ppc/pnv: Introduce a "chip" property under the PHB4 model
[qemu.git] / hw / ppc / spapr_hcall.c
blob222c1b6bbdb6a05b226080186282a5c633ca68c2
1 #include "qemu/osdep.h"
2 #include "qemu/cutils.h"
3 #include "qapi/error.h"
4 #include "sysemu/hw_accel.h"
5 #include "sysemu/runstate.h"
6 #include "qemu/log.h"
7 #include "qemu/main-loop.h"
8 #include "qemu/module.h"
9 #include "qemu/error-report.h"
10 #include "exec/exec-all.h"
11 #include "helper_regs.h"
12 #include "hw/ppc/spapr.h"
13 #include "hw/ppc/spapr_cpu_core.h"
14 #include "mmu-hash64.h"
15 #include "cpu-models.h"
16 #include "trace.h"
17 #include "kvm_ppc.h"
18 #include "hw/ppc/fdt.h"
19 #include "hw/ppc/spapr_ovec.h"
20 #include "hw/ppc/spapr_numa.h"
21 #include "mmu-book3s-v3.h"
22 #include "hw/mem/memory-device.h"
24 bool is_ram_address(SpaprMachineState *spapr, hwaddr addr)
26 MachineState *machine = MACHINE(spapr);
27 DeviceMemoryState *dms = machine->device_memory;
29 if (addr < machine->ram_size) {
30 return true;
32 if ((addr >= dms->base)
33 && ((addr - dms->base) < memory_region_size(&dms->mr))) {
34 return true;
37 return false;
40 /* Convert a return code from the KVM ioctl()s implementing resize HPT
41 * into a PAPR hypercall return code */
42 static target_ulong resize_hpt_convert_rc(int ret)
44 if (ret >= 100000) {
45 return H_LONG_BUSY_ORDER_100_SEC;
46 } else if (ret >= 10000) {
47 return H_LONG_BUSY_ORDER_10_SEC;
48 } else if (ret >= 1000) {
49 return H_LONG_BUSY_ORDER_1_SEC;
50 } else if (ret >= 100) {
51 return H_LONG_BUSY_ORDER_100_MSEC;
52 } else if (ret >= 10) {
53 return H_LONG_BUSY_ORDER_10_MSEC;
54 } else if (ret > 0) {
55 return H_LONG_BUSY_ORDER_1_MSEC;
58 switch (ret) {
59 case 0:
60 return H_SUCCESS;
61 case -EPERM:
62 return H_AUTHORITY;
63 case -EINVAL:
64 return H_PARAMETER;
65 case -ENXIO:
66 return H_CLOSED;
67 case -ENOSPC:
68 return H_PTEG_FULL;
69 case -EBUSY:
70 return H_BUSY;
71 case -ENOMEM:
72 return H_NO_MEM;
73 default:
74 return H_HARDWARE;
78 static target_ulong h_resize_hpt_prepare(PowerPCCPU *cpu,
79 SpaprMachineState *spapr,
80 target_ulong opcode,
81 target_ulong *args)
83 target_ulong flags = args[0];
84 int shift = args[1];
85 uint64_t current_ram_size;
86 int rc;
88 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) {
89 return H_AUTHORITY;
92 if (!spapr->htab_shift) {
93 /* Radix guest, no HPT */
94 return H_NOT_AVAILABLE;
97 trace_spapr_h_resize_hpt_prepare(flags, shift);
99 if (flags != 0) {
100 return H_PARAMETER;
103 if (shift && ((shift < 18) || (shift > 46))) {
104 return H_PARAMETER;
107 current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
109 /* We only allow the guest to allocate an HPT one order above what
110 * we'd normally give them (to stop a small guest claiming a huge
111 * chunk of resources in the HPT */
112 if (shift > (spapr_hpt_shift_for_ramsize(current_ram_size) + 1)) {
113 return H_RESOURCE;
116 rc = kvmppc_resize_hpt_prepare(cpu, flags, shift);
117 if (rc != -ENOSYS) {
118 return resize_hpt_convert_rc(rc);
121 if (kvm_enabled()) {
122 return H_HARDWARE;
125 return softmmu_resize_hpt_prepare(cpu, spapr, shift);
128 static void do_push_sregs_to_kvm_pr(CPUState *cs, run_on_cpu_data data)
130 int ret;
132 cpu_synchronize_state(cs);
134 ret = kvmppc_put_books_sregs(POWERPC_CPU(cs));
135 if (ret < 0) {
136 error_report("failed to push sregs to KVM: %s", strerror(-ret));
137 exit(1);
141 void push_sregs_to_kvm_pr(SpaprMachineState *spapr)
143 CPUState *cs;
146 * This is a hack for the benefit of KVM PR - it abuses the SDR1
147 * slot in kvm_sregs to communicate the userspace address of the
148 * HPT
150 if (!kvm_enabled() || !spapr->htab) {
151 return;
154 CPU_FOREACH(cs) {
155 run_on_cpu(cs, do_push_sregs_to_kvm_pr, RUN_ON_CPU_NULL);
159 static target_ulong h_resize_hpt_commit(PowerPCCPU *cpu,
160 SpaprMachineState *spapr,
161 target_ulong opcode,
162 target_ulong *args)
164 target_ulong flags = args[0];
165 target_ulong shift = args[1];
166 int rc;
168 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) {
169 return H_AUTHORITY;
172 if (!spapr->htab_shift) {
173 /* Radix guest, no HPT */
174 return H_NOT_AVAILABLE;
177 trace_spapr_h_resize_hpt_commit(flags, shift);
179 rc = kvmppc_resize_hpt_commit(cpu, flags, shift);
180 if (rc != -ENOSYS) {
181 rc = resize_hpt_convert_rc(rc);
182 if (rc == H_SUCCESS) {
183 /* Need to set the new htab_shift in the machine state */
184 spapr->htab_shift = shift;
186 return rc;
189 if (kvm_enabled()) {
190 return H_HARDWARE;
193 return softmmu_resize_hpt_commit(cpu, spapr, flags, shift);
198 static target_ulong h_set_sprg0(PowerPCCPU *cpu, SpaprMachineState *spapr,
199 target_ulong opcode, target_ulong *args)
201 cpu_synchronize_state(CPU(cpu));
202 cpu->env.spr[SPR_SPRG0] = args[0];
204 return H_SUCCESS;
207 static target_ulong h_set_dabr(PowerPCCPU *cpu, SpaprMachineState *spapr,
208 target_ulong opcode, target_ulong *args)
210 if (!ppc_has_spr(cpu, SPR_DABR)) {
211 return H_HARDWARE; /* DABR register not available */
213 cpu_synchronize_state(CPU(cpu));
215 if (ppc_has_spr(cpu, SPR_DABRX)) {
216 cpu->env.spr[SPR_DABRX] = 0x3; /* Use Problem and Privileged state */
217 } else if (!(args[0] & 0x4)) { /* Breakpoint Translation set? */
218 return H_RESERVED_DABR;
221 cpu->env.spr[SPR_DABR] = args[0];
222 return H_SUCCESS;
225 static target_ulong h_set_xdabr(PowerPCCPU *cpu, SpaprMachineState *spapr,
226 target_ulong opcode, target_ulong *args)
228 target_ulong dabrx = args[1];
230 if (!ppc_has_spr(cpu, SPR_DABR) || !ppc_has_spr(cpu, SPR_DABRX)) {
231 return H_HARDWARE;
234 if ((dabrx & ~0xfULL) != 0 || (dabrx & H_DABRX_HYPERVISOR) != 0
235 || (dabrx & (H_DABRX_KERNEL | H_DABRX_USER)) == 0) {
236 return H_PARAMETER;
239 cpu_synchronize_state(CPU(cpu));
240 cpu->env.spr[SPR_DABRX] = dabrx;
241 cpu->env.spr[SPR_DABR] = args[0];
243 return H_SUCCESS;
246 static target_ulong h_page_init(PowerPCCPU *cpu, SpaprMachineState *spapr,
247 target_ulong opcode, target_ulong *args)
249 target_ulong flags = args[0];
250 hwaddr dst = args[1];
251 hwaddr src = args[2];
252 hwaddr len = TARGET_PAGE_SIZE;
253 uint8_t *pdst, *psrc;
254 target_long ret = H_SUCCESS;
256 if (flags & ~(H_ICACHE_SYNCHRONIZE | H_ICACHE_INVALIDATE
257 | H_COPY_PAGE | H_ZERO_PAGE)) {
258 qemu_log_mask(LOG_UNIMP, "h_page_init: Bad flags (" TARGET_FMT_lx "\n",
259 flags);
260 return H_PARAMETER;
263 /* Map-in destination */
264 if (!is_ram_address(spapr, dst) || (dst & ~TARGET_PAGE_MASK) != 0) {
265 return H_PARAMETER;
267 pdst = cpu_physical_memory_map(dst, &len, true);
268 if (!pdst || len != TARGET_PAGE_SIZE) {
269 return H_PARAMETER;
272 if (flags & H_COPY_PAGE) {
273 /* Map-in source, copy to destination, and unmap source again */
274 if (!is_ram_address(spapr, src) || (src & ~TARGET_PAGE_MASK) != 0) {
275 ret = H_PARAMETER;
276 goto unmap_out;
278 psrc = cpu_physical_memory_map(src, &len, false);
279 if (!psrc || len != TARGET_PAGE_SIZE) {
280 ret = H_PARAMETER;
281 goto unmap_out;
283 memcpy(pdst, psrc, len);
284 cpu_physical_memory_unmap(psrc, len, 0, len);
285 } else if (flags & H_ZERO_PAGE) {
286 memset(pdst, 0, len); /* Just clear the destination page */
289 if (kvm_enabled() && (flags & H_ICACHE_SYNCHRONIZE) != 0) {
290 kvmppc_dcbst_range(cpu, pdst, len);
292 if (flags & (H_ICACHE_SYNCHRONIZE | H_ICACHE_INVALIDATE)) {
293 if (kvm_enabled()) {
294 kvmppc_icbi_range(cpu, pdst, len);
295 } else {
296 tb_flush(CPU(cpu));
300 unmap_out:
301 cpu_physical_memory_unmap(pdst, TARGET_PAGE_SIZE, 1, len);
302 return ret;
305 #define FLAGS_REGISTER_VPA 0x0000200000000000ULL
306 #define FLAGS_REGISTER_DTL 0x0000400000000000ULL
307 #define FLAGS_REGISTER_SLBSHADOW 0x0000600000000000ULL
308 #define FLAGS_DEREGISTER_VPA 0x0000a00000000000ULL
309 #define FLAGS_DEREGISTER_DTL 0x0000c00000000000ULL
310 #define FLAGS_DEREGISTER_SLBSHADOW 0x0000e00000000000ULL
312 static target_ulong register_vpa(PowerPCCPU *cpu, target_ulong vpa)
314 CPUState *cs = CPU(cpu);
315 CPUPPCState *env = &cpu->env;
316 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
317 uint16_t size;
318 uint8_t tmp;
320 if (vpa == 0) {
321 hcall_dprintf("Can't cope with registering a VPA at logical 0\n");
322 return H_HARDWARE;
325 if (vpa % env->dcache_line_size) {
326 return H_PARAMETER;
328 /* FIXME: bounds check the address */
330 size = lduw_be_phys(cs->as, vpa + 0x4);
332 if (size < VPA_MIN_SIZE) {
333 return H_PARAMETER;
336 /* VPA is not allowed to cross a page boundary */
337 if ((vpa / 4096) != ((vpa + size - 1) / 4096)) {
338 return H_PARAMETER;
341 spapr_cpu->vpa_addr = vpa;
343 tmp = ldub_phys(cs->as, spapr_cpu->vpa_addr + VPA_SHARED_PROC_OFFSET);
344 tmp |= VPA_SHARED_PROC_VAL;
345 stb_phys(cs->as, spapr_cpu->vpa_addr + VPA_SHARED_PROC_OFFSET, tmp);
347 return H_SUCCESS;
350 static target_ulong deregister_vpa(PowerPCCPU *cpu, target_ulong vpa)
352 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
354 if (spapr_cpu->slb_shadow_addr) {
355 return H_RESOURCE;
358 if (spapr_cpu->dtl_addr) {
359 return H_RESOURCE;
362 spapr_cpu->vpa_addr = 0;
363 return H_SUCCESS;
366 static target_ulong register_slb_shadow(PowerPCCPU *cpu, target_ulong addr)
368 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
369 uint32_t size;
371 if (addr == 0) {
372 hcall_dprintf("Can't cope with SLB shadow at logical 0\n");
373 return H_HARDWARE;
376 size = ldl_be_phys(CPU(cpu)->as, addr + 0x4);
377 if (size < 0x8) {
378 return H_PARAMETER;
381 if ((addr / 4096) != ((addr + size - 1) / 4096)) {
382 return H_PARAMETER;
385 if (!spapr_cpu->vpa_addr) {
386 return H_RESOURCE;
389 spapr_cpu->slb_shadow_addr = addr;
390 spapr_cpu->slb_shadow_size = size;
392 return H_SUCCESS;
395 static target_ulong deregister_slb_shadow(PowerPCCPU *cpu, target_ulong addr)
397 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
399 spapr_cpu->slb_shadow_addr = 0;
400 spapr_cpu->slb_shadow_size = 0;
401 return H_SUCCESS;
404 static target_ulong register_dtl(PowerPCCPU *cpu, target_ulong addr)
406 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
407 uint32_t size;
409 if (addr == 0) {
410 hcall_dprintf("Can't cope with DTL at logical 0\n");
411 return H_HARDWARE;
414 size = ldl_be_phys(CPU(cpu)->as, addr + 0x4);
416 if (size < 48) {
417 return H_PARAMETER;
420 if (!spapr_cpu->vpa_addr) {
421 return H_RESOURCE;
424 spapr_cpu->dtl_addr = addr;
425 spapr_cpu->dtl_size = size;
427 return H_SUCCESS;
430 static target_ulong deregister_dtl(PowerPCCPU *cpu, target_ulong addr)
432 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
434 spapr_cpu->dtl_addr = 0;
435 spapr_cpu->dtl_size = 0;
437 return H_SUCCESS;
440 static target_ulong h_register_vpa(PowerPCCPU *cpu, SpaprMachineState *spapr,
441 target_ulong opcode, target_ulong *args)
443 target_ulong flags = args[0];
444 target_ulong procno = args[1];
445 target_ulong vpa = args[2];
446 target_ulong ret = H_PARAMETER;
447 PowerPCCPU *tcpu;
449 tcpu = spapr_find_cpu(procno);
450 if (!tcpu) {
451 return H_PARAMETER;
454 switch (flags) {
455 case FLAGS_REGISTER_VPA:
456 ret = register_vpa(tcpu, vpa);
457 break;
459 case FLAGS_DEREGISTER_VPA:
460 ret = deregister_vpa(tcpu, vpa);
461 break;
463 case FLAGS_REGISTER_SLBSHADOW:
464 ret = register_slb_shadow(tcpu, vpa);
465 break;
467 case FLAGS_DEREGISTER_SLBSHADOW:
468 ret = deregister_slb_shadow(tcpu, vpa);
469 break;
471 case FLAGS_REGISTER_DTL:
472 ret = register_dtl(tcpu, vpa);
473 break;
475 case FLAGS_DEREGISTER_DTL:
476 ret = deregister_dtl(tcpu, vpa);
477 break;
480 return ret;
483 static target_ulong h_cede(PowerPCCPU *cpu, SpaprMachineState *spapr,
484 target_ulong opcode, target_ulong *args)
486 CPUPPCState *env = &cpu->env;
487 CPUState *cs = CPU(cpu);
488 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
490 env->msr |= (1ULL << MSR_EE);
491 hreg_compute_hflags(env);
493 if (spapr_cpu->prod) {
494 spapr_cpu->prod = false;
495 return H_SUCCESS;
498 if (!cpu_has_work(cs)) {
499 cs->halted = 1;
500 cs->exception_index = EXCP_HLT;
501 cs->exit_request = 1;
504 return H_SUCCESS;
508 * Confer to self, aka join. Cede could use the same pattern as well, if
509 * EXCP_HLT can be changed to ECXP_HALTED.
511 static target_ulong h_confer_self(PowerPCCPU *cpu)
513 CPUState *cs = CPU(cpu);
514 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
516 if (spapr_cpu->prod) {
517 spapr_cpu->prod = false;
518 return H_SUCCESS;
520 cs->halted = 1;
521 cs->exception_index = EXCP_HALTED;
522 cs->exit_request = 1;
524 return H_SUCCESS;
527 static target_ulong h_join(PowerPCCPU *cpu, SpaprMachineState *spapr,
528 target_ulong opcode, target_ulong *args)
530 CPUPPCState *env = &cpu->env;
531 CPUState *cs;
532 bool last_unjoined = true;
534 if (env->msr & (1ULL << MSR_EE)) {
535 return H_BAD_MODE;
539 * Must not join the last CPU running. Interestingly, no such restriction
540 * for H_CONFER-to-self, but that is probably not intended to be used
541 * when H_JOIN is available.
543 CPU_FOREACH(cs) {
544 PowerPCCPU *c = POWERPC_CPU(cs);
545 CPUPPCState *e = &c->env;
546 if (c == cpu) {
547 continue;
550 /* Don't have a way to indicate joined, so use halted && MSR[EE]=0 */
551 if (!cs->halted || (e->msr & (1ULL << MSR_EE))) {
552 last_unjoined = false;
553 break;
556 if (last_unjoined) {
557 return H_CONTINUE;
560 return h_confer_self(cpu);
563 static target_ulong h_confer(PowerPCCPU *cpu, SpaprMachineState *spapr,
564 target_ulong opcode, target_ulong *args)
566 target_long target = args[0];
567 uint32_t dispatch = args[1];
568 CPUState *cs = CPU(cpu);
569 SpaprCpuState *spapr_cpu;
572 * -1 means confer to all other CPUs without dispatch counter check,
573 * otherwise it's a targeted confer.
575 if (target != -1) {
576 PowerPCCPU *target_cpu = spapr_find_cpu(target);
577 uint32_t target_dispatch;
579 if (!target_cpu) {
580 return H_PARAMETER;
584 * target == self is a special case, we wait until prodded, without
585 * dispatch counter check.
587 if (cpu == target_cpu) {
588 return h_confer_self(cpu);
591 spapr_cpu = spapr_cpu_state(target_cpu);
592 if (!spapr_cpu->vpa_addr || ((dispatch & 1) == 0)) {
593 return H_SUCCESS;
596 target_dispatch = ldl_be_phys(cs->as,
597 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
598 if (target_dispatch != dispatch) {
599 return H_SUCCESS;
603 * The targeted confer does not do anything special beyond yielding
604 * the current vCPU, but even this should be better than nothing.
605 * At least for single-threaded tcg, it gives the target a chance to
606 * run before we run again. Multi-threaded tcg does not really do
607 * anything with EXCP_YIELD yet.
611 cs->exception_index = EXCP_YIELD;
612 cs->exit_request = 1;
613 cpu_loop_exit(cs);
615 return H_SUCCESS;
618 static target_ulong h_prod(PowerPCCPU *cpu, SpaprMachineState *spapr,
619 target_ulong opcode, target_ulong *args)
621 target_long target = args[0];
622 PowerPCCPU *tcpu;
623 CPUState *cs;
624 SpaprCpuState *spapr_cpu;
626 tcpu = spapr_find_cpu(target);
627 cs = CPU(tcpu);
628 if (!cs) {
629 return H_PARAMETER;
632 spapr_cpu = spapr_cpu_state(tcpu);
633 spapr_cpu->prod = true;
634 cs->halted = 0;
635 qemu_cpu_kick(cs);
637 return H_SUCCESS;
640 static target_ulong h_rtas(PowerPCCPU *cpu, SpaprMachineState *spapr,
641 target_ulong opcode, target_ulong *args)
643 target_ulong rtas_r3 = args[0];
644 uint32_t token = rtas_ld(rtas_r3, 0);
645 uint32_t nargs = rtas_ld(rtas_r3, 1);
646 uint32_t nret = rtas_ld(rtas_r3, 2);
648 return spapr_rtas_call(cpu, spapr, token, nargs, rtas_r3 + 12,
649 nret, rtas_r3 + 12 + 4*nargs);
652 static target_ulong h_logical_load(PowerPCCPU *cpu, SpaprMachineState *spapr,
653 target_ulong opcode, target_ulong *args)
655 CPUState *cs = CPU(cpu);
656 target_ulong size = args[0];
657 target_ulong addr = args[1];
659 switch (size) {
660 case 1:
661 args[0] = ldub_phys(cs->as, addr);
662 return H_SUCCESS;
663 case 2:
664 args[0] = lduw_phys(cs->as, addr);
665 return H_SUCCESS;
666 case 4:
667 args[0] = ldl_phys(cs->as, addr);
668 return H_SUCCESS;
669 case 8:
670 args[0] = ldq_phys(cs->as, addr);
671 return H_SUCCESS;
673 return H_PARAMETER;
676 static target_ulong h_logical_store(PowerPCCPU *cpu, SpaprMachineState *spapr,
677 target_ulong opcode, target_ulong *args)
679 CPUState *cs = CPU(cpu);
681 target_ulong size = args[0];
682 target_ulong addr = args[1];
683 target_ulong val = args[2];
685 switch (size) {
686 case 1:
687 stb_phys(cs->as, addr, val);
688 return H_SUCCESS;
689 case 2:
690 stw_phys(cs->as, addr, val);
691 return H_SUCCESS;
692 case 4:
693 stl_phys(cs->as, addr, val);
694 return H_SUCCESS;
695 case 8:
696 stq_phys(cs->as, addr, val);
697 return H_SUCCESS;
699 return H_PARAMETER;
702 static target_ulong h_logical_memop(PowerPCCPU *cpu, SpaprMachineState *spapr,
703 target_ulong opcode, target_ulong *args)
705 CPUState *cs = CPU(cpu);
707 target_ulong dst = args[0]; /* Destination address */
708 target_ulong src = args[1]; /* Source address */
709 target_ulong esize = args[2]; /* Element size (0=1,1=2,2=4,3=8) */
710 target_ulong count = args[3]; /* Element count */
711 target_ulong op = args[4]; /* 0 = copy, 1 = invert */
712 uint64_t tmp;
713 unsigned int mask = (1 << esize) - 1;
714 int step = 1 << esize;
716 if (count > 0x80000000) {
717 return H_PARAMETER;
720 if ((dst & mask) || (src & mask) || (op > 1)) {
721 return H_PARAMETER;
724 if (dst >= src && dst < (src + (count << esize))) {
725 dst = dst + ((count - 1) << esize);
726 src = src + ((count - 1) << esize);
727 step = -step;
730 while (count--) {
731 switch (esize) {
732 case 0:
733 tmp = ldub_phys(cs->as, src);
734 break;
735 case 1:
736 tmp = lduw_phys(cs->as, src);
737 break;
738 case 2:
739 tmp = ldl_phys(cs->as, src);
740 break;
741 case 3:
742 tmp = ldq_phys(cs->as, src);
743 break;
744 default:
745 return H_PARAMETER;
747 if (op == 1) {
748 tmp = ~tmp;
750 switch (esize) {
751 case 0:
752 stb_phys(cs->as, dst, tmp);
753 break;
754 case 1:
755 stw_phys(cs->as, dst, tmp);
756 break;
757 case 2:
758 stl_phys(cs->as, dst, tmp);
759 break;
760 case 3:
761 stq_phys(cs->as, dst, tmp);
762 break;
764 dst = dst + step;
765 src = src + step;
768 return H_SUCCESS;
771 static target_ulong h_logical_icbi(PowerPCCPU *cpu, SpaprMachineState *spapr,
772 target_ulong opcode, target_ulong *args)
774 /* Nothing to do on emulation, KVM will trap this in the kernel */
775 return H_SUCCESS;
778 static target_ulong h_logical_dcbf(PowerPCCPU *cpu, SpaprMachineState *spapr,
779 target_ulong opcode, target_ulong *args)
781 /* Nothing to do on emulation, KVM will trap this in the kernel */
782 return H_SUCCESS;
785 static target_ulong h_set_mode_resource_le(PowerPCCPU *cpu,
786 SpaprMachineState *spapr,
787 target_ulong mflags,
788 target_ulong value1,
789 target_ulong value2)
791 if (value1) {
792 return H_P3;
794 if (value2) {
795 return H_P4;
798 switch (mflags) {
799 case H_SET_MODE_ENDIAN_BIG:
800 spapr_set_all_lpcrs(0, LPCR_ILE);
801 spapr_pci_switch_vga(spapr, true);
802 return H_SUCCESS;
804 case H_SET_MODE_ENDIAN_LITTLE:
805 spapr_set_all_lpcrs(LPCR_ILE, LPCR_ILE);
806 spapr_pci_switch_vga(spapr, false);
807 return H_SUCCESS;
810 return H_UNSUPPORTED_FLAG;
813 static target_ulong h_set_mode_resource_addr_trans_mode(PowerPCCPU *cpu,
814 target_ulong mflags,
815 target_ulong value1,
816 target_ulong value2)
818 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
820 if (!(pcc->insns_flags2 & PPC2_ISA207S)) {
821 return H_P2;
823 if (value1) {
824 return H_P3;
826 if (value2) {
827 return H_P4;
830 if (mflags == 1) {
831 /* AIL=1 is reserved in POWER8/POWER9/POWER10 */
832 return H_UNSUPPORTED_FLAG;
835 if (mflags == 2 && (pcc->insns_flags2 & PPC2_ISA310)) {
836 /* AIL=2 is reserved in POWER10 (ISA v3.1) */
837 return H_UNSUPPORTED_FLAG;
840 spapr_set_all_lpcrs(mflags << LPCR_AIL_SHIFT, LPCR_AIL);
842 return H_SUCCESS;
845 static target_ulong h_set_mode(PowerPCCPU *cpu, SpaprMachineState *spapr,
846 target_ulong opcode, target_ulong *args)
848 target_ulong resource = args[1];
849 target_ulong ret = H_P2;
851 switch (resource) {
852 case H_SET_MODE_RESOURCE_LE:
853 ret = h_set_mode_resource_le(cpu, spapr, args[0], args[2], args[3]);
854 break;
855 case H_SET_MODE_RESOURCE_ADDR_TRANS_MODE:
856 ret = h_set_mode_resource_addr_trans_mode(cpu, args[0],
857 args[2], args[3]);
858 break;
861 return ret;
864 static target_ulong h_clean_slb(PowerPCCPU *cpu, SpaprMachineState *spapr,
865 target_ulong opcode, target_ulong *args)
867 qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x"TARGET_FMT_lx"%s\n",
868 opcode, " (H_CLEAN_SLB)");
869 return H_FUNCTION;
872 static target_ulong h_invalidate_pid(PowerPCCPU *cpu, SpaprMachineState *spapr,
873 target_ulong opcode, target_ulong *args)
875 qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x"TARGET_FMT_lx"%s\n",
876 opcode, " (H_INVALIDATE_PID)");
877 return H_FUNCTION;
880 static void spapr_check_setup_free_hpt(SpaprMachineState *spapr,
881 uint64_t patbe_old, uint64_t patbe_new)
884 * We have 4 Options:
885 * HASH->HASH || RADIX->RADIX || NOTHING->RADIX : Do Nothing
886 * HASH->RADIX : Free HPT
887 * RADIX->HASH : Allocate HPT
888 * NOTHING->HASH : Allocate HPT
889 * Note: NOTHING implies the case where we said the guest could choose
890 * later and so assumed radix and now it's called H_REG_PROC_TBL
893 if ((patbe_old & PATE1_GR) == (patbe_new & PATE1_GR)) {
894 /* We assume RADIX, so this catches all the "Do Nothing" cases */
895 } else if (!(patbe_old & PATE1_GR)) {
896 /* HASH->RADIX : Free HPT */
897 spapr_free_hpt(spapr);
898 } else if (!(patbe_new & PATE1_GR)) {
899 /* RADIX->HASH || NOTHING->HASH : Allocate HPT */
900 spapr_setup_hpt(spapr);
902 return;
905 #define FLAGS_MASK 0x01FULL
906 #define FLAG_MODIFY 0x10
907 #define FLAG_REGISTER 0x08
908 #define FLAG_RADIX 0x04
909 #define FLAG_HASH_PROC_TBL 0x02
910 #define FLAG_GTSE 0x01
912 static target_ulong h_register_process_table(PowerPCCPU *cpu,
913 SpaprMachineState *spapr,
914 target_ulong opcode,
915 target_ulong *args)
917 target_ulong flags = args[0];
918 target_ulong proc_tbl = args[1];
919 target_ulong page_size = args[2];
920 target_ulong table_size = args[3];
921 target_ulong update_lpcr = 0;
922 uint64_t cproc;
924 if (flags & ~FLAGS_MASK) { /* Check no reserved bits are set */
925 return H_PARAMETER;
927 if (flags & FLAG_MODIFY) {
928 if (flags & FLAG_REGISTER) {
929 if (flags & FLAG_RADIX) { /* Register new RADIX process table */
930 if (proc_tbl & 0xfff || proc_tbl >> 60) {
931 return H_P2;
932 } else if (page_size) {
933 return H_P3;
934 } else if (table_size > 24) {
935 return H_P4;
937 cproc = PATE1_GR | proc_tbl | table_size;
938 } else { /* Register new HPT process table */
939 if (flags & FLAG_HASH_PROC_TBL) { /* Hash with Segment Tables */
940 /* TODO - Not Supported */
941 /* Technically caused by flag bits => H_PARAMETER */
942 return H_PARAMETER;
943 } else { /* Hash with SLB */
944 if (proc_tbl >> 38) {
945 return H_P2;
946 } else if (page_size & ~0x7) {
947 return H_P3;
948 } else if (table_size > 24) {
949 return H_P4;
952 cproc = (proc_tbl << 25) | page_size << 5 | table_size;
955 } else { /* Deregister current process table */
957 * Set to benign value: (current GR) | 0. This allows
958 * deregistration in KVM to succeed even if the radix bit
959 * in flags doesn't match the radix bit in the old PATE.
961 cproc = spapr->patb_entry & PATE1_GR;
963 } else { /* Maintain current registration */
964 if (!(flags & FLAG_RADIX) != !(spapr->patb_entry & PATE1_GR)) {
965 /* Technically caused by flag bits => H_PARAMETER */
966 return H_PARAMETER; /* Existing Process Table Mismatch */
968 cproc = spapr->patb_entry;
971 /* Check if we need to setup OR free the hpt */
972 spapr_check_setup_free_hpt(spapr, spapr->patb_entry, cproc);
974 spapr->patb_entry = cproc; /* Save new process table */
976 /* Update the UPRT, HR and GTSE bits in the LPCR for all cpus */
977 if (flags & FLAG_RADIX) /* Radix must use process tables, also set HR */
978 update_lpcr |= (LPCR_UPRT | LPCR_HR);
979 else if (flags & FLAG_HASH_PROC_TBL) /* Hash with process tables */
980 update_lpcr |= LPCR_UPRT;
981 if (flags & FLAG_GTSE) /* Guest translation shootdown enable */
982 update_lpcr |= LPCR_GTSE;
984 spapr_set_all_lpcrs(update_lpcr, LPCR_UPRT | LPCR_HR | LPCR_GTSE);
986 if (kvm_enabled()) {
987 return kvmppc_configure_v3_mmu(cpu, flags & FLAG_RADIX,
988 flags & FLAG_GTSE, cproc);
990 return H_SUCCESS;
993 #define H_SIGNAL_SYS_RESET_ALL -1
994 #define H_SIGNAL_SYS_RESET_ALLBUTSELF -2
996 static target_ulong h_signal_sys_reset(PowerPCCPU *cpu,
997 SpaprMachineState *spapr,
998 target_ulong opcode, target_ulong *args)
1000 target_long target = args[0];
1001 CPUState *cs;
1003 if (target < 0) {
1004 /* Broadcast */
1005 if (target < H_SIGNAL_SYS_RESET_ALLBUTSELF) {
1006 return H_PARAMETER;
1009 CPU_FOREACH(cs) {
1010 PowerPCCPU *c = POWERPC_CPU(cs);
1012 if (target == H_SIGNAL_SYS_RESET_ALLBUTSELF) {
1013 if (c == cpu) {
1014 continue;
1017 run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
1019 return H_SUCCESS;
1021 } else {
1022 /* Unicast */
1023 cs = CPU(spapr_find_cpu(target));
1024 if (cs) {
1025 run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
1026 return H_SUCCESS;
1028 return H_PARAMETER;
1032 /* Returns either a logical PVR or zero if none was found */
1033 static uint32_t cas_check_pvr(PowerPCCPU *cpu, uint32_t max_compat,
1034 target_ulong *addr, bool *raw_mode_supported)
1036 bool explicit_match = false; /* Matched the CPU's real PVR */
1037 uint32_t best_compat = 0;
1038 int i;
1041 * We scan the supplied table of PVRs looking for two things
1042 * 1. Is our real CPU PVR in the list?
1043 * 2. What's the "best" listed logical PVR
1045 for (i = 0; i < 512; ++i) {
1046 uint32_t pvr, pvr_mask;
1048 pvr_mask = ldl_be_phys(&address_space_memory, *addr);
1049 pvr = ldl_be_phys(&address_space_memory, *addr + 4);
1050 *addr += 8;
1052 if (~pvr_mask & pvr) {
1053 break; /* Terminator record */
1056 if ((cpu->env.spr[SPR_PVR] & pvr_mask) == (pvr & pvr_mask)) {
1057 explicit_match = true;
1058 } else {
1059 if (ppc_check_compat(cpu, pvr, best_compat, max_compat)) {
1060 best_compat = pvr;
1065 *raw_mode_supported = explicit_match;
1067 /* Parsing finished */
1068 trace_spapr_cas_pvr(cpu->compat_pvr, explicit_match, best_compat);
1070 return best_compat;
1073 static
1074 target_ulong do_client_architecture_support(PowerPCCPU *cpu,
1075 SpaprMachineState *spapr,
1076 target_ulong vec,
1077 target_ulong fdt_bufsize)
1079 target_ulong ov_table; /* Working address in data buffer */
1080 uint32_t cas_pvr;
1081 SpaprOptionVector *ov1_guest, *ov5_guest;
1082 bool guest_radix;
1083 bool raw_mode_supported = false;
1084 bool guest_xive;
1085 CPUState *cs;
1086 void *fdt;
1087 uint32_t max_compat = spapr->max_compat_pvr;
1089 /* CAS is supposed to be called early when only the boot vCPU is active. */
1090 CPU_FOREACH(cs) {
1091 if (cs == CPU(cpu)) {
1092 continue;
1094 if (!cs->halted) {
1095 warn_report("guest has multiple active vCPUs at CAS, which is not allowed");
1096 return H_MULTI_THREADS_ACTIVE;
1100 cas_pvr = cas_check_pvr(cpu, max_compat, &vec, &raw_mode_supported);
1101 if (!cas_pvr && (!raw_mode_supported || max_compat)) {
1103 * We couldn't find a suitable compatibility mode, and either
1104 * the guest doesn't support "raw" mode for this CPU, or "raw"
1105 * mode is disabled because a maximum compat mode is set.
1107 error_report("Couldn't negotiate a suitable PVR during CAS");
1108 return H_HARDWARE;
1111 /* Update CPUs */
1112 if (cpu->compat_pvr != cas_pvr) {
1113 Error *local_err = NULL;
1115 if (ppc_set_compat_all(cas_pvr, &local_err) < 0) {
1116 /* We fail to set compat mode (likely because running with KVM PR),
1117 * but maybe we can fallback to raw mode if the guest supports it.
1119 if (!raw_mode_supported) {
1120 error_report_err(local_err);
1121 return H_HARDWARE;
1123 error_free(local_err);
1127 /* For the future use: here @ov_table points to the first option vector */
1128 ov_table = vec;
1130 ov1_guest = spapr_ovec_parse_vector(ov_table, 1);
1131 if (!ov1_guest) {
1132 warn_report("guest didn't provide option vector 1");
1133 return H_PARAMETER;
1135 ov5_guest = spapr_ovec_parse_vector(ov_table, 5);
1136 if (!ov5_guest) {
1137 spapr_ovec_cleanup(ov1_guest);
1138 warn_report("guest didn't provide option vector 5");
1139 return H_PARAMETER;
1141 if (spapr_ovec_test(ov5_guest, OV5_MMU_BOTH)) {
1142 error_report("guest requested hash and radix MMU, which is invalid.");
1143 exit(EXIT_FAILURE);
1145 if (spapr_ovec_test(ov5_guest, OV5_XIVE_BOTH)) {
1146 error_report("guest requested an invalid interrupt mode");
1147 exit(EXIT_FAILURE);
1150 guest_radix = spapr_ovec_test(ov5_guest, OV5_MMU_RADIX_300);
1152 guest_xive = spapr_ovec_test(ov5_guest, OV5_XIVE_EXPLOIT);
1155 * HPT resizing is a bit of a special case, because when enabled
1156 * we assume an HPT guest will support it until it says it
1157 * doesn't, instead of assuming it won't support it until it says
1158 * it does. Strictly speaking that approach could break for
1159 * guests which don't make a CAS call, but those are so old we
1160 * don't care about them. Without that assumption we'd have to
1161 * make at least a temporary allocation of an HPT sized for max
1162 * memory, which could be impossibly difficult under KVM HV if
1163 * maxram is large.
1165 if (!guest_radix && !spapr_ovec_test(ov5_guest, OV5_HPT_RESIZE)) {
1166 int maxshift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1168 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_REQUIRED) {
1169 error_report(
1170 "h_client_architecture_support: Guest doesn't support HPT resizing, but resize-hpt=required");
1171 exit(1);
1174 if (spapr->htab_shift < maxshift) {
1175 /* Guest doesn't know about HPT resizing, so we
1176 * pre-emptively resize for the maximum permitted RAM. At
1177 * the point this is called, nothing should have been
1178 * entered into the existing HPT */
1179 spapr_reallocate_hpt(spapr, maxshift, &error_fatal);
1180 push_sregs_to_kvm_pr(spapr);
1184 /* NOTE: there are actually a number of ov5 bits where input from the
1185 * guest is always zero, and the platform/QEMU enables them independently
1186 * of guest input. To model these properly we'd want some sort of mask,
1187 * but since they only currently apply to memory migration as defined
1188 * by LoPAPR 1.1, 14.5.4.8, which QEMU doesn't implement, we don't need
1189 * to worry about this for now.
1192 /* full range of negotiated ov5 capabilities */
1193 spapr_ovec_intersect(spapr->ov5_cas, spapr->ov5, ov5_guest);
1194 spapr_ovec_cleanup(ov5_guest);
1196 spapr_check_mmu_mode(guest_radix);
1198 spapr->cas_pre_isa3_guest = !spapr_ovec_test(ov1_guest, OV1_PPC_3_00);
1199 spapr_ovec_cleanup(ov1_guest);
1202 * Check for NUMA affinity conditions now that we know which NUMA
1203 * affinity the guest will use.
1205 spapr_numa_associativity_check(spapr);
1208 * Ensure the guest asks for an interrupt mode we support;
1209 * otherwise terminate the boot.
1211 if (guest_xive) {
1212 if (!spapr->irq->xive) {
1213 error_report(
1214 "Guest requested unavailable interrupt mode (XIVE), try the ic-mode=xive or ic-mode=dual machine property");
1215 exit(EXIT_FAILURE);
1217 } else {
1218 if (!spapr->irq->xics) {
1219 error_report(
1220 "Guest requested unavailable interrupt mode (XICS), either don't set the ic-mode machine property or try ic-mode=xics or ic-mode=dual");
1221 exit(EXIT_FAILURE);
1225 spapr_irq_update_active_intc(spapr);
1228 * Process all pending hot-plug/unplug requests now. An updated full
1229 * rendered FDT will be returned to the guest.
1231 spapr_drc_reset_all(spapr);
1232 spapr_clear_pending_hotplug_events(spapr);
1235 * If spapr_machine_reset() did not set up a HPT but one is necessary
1236 * (because the guest isn't going to use radix) then set it up here.
1238 if ((spapr->patb_entry & PATE1_GR) && !guest_radix) {
1239 /* legacy hash or new hash: */
1240 spapr_setup_hpt(spapr);
1243 fdt = spapr_build_fdt(spapr, spapr->vof != NULL, fdt_bufsize);
1244 g_free(spapr->fdt_blob);
1245 spapr->fdt_size = fdt_totalsize(fdt);
1246 spapr->fdt_initial_size = spapr->fdt_size;
1247 spapr->fdt_blob = fdt;
1249 return H_SUCCESS;
1252 static target_ulong h_client_architecture_support(PowerPCCPU *cpu,
1253 SpaprMachineState *spapr,
1254 target_ulong opcode,
1255 target_ulong *args)
1257 target_ulong vec = ppc64_phys_to_real(args[0]);
1258 target_ulong fdt_buf = args[1];
1259 target_ulong fdt_bufsize = args[2];
1260 target_ulong ret;
1261 SpaprDeviceTreeUpdateHeader hdr = { .version_id = 1 };
1263 if (fdt_bufsize < sizeof(hdr)) {
1264 error_report("SLOF provided insufficient CAS buffer "
1265 TARGET_FMT_lu " (min: %zu)", fdt_bufsize, sizeof(hdr));
1266 exit(EXIT_FAILURE);
1269 fdt_bufsize -= sizeof(hdr);
1271 ret = do_client_architecture_support(cpu, spapr, vec, fdt_bufsize);
1272 if (ret == H_SUCCESS) {
1273 _FDT((fdt_pack(spapr->fdt_blob)));
1274 spapr->fdt_size = fdt_totalsize(spapr->fdt_blob);
1275 spapr->fdt_initial_size = spapr->fdt_size;
1277 cpu_physical_memory_write(fdt_buf, &hdr, sizeof(hdr));
1278 cpu_physical_memory_write(fdt_buf + sizeof(hdr), spapr->fdt_blob,
1279 spapr->fdt_size);
1280 trace_spapr_cas_continue(spapr->fdt_size + sizeof(hdr));
1283 return ret;
1286 target_ulong spapr_vof_client_architecture_support(MachineState *ms,
1287 CPUState *cs,
1288 target_ulong ovec_addr)
1290 SpaprMachineState *spapr = SPAPR_MACHINE(ms);
1292 target_ulong ret = do_client_architecture_support(POWERPC_CPU(cs), spapr,
1293 ovec_addr, FDT_MAX_SIZE);
1296 * This adds stdout and generates phandles for boottime and CAS FDTs.
1297 * It is alright to update the FDT here as do_client_architecture_support()
1298 * does not pack it.
1300 spapr_vof_client_dt_finalize(spapr, spapr->fdt_blob);
1302 return ret;
1305 static target_ulong h_get_cpu_characteristics(PowerPCCPU *cpu,
1306 SpaprMachineState *spapr,
1307 target_ulong opcode,
1308 target_ulong *args)
1310 uint64_t characteristics = H_CPU_CHAR_HON_BRANCH_HINTS &
1311 ~H_CPU_CHAR_THR_RECONF_TRIG;
1312 uint64_t behaviour = H_CPU_BEHAV_FAVOUR_SECURITY;
1313 uint8_t safe_cache = spapr_get_cap(spapr, SPAPR_CAP_CFPC);
1314 uint8_t safe_bounds_check = spapr_get_cap(spapr, SPAPR_CAP_SBBC);
1315 uint8_t safe_indirect_branch = spapr_get_cap(spapr, SPAPR_CAP_IBS);
1316 uint8_t count_cache_flush_assist = spapr_get_cap(spapr,
1317 SPAPR_CAP_CCF_ASSIST);
1319 switch (safe_cache) {
1320 case SPAPR_CAP_WORKAROUND:
1321 characteristics |= H_CPU_CHAR_L1D_FLUSH_ORI30;
1322 characteristics |= H_CPU_CHAR_L1D_FLUSH_TRIG2;
1323 characteristics |= H_CPU_CHAR_L1D_THREAD_PRIV;
1324 behaviour |= H_CPU_BEHAV_L1D_FLUSH_PR;
1325 break;
1326 case SPAPR_CAP_FIXED:
1327 behaviour |= H_CPU_BEHAV_NO_L1D_FLUSH_ENTRY;
1328 behaviour |= H_CPU_BEHAV_NO_L1D_FLUSH_UACCESS;
1329 break;
1330 default: /* broken */
1331 assert(safe_cache == SPAPR_CAP_BROKEN);
1332 behaviour |= H_CPU_BEHAV_L1D_FLUSH_PR;
1333 break;
1336 switch (safe_bounds_check) {
1337 case SPAPR_CAP_WORKAROUND:
1338 characteristics |= H_CPU_CHAR_SPEC_BAR_ORI31;
1339 behaviour |= H_CPU_BEHAV_BNDS_CHK_SPEC_BAR;
1340 break;
1341 case SPAPR_CAP_FIXED:
1342 break;
1343 default: /* broken */
1344 assert(safe_bounds_check == SPAPR_CAP_BROKEN);
1345 behaviour |= H_CPU_BEHAV_BNDS_CHK_SPEC_BAR;
1346 break;
1349 switch (safe_indirect_branch) {
1350 case SPAPR_CAP_FIXED_NA:
1351 break;
1352 case SPAPR_CAP_FIXED_CCD:
1353 characteristics |= H_CPU_CHAR_CACHE_COUNT_DIS;
1354 break;
1355 case SPAPR_CAP_FIXED_IBS:
1356 characteristics |= H_CPU_CHAR_BCCTRL_SERIALISED;
1357 break;
1358 case SPAPR_CAP_WORKAROUND:
1359 behaviour |= H_CPU_BEHAV_FLUSH_COUNT_CACHE;
1360 if (count_cache_flush_assist) {
1361 characteristics |= H_CPU_CHAR_BCCTR_FLUSH_ASSIST;
1363 break;
1364 default: /* broken */
1365 assert(safe_indirect_branch == SPAPR_CAP_BROKEN);
1366 break;
1369 args[0] = characteristics;
1370 args[1] = behaviour;
1371 return H_SUCCESS;
1374 static target_ulong h_update_dt(PowerPCCPU *cpu, SpaprMachineState *spapr,
1375 target_ulong opcode, target_ulong *args)
1377 target_ulong dt = ppc64_phys_to_real(args[0]);
1378 struct fdt_header hdr = { 0 };
1379 unsigned cb;
1380 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
1381 void *fdt;
1383 cpu_physical_memory_read(dt, &hdr, sizeof(hdr));
1384 cb = fdt32_to_cpu(hdr.totalsize);
1386 if (!smc->update_dt_enabled) {
1387 return H_SUCCESS;
1390 /* Check that the fdt did not grow out of proportion */
1391 if (cb > spapr->fdt_initial_size * 2) {
1392 trace_spapr_update_dt_failed_size(spapr->fdt_initial_size, cb,
1393 fdt32_to_cpu(hdr.magic));
1394 return H_PARAMETER;
1397 fdt = g_malloc0(cb);
1398 cpu_physical_memory_read(dt, fdt, cb);
1400 /* Check the fdt consistency */
1401 if (fdt_check_full(fdt, cb)) {
1402 trace_spapr_update_dt_failed_check(spapr->fdt_initial_size, cb,
1403 fdt32_to_cpu(hdr.magic));
1404 return H_PARAMETER;
1407 g_free(spapr->fdt_blob);
1408 spapr->fdt_size = cb;
1409 spapr->fdt_blob = fdt;
1410 trace_spapr_update_dt(cb);
1412 return H_SUCCESS;
1415 static spapr_hcall_fn papr_hypercall_table[(MAX_HCALL_OPCODE / 4) + 1];
1416 static spapr_hcall_fn kvmppc_hypercall_table[KVMPPC_HCALL_MAX - KVMPPC_HCALL_BASE + 1];
1417 static spapr_hcall_fn svm_hypercall_table[(SVM_HCALL_MAX - SVM_HCALL_BASE) / 4 + 1];
1419 void spapr_register_hypercall(target_ulong opcode, spapr_hcall_fn fn)
1421 spapr_hcall_fn *slot;
1423 if (opcode <= MAX_HCALL_OPCODE) {
1424 assert((opcode & 0x3) == 0);
1426 slot = &papr_hypercall_table[opcode / 4];
1427 } else if (opcode >= SVM_HCALL_BASE && opcode <= SVM_HCALL_MAX) {
1428 /* we only have SVM-related hcall numbers assigned in multiples of 4 */
1429 assert((opcode & 0x3) == 0);
1431 slot = &svm_hypercall_table[(opcode - SVM_HCALL_BASE) / 4];
1432 } else {
1433 assert((opcode >= KVMPPC_HCALL_BASE) && (opcode <= KVMPPC_HCALL_MAX));
1435 slot = &kvmppc_hypercall_table[opcode - KVMPPC_HCALL_BASE];
1438 assert(!(*slot));
1439 *slot = fn;
1442 target_ulong spapr_hypercall(PowerPCCPU *cpu, target_ulong opcode,
1443 target_ulong *args)
1445 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
1447 if ((opcode <= MAX_HCALL_OPCODE)
1448 && ((opcode & 0x3) == 0)) {
1449 spapr_hcall_fn fn = papr_hypercall_table[opcode / 4];
1451 if (fn) {
1452 return fn(cpu, spapr, opcode, args);
1454 } else if ((opcode >= SVM_HCALL_BASE) &&
1455 (opcode <= SVM_HCALL_MAX)) {
1456 spapr_hcall_fn fn = svm_hypercall_table[(opcode - SVM_HCALL_BASE) / 4];
1458 if (fn) {
1459 return fn(cpu, spapr, opcode, args);
1461 } else if ((opcode >= KVMPPC_HCALL_BASE) &&
1462 (opcode <= KVMPPC_HCALL_MAX)) {
1463 spapr_hcall_fn fn = kvmppc_hypercall_table[opcode - KVMPPC_HCALL_BASE];
1465 if (fn) {
1466 return fn(cpu, spapr, opcode, args);
1470 qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x" TARGET_FMT_lx "\n",
1471 opcode);
1472 return H_FUNCTION;
1475 #ifndef CONFIG_TCG
1476 static target_ulong h_softmmu(PowerPCCPU *cpu, SpaprMachineState *spapr,
1477 target_ulong opcode, target_ulong *args)
1479 g_assert_not_reached();
1482 static void hypercall_register_softmmu(void)
1484 /* hcall-pft */
1485 spapr_register_hypercall(H_ENTER, h_softmmu);
1486 spapr_register_hypercall(H_REMOVE, h_softmmu);
1487 spapr_register_hypercall(H_PROTECT, h_softmmu);
1488 spapr_register_hypercall(H_READ, h_softmmu);
1490 /* hcall-bulk */
1491 spapr_register_hypercall(H_BULK_REMOVE, h_softmmu);
1493 #else
1494 static void hypercall_register_softmmu(void)
1496 /* DO NOTHING */
1498 #endif
1500 static void hypercall_register_types(void)
1502 hypercall_register_softmmu();
1504 /* hcall-hpt-resize */
1505 spapr_register_hypercall(H_RESIZE_HPT_PREPARE, h_resize_hpt_prepare);
1506 spapr_register_hypercall(H_RESIZE_HPT_COMMIT, h_resize_hpt_commit);
1508 /* hcall-splpar */
1509 spapr_register_hypercall(H_REGISTER_VPA, h_register_vpa);
1510 spapr_register_hypercall(H_CEDE, h_cede);
1511 spapr_register_hypercall(H_CONFER, h_confer);
1512 spapr_register_hypercall(H_PROD, h_prod);
1514 /* hcall-join */
1515 spapr_register_hypercall(H_JOIN, h_join);
1517 spapr_register_hypercall(H_SIGNAL_SYS_RESET, h_signal_sys_reset);
1519 /* processor register resource access h-calls */
1520 spapr_register_hypercall(H_SET_SPRG0, h_set_sprg0);
1521 spapr_register_hypercall(H_SET_DABR, h_set_dabr);
1522 spapr_register_hypercall(H_SET_XDABR, h_set_xdabr);
1523 spapr_register_hypercall(H_PAGE_INIT, h_page_init);
1524 spapr_register_hypercall(H_SET_MODE, h_set_mode);
1526 /* In Memory Table MMU h-calls */
1527 spapr_register_hypercall(H_CLEAN_SLB, h_clean_slb);
1528 spapr_register_hypercall(H_INVALIDATE_PID, h_invalidate_pid);
1529 spapr_register_hypercall(H_REGISTER_PROC_TBL, h_register_process_table);
1531 /* hcall-get-cpu-characteristics */
1532 spapr_register_hypercall(H_GET_CPU_CHARACTERISTICS,
1533 h_get_cpu_characteristics);
1535 /* "debugger" hcalls (also used by SLOF). Note: We do -not- differenciate
1536 * here between the "CI" and the "CACHE" variants, they will use whatever
1537 * mapping attributes qemu is using. When using KVM, the kernel will
1538 * enforce the attributes more strongly
1540 spapr_register_hypercall(H_LOGICAL_CI_LOAD, h_logical_load);
1541 spapr_register_hypercall(H_LOGICAL_CI_STORE, h_logical_store);
1542 spapr_register_hypercall(H_LOGICAL_CACHE_LOAD, h_logical_load);
1543 spapr_register_hypercall(H_LOGICAL_CACHE_STORE, h_logical_store);
1544 spapr_register_hypercall(H_LOGICAL_ICBI, h_logical_icbi);
1545 spapr_register_hypercall(H_LOGICAL_DCBF, h_logical_dcbf);
1546 spapr_register_hypercall(KVMPPC_H_LOGICAL_MEMOP, h_logical_memop);
1548 /* qemu/KVM-PPC specific hcalls */
1549 spapr_register_hypercall(KVMPPC_H_RTAS, h_rtas);
1551 /* ibm,client-architecture-support support */
1552 spapr_register_hypercall(KVMPPC_H_CAS, h_client_architecture_support);
1554 spapr_register_hypercall(KVMPPC_H_UPDATE_DT, h_update_dt);
1557 type_init(hypercall_register_types)