1 #include "qemu/osdep.h"
2 #include "qemu/cutils.h"
3 #include "qapi/error.h"
4 #include "sysemu/hw_accel.h"
5 #include "sysemu/runstate.h"
7 #include "qemu/main-loop.h"
8 #include "qemu/module.h"
9 #include "qemu/error-report.h"
10 #include "exec/exec-all.h"
11 #include "helper_regs.h"
12 #include "hw/ppc/spapr.h"
13 #include "hw/ppc/spapr_cpu_core.h"
14 #include "mmu-hash64.h"
15 #include "cpu-models.h"
18 #include "hw/ppc/fdt.h"
19 #include "hw/ppc/spapr_ovec.h"
20 #include "hw/ppc/spapr_numa.h"
21 #include "mmu-book3s-v3.h"
22 #include "hw/mem/memory-device.h"
24 bool is_ram_address(SpaprMachineState
*spapr
, hwaddr addr
)
26 MachineState
*machine
= MACHINE(spapr
);
27 DeviceMemoryState
*dms
= machine
->device_memory
;
29 if (addr
< machine
->ram_size
) {
32 if ((addr
>= dms
->base
)
33 && ((addr
- dms
->base
) < memory_region_size(&dms
->mr
))) {
40 /* Convert a return code from the KVM ioctl()s implementing resize HPT
41 * into a PAPR hypercall return code */
42 static target_ulong
resize_hpt_convert_rc(int ret
)
45 return H_LONG_BUSY_ORDER_100_SEC
;
46 } else if (ret
>= 10000) {
47 return H_LONG_BUSY_ORDER_10_SEC
;
48 } else if (ret
>= 1000) {
49 return H_LONG_BUSY_ORDER_1_SEC
;
50 } else if (ret
>= 100) {
51 return H_LONG_BUSY_ORDER_100_MSEC
;
52 } else if (ret
>= 10) {
53 return H_LONG_BUSY_ORDER_10_MSEC
;
55 return H_LONG_BUSY_ORDER_1_MSEC
;
78 static target_ulong
h_resize_hpt_prepare(PowerPCCPU
*cpu
,
79 SpaprMachineState
*spapr
,
83 target_ulong flags
= args
[0];
85 uint64_t current_ram_size
;
88 if (spapr
->resize_hpt
== SPAPR_RESIZE_HPT_DISABLED
) {
92 if (!spapr
->htab_shift
) {
93 /* Radix guest, no HPT */
94 return H_NOT_AVAILABLE
;
97 trace_spapr_h_resize_hpt_prepare(flags
, shift
);
103 if (shift
&& ((shift
< 18) || (shift
> 46))) {
107 current_ram_size
= MACHINE(spapr
)->ram_size
+ get_plugged_memory_size();
109 /* We only allow the guest to allocate an HPT one order above what
110 * we'd normally give them (to stop a small guest claiming a huge
111 * chunk of resources in the HPT */
112 if (shift
> (spapr_hpt_shift_for_ramsize(current_ram_size
) + 1)) {
116 rc
= kvmppc_resize_hpt_prepare(cpu
, flags
, shift
);
118 return resize_hpt_convert_rc(rc
);
125 return softmmu_resize_hpt_prepare(cpu
, spapr
, shift
);
128 static void do_push_sregs_to_kvm_pr(CPUState
*cs
, run_on_cpu_data data
)
132 cpu_synchronize_state(cs
);
134 ret
= kvmppc_put_books_sregs(POWERPC_CPU(cs
));
136 error_report("failed to push sregs to KVM: %s", strerror(-ret
));
141 void push_sregs_to_kvm_pr(SpaprMachineState
*spapr
)
146 * This is a hack for the benefit of KVM PR - it abuses the SDR1
147 * slot in kvm_sregs to communicate the userspace address of the
150 if (!kvm_enabled() || !spapr
->htab
) {
155 run_on_cpu(cs
, do_push_sregs_to_kvm_pr
, RUN_ON_CPU_NULL
);
159 static target_ulong
h_resize_hpt_commit(PowerPCCPU
*cpu
,
160 SpaprMachineState
*spapr
,
164 target_ulong flags
= args
[0];
165 target_ulong shift
= args
[1];
168 if (spapr
->resize_hpt
== SPAPR_RESIZE_HPT_DISABLED
) {
172 if (!spapr
->htab_shift
) {
173 /* Radix guest, no HPT */
174 return H_NOT_AVAILABLE
;
177 trace_spapr_h_resize_hpt_commit(flags
, shift
);
179 rc
= kvmppc_resize_hpt_commit(cpu
, flags
, shift
);
181 rc
= resize_hpt_convert_rc(rc
);
182 if (rc
== H_SUCCESS
) {
183 /* Need to set the new htab_shift in the machine state */
184 spapr
->htab_shift
= shift
;
193 return softmmu_resize_hpt_commit(cpu
, spapr
, flags
, shift
);
198 static target_ulong
h_set_sprg0(PowerPCCPU
*cpu
, SpaprMachineState
*spapr
,
199 target_ulong opcode
, target_ulong
*args
)
201 cpu_synchronize_state(CPU(cpu
));
202 cpu
->env
.spr
[SPR_SPRG0
] = args
[0];
207 static target_ulong
h_set_dabr(PowerPCCPU
*cpu
, SpaprMachineState
*spapr
,
208 target_ulong opcode
, target_ulong
*args
)
210 if (!ppc_has_spr(cpu
, SPR_DABR
)) {
211 return H_HARDWARE
; /* DABR register not available */
213 cpu_synchronize_state(CPU(cpu
));
215 if (ppc_has_spr(cpu
, SPR_DABRX
)) {
216 cpu
->env
.spr
[SPR_DABRX
] = 0x3; /* Use Problem and Privileged state */
217 } else if (!(args
[0] & 0x4)) { /* Breakpoint Translation set? */
218 return H_RESERVED_DABR
;
221 cpu
->env
.spr
[SPR_DABR
] = args
[0];
225 static target_ulong
h_set_xdabr(PowerPCCPU
*cpu
, SpaprMachineState
*spapr
,
226 target_ulong opcode
, target_ulong
*args
)
228 target_ulong dabrx
= args
[1];
230 if (!ppc_has_spr(cpu
, SPR_DABR
) || !ppc_has_spr(cpu
, SPR_DABRX
)) {
234 if ((dabrx
& ~0xfULL
) != 0 || (dabrx
& H_DABRX_HYPERVISOR
) != 0
235 || (dabrx
& (H_DABRX_KERNEL
| H_DABRX_USER
)) == 0) {
239 cpu_synchronize_state(CPU(cpu
));
240 cpu
->env
.spr
[SPR_DABRX
] = dabrx
;
241 cpu
->env
.spr
[SPR_DABR
] = args
[0];
246 static target_ulong
h_page_init(PowerPCCPU
*cpu
, SpaprMachineState
*spapr
,
247 target_ulong opcode
, target_ulong
*args
)
249 target_ulong flags
= args
[0];
250 hwaddr dst
= args
[1];
251 hwaddr src
= args
[2];
252 hwaddr len
= TARGET_PAGE_SIZE
;
253 uint8_t *pdst
, *psrc
;
254 target_long ret
= H_SUCCESS
;
256 if (flags
& ~(H_ICACHE_SYNCHRONIZE
| H_ICACHE_INVALIDATE
257 | H_COPY_PAGE
| H_ZERO_PAGE
)) {
258 qemu_log_mask(LOG_UNIMP
, "h_page_init: Bad flags (" TARGET_FMT_lx
"\n",
263 /* Map-in destination */
264 if (!is_ram_address(spapr
, dst
) || (dst
& ~TARGET_PAGE_MASK
) != 0) {
267 pdst
= cpu_physical_memory_map(dst
, &len
, true);
268 if (!pdst
|| len
!= TARGET_PAGE_SIZE
) {
272 if (flags
& H_COPY_PAGE
) {
273 /* Map-in source, copy to destination, and unmap source again */
274 if (!is_ram_address(spapr
, src
) || (src
& ~TARGET_PAGE_MASK
) != 0) {
278 psrc
= cpu_physical_memory_map(src
, &len
, false);
279 if (!psrc
|| len
!= TARGET_PAGE_SIZE
) {
283 memcpy(pdst
, psrc
, len
);
284 cpu_physical_memory_unmap(psrc
, len
, 0, len
);
285 } else if (flags
& H_ZERO_PAGE
) {
286 memset(pdst
, 0, len
); /* Just clear the destination page */
289 if (kvm_enabled() && (flags
& H_ICACHE_SYNCHRONIZE
) != 0) {
290 kvmppc_dcbst_range(cpu
, pdst
, len
);
292 if (flags
& (H_ICACHE_SYNCHRONIZE
| H_ICACHE_INVALIDATE
)) {
294 kvmppc_icbi_range(cpu
, pdst
, len
);
301 cpu_physical_memory_unmap(pdst
, TARGET_PAGE_SIZE
, 1, len
);
305 #define FLAGS_REGISTER_VPA 0x0000200000000000ULL
306 #define FLAGS_REGISTER_DTL 0x0000400000000000ULL
307 #define FLAGS_REGISTER_SLBSHADOW 0x0000600000000000ULL
308 #define FLAGS_DEREGISTER_VPA 0x0000a00000000000ULL
309 #define FLAGS_DEREGISTER_DTL 0x0000c00000000000ULL
310 #define FLAGS_DEREGISTER_SLBSHADOW 0x0000e00000000000ULL
312 static target_ulong
register_vpa(PowerPCCPU
*cpu
, target_ulong vpa
)
314 CPUState
*cs
= CPU(cpu
);
315 CPUPPCState
*env
= &cpu
->env
;
316 SpaprCpuState
*spapr_cpu
= spapr_cpu_state(cpu
);
321 hcall_dprintf("Can't cope with registering a VPA at logical 0\n");
325 if (vpa
% env
->dcache_line_size
) {
328 /* FIXME: bounds check the address */
330 size
= lduw_be_phys(cs
->as
, vpa
+ 0x4);
332 if (size
< VPA_MIN_SIZE
) {
336 /* VPA is not allowed to cross a page boundary */
337 if ((vpa
/ 4096) != ((vpa
+ size
- 1) / 4096)) {
341 spapr_cpu
->vpa_addr
= vpa
;
343 tmp
= ldub_phys(cs
->as
, spapr_cpu
->vpa_addr
+ VPA_SHARED_PROC_OFFSET
);
344 tmp
|= VPA_SHARED_PROC_VAL
;
345 stb_phys(cs
->as
, spapr_cpu
->vpa_addr
+ VPA_SHARED_PROC_OFFSET
, tmp
);
350 static target_ulong
deregister_vpa(PowerPCCPU
*cpu
, target_ulong vpa
)
352 SpaprCpuState
*spapr_cpu
= spapr_cpu_state(cpu
);
354 if (spapr_cpu
->slb_shadow_addr
) {
358 if (spapr_cpu
->dtl_addr
) {
362 spapr_cpu
->vpa_addr
= 0;
366 static target_ulong
register_slb_shadow(PowerPCCPU
*cpu
, target_ulong addr
)
368 SpaprCpuState
*spapr_cpu
= spapr_cpu_state(cpu
);
372 hcall_dprintf("Can't cope with SLB shadow at logical 0\n");
376 size
= ldl_be_phys(CPU(cpu
)->as
, addr
+ 0x4);
381 if ((addr
/ 4096) != ((addr
+ size
- 1) / 4096)) {
385 if (!spapr_cpu
->vpa_addr
) {
389 spapr_cpu
->slb_shadow_addr
= addr
;
390 spapr_cpu
->slb_shadow_size
= size
;
395 static target_ulong
deregister_slb_shadow(PowerPCCPU
*cpu
, target_ulong addr
)
397 SpaprCpuState
*spapr_cpu
= spapr_cpu_state(cpu
);
399 spapr_cpu
->slb_shadow_addr
= 0;
400 spapr_cpu
->slb_shadow_size
= 0;
404 static target_ulong
register_dtl(PowerPCCPU
*cpu
, target_ulong addr
)
406 SpaprCpuState
*spapr_cpu
= spapr_cpu_state(cpu
);
410 hcall_dprintf("Can't cope with DTL at logical 0\n");
414 size
= ldl_be_phys(CPU(cpu
)->as
, addr
+ 0x4);
420 if (!spapr_cpu
->vpa_addr
) {
424 spapr_cpu
->dtl_addr
= addr
;
425 spapr_cpu
->dtl_size
= size
;
430 static target_ulong
deregister_dtl(PowerPCCPU
*cpu
, target_ulong addr
)
432 SpaprCpuState
*spapr_cpu
= spapr_cpu_state(cpu
);
434 spapr_cpu
->dtl_addr
= 0;
435 spapr_cpu
->dtl_size
= 0;
440 static target_ulong
h_register_vpa(PowerPCCPU
*cpu
, SpaprMachineState
*spapr
,
441 target_ulong opcode
, target_ulong
*args
)
443 target_ulong flags
= args
[0];
444 target_ulong procno
= args
[1];
445 target_ulong vpa
= args
[2];
446 target_ulong ret
= H_PARAMETER
;
449 tcpu
= spapr_find_cpu(procno
);
455 case FLAGS_REGISTER_VPA
:
456 ret
= register_vpa(tcpu
, vpa
);
459 case FLAGS_DEREGISTER_VPA
:
460 ret
= deregister_vpa(tcpu
, vpa
);
463 case FLAGS_REGISTER_SLBSHADOW
:
464 ret
= register_slb_shadow(tcpu
, vpa
);
467 case FLAGS_DEREGISTER_SLBSHADOW
:
468 ret
= deregister_slb_shadow(tcpu
, vpa
);
471 case FLAGS_REGISTER_DTL
:
472 ret
= register_dtl(tcpu
, vpa
);
475 case FLAGS_DEREGISTER_DTL
:
476 ret
= deregister_dtl(tcpu
, vpa
);
483 static target_ulong
h_cede(PowerPCCPU
*cpu
, SpaprMachineState
*spapr
,
484 target_ulong opcode
, target_ulong
*args
)
486 CPUPPCState
*env
= &cpu
->env
;
487 CPUState
*cs
= CPU(cpu
);
488 SpaprCpuState
*spapr_cpu
= spapr_cpu_state(cpu
);
490 env
->msr
|= (1ULL << MSR_EE
);
491 hreg_compute_hflags(env
);
493 if (spapr_cpu
->prod
) {
494 spapr_cpu
->prod
= false;
498 if (!cpu_has_work(cs
)) {
500 cs
->exception_index
= EXCP_HLT
;
501 cs
->exit_request
= 1;
508 * Confer to self, aka join. Cede could use the same pattern as well, if
509 * EXCP_HLT can be changed to ECXP_HALTED.
511 static target_ulong
h_confer_self(PowerPCCPU
*cpu
)
513 CPUState
*cs
= CPU(cpu
);
514 SpaprCpuState
*spapr_cpu
= spapr_cpu_state(cpu
);
516 if (spapr_cpu
->prod
) {
517 spapr_cpu
->prod
= false;
521 cs
->exception_index
= EXCP_HALTED
;
522 cs
->exit_request
= 1;
527 static target_ulong
h_join(PowerPCCPU
*cpu
, SpaprMachineState
*spapr
,
528 target_ulong opcode
, target_ulong
*args
)
530 CPUPPCState
*env
= &cpu
->env
;
532 bool last_unjoined
= true;
534 if (env
->msr
& (1ULL << MSR_EE
)) {
539 * Must not join the last CPU running. Interestingly, no such restriction
540 * for H_CONFER-to-self, but that is probably not intended to be used
541 * when H_JOIN is available.
544 PowerPCCPU
*c
= POWERPC_CPU(cs
);
545 CPUPPCState
*e
= &c
->env
;
550 /* Don't have a way to indicate joined, so use halted && MSR[EE]=0 */
551 if (!cs
->halted
|| (e
->msr
& (1ULL << MSR_EE
))) {
552 last_unjoined
= false;
560 return h_confer_self(cpu
);
563 static target_ulong
h_confer(PowerPCCPU
*cpu
, SpaprMachineState
*spapr
,
564 target_ulong opcode
, target_ulong
*args
)
566 target_long target
= args
[0];
567 uint32_t dispatch
= args
[1];
568 CPUState
*cs
= CPU(cpu
);
569 SpaprCpuState
*spapr_cpu
;
572 * -1 means confer to all other CPUs without dispatch counter check,
573 * otherwise it's a targeted confer.
576 PowerPCCPU
*target_cpu
= spapr_find_cpu(target
);
577 uint32_t target_dispatch
;
584 * target == self is a special case, we wait until prodded, without
585 * dispatch counter check.
587 if (cpu
== target_cpu
) {
588 return h_confer_self(cpu
);
591 spapr_cpu
= spapr_cpu_state(target_cpu
);
592 if (!spapr_cpu
->vpa_addr
|| ((dispatch
& 1) == 0)) {
596 target_dispatch
= ldl_be_phys(cs
->as
,
597 spapr_cpu
->vpa_addr
+ VPA_DISPATCH_COUNTER
);
598 if (target_dispatch
!= dispatch
) {
603 * The targeted confer does not do anything special beyond yielding
604 * the current vCPU, but even this should be better than nothing.
605 * At least for single-threaded tcg, it gives the target a chance to
606 * run before we run again. Multi-threaded tcg does not really do
607 * anything with EXCP_YIELD yet.
611 cs
->exception_index
= EXCP_YIELD
;
612 cs
->exit_request
= 1;
618 static target_ulong
h_prod(PowerPCCPU
*cpu
, SpaprMachineState
*spapr
,
619 target_ulong opcode
, target_ulong
*args
)
621 target_long target
= args
[0];
624 SpaprCpuState
*spapr_cpu
;
626 tcpu
= spapr_find_cpu(target
);
632 spapr_cpu
= spapr_cpu_state(tcpu
);
633 spapr_cpu
->prod
= true;
640 static target_ulong
h_rtas(PowerPCCPU
*cpu
, SpaprMachineState
*spapr
,
641 target_ulong opcode
, target_ulong
*args
)
643 target_ulong rtas_r3
= args
[0];
644 uint32_t token
= rtas_ld(rtas_r3
, 0);
645 uint32_t nargs
= rtas_ld(rtas_r3
, 1);
646 uint32_t nret
= rtas_ld(rtas_r3
, 2);
648 return spapr_rtas_call(cpu
, spapr
, token
, nargs
, rtas_r3
+ 12,
649 nret
, rtas_r3
+ 12 + 4*nargs
);
652 static target_ulong
h_logical_load(PowerPCCPU
*cpu
, SpaprMachineState
*spapr
,
653 target_ulong opcode
, target_ulong
*args
)
655 CPUState
*cs
= CPU(cpu
);
656 target_ulong size
= args
[0];
657 target_ulong addr
= args
[1];
661 args
[0] = ldub_phys(cs
->as
, addr
);
664 args
[0] = lduw_phys(cs
->as
, addr
);
667 args
[0] = ldl_phys(cs
->as
, addr
);
670 args
[0] = ldq_phys(cs
->as
, addr
);
676 static target_ulong
h_logical_store(PowerPCCPU
*cpu
, SpaprMachineState
*spapr
,
677 target_ulong opcode
, target_ulong
*args
)
679 CPUState
*cs
= CPU(cpu
);
681 target_ulong size
= args
[0];
682 target_ulong addr
= args
[1];
683 target_ulong val
= args
[2];
687 stb_phys(cs
->as
, addr
, val
);
690 stw_phys(cs
->as
, addr
, val
);
693 stl_phys(cs
->as
, addr
, val
);
696 stq_phys(cs
->as
, addr
, val
);
702 static target_ulong
h_logical_memop(PowerPCCPU
*cpu
, SpaprMachineState
*spapr
,
703 target_ulong opcode
, target_ulong
*args
)
705 CPUState
*cs
= CPU(cpu
);
707 target_ulong dst
= args
[0]; /* Destination address */
708 target_ulong src
= args
[1]; /* Source address */
709 target_ulong esize
= args
[2]; /* Element size (0=1,1=2,2=4,3=8) */
710 target_ulong count
= args
[3]; /* Element count */
711 target_ulong op
= args
[4]; /* 0 = copy, 1 = invert */
713 unsigned int mask
= (1 << esize
) - 1;
714 int step
= 1 << esize
;
716 if (count
> 0x80000000) {
720 if ((dst
& mask
) || (src
& mask
) || (op
> 1)) {
724 if (dst
>= src
&& dst
< (src
+ (count
<< esize
))) {
725 dst
= dst
+ ((count
- 1) << esize
);
726 src
= src
+ ((count
- 1) << esize
);
733 tmp
= ldub_phys(cs
->as
, src
);
736 tmp
= lduw_phys(cs
->as
, src
);
739 tmp
= ldl_phys(cs
->as
, src
);
742 tmp
= ldq_phys(cs
->as
, src
);
752 stb_phys(cs
->as
, dst
, tmp
);
755 stw_phys(cs
->as
, dst
, tmp
);
758 stl_phys(cs
->as
, dst
, tmp
);
761 stq_phys(cs
->as
, dst
, tmp
);
771 static target_ulong
h_logical_icbi(PowerPCCPU
*cpu
, SpaprMachineState
*spapr
,
772 target_ulong opcode
, target_ulong
*args
)
774 /* Nothing to do on emulation, KVM will trap this in the kernel */
778 static target_ulong
h_logical_dcbf(PowerPCCPU
*cpu
, SpaprMachineState
*spapr
,
779 target_ulong opcode
, target_ulong
*args
)
781 /* Nothing to do on emulation, KVM will trap this in the kernel */
785 static target_ulong
h_set_mode_resource_le(PowerPCCPU
*cpu
,
786 SpaprMachineState
*spapr
,
799 case H_SET_MODE_ENDIAN_BIG
:
800 spapr_set_all_lpcrs(0, LPCR_ILE
);
801 spapr_pci_switch_vga(spapr
, true);
804 case H_SET_MODE_ENDIAN_LITTLE
:
805 spapr_set_all_lpcrs(LPCR_ILE
, LPCR_ILE
);
806 spapr_pci_switch_vga(spapr
, false);
810 return H_UNSUPPORTED_FLAG
;
813 static target_ulong
h_set_mode_resource_addr_trans_mode(PowerPCCPU
*cpu
,
818 PowerPCCPUClass
*pcc
= POWERPC_CPU_GET_CLASS(cpu
);
820 if (!(pcc
->insns_flags2
& PPC2_ISA207S
)) {
831 /* AIL=1 is reserved in POWER8/POWER9/POWER10 */
832 return H_UNSUPPORTED_FLAG
;
835 if (mflags
== 2 && (pcc
->insns_flags2
& PPC2_ISA310
)) {
836 /* AIL=2 is reserved in POWER10 (ISA v3.1) */
837 return H_UNSUPPORTED_FLAG
;
840 spapr_set_all_lpcrs(mflags
<< LPCR_AIL_SHIFT
, LPCR_AIL
);
845 static target_ulong
h_set_mode(PowerPCCPU
*cpu
, SpaprMachineState
*spapr
,
846 target_ulong opcode
, target_ulong
*args
)
848 target_ulong resource
= args
[1];
849 target_ulong ret
= H_P2
;
852 case H_SET_MODE_RESOURCE_LE
:
853 ret
= h_set_mode_resource_le(cpu
, spapr
, args
[0], args
[2], args
[3]);
855 case H_SET_MODE_RESOURCE_ADDR_TRANS_MODE
:
856 ret
= h_set_mode_resource_addr_trans_mode(cpu
, args
[0],
864 static target_ulong
h_clean_slb(PowerPCCPU
*cpu
, SpaprMachineState
*spapr
,
865 target_ulong opcode
, target_ulong
*args
)
867 qemu_log_mask(LOG_UNIMP
, "Unimplemented SPAPR hcall 0x"TARGET_FMT_lx
"%s\n",
868 opcode
, " (H_CLEAN_SLB)");
872 static target_ulong
h_invalidate_pid(PowerPCCPU
*cpu
, SpaprMachineState
*spapr
,
873 target_ulong opcode
, target_ulong
*args
)
875 qemu_log_mask(LOG_UNIMP
, "Unimplemented SPAPR hcall 0x"TARGET_FMT_lx
"%s\n",
876 opcode
, " (H_INVALIDATE_PID)");
880 static void spapr_check_setup_free_hpt(SpaprMachineState
*spapr
,
881 uint64_t patbe_old
, uint64_t patbe_new
)
885 * HASH->HASH || RADIX->RADIX || NOTHING->RADIX : Do Nothing
886 * HASH->RADIX : Free HPT
887 * RADIX->HASH : Allocate HPT
888 * NOTHING->HASH : Allocate HPT
889 * Note: NOTHING implies the case where we said the guest could choose
890 * later and so assumed radix and now it's called H_REG_PROC_TBL
893 if ((patbe_old
& PATE1_GR
) == (patbe_new
& PATE1_GR
)) {
894 /* We assume RADIX, so this catches all the "Do Nothing" cases */
895 } else if (!(patbe_old
& PATE1_GR
)) {
896 /* HASH->RADIX : Free HPT */
897 spapr_free_hpt(spapr
);
898 } else if (!(patbe_new
& PATE1_GR
)) {
899 /* RADIX->HASH || NOTHING->HASH : Allocate HPT */
900 spapr_setup_hpt(spapr
);
905 #define FLAGS_MASK 0x01FULL
906 #define FLAG_MODIFY 0x10
907 #define FLAG_REGISTER 0x08
908 #define FLAG_RADIX 0x04
909 #define FLAG_HASH_PROC_TBL 0x02
910 #define FLAG_GTSE 0x01
912 static target_ulong
h_register_process_table(PowerPCCPU
*cpu
,
913 SpaprMachineState
*spapr
,
917 target_ulong flags
= args
[0];
918 target_ulong proc_tbl
= args
[1];
919 target_ulong page_size
= args
[2];
920 target_ulong table_size
= args
[3];
921 target_ulong update_lpcr
= 0;
924 if (flags
& ~FLAGS_MASK
) { /* Check no reserved bits are set */
927 if (flags
& FLAG_MODIFY
) {
928 if (flags
& FLAG_REGISTER
) {
929 if (flags
& FLAG_RADIX
) { /* Register new RADIX process table */
930 if (proc_tbl
& 0xfff || proc_tbl
>> 60) {
932 } else if (page_size
) {
934 } else if (table_size
> 24) {
937 cproc
= PATE1_GR
| proc_tbl
| table_size
;
938 } else { /* Register new HPT process table */
939 if (flags
& FLAG_HASH_PROC_TBL
) { /* Hash with Segment Tables */
940 /* TODO - Not Supported */
941 /* Technically caused by flag bits => H_PARAMETER */
943 } else { /* Hash with SLB */
944 if (proc_tbl
>> 38) {
946 } else if (page_size
& ~0x7) {
948 } else if (table_size
> 24) {
952 cproc
= (proc_tbl
<< 25) | page_size
<< 5 | table_size
;
955 } else { /* Deregister current process table */
957 * Set to benign value: (current GR) | 0. This allows
958 * deregistration in KVM to succeed even if the radix bit
959 * in flags doesn't match the radix bit in the old PATE.
961 cproc
= spapr
->patb_entry
& PATE1_GR
;
963 } else { /* Maintain current registration */
964 if (!(flags
& FLAG_RADIX
) != !(spapr
->patb_entry
& PATE1_GR
)) {
965 /* Technically caused by flag bits => H_PARAMETER */
966 return H_PARAMETER
; /* Existing Process Table Mismatch */
968 cproc
= spapr
->patb_entry
;
971 /* Check if we need to setup OR free the hpt */
972 spapr_check_setup_free_hpt(spapr
, spapr
->patb_entry
, cproc
);
974 spapr
->patb_entry
= cproc
; /* Save new process table */
976 /* Update the UPRT, HR and GTSE bits in the LPCR for all cpus */
977 if (flags
& FLAG_RADIX
) /* Radix must use process tables, also set HR */
978 update_lpcr
|= (LPCR_UPRT
| LPCR_HR
);
979 else if (flags
& FLAG_HASH_PROC_TBL
) /* Hash with process tables */
980 update_lpcr
|= LPCR_UPRT
;
981 if (flags
& FLAG_GTSE
) /* Guest translation shootdown enable */
982 update_lpcr
|= LPCR_GTSE
;
984 spapr_set_all_lpcrs(update_lpcr
, LPCR_UPRT
| LPCR_HR
| LPCR_GTSE
);
987 return kvmppc_configure_v3_mmu(cpu
, flags
& FLAG_RADIX
,
988 flags
& FLAG_GTSE
, cproc
);
993 #define H_SIGNAL_SYS_RESET_ALL -1
994 #define H_SIGNAL_SYS_RESET_ALLBUTSELF -2
996 static target_ulong
h_signal_sys_reset(PowerPCCPU
*cpu
,
997 SpaprMachineState
*spapr
,
998 target_ulong opcode
, target_ulong
*args
)
1000 target_long target
= args
[0];
1005 if (target
< H_SIGNAL_SYS_RESET_ALLBUTSELF
) {
1010 PowerPCCPU
*c
= POWERPC_CPU(cs
);
1012 if (target
== H_SIGNAL_SYS_RESET_ALLBUTSELF
) {
1017 run_on_cpu(cs
, spapr_do_system_reset_on_cpu
, RUN_ON_CPU_NULL
);
1023 cs
= CPU(spapr_find_cpu(target
));
1025 run_on_cpu(cs
, spapr_do_system_reset_on_cpu
, RUN_ON_CPU_NULL
);
1032 /* Returns either a logical PVR or zero if none was found */
1033 static uint32_t cas_check_pvr(PowerPCCPU
*cpu
, uint32_t max_compat
,
1034 target_ulong
*addr
, bool *raw_mode_supported
)
1036 bool explicit_match
= false; /* Matched the CPU's real PVR */
1037 uint32_t best_compat
= 0;
1041 * We scan the supplied table of PVRs looking for two things
1042 * 1. Is our real CPU PVR in the list?
1043 * 2. What's the "best" listed logical PVR
1045 for (i
= 0; i
< 512; ++i
) {
1046 uint32_t pvr
, pvr_mask
;
1048 pvr_mask
= ldl_be_phys(&address_space_memory
, *addr
);
1049 pvr
= ldl_be_phys(&address_space_memory
, *addr
+ 4);
1052 if (~pvr_mask
& pvr
) {
1053 break; /* Terminator record */
1056 if ((cpu
->env
.spr
[SPR_PVR
] & pvr_mask
) == (pvr
& pvr_mask
)) {
1057 explicit_match
= true;
1059 if (ppc_check_compat(cpu
, pvr
, best_compat
, max_compat
)) {
1065 *raw_mode_supported
= explicit_match
;
1067 /* Parsing finished */
1068 trace_spapr_cas_pvr(cpu
->compat_pvr
, explicit_match
, best_compat
);
1074 target_ulong
do_client_architecture_support(PowerPCCPU
*cpu
,
1075 SpaprMachineState
*spapr
,
1077 target_ulong fdt_bufsize
)
1079 target_ulong ov_table
; /* Working address in data buffer */
1081 SpaprOptionVector
*ov1_guest
, *ov5_guest
;
1083 bool raw_mode_supported
= false;
1087 uint32_t max_compat
= spapr
->max_compat_pvr
;
1089 /* CAS is supposed to be called early when only the boot vCPU is active. */
1091 if (cs
== CPU(cpu
)) {
1095 warn_report("guest has multiple active vCPUs at CAS, which is not allowed");
1096 return H_MULTI_THREADS_ACTIVE
;
1100 cas_pvr
= cas_check_pvr(cpu
, max_compat
, &vec
, &raw_mode_supported
);
1101 if (!cas_pvr
&& (!raw_mode_supported
|| max_compat
)) {
1103 * We couldn't find a suitable compatibility mode, and either
1104 * the guest doesn't support "raw" mode for this CPU, or "raw"
1105 * mode is disabled because a maximum compat mode is set.
1107 error_report("Couldn't negotiate a suitable PVR during CAS");
1112 if (cpu
->compat_pvr
!= cas_pvr
) {
1113 Error
*local_err
= NULL
;
1115 if (ppc_set_compat_all(cas_pvr
, &local_err
) < 0) {
1116 /* We fail to set compat mode (likely because running with KVM PR),
1117 * but maybe we can fallback to raw mode if the guest supports it.
1119 if (!raw_mode_supported
) {
1120 error_report_err(local_err
);
1123 error_free(local_err
);
1127 /* For the future use: here @ov_table points to the first option vector */
1130 ov1_guest
= spapr_ovec_parse_vector(ov_table
, 1);
1132 warn_report("guest didn't provide option vector 1");
1135 ov5_guest
= spapr_ovec_parse_vector(ov_table
, 5);
1137 spapr_ovec_cleanup(ov1_guest
);
1138 warn_report("guest didn't provide option vector 5");
1141 if (spapr_ovec_test(ov5_guest
, OV5_MMU_BOTH
)) {
1142 error_report("guest requested hash and radix MMU, which is invalid.");
1145 if (spapr_ovec_test(ov5_guest
, OV5_XIVE_BOTH
)) {
1146 error_report("guest requested an invalid interrupt mode");
1150 guest_radix
= spapr_ovec_test(ov5_guest
, OV5_MMU_RADIX_300
);
1152 guest_xive
= spapr_ovec_test(ov5_guest
, OV5_XIVE_EXPLOIT
);
1155 * HPT resizing is a bit of a special case, because when enabled
1156 * we assume an HPT guest will support it until it says it
1157 * doesn't, instead of assuming it won't support it until it says
1158 * it does. Strictly speaking that approach could break for
1159 * guests which don't make a CAS call, but those are so old we
1160 * don't care about them. Without that assumption we'd have to
1161 * make at least a temporary allocation of an HPT sized for max
1162 * memory, which could be impossibly difficult under KVM HV if
1165 if (!guest_radix
&& !spapr_ovec_test(ov5_guest
, OV5_HPT_RESIZE
)) {
1166 int maxshift
= spapr_hpt_shift_for_ramsize(MACHINE(spapr
)->maxram_size
);
1168 if (spapr
->resize_hpt
== SPAPR_RESIZE_HPT_REQUIRED
) {
1170 "h_client_architecture_support: Guest doesn't support HPT resizing, but resize-hpt=required");
1174 if (spapr
->htab_shift
< maxshift
) {
1175 /* Guest doesn't know about HPT resizing, so we
1176 * pre-emptively resize for the maximum permitted RAM. At
1177 * the point this is called, nothing should have been
1178 * entered into the existing HPT */
1179 spapr_reallocate_hpt(spapr
, maxshift
, &error_fatal
);
1180 push_sregs_to_kvm_pr(spapr
);
1184 /* NOTE: there are actually a number of ov5 bits where input from the
1185 * guest is always zero, and the platform/QEMU enables them independently
1186 * of guest input. To model these properly we'd want some sort of mask,
1187 * but since they only currently apply to memory migration as defined
1188 * by LoPAPR 1.1, 14.5.4.8, which QEMU doesn't implement, we don't need
1189 * to worry about this for now.
1192 /* full range of negotiated ov5 capabilities */
1193 spapr_ovec_intersect(spapr
->ov5_cas
, spapr
->ov5
, ov5_guest
);
1194 spapr_ovec_cleanup(ov5_guest
);
1196 spapr_check_mmu_mode(guest_radix
);
1198 spapr
->cas_pre_isa3_guest
= !spapr_ovec_test(ov1_guest
, OV1_PPC_3_00
);
1199 spapr_ovec_cleanup(ov1_guest
);
1202 * Check for NUMA affinity conditions now that we know which NUMA
1203 * affinity the guest will use.
1205 spapr_numa_associativity_check(spapr
);
1208 * Ensure the guest asks for an interrupt mode we support;
1209 * otherwise terminate the boot.
1212 if (!spapr
->irq
->xive
) {
1214 "Guest requested unavailable interrupt mode (XIVE), try the ic-mode=xive or ic-mode=dual machine property");
1218 if (!spapr
->irq
->xics
) {
1220 "Guest requested unavailable interrupt mode (XICS), either don't set the ic-mode machine property or try ic-mode=xics or ic-mode=dual");
1225 spapr_irq_update_active_intc(spapr
);
1228 * Process all pending hot-plug/unplug requests now. An updated full
1229 * rendered FDT will be returned to the guest.
1231 spapr_drc_reset_all(spapr
);
1232 spapr_clear_pending_hotplug_events(spapr
);
1235 * If spapr_machine_reset() did not set up a HPT but one is necessary
1236 * (because the guest isn't going to use radix) then set it up here.
1238 if ((spapr
->patb_entry
& PATE1_GR
) && !guest_radix
) {
1239 /* legacy hash or new hash: */
1240 spapr_setup_hpt(spapr
);
1243 fdt
= spapr_build_fdt(spapr
, spapr
->vof
!= NULL
, fdt_bufsize
);
1244 g_free(spapr
->fdt_blob
);
1245 spapr
->fdt_size
= fdt_totalsize(fdt
);
1246 spapr
->fdt_initial_size
= spapr
->fdt_size
;
1247 spapr
->fdt_blob
= fdt
;
1252 static target_ulong
h_client_architecture_support(PowerPCCPU
*cpu
,
1253 SpaprMachineState
*spapr
,
1254 target_ulong opcode
,
1257 target_ulong vec
= ppc64_phys_to_real(args
[0]);
1258 target_ulong fdt_buf
= args
[1];
1259 target_ulong fdt_bufsize
= args
[2];
1261 SpaprDeviceTreeUpdateHeader hdr
= { .version_id
= 1 };
1263 if (fdt_bufsize
< sizeof(hdr
)) {
1264 error_report("SLOF provided insufficient CAS buffer "
1265 TARGET_FMT_lu
" (min: %zu)", fdt_bufsize
, sizeof(hdr
));
1269 fdt_bufsize
-= sizeof(hdr
);
1271 ret
= do_client_architecture_support(cpu
, spapr
, vec
, fdt_bufsize
);
1272 if (ret
== H_SUCCESS
) {
1273 _FDT((fdt_pack(spapr
->fdt_blob
)));
1274 spapr
->fdt_size
= fdt_totalsize(spapr
->fdt_blob
);
1275 spapr
->fdt_initial_size
= spapr
->fdt_size
;
1277 cpu_physical_memory_write(fdt_buf
, &hdr
, sizeof(hdr
));
1278 cpu_physical_memory_write(fdt_buf
+ sizeof(hdr
), spapr
->fdt_blob
,
1280 trace_spapr_cas_continue(spapr
->fdt_size
+ sizeof(hdr
));
1286 target_ulong
spapr_vof_client_architecture_support(MachineState
*ms
,
1288 target_ulong ovec_addr
)
1290 SpaprMachineState
*spapr
= SPAPR_MACHINE(ms
);
1292 target_ulong ret
= do_client_architecture_support(POWERPC_CPU(cs
), spapr
,
1293 ovec_addr
, FDT_MAX_SIZE
);
1296 * This adds stdout and generates phandles for boottime and CAS FDTs.
1297 * It is alright to update the FDT here as do_client_architecture_support()
1300 spapr_vof_client_dt_finalize(spapr
, spapr
->fdt_blob
);
1305 static target_ulong
h_get_cpu_characteristics(PowerPCCPU
*cpu
,
1306 SpaprMachineState
*spapr
,
1307 target_ulong opcode
,
1310 uint64_t characteristics
= H_CPU_CHAR_HON_BRANCH_HINTS
&
1311 ~H_CPU_CHAR_THR_RECONF_TRIG
;
1312 uint64_t behaviour
= H_CPU_BEHAV_FAVOUR_SECURITY
;
1313 uint8_t safe_cache
= spapr_get_cap(spapr
, SPAPR_CAP_CFPC
);
1314 uint8_t safe_bounds_check
= spapr_get_cap(spapr
, SPAPR_CAP_SBBC
);
1315 uint8_t safe_indirect_branch
= spapr_get_cap(spapr
, SPAPR_CAP_IBS
);
1316 uint8_t count_cache_flush_assist
= spapr_get_cap(spapr
,
1317 SPAPR_CAP_CCF_ASSIST
);
1319 switch (safe_cache
) {
1320 case SPAPR_CAP_WORKAROUND
:
1321 characteristics
|= H_CPU_CHAR_L1D_FLUSH_ORI30
;
1322 characteristics
|= H_CPU_CHAR_L1D_FLUSH_TRIG2
;
1323 characteristics
|= H_CPU_CHAR_L1D_THREAD_PRIV
;
1324 behaviour
|= H_CPU_BEHAV_L1D_FLUSH_PR
;
1326 case SPAPR_CAP_FIXED
:
1327 behaviour
|= H_CPU_BEHAV_NO_L1D_FLUSH_ENTRY
;
1328 behaviour
|= H_CPU_BEHAV_NO_L1D_FLUSH_UACCESS
;
1330 default: /* broken */
1331 assert(safe_cache
== SPAPR_CAP_BROKEN
);
1332 behaviour
|= H_CPU_BEHAV_L1D_FLUSH_PR
;
1336 switch (safe_bounds_check
) {
1337 case SPAPR_CAP_WORKAROUND
:
1338 characteristics
|= H_CPU_CHAR_SPEC_BAR_ORI31
;
1339 behaviour
|= H_CPU_BEHAV_BNDS_CHK_SPEC_BAR
;
1341 case SPAPR_CAP_FIXED
:
1343 default: /* broken */
1344 assert(safe_bounds_check
== SPAPR_CAP_BROKEN
);
1345 behaviour
|= H_CPU_BEHAV_BNDS_CHK_SPEC_BAR
;
1349 switch (safe_indirect_branch
) {
1350 case SPAPR_CAP_FIXED_NA
:
1352 case SPAPR_CAP_FIXED_CCD
:
1353 characteristics
|= H_CPU_CHAR_CACHE_COUNT_DIS
;
1355 case SPAPR_CAP_FIXED_IBS
:
1356 characteristics
|= H_CPU_CHAR_BCCTRL_SERIALISED
;
1358 case SPAPR_CAP_WORKAROUND
:
1359 behaviour
|= H_CPU_BEHAV_FLUSH_COUNT_CACHE
;
1360 if (count_cache_flush_assist
) {
1361 characteristics
|= H_CPU_CHAR_BCCTR_FLUSH_ASSIST
;
1364 default: /* broken */
1365 assert(safe_indirect_branch
== SPAPR_CAP_BROKEN
);
1369 args
[0] = characteristics
;
1370 args
[1] = behaviour
;
1374 static target_ulong
h_update_dt(PowerPCCPU
*cpu
, SpaprMachineState
*spapr
,
1375 target_ulong opcode
, target_ulong
*args
)
1377 target_ulong dt
= ppc64_phys_to_real(args
[0]);
1378 struct fdt_header hdr
= { 0 };
1380 SpaprMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(spapr
);
1383 cpu_physical_memory_read(dt
, &hdr
, sizeof(hdr
));
1384 cb
= fdt32_to_cpu(hdr
.totalsize
);
1386 if (!smc
->update_dt_enabled
) {
1390 /* Check that the fdt did not grow out of proportion */
1391 if (cb
> spapr
->fdt_initial_size
* 2) {
1392 trace_spapr_update_dt_failed_size(spapr
->fdt_initial_size
, cb
,
1393 fdt32_to_cpu(hdr
.magic
));
1397 fdt
= g_malloc0(cb
);
1398 cpu_physical_memory_read(dt
, fdt
, cb
);
1400 /* Check the fdt consistency */
1401 if (fdt_check_full(fdt
, cb
)) {
1402 trace_spapr_update_dt_failed_check(spapr
->fdt_initial_size
, cb
,
1403 fdt32_to_cpu(hdr
.magic
));
1407 g_free(spapr
->fdt_blob
);
1408 spapr
->fdt_size
= cb
;
1409 spapr
->fdt_blob
= fdt
;
1410 trace_spapr_update_dt(cb
);
1415 static spapr_hcall_fn papr_hypercall_table
[(MAX_HCALL_OPCODE
/ 4) + 1];
1416 static spapr_hcall_fn kvmppc_hypercall_table
[KVMPPC_HCALL_MAX
- KVMPPC_HCALL_BASE
+ 1];
1417 static spapr_hcall_fn svm_hypercall_table
[(SVM_HCALL_MAX
- SVM_HCALL_BASE
) / 4 + 1];
1419 void spapr_register_hypercall(target_ulong opcode
, spapr_hcall_fn fn
)
1421 spapr_hcall_fn
*slot
;
1423 if (opcode
<= MAX_HCALL_OPCODE
) {
1424 assert((opcode
& 0x3) == 0);
1426 slot
= &papr_hypercall_table
[opcode
/ 4];
1427 } else if (opcode
>= SVM_HCALL_BASE
&& opcode
<= SVM_HCALL_MAX
) {
1428 /* we only have SVM-related hcall numbers assigned in multiples of 4 */
1429 assert((opcode
& 0x3) == 0);
1431 slot
= &svm_hypercall_table
[(opcode
- SVM_HCALL_BASE
) / 4];
1433 assert((opcode
>= KVMPPC_HCALL_BASE
) && (opcode
<= KVMPPC_HCALL_MAX
));
1435 slot
= &kvmppc_hypercall_table
[opcode
- KVMPPC_HCALL_BASE
];
1442 target_ulong
spapr_hypercall(PowerPCCPU
*cpu
, target_ulong opcode
,
1445 SpaprMachineState
*spapr
= SPAPR_MACHINE(qdev_get_machine());
1447 if ((opcode
<= MAX_HCALL_OPCODE
)
1448 && ((opcode
& 0x3) == 0)) {
1449 spapr_hcall_fn fn
= papr_hypercall_table
[opcode
/ 4];
1452 return fn(cpu
, spapr
, opcode
, args
);
1454 } else if ((opcode
>= SVM_HCALL_BASE
) &&
1455 (opcode
<= SVM_HCALL_MAX
)) {
1456 spapr_hcall_fn fn
= svm_hypercall_table
[(opcode
- SVM_HCALL_BASE
) / 4];
1459 return fn(cpu
, spapr
, opcode
, args
);
1461 } else if ((opcode
>= KVMPPC_HCALL_BASE
) &&
1462 (opcode
<= KVMPPC_HCALL_MAX
)) {
1463 spapr_hcall_fn fn
= kvmppc_hypercall_table
[opcode
- KVMPPC_HCALL_BASE
];
1466 return fn(cpu
, spapr
, opcode
, args
);
1470 qemu_log_mask(LOG_UNIMP
, "Unimplemented SPAPR hcall 0x" TARGET_FMT_lx
"\n",
1476 static target_ulong
h_softmmu(PowerPCCPU
*cpu
, SpaprMachineState
*spapr
,
1477 target_ulong opcode
, target_ulong
*args
)
1479 g_assert_not_reached();
1482 static void hypercall_register_softmmu(void)
1485 spapr_register_hypercall(H_ENTER
, h_softmmu
);
1486 spapr_register_hypercall(H_REMOVE
, h_softmmu
);
1487 spapr_register_hypercall(H_PROTECT
, h_softmmu
);
1488 spapr_register_hypercall(H_READ
, h_softmmu
);
1491 spapr_register_hypercall(H_BULK_REMOVE
, h_softmmu
);
1494 static void hypercall_register_softmmu(void)
1500 static void hypercall_register_types(void)
1502 hypercall_register_softmmu();
1504 /* hcall-hpt-resize */
1505 spapr_register_hypercall(H_RESIZE_HPT_PREPARE
, h_resize_hpt_prepare
);
1506 spapr_register_hypercall(H_RESIZE_HPT_COMMIT
, h_resize_hpt_commit
);
1509 spapr_register_hypercall(H_REGISTER_VPA
, h_register_vpa
);
1510 spapr_register_hypercall(H_CEDE
, h_cede
);
1511 spapr_register_hypercall(H_CONFER
, h_confer
);
1512 spapr_register_hypercall(H_PROD
, h_prod
);
1515 spapr_register_hypercall(H_JOIN
, h_join
);
1517 spapr_register_hypercall(H_SIGNAL_SYS_RESET
, h_signal_sys_reset
);
1519 /* processor register resource access h-calls */
1520 spapr_register_hypercall(H_SET_SPRG0
, h_set_sprg0
);
1521 spapr_register_hypercall(H_SET_DABR
, h_set_dabr
);
1522 spapr_register_hypercall(H_SET_XDABR
, h_set_xdabr
);
1523 spapr_register_hypercall(H_PAGE_INIT
, h_page_init
);
1524 spapr_register_hypercall(H_SET_MODE
, h_set_mode
);
1526 /* In Memory Table MMU h-calls */
1527 spapr_register_hypercall(H_CLEAN_SLB
, h_clean_slb
);
1528 spapr_register_hypercall(H_INVALIDATE_PID
, h_invalidate_pid
);
1529 spapr_register_hypercall(H_REGISTER_PROC_TBL
, h_register_process_table
);
1531 /* hcall-get-cpu-characteristics */
1532 spapr_register_hypercall(H_GET_CPU_CHARACTERISTICS
,
1533 h_get_cpu_characteristics
);
1535 /* "debugger" hcalls (also used by SLOF). Note: We do -not- differenciate
1536 * here between the "CI" and the "CACHE" variants, they will use whatever
1537 * mapping attributes qemu is using. When using KVM, the kernel will
1538 * enforce the attributes more strongly
1540 spapr_register_hypercall(H_LOGICAL_CI_LOAD
, h_logical_load
);
1541 spapr_register_hypercall(H_LOGICAL_CI_STORE
, h_logical_store
);
1542 spapr_register_hypercall(H_LOGICAL_CACHE_LOAD
, h_logical_load
);
1543 spapr_register_hypercall(H_LOGICAL_CACHE_STORE
, h_logical_store
);
1544 spapr_register_hypercall(H_LOGICAL_ICBI
, h_logical_icbi
);
1545 spapr_register_hypercall(H_LOGICAL_DCBF
, h_logical_dcbf
);
1546 spapr_register_hypercall(KVMPPC_H_LOGICAL_MEMOP
, h_logical_memop
);
1548 /* qemu/KVM-PPC specific hcalls */
1549 spapr_register_hypercall(KVMPPC_H_RTAS
, h_rtas
);
1551 /* ibm,client-architecture-support support */
1552 spapr_register_hypercall(KVMPPC_H_CAS
, h_client_architecture_support
);
1554 spapr_register_hypercall(KVMPPC_H_UPDATE_DT
, h_update_dt
);
1557 type_init(hypercall_register_types
)