
992 /* NS access and Group 0 is inaccessible to NS: return the
993 * NS view of the current priority
995 if ((value & 0x80) == 0) {
996 /* Secure priorities not visible to NS */
997 value = 0;
998 } else if (value != 0xff) {
999 value = (value << 1) & 0xff;
1003 trace_gicv3_icc_pmr_read(gicv3_redist_affid(cs), value);
1005 return value;
1008 static void icc_pmr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1009 uint64_t value)
1011 GICv3CPUState *cs = icc_cs_from_env(env);
1013 if (icv_access(env, HCR_FMO | HCR_IMO)) {
1014 return icv_pmr_write(env, ri, value);
1017 trace_gicv3_icc_pmr_write(gicv3_redist_affid(cs), value);
1019 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_is_secure(env) &&
1020 (env->cp15.scr_el3 & SCR_FIQ)) {
1021 /* NS access and Group 0 is inaccessible to NS: return the
1022 * NS view of the current priority
1024 if (!(cs->icc_pmr_el1 & 0x80)) {
1025 /* Current PMR in the secure range, don't allow NS to change it */
1026 return;
1028 value = (value >> 1) | 0x80;
1030 value &= icc_fullprio_mask(cs);
1031 cs->icc_pmr_el1 = value;
1032 gicv3_cpuif_update(cs);
1035 static void icc_activate_irq(GICv3CPUState *cs, int irq)
1037 /* Move the interrupt from the Pending state to Active, and update
1038 * the Active Priority Registers
1040 uint32_t mask = icc_gprio_mask(cs, cs->hppi.grp);
1041 int prio = cs->hppi.prio & mask;
1042 int aprbit = prio >> (8 - cs->prebits);
1043 int regno = aprbit / 32;
1044 int regbit = aprbit % 32;
1046 cs->icc_apr[cs->hppi.grp][regno] |= (1 << regbit);
1048 if (irq < GIC_INTERNAL) {
1049 cs->gicr_iactiver0 = deposit32(cs->gicr_iactiver0, irq, 1, 1);
1050 cs->gicr_ipendr0 = deposit32(cs->gicr_ipendr0, irq, 1, 0);
1051 gicv3_redist_update(cs);
1052 } else if (irq < GICV3_LPI_INTID_START) {
1053 gicv3_gicd_active_set(cs->gic, irq);
1054 gicv3_gicd_pending_clear(cs->gic, irq);
1055 gicv3_update(cs->gic, irq, 1);
1056 } else {
1057 gicv3_redist_lpi_pending(cs, irq, 0);
1061 static uint64_t icc_hppir0_value(GICv3CPUState *cs, CPUARMState *env)
1063 /* Return the highest priority pending interrupt register value
1064 * for group 0.
1066 bool irq_is_secure;
1068 if (cs->hppi.prio == 0xff) {
1069 return INTID_SPURIOUS;
1072 /* Check whether we can return the interrupt or if we should return
1073 * a special identifier, as per the CheckGroup0ForSpecialIdentifiers
1074 * pseudocode. (We can simplify a little because for us ICC_SRE_EL1.RM
1075 * is always zero.)
1077 irq_is_secure = (!(cs->gic->gicd_ctlr & GICD_CTLR_DS) &&
1078 (cs->hppi.grp != GICV3_G1NS));
1080 if (cs->hppi.grp != GICV3_G0 && !arm_is_el3_or_mon(env)) {
1081 return INTID_SPURIOUS;
1083 if (irq_is_secure && !arm_is_secure(env)) {
1084 /* Secure interrupts not visible to Nonsecure */
1085 return INTID_SPURIOUS;
1088 if (cs->hppi.grp != GICV3_G0) {
1089 /* Indicate to EL3 that there's a Group 1 interrupt for the other
1090 * state pending.
1092 return irq_is_secure ? INTID_SECURE : INTID_NONSECURE;
1095 return cs->hppi.irq;
1098 static uint64_t icc_hppir1_value(GICv3CPUState *cs, CPUARMState *env)
1100 /* Return the highest priority pending interrupt register value
1101 * for group 1.
1103 bool irq_is_secure;
1105 if (cs->hppi.prio == 0xff) {
1106 return INTID_SPURIOUS;
1109 /* Check whether we can return the interrupt or if we should return
1110 * a special identifier, as per the CheckGroup1ForSpecialIdentifiers
1111 * pseudocode. (We can simplify a little because for us ICC_SRE_EL1.RM
1112 * is always zero.)
1114 irq_is_secure = (!(cs->gic->gicd_ctlr & GICD_CTLR_DS) &&
1115 (cs->hppi.grp != GICV3_G1NS));
1117 if (cs->hppi.grp == GICV3_G0) {
1118 /* Group 0 interrupts not visible via HPPIR1 */
1119 return INTID_SPURIOUS;
1121 if (irq_is_secure) {
1122 if (!arm_is_secure(env)) {
1123 /* Secure interrupts not visible in Non-secure */
1124 return INTID_SPURIOUS;
1126 } else if (!arm_is_el3_or_mon(env) && arm_is_secure(env)) {
1127 /* Group 1 non-secure interrupts not visible in Secure EL1 */
1128 return INTID_SPURIOUS;
1131 return cs->hppi.irq;
1134 static uint64_t icc_iar0_read(CPUARMState *env, const ARMCPRegInfo *ri)
1136 GICv3CPUState *cs = icc_cs_from_env(env);
1137 uint64_t intid;
1139 if (icv_access(env, HCR_FMO)) {
1140 return icv_iar_read(env, ri);
1143 if (!icc_hppi_can_preempt(cs)) {
1144 intid = INTID_SPURIOUS;
1145 } else {
1146 intid = icc_hppir0_value(cs, env);
1149 if (!gicv3_intid_is_special(intid)) {
1150 icc_activate_irq(cs, intid);
1153 trace_gicv3_icc_iar0_read(gicv3_redist_affid(cs), intid);
1154 return intid;
1157 static uint64_t icc_iar1_read(CPUARMState *env, const ARMCPRegInfo *ri)
1159 GICv3CPUState *cs = icc_cs_from_env(env);
1160 uint64_t intid;
1162 if (icv_access(env, HCR_IMO)) {
1163 return icv_iar_read(env, ri);
1166 if (!icc_hppi_can_preempt(cs)) {
1167 intid = INTID_SPURIOUS;
1168 } else {
1169 intid = icc_hppir1_value(cs, env);
1172 if (!gicv3_intid_is_special(intid)) {
1173 icc_activate_irq(cs, intid);
1176 trace_gicv3_icc_iar1_read(gicv3_redist_affid(cs), intid);
1177 return intid;
1180 static void icc_drop_prio(GICv3CPUState *cs, int grp)
1182 /* Drop the priority of the currently active interrupt in
1183 * the specified group.
1185 * Note that we can guarantee (because of the requirement to nest
1186 * ICC_IAR reads [which activate an interrupt and raise priority]
1187 * with ICC_EOIR writes [which drop the priority for the interrupt])
1188 * that the interrupt we're being called for is the highest priority
1189 * active interrupt, meaning that it has the lowest set bit in the
1190 * APR registers.
1192 * If the guest does not honour the ordering constraints then the
1193 * behaviour of the GIC is UNPREDICTABLE, which for us means that
1194 * the values of the APR registers might become incorrect and the
1195 * running priority will be wrong, so interrupts that should preempt
1196 * might not do so, and interrupts that should not preempt might do so.
1198 int i;
1200 for (i = 0; i < icc_num_aprs(cs); i++) {
1201 uint64_t *papr = &cs->icc_apr[grp][i];
1203 if (!*papr) {
1204 continue;
1206 /* Clear the lowest set bit */
1207 *papr &= *papr - 1;
1208 break;
1211 /* running priority change means we need an update for this cpu i/f */
1212 gicv3_cpuif_update(cs);
1215 static bool icc_eoi_split(CPUARMState *env, GICv3CPUState *cs)
1217 /* Return true if we should split priority drop and interrupt
1218 * deactivation, ie whether the relevant EOIMode bit is set.
1220 if (arm_is_el3_or_mon(env)) {
1221 return cs->icc_ctlr_el3 & ICC_CTLR_EL3_EOIMODE_EL3;
1223 if (arm_is_secure_below_el3(env)) {
1224 return cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_EOIMODE;
1225 } else {
1226 return cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_EOIMODE;
1230 static int icc_highest_active_group(GICv3CPUState *cs)
1232 /* Return the group with the highest priority active interrupt.
1233 * We can do this by just comparing the APRs to see which one
1234 * has the lowest set bit.
1235 * (If more than one group is active at the same priority then
1236 * we're in UNPREDICTABLE territory.)
1238 int i;
1240 for (i = 0; i < ARRAY_SIZE(cs->icc_apr[0]); i++) {
1241 int g0ctz = ctz32(cs->icc_apr[GICV3_G0][i]);
1242 int g1ctz = ctz32(cs->icc_apr[GICV3_G1][i]);
1243 int g1nsctz = ctz32(cs->icc_apr[GICV3_G1NS][i]);
1245 if (g1nsctz < g0ctz && g1nsctz < g1ctz) {
1246 return GICV3_G1NS;
1248 if (g1ctz < g0ctz) {
1249 return GICV3_G1;
1251 if (g0ctz < 32) {
1252 return GICV3_G0;
1255 /* No set active bits? UNPREDICTABLE; return -1 so the caller
1256 * ignores the spurious EOI attempt.
1258 return -1;
1261 static void icc_deactivate_irq(GICv3CPUState *cs, int irq)
1263 if (irq < GIC_INTERNAL) {
1264 cs->gicr_iactiver0 = deposit32(cs->gicr_iactiver0, irq, 1, 0);
1265 gicv3_redist_update(cs);
1266 } else {
1267 gicv3_gicd_active_clear(cs->gic, irq);
1268 gicv3_update(cs->gic, irq, 1);
1272 static bool icv_eoi_split(CPUARMState *env, GICv3CPUState *cs)
1274 /* Return true if we should split priority drop and interrupt
1275 * deactivation, ie whether the virtual EOIMode bit is set.
1277 return cs->ich_vmcr_el2 & ICH_VMCR_EL2_VEOIM;
1280 static int icv_find_active(GICv3CPUState *cs, int irq)
1282 /* Given an interrupt number for an active interrupt, return the index
1283 * of the corresponding list register, or -1 if there is no match.
1284 * Corresponds to FindActiveVirtualInterrupt pseudocode.
1286 int i;
1288 for (i = 0; i < cs->num_list_regs; i++) {
1289 uint64_t lr = cs->ich_lr_el2[i];
1291 if ((lr & ICH_LR_EL2_STATE_ACTIVE_BIT) && ich_lr_vintid(lr) == irq) {
1292 return i;
1296 return -1;
1299 static void icv_deactivate_irq(GICv3CPUState *cs, int idx)
1301 /* Deactivate the interrupt in the specified list register index */
1302 uint64_t lr = cs->ich_lr_el2[idx];
1304 if (lr & ICH_LR_EL2_HW) {
1305 /* Deactivate the associated physical interrupt */
1306 int pirq = ich_lr_pintid(lr);
1308 if (pirq < INTID_SECURE) {
1309 icc_deactivate_irq(cs, pirq);
1313 /* Clear the 'active' part of the state, so ActivePending->Pending
1314 * and Active->Invalid.
1316 lr &= ~ICH_LR_EL2_STATE_ACTIVE_BIT;
1317 cs->ich_lr_el2[idx] = lr;
1320 static void icv_increment_eoicount(GICv3CPUState *cs)
1322 /* Increment the EOICOUNT field in ICH_HCR_EL2 */
1323 int eoicount = extract64(cs->ich_hcr_el2, ICH_HCR_EL2_EOICOUNT_SHIFT,
1324 ICH_HCR_EL2_EOICOUNT_LENGTH);
1326 cs->ich_hcr_el2 = deposit64(cs->ich_hcr_el2, ICH_HCR_EL2_EOICOUNT_SHIFT,
1327 ICH_HCR_EL2_EOICOUNT_LENGTH, eoicount + 1);
1330 static int icv_drop_prio(GICv3CPUState *cs)
1332 /* Drop the priority of the currently active virtual interrupt
1333 * (favouring group 0 if there is a set active bit at
1334 * the same priority for both group 0 and group 1).
1335 * Return the priority value for the bit we just cleared,
1336 * or 0xff if no bits were set in the AP registers at all.
1337 * Note that though the ich_apr[] are uint64_t only the low
1338 * 32 bits are actually relevant.
1340 int i;
1341 int aprmax = ich_num_aprs(cs);
1343 for (i = 0; i < aprmax; i++) {
1344 uint64_t *papr0 = &cs->ich_apr[GICV3_G0][i];
1345 uint64_t *papr1 = &cs->ich_apr[GICV3_G1NS][i];
1346 int apr0count, apr1count;
1348 if (!*papr0 && !*papr1) {
1349 continue;
1352 /* We can't just use the bit-twiddling hack icc_drop_prio() does
1353 * because we need to return the bit number we cleared so
1354 * it can be compared against the list register's priority field.
1356 apr0count = ctz32(*papr0);
1357 apr1count = ctz32(*papr1);
1359 if (apr0count <= apr1count) {
1360 *papr0 &= *papr0 - 1;
1361 return (apr0count + i * 32) << (icv_min_vbpr(cs) + 1);
1362 } else {
1363 *papr1 &= *papr1 - 1;
1364 return (apr1count + i * 32) << (icv_min_vbpr(cs) + 1);
1367 return 0xff;
1370 static void icv_dir_write(CPUARMState *env, const ARMCPRegInfo *ri,
1371 uint64_t value)
1373 /* Deactivate interrupt */
1374 GICv3CPUState *cs = icc_cs_from_env(env);
1375 int idx;
1376 int irq = value & 0xffffff;
1378 trace_gicv3_icv_dir_write(gicv3_redist_affid(cs), value);
1380 if (irq >= GICV3_MAXIRQ) {
1381 /* Also catches special interrupt numbers and LPIs */
1382 return;
1385 if (!icv_eoi_split(env, cs)) {
1386 return;
1389 idx = icv_find_active(cs, irq);
1391 if (idx < 0) {
1392 /* No list register matching this, so increment the EOI count
1393 * (might trigger a maintenance interrupt)
1395 icv_increment_eoicount(cs);
1396 } else {
1397 icv_deactivate_irq(cs, idx);
1400 gicv3_cpuif_virt_update(cs);
1403 static void icv_eoir_write(CPUARMState *env, const ARMCPRegInfo *ri,
1404 uint64_t value)
1406 /* End of Interrupt */
1407 GICv3CPUState *cs = icc_cs_from_env(env);
1408 int irq = value & 0xffffff;
1409 int grp = ri->crm == 8 ? GICV3_G0 : GICV3_G1NS;
1410 int idx, dropprio;
1412 trace_gicv3_icv_eoir_write(ri->crm == 8 ? 0 : 1,
1413 gicv3_redist_affid(cs), value);
1415 if (gicv3_intid_is_special(irq)) {
1416 return;
1419 /* We implement the IMPDEF choice of "drop priority before doing
1420 * error checks" (because that lets us avoid scanning the AP
1421 * registers twice).
1423 dropprio = icv_drop_prio(cs);
1424 if (dropprio == 0xff) {
1425 /* No active interrupt. It is CONSTRAINED UNPREDICTABLE
1426 * whether the list registers are checked in this
1427 * situation; we choose not to.
1429 return;
1432 idx = icv_find_active(cs, irq);
1434 if (idx < 0) {
1435 /* No valid list register corresponding to EOI ID */
1436 icv_increment_eoicount(cs);
1437 } else {
1438 uint64_t lr = cs->ich_lr_el2[idx];
1439 int thisgrp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0;
1440 int lr_gprio = ich_lr_prio(lr) & icv_gprio_mask(cs, grp);
1442 if (thisgrp == grp && lr_gprio == dropprio) {
1443 if (!icv_eoi_split(env, cs)) {
1444 /* Priority drop and deactivate not split: deactivate irq now */
1445 icv_deactivate_irq(cs, idx);
1450 gicv3_cpuif_virt_update(cs);
1453 static void icc_eoir_write(CPUARMState *env, const ARMCPRegInfo *ri,
1454 uint64_t value)
1456 /* End of Interrupt */
1457 GICv3CPUState *cs = icc_cs_from_env(env);
1458 int irq = value & 0xffffff;
1459 int grp;
1460 bool is_eoir0 = ri->crm == 8;
1462 if (icv_access(env, is_eoir0 ? HCR_FMO : HCR_IMO)) {
1463 icv_eoir_write(env, ri, value);
1464 return;
1467 trace_gicv3_icc_eoir_write(is_eoir0 ? 0 : 1,
1468 gicv3_redist_affid(cs), value);
1470 if ((irq >= cs->gic->num_irq) &&
1471 !(cs->gic->lpi_enable && (irq >= GICV3_LPI_INTID_START))) {
1472 /* This handles two cases:
1473 * 1. If software writes the ID of a spurious interrupt [ie 1020-1023]
1474 * to the GICC_EOIR, the GIC ignores that write.
1475 * 2. If software writes the number of a non-existent interrupt
1476 * this must be a subcase of "value written does not match the last
1477 * valid interrupt value read from the Interrupt Acknowledge
1478 * register" and so this is UNPREDICTABLE. We choose to ignore it.
1480 return;
1483 grp = icc_highest_active_group(cs);
1484 switch (grp) {
1485 case GICV3_G0:
1486 if (!is_eoir0) {
1487 return;
1489 if (!(cs->gic->gicd_ctlr & GICD_CTLR_DS)
1490 && arm_feature(env, ARM_FEATURE_EL3) && !arm_is_secure(env)) {
1491 return;
1493 break;
1494 case GICV3_G1:
1495 if (is_eoir0) {
1496 return;
1498 if (!arm_is_secure(env)) {
1499 return;
1501 break;
1502 case GICV3_G1NS:
1503 if (is_eoir0) {
1504 return;
1506 if (!arm_is_el3_or_mon(env) && arm_is_secure(env)) {
1507 return;
1509 break;
1510 default:
1511 qemu_log_mask(LOG_GUEST_ERROR,
1512 "%s: IRQ %d isn't active\n", __func__, irq);
1513 return;
1516 icc_drop_prio(cs, grp);
1518 if (!icc_eoi_split(env, cs)) {
1519 /* Priority drop and deactivate not split: deactivate irq now */
1520 icc_deactivate_irq(cs, irq);
1524 static uint64_t icc_hppir0_read(CPUARMState *env, const ARMCPRegInfo *ri)
1526 GICv3CPUState *cs = icc_cs_from_env(env);
1527 uint64_t value;
1529 if (icv_access(env, HCR_FMO)) {
1530 return icv_hppir_read(env, ri);
1533 value = icc_hppir0_value(cs, env);
1534 trace_gicv3_icc_hppir0_read(gicv3_redist_affid(cs), value);
1535 return value;
1538 static uint64_t icc_hppir1_read(CPUARMState *env, const ARMCPRegInfo *ri)
1540 GICv3CPUState *cs = icc_cs_from_env(env);
1541 uint64_t value;
1543 if (icv_access(env, HCR_IMO)) {
1544 return icv_hppir_read(env, ri);
1547 value = icc_hppir1_value(cs, env);
1548 trace_gicv3_icc_hppir1_read(gicv3_redist_affid(cs), value);
1549 return value;
1552 static uint64_t icc_bpr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1554 GICv3CPUState *cs = icc_cs_from_env(env);
1555 int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1;
1556 bool satinc = false;
1557 uint64_t bpr;
1559 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
1560 return icv_bpr_read(env, ri);
1563 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
1564 grp = GICV3_G1NS;
1567 if (grp == GICV3_G1 && !arm_is_el3_or_mon(env) &&
1568 (cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_CBPR)) {
1569 /* CBPR_EL1S means secure EL1 or AArch32 EL3 !Mon BPR1 accesses
1570 * modify BPR0
1572 grp = GICV3_G0;
1575 if (grp == GICV3_G1NS && arm_current_el(env) < 3 &&
1576 (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR)) {
1577 /* reads return bpr0 + 1 sat to 7, writes ignored */
1578 grp = GICV3_G0;
1579 satinc = true;
1582 bpr = cs->icc_bpr[grp];
1583 if (satinc) {
1584 bpr++;
1585 bpr = MIN(bpr, 7);
1588 trace_gicv3_icc_bpr_read(ri->crm == 8 ? 0 : 1, gicv3_redist_affid(cs), bpr);
1590 return bpr;
1593 static void icc_bpr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1594 uint64_t value)
1596 GICv3CPUState *cs = icc_cs_from_env(env);
1597 int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1;
1598 uint64_t minval;
1600 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
1601 icv_bpr_write(env, ri, value);
1602 return;
1605 trace_gicv3_icc_bpr_write(ri->crm == 8 ? 0 : 1,
1606 gicv3_redist_affid(cs), value);
1608 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
1609 grp = GICV3_G1NS;
1612 if (grp == GICV3_G1 && !arm_is_el3_or_mon(env) &&
1613 (cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_CBPR)) {
1614 /* CBPR_EL1S means secure EL1 or AArch32 EL3 !Mon BPR1 accesses
1615 * modify BPR0
1617 grp = GICV3_G0;
1620 if (grp == GICV3_G1NS && arm_current_el(env) < 3 &&
1621 (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR)) {
1622 /* reads return bpr0 + 1 sat to 7, writes ignored */
1623 return;
1626 minval = (grp == GICV3_G1NS) ? icc_min_bpr_ns(cs) : icc_min_bpr(cs);
1627 if (value < minval) {
1628 value = minval;
1631 cs->icc_bpr[grp] = value & 7;
1632 gicv3_cpuif_update(cs);
1635 static uint64_t icc_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
1637 GICv3CPUState *cs = icc_cs_from_env(env);
1638 uint64_t value;
1640 int regno = ri->opc2 & 3;
1641 int grp = (ri->crm & 1) ? GICV3_G1 : GICV3_G0;
1643 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
1644 return icv_ap_read(env, ri);
1647 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
1648 grp = GICV3_G1NS;
1651 value = cs->icc_apr[grp][regno];
1653 trace_gicv3_icc_ap_read(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
1654 return value;
1657 static void icc_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
1658 uint64_t value)
1660 GICv3CPUState *cs = icc_cs_from_env(env);
1662 int regno = ri->opc2 & 3;
1663 int grp = (ri->crm & 1) ? GICV3_G1 : GICV3_G0;
1665 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
1666 icv_ap_write(env, ri, value);
1667 return;
1670 trace_gicv3_icc_ap_write(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
1672 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
1673 grp = GICV3_G1NS;
1676 /* It's not possible to claim that a Non-secure interrupt is active
1677 * at a priority outside the Non-secure range (128..255), since this
1678 * would otherwise allow malicious NS code to block delivery of S interrupts
1679 * by writing a bad value to these registers.
1681 if (grp == GICV3_G1NS && regno < 2 && arm_feature(env, ARM_FEATURE_EL3)) {
1682 return;
1685 cs->icc_apr[grp][regno] = value & 0xFFFFFFFFU;
1686 gicv3_cpuif_update(cs);
1689 static void icc_dir_write(CPUARMState *env, const ARMCPRegInfo *ri,
1690 uint64_t value)
1692 /* Deactivate interrupt */
1693 GICv3CPUState *cs = icc_cs_from_env(env);
1694 int irq = value & 0xffffff;
1695 bool irq_is_secure, single_sec_state, irq_is_grp0;
1696 bool route_fiq_to_el3, route_irq_to_el3, route_fiq_to_el2, route_irq_to_el2;
1698 if (icv_access(env, HCR_FMO | HCR_IMO)) {
1699 icv_dir_write(env, ri, value);
1700 return;
1703 trace_gicv3_icc_dir_write(gicv3_redist_affid(cs), value);
1705 if (irq >= cs->gic->num_irq) {
1706 /* Also catches special interrupt numbers and LPIs */
1707 return;
1710 if (!icc_eoi_split(env, cs)) {
1711 return;
1714 int grp = gicv3_irq_group(cs->gic, cs, irq);
1716 single_sec_state = cs->gic->gicd_ctlr & GICD_CTLR_DS;
1717 irq_is_secure = !single_sec_state && (grp != GICV3_G1NS);
1718 irq_is_grp0 = grp == GICV3_G0;
1720 /* Check whether we're allowed to deactivate this interrupt based
1721 * on its group and the current CPU state.
1722 * These checks are laid out to correspond to the spec's pseudocode.
1724 route_fiq_to_el3 = env->cp15.scr_el3 & SCR_FIQ;
1725 route_irq_to_el3 = env->cp15.scr_el3 & SCR_IRQ;
1726 /* No need to include !IsSecure in route_*_to_el2 as it's only
1727 * tested in cases where we know !IsSecure is true.
1729 uint64_t hcr_el2 = arm_hcr_el2_eff(env);
1730 route_fiq_to_el2 = hcr_el2 & HCR_FMO;
1731 route_irq_to_el2 = hcr_el2 & HCR_IMO;
1733 switch (arm_current_el(env)) {
1734 case 3:
1735 break;
1736 case 2:
1737 if (single_sec_state && irq_is_grp0 && !route_fiq_to_el3) {
1738 break;
1740 if (!irq_is_secure && !irq_is_grp0 && !route_irq_to_el3) {
1741 break;
1743 return;
1744 case 1:
1745 if (!arm_is_secure_below_el3(env)) {
1746 if (single_sec_state && irq_is_grp0 &&
1747 !route_fiq_to_el3 && !route_fiq_to_el2) {
1748 break;
1750 if (!irq_is_secure && !irq_is_grp0 &&
1751 !route_irq_to_el3 && !route_irq_to_el2) {
1752 break;
1754 } else {
1755 if (irq_is_grp0 && !route_fiq_to_el3) {
1756 break;
1758 if (!irq_is_grp0 &&
1759 (!irq_is_secure || !single_sec_state) &&
1760 !route_irq_to_el3) {
1761 break;
1764 return;
1765 default:
1766 g_assert_not_reached();
1769 icc_deactivate_irq(cs, irq);
1772 static uint64_t icc_rpr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1774 GICv3CPUState *cs = icc_cs_from_env(env);
1775 int prio;
1777 if (icv_access(env, HCR_FMO | HCR_IMO)) {
1778 return icv_rpr_read(env, ri);
1781 prio = icc_highest_active_prio(cs);
1783 if (arm_feature(env, ARM_FEATURE_EL3) &&
1784 !arm_is_secure(env) && (env->cp15.scr_el3 & SCR_FIQ)) {
1785 /* NS GIC access and Group 0 is inaccessible to NS */
1786 if ((prio & 0x80) == 0) {
1787 /* NS mustn't see priorities in the Secure half of the range */
1788 prio = 0;
1789 } else if (prio != 0xff) {
1790 /* Non-idle priority: show the Non-secure view of it */
1791 prio = (prio << 1) & 0xff;
1795 trace_gicv3_icc_rpr_read(gicv3_redist_affid(cs), prio);
1796 return prio;
1799 static void icc_generate_sgi(CPUARMState *env, GICv3CPUState *cs,
1800 uint64_t value, int grp, bool ns)
1802 GICv3State *s = cs->gic;
1804 /* Extract Aff3/Aff2/Aff1 and shift into the bottom 24 bits */
1805 uint64_t aff = extract64(value, 48, 8) << 16 |
1806 extract64(value, 32, 8) << 8 |
1807 extract64(value, 16, 8);
1808 uint32_t targetlist = extract64(value, 0, 16);
1809 uint32_t irq = extract64(value, 24, 4);
1810 bool irm = extract64(value, 40, 1);
1811 int i;
1813 if (grp == GICV3_G1 && s->gicd_ctlr & GICD_CTLR_DS) {
1814 /* If GICD_CTLR.DS == 1, the Distributor treats Secure Group 1
1815 * interrupts as Group 0 interrupts and must send Secure Group 0
1816 * interrupts to the target CPUs.
1818 grp = GICV3_G0;
1821 trace_gicv3_icc_generate_sgi(gicv3_redist_affid(cs), irq, irm,
1822 aff, targetlist);
1824 for (i = 0; i < s->num_cpu; i++) {
1825 GICv3CPUState *ocs = &s->cpu[i];
1827 if (irm) {
1828 /* IRM == 1 : route to all CPUs except self */
1829 if (cs == ocs) {
1830 continue;
1832 } else {
1833 /* IRM == 0 : route to Aff3.Aff2.Aff1.n for all n in [0..15]
1834 * where the corresponding bit is set in targetlist
1836 int aff0;
1838 if (ocs->gicr_typer >> 40 != aff) {
1839 continue;
1841 aff0 = extract64(ocs->gicr_typer, 32, 8);
1842 if (aff0 > 15 || extract32(targetlist, aff0, 1) == 0) {
1843 continue;
1847 /* The redistributor will check against its own GICR_NSACR as needed */
1848 gicv3_redist_send_sgi(ocs, grp, irq, ns);
1852 static void icc_sgi0r_write(CPUARMState *env, const ARMCPRegInfo *ri,
1853 uint64_t value)
1855 /* Generate Secure Group 0 SGI. */
1856 GICv3CPUState *cs = icc_cs_from_env(env);
1857 bool ns = !arm_is_secure(env);
1859 icc_generate_sgi(env, cs, value, GICV3_G0, ns);
1862 static void icc_sgi1r_write(CPUARMState *env, const ARMCPRegInfo *ri,
1863 uint64_t value)
1865 /* Generate Group 1 SGI for the current Security state */
1866 GICv3CPUState *cs = icc_cs_from_env(env);
1867 int grp;
1868 bool ns = !arm_is_secure(env);
1870 grp = ns ? GICV3_G1NS : GICV3_G1;
1871 icc_generate_sgi(env, cs, value, grp, ns);
1874 static void icc_asgi1r_write(CPUARMState *env, const ARMCPRegInfo *ri,
1875 uint64_t value)
1877 /* Generate Group 1 SGI for the Security state that is not
1878 * the current state
1880 GICv3CPUState *cs = icc_cs_from_env(env);
1881 int grp;
1882 bool ns = !arm_is_secure(env);
1884 grp = ns ? GICV3_G1 : GICV3_G1NS;
1885 icc_generate_sgi(env, cs, value, grp, ns);
1888 static uint64_t icc_igrpen_read(CPUARMState *env, const ARMCPRegInfo *ri)
1890 GICv3CPUState *cs = icc_cs_from_env(env);
1891 int grp = ri->opc2 & 1 ? GICV3_G1 : GICV3_G0;
1892 uint64_t value;
1894 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
1895 return icv_igrpen_read(env, ri);
1898 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
1899 grp = GICV3_G1NS;
1902 value = cs->icc_igrpen[grp];
1903 trace_gicv3_icc_igrpen_read(ri->opc2 & 1 ? 1 : 0,
1904 gicv3_redist_affid(cs), value);
1905 return value;
1908 static void icc_igrpen_write(CPUARMState *env, const ARMCPRegInfo *ri,
1909 uint64_t value)
1911 GICv3CPUState *cs = icc_cs_from_env(env);
1912 int grp = ri->opc2 & 1 ? GICV3_G1 : GICV3_G0;
1914 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
1915 icv_igrpen_write(env, ri, value);
1916 return;
1919 trace_gicv3_icc_igrpen_write(ri->opc2 & 1 ? 1 : 0,
1920 gicv3_redist_affid(cs), value);
1922 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
1923 grp = GICV3_G1NS;
1926 cs->icc_igrpen[grp] = value & ICC_IGRPEN_ENABLE;
1927 gicv3_cpuif_update(cs);
1930 static uint64_t icc_igrpen1_el3_read(CPUARMState *env, const ARMCPRegInfo *ri)
1932 GICv3CPUState *cs = icc_cs_from_env(env);
1933 uint64_t value;
1935 /* IGRPEN1_EL3 bits 0 and 1 are r/w aliases into IGRPEN1_EL1 NS and S */
1936 value = cs->icc_igrpen[GICV3_G1NS] | (cs->icc_igrpen[GICV3_G1] << 1);
1937 trace_gicv3_icc_igrpen1_el3_read(gicv3_redist_affid(cs), value);
1938 return value;
1941 static void icc_igrpen1_el3_write(CPUARMState *env, const ARMCPRegInfo *ri,
1942 uint64_t value)
1944 GICv3CPUState *cs = icc_cs_from_env(env);
1946 trace_gicv3_icc_igrpen1_el3_write(gicv3_redist_affid(cs), value);
1948 /* IGRPEN1_EL3 bits 0 and 1 are r/w aliases into IGRPEN1_EL1 NS and S */
1949 cs->icc_igrpen[GICV3_G1NS] = extract32(value, 0, 1);
1950 cs->icc_igrpen[GICV3_G1] = extract32(value, 1, 1);
1951 gicv3_cpuif_update(cs);
1954 static uint64_t icc_ctlr_el1_read(CPUARMState *env, const ARMCPRegInfo *ri)
1956 GICv3CPUState *cs = icc_cs_from_env(env);
1957 int bank = gicv3_use_ns_bank(env) ? GICV3_NS : GICV3_S;
1958 uint64_t value;
1960 if (icv_access(env, HCR_FMO | HCR_IMO)) {
1961 return icv_ctlr_read(env, ri);
1964 value = cs->icc_ctlr_el1[bank];
1965 trace_gicv3_icc_ctlr_read(gicv3_redist_affid(cs), value);
1966 return value;
1969 static void icc_ctlr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri,
1970 uint64_t value)
1972 GICv3CPUState *cs = icc_cs_from_env(env);
1973 int bank = gicv3_use_ns_bank(env) ? GICV3_NS : GICV3_S;
1974 uint64_t mask;
1976 if (icv_access(env, HCR_FMO | HCR_IMO)) {
1977 icv_ctlr_write(env, ri, value);
1978 return;
1981 trace_gicv3_icc_ctlr_write(gicv3_redist_affid(cs), value);
1983 /* Only CBPR and EOIMODE can be RW;
1984 * for us PMHE is RAZ/WI (we don't implement 1-of-N interrupts or
1985 * the asseciated priority-based routing of them);
1986 * if EL3 is implemented and GICD_CTLR.DS == 0, then PMHE and CBPR are RO.
1988 if (arm_feature(env, ARM_FEATURE_EL3) &&
1989 ((cs->gic->gicd_ctlr & GICD_CTLR_DS) == 0)) {
1990 mask = ICC_CTLR_EL1_EOIMODE;
1991 } else {
1992 mask = ICC_CTLR_EL1_CBPR | ICC_CTLR_EL1_EOIMODE;
1995 cs->icc_ctlr_el1[bank] &= ~mask;
1996 cs->icc_ctlr_el1[bank] |= (value & mask);
1997 gicv3_cpuif_update(cs);
2001 static uint64_t icc_ctlr_el3_read(CPUARMState *env, const ARMCPRegInfo *ri)
2003 GICv3CPUState *cs = icc_cs_from_env(env);
2004 uint64_t value;
2006 value = cs->icc_ctlr_el3;
2007 if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_EOIMODE) {
2008 value |= ICC_CTLR_EL3_EOIMODE_EL1NS;
2010 if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR) {
2011 value |= ICC_CTLR_EL3_CBPR_EL1NS;
2013 if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_EOIMODE) {
2014 value |= ICC_CTLR_EL3_EOIMODE_EL1S;
2016 if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR) {
2017 value |= ICC_CTLR_EL3_CBPR_EL1S;
2020 trace_gicv3_icc_ctlr_el3_read(gicv3_redist_affid(cs), value);
2021 return value;
2024 static void icc_ctlr_el3_write(CPUARMState *env, const ARMCPRegInfo *ri,
2025 uint64_t value)
2027 GICv3CPUState *cs = icc_cs_from_env(env);
2028 uint64_t mask;
2030 trace_gicv3_icc_ctlr_el3_write(gicv3_redist_affid(cs), value);
2032 /* *_EL1NS and *_EL1S bits are aliases into the ICC_CTLR_EL1 bits. */
2033 cs->icc_ctlr_el1[GICV3_NS] &= ~(ICC_CTLR_EL1_CBPR | ICC_CTLR_EL1_EOIMODE);
2034 if (value & ICC_CTLR_EL3_EOIMODE_EL1NS) {
2035 cs->icc_ctlr_el1[GICV3_NS] |= ICC_CTLR_EL1_EOIMODE;
2037 if (value & ICC_CTLR_EL3_CBPR_EL1NS) {
2038 cs->icc_ctlr_el1[GICV3_NS] |= ICC_CTLR_EL1_CBPR;
2041 cs->icc_ctlr_el1[GICV3_S] &= ~(ICC_CTLR_EL1_CBPR | ICC_CTLR_EL1_EOIMODE);
2042 if (value & ICC_CTLR_EL3_EOIMODE_EL1S) {
2043 cs->icc_ctlr_el1[GICV3_S] |= ICC_CTLR_EL1_EOIMODE;
2045 if (value & ICC_CTLR_EL3_CBPR_EL1S) {
2046 cs->icc_ctlr_el1[GICV3_S] |= ICC_CTLR_EL1_CBPR;
2049 /* The only bit stored in icc_ctlr_el3 which is writable is EOIMODE_EL3: */
2050 mask = ICC_CTLR_EL3_EOIMODE_EL3;
2052 cs->icc_ctlr_el3 &= ~mask;
2053 cs->icc_ctlr_el3 |= (value & mask);
2054 gicv3_cpuif_update(cs);
2057 static CPAccessResult gicv3_irqfiq_access(CPUARMState *env,
2058 const ARMCPRegInfo *ri, bool isread)
2060 CPAccessResult r = CP_ACCESS_OK;
2061 GICv3CPUState *cs = icc_cs_from_env(env);
2062 int el = arm_current_el(env);
2064 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TC) &&
2065 el == 1 && !arm_is_secure_below_el3(env)) {
2066 /* Takes priority over a possible EL3 trap */
2067 return CP_ACCESS_TRAP_EL2;
2070 if ((env->cp15.scr_el3 & (SCR_FIQ | SCR_IRQ)) == (SCR_FIQ | SCR_IRQ)) {
2071 switch (el) {
2072 case 1:
2073 /* Note that arm_hcr_el2_eff takes secure state into account. */
2074 if ((arm_hcr_el2_eff(env) & (HCR_IMO | HCR_FMO)) == 0) {
2075 r = CP_ACCESS_TRAP_EL3;
2077 break;
2078 case 2:
2079 r = CP_ACCESS_TRAP_EL3;
2080 break;
2081 case 3:
2082 if (!is_a64(env) && !arm_is_el3_or_mon(env)) {
2083 r = CP_ACCESS_TRAP_EL3;
2085 break;
2086 default:
2087 g_assert_not_reached();
2091 if (r == CP_ACCESS_TRAP_EL3 && !arm_el_is_aa64(env, 3)) {
2092 r = CP_ACCESS_TRAP;
2094 return r;
2097 static CPAccessResult gicv3_dir_access(CPUARMState *env,
2098 const ARMCPRegInfo *ri, bool isread)
2100 GICv3CPUState *cs = icc_cs_from_env(env);
2102 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TDIR) &&
2103 arm_current_el(env) == 1 && !arm_is_secure_below_el3(env)) {
2104 /* Takes priority over a possible EL3 trap */
2105 return CP_ACCESS_TRAP_EL2;
2108 return gicv3_irqfiq_access(env, ri, isread);
2111 static CPAccessResult gicv3_sgi_access(CPUARMState *env,
2112 const ARMCPRegInfo *ri, bool isread)
2114 if (arm_current_el(env) == 1 &&
2115 (arm_hcr_el2_eff(env) & (HCR_IMO | HCR_FMO)) != 0) {
2116 /* Takes priority over a possible EL3 trap */
2117 return CP_ACCESS_TRAP_EL2;
2120 return gicv3_irqfiq_access(env, ri, isread);
2123 static CPAccessResult gicv3_fiq_access(CPUARMState *env,
2124 const ARMCPRegInfo *ri, bool isread)
2126 CPAccessResult r = CP_ACCESS_OK;
2127 GICv3CPUState *cs = icc_cs_from_env(env);
2128 int el = arm_current_el(env);
2130 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TALL0) &&
2131 el == 1 && !arm_is_secure_below_el3(env)) {
2132 /* Takes priority over a possible EL3 trap */
2133 return CP_ACCESS_TRAP_EL2;
2136 if (env->cp15.scr_el3 & SCR_FIQ) {
2137 switch (el) {
2138 case 1:
2139 if ((arm_hcr_el2_eff(env) & HCR_FMO) == 0) {
2140 r = CP_ACCESS_TRAP_EL3;
2142 break;
2143 case 2:
2144 r = CP_ACCESS_TRAP_EL3;
2145 break;
2146 case 3:
2147 if (!is_a64(env) && !arm_is_el3_or_mon(env)) {
2148 r = CP_ACCESS_TRAP_EL3;
2150 break;
2151 default:
2152 g_assert_not_reached();
2156 if (r == CP_ACCESS_TRAP_EL3 && !arm_el_is_aa64(env, 3)) {
2157 r = CP_ACCESS_TRAP;
2159 return r;
2162 static CPAccessResult gicv3_irq_access(CPUARMState *env,
2163 const ARMCPRegInfo *ri, bool isread)
2165 CPAccessResult r = CP_ACCESS_OK;
2166 GICv3CPUState *cs = icc_cs_from_env(env);
2167 int el = arm_current_el(env);
2169 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TALL1) &&
2170 el == 1 && !arm_is_secure_below_el3(env)) {
2171 /* Takes priority over a possible EL3 trap */
2172 return CP_ACCESS_TRAP_EL2;
2175 if (env->cp15.scr_el3 & SCR_IRQ) {
2176 switch (el) {
2177 case 1:
2178 if ((arm_hcr_el2_eff(env) & HCR_IMO) == 0) {
2179 r = CP_ACCESS_TRAP_EL3;
2181 break;
2182 case 2:
2183 r = CP_ACCESS_TRAP_EL3;
2184 break;
2185 case 3:
2186 if (!is_a64(env) && !arm_is_el3_or_mon(env)) {
2187 r = CP_ACCESS_TRAP_EL3;
2189 break;
2190 default:
2191 g_assert_not_reached();
2195 if (r == CP_ACCESS_TRAP_EL3 && !arm_el_is_aa64(env, 3)) {
2196 r = CP_ACCESS_TRAP;
2198 return r;
2201 static void icc_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2203 GICv3CPUState *cs = icc_cs_from_env(env);
2205 cs->icc_ctlr_el1[GICV3_S] = ICC_CTLR_EL1_A3V |
2206 (1 << ICC_CTLR_EL1_IDBITS_SHIFT) |
2207 ((cs->pribits - 1) << ICC_CTLR_EL1_PRIBITS_SHIFT);
2208 cs->icc_ctlr_el1[GICV3_NS] = ICC_CTLR_EL1_A3V |
2209 (1 << ICC_CTLR_EL1_IDBITS_SHIFT) |
2210 ((cs->pribits - 1) << ICC_CTLR_EL1_PRIBITS_SHIFT);
2211 cs->icc_pmr_el1 = 0;
2212 cs->icc_bpr[GICV3_G0] = icc_min_bpr(cs);
2213 cs->icc_bpr[GICV3_G1] = icc_min_bpr(cs);
2214 cs->icc_bpr[GICV3_G1NS] = icc_min_bpr_ns(cs);
2215 memset(cs->icc_apr, 0, sizeof(cs->icc_apr));
2216 memset(cs->icc_igrpen, 0, sizeof(cs->icc_igrpen));
2217 cs->icc_ctlr_el3 = ICC_CTLR_EL3_NDS | ICC_CTLR_EL3_A3V |
2218 (1 << ICC_CTLR_EL3_IDBITS_SHIFT) |
2219 ((cs->pribits - 1) << ICC_CTLR_EL3_PRIBITS_SHIFT);
2221 memset(cs->ich_apr, 0, sizeof(cs->ich_apr));
2222 cs->ich_hcr_el2 = 0;
2223 memset(cs->ich_lr_el2, 0, sizeof(cs->ich_lr_el2));
2224 cs->ich_vmcr_el2 = ICH_VMCR_EL2_VFIQEN |
2225 ((icv_min_vbpr(cs) + 1) << ICH_VMCR_EL2_VBPR1_SHIFT) |
2226 (icv_min_vbpr(cs) << ICH_VMCR_EL2_VBPR0_SHIFT);
2229 static const ARMCPRegInfo gicv3_cpuif_reginfo[] = {
2230 { .name = "ICC_PMR_EL1", .state = ARM_CP_STATE_BOTH,
2231 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 6, .opc2 = 0,
2232 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2233 .access = PL1_RW, .accessfn = gicv3_irqfiq_access,
2234 .readfn = icc_pmr_read,
2235 .writefn = icc_pmr_write,
2236 /* We hang the whole cpu interface reset routine off here
2237 * rather than parcelling it out into one little function
2238 * per register
2240 .resetfn = icc_reset,
2242 { .name = "ICC_IAR0_EL1", .state = ARM_CP_STATE_BOTH,
2243 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 0,
2244 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2245 .access = PL1_R, .accessfn = gicv3_fiq_access,
2246 .readfn = icc_iar0_read,
2248 { .name = "ICC_EOIR0_EL1", .state = ARM_CP_STATE_BOTH,
2249 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 1,
2250 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2251 .access = PL1_W, .accessfn = gicv3_fiq_access,
2252 .writefn = icc_eoir_write,
2254 { .name = "ICC_HPPIR0_EL1", .state = ARM_CP_STATE_BOTH,
2255 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 2,
2256 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2257 .access = PL1_R, .accessfn = gicv3_fiq_access,
2258 .readfn = icc_hppir0_read,
2260 { .name = "ICC_BPR0_EL1", .state = ARM_CP_STATE_BOTH,
2261 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 3,
2262 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2263 .access = PL1_RW, .accessfn = gicv3_fiq_access,
2264 .readfn = icc_bpr_read,
2265 .writefn = icc_bpr_write,
2267 { .name = "ICC_AP0R0_EL1", .state = ARM_CP_STATE_BOTH,
2268 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 4,
2269 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2270 .access = PL1_RW, .accessfn = gicv3_fiq_access,
2271 .readfn = icc_ap_read,
2272 .writefn = icc_ap_write,
2274 /* All the ICC_AP1R*_EL1 registers are banked */
2275 { .name = "ICC_AP1R0_EL1", .state = ARM_CP_STATE_BOTH,
2276 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 0,
2277 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2278 .access = PL1_RW, .accessfn = gicv3_irq_access,
2279 .readfn = icc_ap_read,
2280 .writefn = icc_ap_write,
2282 { .name = "ICC_DIR_EL1", .state = ARM_CP_STATE_BOTH,
2283 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 1,
2284 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2285 .access = PL1_W, .accessfn = gicv3_dir_access,
2286 .writefn = icc_dir_write,
2288 { .name = "ICC_RPR_EL1", .state = ARM_CP_STATE_BOTH,
2289 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 3,
2290 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2291 .access = PL1_R, .accessfn = gicv3_irqfiq_access,
2292 .readfn = icc_rpr_read,
2294 { .name = "ICC_SGI1R_EL1", .state = ARM_CP_STATE_AA64,
2295 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 5,
2296 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2297 .access = PL1_W, .accessfn = gicv3_sgi_access,
2298 .writefn = icc_sgi1r_write,
2300 { .name = "ICC_SGI1R",
2301 .cp = 15, .opc1 = 0, .crm = 12,
2302 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_RAW,
2303 .access = PL1_W, .accessfn = gicv3_sgi_access,
2304 .writefn = icc_sgi1r_write,
2306 { .name = "ICC_ASGI1R_EL1", .state = ARM_CP_STATE_AA64,
2307 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 6,
2308 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2309 .access = PL1_W, .accessfn = gicv3_sgi_access,
2310 .writefn = icc_asgi1r_write,
2312 { .name = "ICC_ASGI1R",
2313 .cp = 15, .opc1 = 1, .crm = 12,
2314 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_RAW,
2315 .access = PL1_W, .accessfn = gicv3_sgi_access,
2316 .writefn = icc_asgi1r_write,
2318 { .name = "ICC_SGI0R_EL1", .state = ARM_CP_STATE_AA64,
2319 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 7,
2320 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2321 .access = PL1_W, .accessfn = gicv3_sgi_access,
2322 .writefn = icc_sgi0r_write,
2324 { .name = "ICC_SGI0R",
2325 .cp = 15, .opc1 = 2, .crm = 12,
2326 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_RAW,
2327 .access = PL1_W, .accessfn = gicv3_sgi_access,
2328 .writefn = icc_sgi0r_write,
2330 { .name = "ICC_IAR1_EL1", .state = ARM_CP_STATE_BOTH,
2331 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 0,
2332 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2333 .access = PL1_R, .accessfn = gicv3_irq_access,
2334 .readfn = icc_iar1_read,
2336 { .name = "ICC_EOIR1_EL1", .state = ARM_CP_STATE_BOTH,
2337 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 1,
2338 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2339 .access = PL1_W, .accessfn = gicv3_irq_access,
2340 .writefn = icc_eoir_write,
2342 { .name = "ICC_HPPIR1_EL1", .state = ARM_CP_STATE_BOTH,
2343 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 2,
2344 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2345 .access = PL1_R, .accessfn = gicv3_irq_access,
2346 .readfn = icc_hppir1_read,
2348 /* This register is banked */
2349 { .name = "ICC_BPR1_EL1", .state = ARM_CP_STATE_BOTH,
2350 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 3,
2351 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2352 .access = PL1_RW, .accessfn = gicv3_irq_access,
2353 .readfn = icc_bpr_read,
2354 .writefn = icc_bpr_write,
2356 /* This register is banked */
2357 { .name = "ICC_CTLR_EL1", .state = ARM_CP_STATE_BOTH,
2358 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 4,
2359 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2360 .access = PL1_RW, .accessfn = gicv3_irqfiq_access,
2361 .readfn = icc_ctlr_el1_read,
2362 .writefn = icc_ctlr_el1_write,
2364 { .name = "ICC_SRE_EL1", .state = ARM_CP_STATE_BOTH,
2365 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 5,
2366 .type = ARM_CP_NO_RAW | ARM_CP_CONST,
2367 .access = PL1_RW,
2368 /* We don't support IRQ/FIQ bypass and system registers are
2369 * always enabled, so all our bits are RAZ/WI or RAO/WI.
2370 * This register is banked but since it's constant we don't
2371 * need to do anything special.
2373 .resetvalue = 0x7,
2375 { .name = "ICC_IGRPEN0_EL1", .state = ARM_CP_STATE_BOTH,
2376 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 6,
2377 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2378 .access = PL1_RW, .accessfn = gicv3_fiq_access,
2379 .readfn = icc_igrpen_read,
2380 .writefn = icc_igrpen_write,
2382 /* This register is banked */
2383 { .name = "ICC_IGRPEN1_EL1", .state = ARM_CP_STATE_BOTH,
2384 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 7,
2385 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2386 .access = PL1_RW, .accessfn = gicv3_irq_access,
2387 .readfn = icc_igrpen_read,
2388 .writefn = icc_igrpen_write,
2390 { .name = "ICC_SRE_EL2", .state = ARM_CP_STATE_BOTH,
2391 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 5,
2392 .type = ARM_CP_NO_RAW | ARM_CP_CONST,
2393 .access = PL2_RW,
2394 /* We don't support IRQ/FIQ bypass and system registers are
2395 * always enabled, so all our bits are RAZ/WI or RAO/WI.
2397 .resetvalue = 0xf,
2399 { .name = "ICC_CTLR_EL3", .state = ARM_CP_STATE_BOTH,
2400 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 12, .opc2 = 4,
2401 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2402 .access = PL3_RW,
2403 .readfn = icc_ctlr_el3_read,
2404 .writefn = icc_ctlr_el3_write,
2406 { .name = "ICC_SRE_EL3", .state = ARM_CP_STATE_BOTH,
2407 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 12, .opc2 = 5,
2408 .type = ARM_CP_NO_RAW | ARM_CP_CONST,
2409 .access = PL3_RW,
2410 /* We don't support IRQ/FIQ bypass and system registers are
2411 * always enabled, so all our bits are RAZ/WI or RAO/WI.
2413 .resetvalue = 0xf,
2415 { .name = "ICC_IGRPEN1_EL3", .state = ARM_CP_STATE_BOTH,
2416 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 12, .opc2 = 7,
2417 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2418 .access = PL3_RW,
2419 .readfn = icc_igrpen1_el3_read,
2420 .writefn = icc_igrpen1_el3_write,
2424 static const ARMCPRegInfo gicv3_cpuif_icc_apxr1_reginfo[] = {
2425 { .name = "ICC_AP0R1_EL1", .state = ARM_CP_STATE_BOTH,
2426 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 5,
2427 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2428 .access = PL1_RW, .accessfn = gicv3_fiq_access,
2429 .readfn = icc_ap_read,
2430 .writefn = icc_ap_write,
2432 { .name = "ICC_AP1R1_EL1", .state = ARM_CP_STATE_BOTH,
2433 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 1,
2434 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2435 .access = PL1_RW, .accessfn = gicv3_irq_access,
2436 .readfn = icc_ap_read,
2437 .writefn = icc_ap_write,
2441 static const ARMCPRegInfo gicv3_cpuif_icc_apxr23_reginfo[] = {
2442 { .name = "ICC_AP0R2_EL1", .state = ARM_CP_STATE_BOTH,
2443 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 6,
2444 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2445 .access = PL1_RW, .accessfn = gicv3_fiq_access,
2446 .readfn = icc_ap_read,
2447 .writefn = icc_ap_write,
2449 { .name = "ICC_AP0R3_EL1", .state = ARM_CP_STATE_BOTH,
2450 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 7,
2451 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2452 .access = PL1_RW, .accessfn = gicv3_fiq_access,
2453 .readfn = icc_ap_read,
2454 .writefn = icc_ap_write,
2456 { .name = "ICC_AP1R2_EL1", .state = ARM_CP_STATE_BOTH,
2457 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 2,
2458 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2459 .access = PL1_RW, .accessfn = gicv3_irq_access,
2460 .readfn = icc_ap_read,
2461 .writefn = icc_ap_write,
2463 { .name = "ICC_AP1R3_EL1", .state = ARM_CP_STATE_BOTH,
2464 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 3,
2465 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2466 .access = PL1_RW, .accessfn = gicv3_irq_access,
2467 .readfn = icc_ap_read,
2468 .writefn = icc_ap_write,
2472 static uint64_t ich_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
2474 GICv3CPUState *cs = icc_cs_from_env(env);
2475 int regno = ri->opc2 & 3;
2476 int grp = (ri->crm & 1) ? GICV3_G1NS : GICV3_G0;
2477 uint64_t value;
2479 value = cs->ich_apr[grp][regno];
2480 trace_gicv3_ich_ap_read(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
2481 return value;
2484 static void ich_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
2485 uint64_t value)
2487 GICv3CPUState *cs = icc_cs_from_env(env);
2488 int regno = ri->opc2 & 3;
2489 int grp = (ri->crm & 1) ? GICV3_G1NS : GICV3_G0;
2491 trace_gicv3_ich_ap_write(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
2493 cs->ich_apr[grp][regno] = value & 0xFFFFFFFFU;
2494 gicv3_cpuif_virt_irq_fiq_update(cs);
2497 static uint64_t ich_hcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2499 GICv3CPUState *cs = icc_cs_from_env(env);
2500 uint64_t value = cs->ich_hcr_el2;
2502 trace_gicv3_ich_hcr_read(gicv3_redist_affid(cs), value);
2503 return value;
2506 static void ich_hcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2507 uint64_t value)
2509 GICv3CPUState *cs = icc_cs_from_env(env);
2511 trace_gicv3_ich_hcr_write(gicv3_redist_affid(cs), value);
2513 value &= ICH_HCR_EL2_EN | ICH_HCR_EL2_UIE | ICH_HCR_EL2_LRENPIE |
2514 ICH_HCR_EL2_NPIE | ICH_HCR_EL2_VGRP0EIE | ICH_HCR_EL2_VGRP0DIE |
2515 ICH_HCR_EL2_VGRP1EIE | ICH_HCR_EL2_VGRP1DIE | ICH_HCR_EL2_TC |
2516 ICH_HCR_EL2_TALL0 | ICH_HCR_EL2_TALL1 | ICH_HCR_EL2_TSEI |
2517 ICH_HCR_EL2_TDIR | ICH_HCR_EL2_EOICOUNT_MASK;
2519 cs->ich_hcr_el2 = value;
2520 gicv3_cpuif_virt_update(cs);
2523 static uint64_t ich_vmcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2525 GICv3CPUState *cs = icc_cs_from_env(env);
2526 uint64_t value = cs->ich_vmcr_el2;
2528 trace_gicv3_ich_vmcr_read(gicv3_redist_affid(cs), value);
2529 return value;
2532 static void ich_vmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2533 uint64_t value)
2535 GICv3CPUState *cs = icc_cs_from_env(env);
2537 trace_gicv3_ich_vmcr_write(gicv3_redist_affid(cs), value);
2539 value &= ICH_VMCR_EL2_VENG0 | ICH_VMCR_EL2_VENG1 | ICH_VMCR_EL2_VCBPR |
2540 ICH_VMCR_EL2_VEOIM | ICH_VMCR_EL2_VBPR1_MASK |
2541 ICH_VMCR_EL2_VBPR0_MASK | ICH_VMCR_EL2_VPMR_MASK;
2542 value |= ICH_VMCR_EL2_VFIQEN;
2544 cs->ich_vmcr_el2 = value;
2545 /* Enforce "writing BPRs to less than minimum sets them to the minimum"
2546 * by reading and writing back the fields.
2548 write_vbpr(cs, GICV3_G0, read_vbpr(cs, GICV3_G0));
2549 write_vbpr(cs, GICV3_G1, read_vbpr(cs, GICV3_G1));
2551 gicv3_cpuif_virt_update(cs);
2554 static uint64_t ich_lr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2556 GICv3CPUState *cs = icc_cs_from_env(env);
2557 int regno = ri->opc2 | ((ri->crm & 1) << 3);
2558 uint64_t value;
2560 /* This read function handles all of:
2561 * 64-bit reads of the whole LR
2562 * 32-bit reads of the low half of the LR
2563 * 32-bit reads of the high half of the LR
2565 if (ri->state == ARM_CP_STATE_AA32) {
2566 if (ri->crm >= 14) {
2567 value = extract64(cs->ich_lr_el2[regno], 32, 32);
2568 trace_gicv3_ich_lrc_read(regno, gicv3_redist_affid(cs), value);
2569 } else {
2570 value = extract64(cs->ich_lr_el2[regno], 0, 32);
2571 trace_gicv3_ich_lr32_read(regno, gicv3_redist_affid(cs), value);
2573 } else {
2574 value = cs->ich_lr_el2[regno];
2575 trace_gicv3_ich_lr_read(regno, gicv3_redist_affid(cs), value);
2578 return value;
2581 static void ich_lr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2582 uint64_t value)
2584 GICv3CPUState *cs = icc_cs_from_env(env);
2585 int regno = ri->opc2 | ((ri->crm & 1) << 3);
2587 /* This write function handles all of:
2588 * 64-bit writes to the whole LR
2589 * 32-bit writes to the low half of the LR
2590 * 32-bit writes to the high half of the LR
2592 if (ri->state == ARM_CP_STATE_AA32) {
2593 if (ri->crm >= 14) {
2594 trace_gicv3_ich_lrc_write(regno, gicv3_redist_affid(cs), value);
2595 value = deposit64(cs->ich_lr_el2[regno], 32, 32, value);
2596 } else {
2597 trace_gicv3_ich_lr32_write(regno, gicv3_redist_affid(cs), value);
2598 value = deposit64(cs->ich_lr_el2[regno], 0, 32, value);
2600 } else {
2601 trace_gicv3_ich_lr_write(regno, gicv3_redist_affid(cs), value);
2604 /* Enforce RES0 bits in priority field */
2605 if (cs->vpribits < 8) {
2606 value = deposit64(value, ICH_LR_EL2_PRIORITY_SHIFT,
2607 8 - cs->vpribits, 0);
2610 cs->ich_lr_el2[regno] = value;
2611 gicv3_cpuif_virt_update(cs);
2614 static uint64_t ich_vtr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2616 GICv3CPUState *cs = icc_cs_from_env(env);
2617 uint64_t value;
2619 value = ((cs->num_list_regs - 1) << ICH_VTR_EL2_LISTREGS_SHIFT)
2620 | ICH_VTR_EL2_TDS | ICH_VTR_EL2_A3V
2621 | (1 << ICH_VTR_EL2_IDBITS_SHIFT)
2622 | ((cs->vprebits - 1) << ICH_VTR_EL2_PREBITS_SHIFT)
2623 | ((cs->vpribits - 1) << ICH_VTR_EL2_PRIBITS_SHIFT);
2625 if (cs->gic->revision < 4) {
2626 value |= ICH_VTR_EL2_NV4;
2629 trace_gicv3_ich_vtr_read(gicv3_redist_affid(cs), value);
2630 return value;
2633 static uint64_t ich_misr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2635 GICv3CPUState *cs = icc_cs_from_env(env);
2636 uint64_t value = maintenance_interrupt_state(cs);
2638 trace_gicv3_ich_misr_read(gicv3_redist_affid(cs), value);
2639 return value;
2642 static uint64_t ich_eisr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2644 GICv3CPUState *cs = icc_cs_from_env(env);
2645 uint64_t value = eoi_maintenance_interrupt_state(cs, NULL);
2647 trace_gicv3_ich_eisr_read(gicv3_redist_affid(cs), value);
2648 return value;
2651 static uint64_t ich_elrsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2653 GICv3CPUState *cs = icc_cs_from_env(env);
2654 uint64_t value = 0;
2655 int i;
2657 for (i = 0; i < cs->num_list_regs; i++) {
2658 uint64_t lr = cs->ich_lr_el2[i];
2660 if ((lr & ICH_LR_EL2_STATE_MASK) == 0 &&
2661 ((lr & ICH_LR_EL2_HW) != 0 || (lr & ICH_LR_EL2_EOI) == 0)) {
2662 value |= (1 << i);
2666 trace_gicv3_ich_elrsr_read(gicv3_redist_affid(cs), value);
2667 return value;
2670 static const ARMCPRegInfo gicv3_cpuif_hcr_reginfo[] = {
2671 { .name = "ICH_AP0R0_EL2", .state = ARM_CP_STATE_BOTH,
2672 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 0,
2673 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2674 .access = PL2_RW,
2675 .readfn = ich_ap_read,
2676 .writefn = ich_ap_write,
2678 { .name = "ICH_AP1R0_EL2", .state = ARM_CP_STATE_BOTH,
2679 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 0,
2680 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2681 .access = PL2_RW,
2682 .readfn = ich_ap_read,
2683 .writefn = ich_ap_write,
2685 { .name = "ICH_HCR_EL2", .state = ARM_CP_STATE_BOTH,
2686 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 0,
2687 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2688 .access = PL2_RW,
2689 .readfn = ich_hcr_read,
2690 .writefn = ich_hcr_write,
2692 { .name = "ICH_VTR_EL2", .state = ARM_CP_STATE_BOTH,
2693 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 1,
2694 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2695 .access = PL2_R,
2696 .readfn = ich_vtr_read,
2698 { .name = "ICH_MISR_EL2", .state = ARM_CP_STATE_BOTH,
2699 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 2,
2700 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2701 .access = PL2_R,
2702 .readfn = ich_misr_read,
2704 { .name = "ICH_EISR_EL2", .state = ARM_CP_STATE_BOTH,
2705 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 3,
2706 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2707 .access = PL2_R,
2708 .readfn = ich_eisr_read,
2710 { .name = "ICH_ELRSR_EL2", .state = ARM_CP_STATE_BOTH,
2711 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 5,
2712 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2713 .access = PL2_R,
2714 .readfn = ich_elrsr_read,
2716 { .name = "ICH_VMCR_EL2", .state = ARM_CP_STATE_BOTH,
2717 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 7,
2718 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2719 .access = PL2_RW,
2720 .readfn = ich_vmcr_read,
2721 .writefn = ich_vmcr_write,
2725 static const ARMCPRegInfo gicv3_cpuif_ich_apxr1_reginfo[] = {
2726 { .name = "ICH_AP0R1_EL2", .state = ARM_CP_STATE_BOTH,
2727 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 1,
2728 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2729 .access = PL2_RW,
2730 .readfn = ich_ap_read,
2731 .writefn = ich_ap_write,
2733 { .name = "ICH_AP1R1_EL2", .state = ARM_CP_STATE_BOTH,
2734 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 1,
2735 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2736 .access = PL2_RW,
2737 .readfn = ich_ap_read,
2738 .writefn = ich_ap_write,
2742 static const ARMCPRegInfo gicv3_cpuif_ich_apxr23_reginfo[] = {
2743 { .name = "ICH_AP0R2_EL2", .state = ARM_CP_STATE_BOTH,
2744 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 2,
2745 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2746 .access = PL2_RW,
2747 .readfn = ich_ap_read,
2748 .writefn = ich_ap_write,
2750 { .name = "ICH_AP0R3_EL2", .state = ARM_CP_STATE_BOTH,
2751 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 3,
2752 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2753 .access = PL2_RW,
2754 .readfn = ich_ap_read,
2755 .writefn = ich_ap_write,
2757 { .name = "ICH_AP1R2_EL2", .state = ARM_CP_STATE_BOTH,
2758 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 2,
2759 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2760 .access = PL2_RW,
2761 .readfn = ich_ap_read,
2762 .writefn = ich_ap_write,
2764 { .name = "ICH_AP1R3_EL2", .state = ARM_CP_STATE_BOTH,
2765 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 3,
2766 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2767 .access = PL2_RW,
2768 .readfn = ich_ap_read,
2769 .writefn = ich_ap_write,
2773 static void gicv3_cpuif_el_change_hook(ARMCPU *cpu, void *opaque)
2775 GICv3CPUState *cs = opaque;
2777 gicv3_cpuif_update(cs);
2779 * Because vLPIs are only pending in NonSecure state,
2780 * an EL change can change the VIRQ/VFIQ status (but
2781 * cannot affect the maintenance interrupt state)
2783 gicv3_cpuif_virt_irq_fiq_update(cs);
2786 void gicv3_init_cpuif(GICv3State *s)
2788 /* Called from the GICv3 realize function; register our system
2789 * registers with the CPU
2791 int i;
2793 for (i = 0; i < s->num_cpu; i++) {
2794 ARMCPU *cpu = ARM_CPU(qemu_get_cpu(i));
2795 GICv3CPUState *cs = &s->cpu[i];
2798 * If the CPU doesn't define a GICv3 configuration, probably because
2799 * in real hardware it doesn't have one, then we use default values
2800 * matching the one used by most Arm CPUs. This applies to:
2801 * cpu->gic_num_lrs
2802 * cpu->gic_vpribits
2803 * cpu->gic_vprebits
2804 * cpu->gic_pribits
2807 /* Note that we can't just use the GICv3CPUState as an opaque pointer
2808 * in define_arm_cp_regs_with_opaque(), because when we're called back
2809 * it might be with code translated by CPU 0 but run by CPU 1, in
2810 * which case we'd get the wrong value.
2811 * So instead we define the regs with no ri->opaque info, and
2812 * get back to the GICv3CPUState from the CPUARMState.
2814 define_arm_cp_regs(cpu, gicv3_cpuif_reginfo);
2817 * The CPU implementation specifies the number of supported
2818 * bits of physical priority. For backwards compatibility
2819 * of migration, we have a compat property that forces use
2820 * of 8 priority bits regardless of what the CPU really has.
2822 if (s->force_8bit_prio) {
2823 cs->pribits = 8;
2824 } else {
2825 cs->pribits = cpu->gic_pribits ?: 5;
2829 * The GICv3 has separate ID register fields for virtual priority
2830 * and preemption bit values, but only a single ID register field
2831 * for the physical priority bits. The preemption bit count is
2832 * always the same as the priority bit count, except that 8 bits
2833 * of priority means 7 preemption bits. We precalculate the
2834 * preemption bits because it simplifies the code and makes the
2835 * parallels between the virtual and physical bits of the GIC
2836 * a bit clearer.
2838 cs->prebits = cs->pribits;
2839 if (cs->prebits == 8) {
2840 cs->prebits--;
2843 * Check that CPU code defining pribits didn't violate
2844 * architectural constraints our implementation relies on.
2846 g_assert(cs->pribits >= 4 && cs->pribits <= 8);
2849 * gicv3_cpuif_reginfo[] defines ICC_AP*R0_EL1; add definitions
2850 * for ICC_AP*R{1,2,3}_EL1 if the prebits value requires them.
2852 if (cs->prebits >= 6) {
2853 define_arm_cp_regs(cpu, gicv3_cpuif_icc_apxr1_reginfo);
2855 if (cs->prebits == 7) {
2856 define_arm_cp_regs(cpu, gicv3_cpuif_icc_apxr23_reginfo);
2859 if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) {
2860 int j;
2862 cs->num_list_regs = cpu->gic_num_lrs ?: 4;
2863 cs->vpribits = cpu->gic_vpribits ?: 5;
2864 cs->vprebits = cpu->gic_vprebits ?: 5;
2866 /* Check against architectural constraints: getting these
2867 * wrong would be a bug in the CPU code defining these,
2868 * and the implementation relies on them holding.
2870 g_assert(cs->vprebits <= cs->vpribits);
2871 g_assert(cs->vprebits >= 5 && cs->vprebits <= 7);
2872 g_assert(cs->vpribits >= 5 && cs->vpribits <= 8);
2874 define_arm_cp_regs(cpu, gicv3_cpuif_hcr_reginfo);
2876 for (j = 0; j < cs->num_list_regs; j++) {
2877 /* Note that the AArch64 LRs are 64-bit; the AArch32 LRs
2878 * are split into two cp15 regs, LR (the low part, with the
2879 * same encoding as the AArch64 LR) and LRC (the high part).
2881 ARMCPRegInfo lr_regset[] = {
2882 { .name = "ICH_LRn_EL2", .state = ARM_CP_STATE_BOTH,
2883 .opc0 = 3, .opc1 = 4, .crn = 12,
2884 .crm = 12 + (j >> 3), .opc2 = j & 7,
2885 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2886 .access = PL2_RW,
2887 .readfn = ich_lr_read,
2888 .writefn = ich_lr_write,
2890 { .name = "ICH_LRCn_EL2", .state = ARM_CP_STATE_AA32,
2891 .cp = 15, .opc1 = 4, .crn = 12,
2892 .crm = 14 + (j >> 3), .opc2 = j & 7,
2893 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2894 .access = PL2_RW,
2895 .readfn = ich_lr_read,
2896 .writefn = ich_lr_write,
2899 define_arm_cp_regs(cpu, lr_regset);
2901 if (cs->vprebits >= 6) {
2902 define_arm_cp_regs(cpu, gicv3_cpuif_ich_apxr1_reginfo);
2904 if (cs->vprebits == 7) {
2905 define_arm_cp_regs(cpu, gicv3_cpuif_ich_apxr23_reginfo);
2908 arm_register_el_change_hook(cpu, gicv3_cpuif_el_change_hook, cs);