target/arm: Implement writing to CONTROL_NS for v8M
[qemu.git] / target / arm / helper.c
blob1ae11997fb0bde480d3a2660ffec72541b4f1c81
1 #include "qemu/osdep.h"
2 #include "trace.h"
3 #include "cpu.h"
4 #include "internals.h"
5 #include "exec/gdbstub.h"
6 #include "exec/helper-proto.h"
7 #include "qemu/host-utils.h"
8 #include "sysemu/arch_init.h"
9 #include "sysemu/sysemu.h"
10 #include "qemu/bitops.h"
11 #include "qemu/crc32c.h"
12 #include "exec/exec-all.h"
13 #include "exec/cpu_ldst.h"
14 #include "arm_ldst.h"
15 #include <zlib.h> /* For crc32 */
16 #include "exec/semihost.h"
17 #include "sysemu/kvm.h"
19 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
21 #ifndef CONFIG_USER_ONLY
22 /* Cacheability and shareability attributes for a memory access */
23 typedef struct ARMCacheAttrs {
24 unsigned int attrs:8; /* as in the MAIR register encoding */
25 unsigned int shareability:2; /* as in the SH field of the VMSAv8-64 PTEs */
26 } ARMCacheAttrs;
28 static bool get_phys_addr(CPUARMState *env, target_ulong address,
29 MMUAccessType access_type, ARMMMUIdx mmu_idx,
30 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
31 target_ulong *page_size,
32 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs);
34 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
35 MMUAccessType access_type, ARMMMUIdx mmu_idx,
36 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
37 target_ulong *page_size_ptr,
38 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs);
40 /* Security attributes for an address, as returned by v8m_security_lookup. */
41 typedef struct V8M_SAttributes {
42 bool ns;
43 bool nsc;
44 uint8_t sregion;
45 bool srvalid;
46 uint8_t iregion;
47 bool irvalid;
48 } V8M_SAttributes;
50 static void v8m_security_lookup(CPUARMState *env, uint32_t address,
51 MMUAccessType access_type, ARMMMUIdx mmu_idx,
52 V8M_SAttributes *sattrs);
54 /* Definitions for the PMCCNTR and PMCR registers */
55 #define PMCRD 0x8
56 #define PMCRC 0x4
57 #define PMCRE 0x1
58 #endif
60 static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
62 int nregs;
64 /* VFP data registers are always little-endian. */
65 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
66 if (reg < nregs) {
67 stq_le_p(buf, *aa32_vfp_dreg(env, reg));
68 return 8;
70 if (arm_feature(env, ARM_FEATURE_NEON)) {
71 /* Aliases for Q regs. */
72 nregs += 16;
73 if (reg < nregs) {
74 uint64_t *q = aa32_vfp_qreg(env, reg - 32);
75 stq_le_p(buf, q[0]);
76 stq_le_p(buf + 8, q[1]);
77 return 16;
80 switch (reg - nregs) {
81 case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
82 case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4;
83 case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
85 return 0;
88 static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
90 int nregs;
92 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
93 if (reg < nregs) {
94 *aa32_vfp_dreg(env, reg) = ldq_le_p(buf);
95 return 8;
97 if (arm_feature(env, ARM_FEATURE_NEON)) {
98 nregs += 16;
99 if (reg < nregs) {
100 uint64_t *q = aa32_vfp_qreg(env, reg - 32);
101 q[0] = ldq_le_p(buf);
102 q[1] = ldq_le_p(buf + 8);
103 return 16;
106 switch (reg - nregs) {
107 case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
108 case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4;
109 case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
111 return 0;
114 static int aarch64_fpu_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
116 switch (reg) {
117 case 0 ... 31:
118 /* 128 bit FP register */
120 uint64_t *q = aa64_vfp_qreg(env, reg);
121 stq_le_p(buf, q[0]);
122 stq_le_p(buf + 8, q[1]);
123 return 16;
125 case 32:
126 /* FPSR */
127 stl_p(buf, vfp_get_fpsr(env));
128 return 4;
129 case 33:
130 /* FPCR */
131 stl_p(buf, vfp_get_fpcr(env));
132 return 4;
133 default:
134 return 0;
138 static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
140 switch (reg) {
141 case 0 ... 31:
142 /* 128 bit FP register */
144 uint64_t *q = aa64_vfp_qreg(env, reg);
145 q[0] = ldq_le_p(buf);
146 q[1] = ldq_le_p(buf + 8);
147 return 16;
149 case 32:
150 /* FPSR */
151 vfp_set_fpsr(env, ldl_p(buf));
152 return 4;
153 case 33:
154 /* FPCR */
155 vfp_set_fpcr(env, ldl_p(buf));
156 return 4;
157 default:
158 return 0;
162 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
164 assert(ri->fieldoffset);
165 if (cpreg_field_is_64bit(ri)) {
166 return CPREG_FIELD64(env, ri);
167 } else {
168 return CPREG_FIELD32(env, ri);
172 static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
173 uint64_t value)
175 assert(ri->fieldoffset);
176 if (cpreg_field_is_64bit(ri)) {
177 CPREG_FIELD64(env, ri) = value;
178 } else {
179 CPREG_FIELD32(env, ri) = value;
183 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
185 return (char *)env + ri->fieldoffset;
188 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
190 /* Raw read of a coprocessor register (as needed for migration, etc). */
191 if (ri->type & ARM_CP_CONST) {
192 return ri->resetvalue;
193 } else if (ri->raw_readfn) {
194 return ri->raw_readfn(env, ri);
195 } else if (ri->readfn) {
196 return ri->readfn(env, ri);
197 } else {
198 return raw_read(env, ri);
202 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
203 uint64_t v)
205 /* Raw write of a coprocessor register (as needed for migration, etc).
206 * Note that constant registers are treated as write-ignored; the
207 * caller should check for success by whether a readback gives the
208 * value written.
210 if (ri->type & ARM_CP_CONST) {
211 return;
212 } else if (ri->raw_writefn) {
213 ri->raw_writefn(env, ri, v);
214 } else if (ri->writefn) {
215 ri->writefn(env, ri, v);
216 } else {
217 raw_write(env, ri, v);
221 static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
223 /* Return true if the regdef would cause an assertion if you called
224 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
225 * program bug for it not to have the NO_RAW flag).
226 * NB that returning false here doesn't necessarily mean that calling
227 * read/write_raw_cp_reg() is safe, because we can't distinguish "has
228 * read/write access functions which are safe for raw use" from "has
229 * read/write access functions which have side effects but has forgotten
230 * to provide raw access functions".
231 * The tests here line up with the conditions in read/write_raw_cp_reg()
232 * and assertions in raw_read()/raw_write().
234 if ((ri->type & ARM_CP_CONST) ||
235 ri->fieldoffset ||
236 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
237 return false;
239 return true;
242 bool write_cpustate_to_list(ARMCPU *cpu)
244 /* Write the coprocessor state from cpu->env to the (index,value) list. */
245 int i;
246 bool ok = true;
248 for (i = 0; i < cpu->cpreg_array_len; i++) {
249 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
250 const ARMCPRegInfo *ri;
252 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
253 if (!ri) {
254 ok = false;
255 continue;
257 if (ri->type & ARM_CP_NO_RAW) {
258 continue;
260 cpu->cpreg_values[i] = read_raw_cp_reg(&cpu->env, ri);
262 return ok;
265 bool write_list_to_cpustate(ARMCPU *cpu)
267 int i;
268 bool ok = true;
270 for (i = 0; i < cpu->cpreg_array_len; i++) {
271 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
272 uint64_t v = cpu->cpreg_values[i];
273 const ARMCPRegInfo *ri;
275 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
276 if (!ri) {
277 ok = false;
278 continue;
280 if (ri->type & ARM_CP_NO_RAW) {
281 continue;
283 /* Write value and confirm it reads back as written
284 * (to catch read-only registers and partially read-only
285 * registers where the incoming migration value doesn't match)
287 write_raw_cp_reg(&cpu->env, ri, v);
288 if (read_raw_cp_reg(&cpu->env, ri) != v) {
289 ok = false;
292 return ok;
295 static void add_cpreg_to_list(gpointer key, gpointer opaque)
297 ARMCPU *cpu = opaque;
298 uint64_t regidx;
299 const ARMCPRegInfo *ri;
301 regidx = *(uint32_t *)key;
302 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
304 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
305 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
306 /* The value array need not be initialized at this point */
307 cpu->cpreg_array_len++;
311 static void count_cpreg(gpointer key, gpointer opaque)
313 ARMCPU *cpu = opaque;
314 uint64_t regidx;
315 const ARMCPRegInfo *ri;
317 regidx = *(uint32_t *)key;
318 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
320 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
321 cpu->cpreg_array_len++;
325 static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
327 uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a);
328 uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b);
330 if (aidx > bidx) {
331 return 1;
333 if (aidx < bidx) {
334 return -1;
336 return 0;
339 void init_cpreg_list(ARMCPU *cpu)
341 /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
342 * Note that we require cpreg_tuples[] to be sorted by key ID.
344 GList *keys;
345 int arraylen;
347 keys = g_hash_table_get_keys(cpu->cp_regs);
348 keys = g_list_sort(keys, cpreg_key_compare);
350 cpu->cpreg_array_len = 0;
352 g_list_foreach(keys, count_cpreg, cpu);
354 arraylen = cpu->cpreg_array_len;
355 cpu->cpreg_indexes = g_new(uint64_t, arraylen);
356 cpu->cpreg_values = g_new(uint64_t, arraylen);
357 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
358 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
359 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
360 cpu->cpreg_array_len = 0;
362 g_list_foreach(keys, add_cpreg_to_list, cpu);
364 assert(cpu->cpreg_array_len == arraylen);
366 g_list_free(keys);
370 * Some registers are not accessible if EL3.NS=0 and EL3 is using AArch32 but
371 * they are accessible when EL3 is using AArch64 regardless of EL3.NS.
373 * access_el3_aa32ns: Used to check AArch32 register views.
374 * access_el3_aa32ns_aa64any: Used to check both AArch32/64 register views.
376 static CPAccessResult access_el3_aa32ns(CPUARMState *env,
377 const ARMCPRegInfo *ri,
378 bool isread)
380 bool secure = arm_is_secure_below_el3(env);
382 assert(!arm_el_is_aa64(env, 3));
383 if (secure) {
384 return CP_ACCESS_TRAP_UNCATEGORIZED;
386 return CP_ACCESS_OK;
389 static CPAccessResult access_el3_aa32ns_aa64any(CPUARMState *env,
390 const ARMCPRegInfo *ri,
391 bool isread)
393 if (!arm_el_is_aa64(env, 3)) {
394 return access_el3_aa32ns(env, ri, isread);
396 return CP_ACCESS_OK;
399 /* Some secure-only AArch32 registers trap to EL3 if used from
400 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts).
401 * Note that an access from Secure EL1 can only happen if EL3 is AArch64.
402 * We assume that the .access field is set to PL1_RW.
404 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env,
405 const ARMCPRegInfo *ri,
406 bool isread)
408 if (arm_current_el(env) == 3) {
409 return CP_ACCESS_OK;
411 if (arm_is_secure_below_el3(env)) {
412 return CP_ACCESS_TRAP_EL3;
414 /* This will be EL1 NS and EL2 NS, which just UNDEF */
415 return CP_ACCESS_TRAP_UNCATEGORIZED;
418 /* Check for traps to "powerdown debug" registers, which are controlled
419 * by MDCR.TDOSA
421 static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri,
422 bool isread)
424 int el = arm_current_el(env);
426 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDOSA)
427 && !arm_is_secure_below_el3(env)) {
428 return CP_ACCESS_TRAP_EL2;
430 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) {
431 return CP_ACCESS_TRAP_EL3;
433 return CP_ACCESS_OK;
436 /* Check for traps to "debug ROM" registers, which are controlled
437 * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3.
439 static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri,
440 bool isread)
442 int el = arm_current_el(env);
444 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDRA)
445 && !arm_is_secure_below_el3(env)) {
446 return CP_ACCESS_TRAP_EL2;
448 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
449 return CP_ACCESS_TRAP_EL3;
451 return CP_ACCESS_OK;
454 /* Check for traps to general debug registers, which are controlled
455 * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3.
457 static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri,
458 bool isread)
460 int el = arm_current_el(env);
462 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDA)
463 && !arm_is_secure_below_el3(env)) {
464 return CP_ACCESS_TRAP_EL2;
466 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
467 return CP_ACCESS_TRAP_EL3;
469 return CP_ACCESS_OK;
472 /* Check for traps to performance monitor registers, which are controlled
473 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3.
475 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri,
476 bool isread)
478 int el = arm_current_el(env);
480 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
481 && !arm_is_secure_below_el3(env)) {
482 return CP_ACCESS_TRAP_EL2;
484 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
485 return CP_ACCESS_TRAP_EL3;
487 return CP_ACCESS_OK;
490 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
492 ARMCPU *cpu = arm_env_get_cpu(env);
494 raw_write(env, ri, value);
495 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */
498 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
500 ARMCPU *cpu = arm_env_get_cpu(env);
502 if (raw_read(env, ri) != value) {
503 /* Unlike real hardware the qemu TLB uses virtual addresses,
504 * not modified virtual addresses, so this causes a TLB flush.
506 tlb_flush(CPU(cpu));
507 raw_write(env, ri, value);
511 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
512 uint64_t value)
514 ARMCPU *cpu = arm_env_get_cpu(env);
516 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA)
517 && !extended_addresses_enabled(env)) {
518 /* For VMSA (when not using the LPAE long descriptor page table
519 * format) this register includes the ASID, so do a TLB flush.
520 * For PMSA it is purely a process ID and no action is needed.
522 tlb_flush(CPU(cpu));
524 raw_write(env, ri, value);
527 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
528 uint64_t value)
530 /* Invalidate all (TLBIALL) */
531 ARMCPU *cpu = arm_env_get_cpu(env);
533 tlb_flush(CPU(cpu));
536 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
537 uint64_t value)
539 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
540 ARMCPU *cpu = arm_env_get_cpu(env);
542 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
545 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
546 uint64_t value)
548 /* Invalidate by ASID (TLBIASID) */
549 ARMCPU *cpu = arm_env_get_cpu(env);
551 tlb_flush(CPU(cpu));
554 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
555 uint64_t value)
557 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
558 ARMCPU *cpu = arm_env_get_cpu(env);
560 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
563 /* IS variants of TLB operations must affect all cores */
564 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
565 uint64_t value)
567 CPUState *cs = ENV_GET_CPU(env);
569 tlb_flush_all_cpus_synced(cs);
572 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
573 uint64_t value)
575 CPUState *cs = ENV_GET_CPU(env);
577 tlb_flush_all_cpus_synced(cs);
580 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
581 uint64_t value)
583 CPUState *cs = ENV_GET_CPU(env);
585 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
588 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
589 uint64_t value)
591 CPUState *cs = ENV_GET_CPU(env);
593 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
596 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri,
597 uint64_t value)
599 CPUState *cs = ENV_GET_CPU(env);
601 tlb_flush_by_mmuidx(cs,
602 ARMMMUIdxBit_S12NSE1 |
603 ARMMMUIdxBit_S12NSE0 |
604 ARMMMUIdxBit_S2NS);
607 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
608 uint64_t value)
610 CPUState *cs = ENV_GET_CPU(env);
612 tlb_flush_by_mmuidx_all_cpus_synced(cs,
613 ARMMMUIdxBit_S12NSE1 |
614 ARMMMUIdxBit_S12NSE0 |
615 ARMMMUIdxBit_S2NS);
618 static void tlbiipas2_write(CPUARMState *env, const ARMCPRegInfo *ri,
619 uint64_t value)
621 /* Invalidate by IPA. This has to invalidate any structures that
622 * contain only stage 2 translation information, but does not need
623 * to apply to structures that contain combined stage 1 and stage 2
624 * translation information.
625 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
627 CPUState *cs = ENV_GET_CPU(env);
628 uint64_t pageaddr;
630 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
631 return;
634 pageaddr = sextract64(value << 12, 0, 40);
636 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS);
639 static void tlbiipas2_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
640 uint64_t value)
642 CPUState *cs = ENV_GET_CPU(env);
643 uint64_t pageaddr;
645 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
646 return;
649 pageaddr = sextract64(value << 12, 0, 40);
651 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
652 ARMMMUIdxBit_S2NS);
655 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
656 uint64_t value)
658 CPUState *cs = ENV_GET_CPU(env);
660 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2);
663 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
664 uint64_t value)
666 CPUState *cs = ENV_GET_CPU(env);
668 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2);
671 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
672 uint64_t value)
674 CPUState *cs = ENV_GET_CPU(env);
675 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
677 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2);
680 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
681 uint64_t value)
683 CPUState *cs = ENV_GET_CPU(env);
684 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
686 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
687 ARMMMUIdxBit_S1E2);
690 static const ARMCPRegInfo cp_reginfo[] = {
691 /* Define the secure and non-secure FCSE identifier CP registers
692 * separately because there is no secure bank in V8 (no _EL3). This allows
693 * the secure register to be properly reset and migrated. There is also no
694 * v8 EL1 version of the register so the non-secure instance stands alone.
696 { .name = "FCSEIDR(NS)",
697 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
698 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
699 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
700 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
701 { .name = "FCSEIDR(S)",
702 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
703 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
704 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
705 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
706 /* Define the secure and non-secure context identifier CP registers
707 * separately because there is no secure bank in V8 (no _EL3). This allows
708 * the secure register to be properly reset and migrated. In the
709 * non-secure case, the 32-bit register will have reset and migration
710 * disabled during registration as it is handled by the 64-bit instance.
712 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
713 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
714 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
715 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
716 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
717 { .name = "CONTEXTIDR(S)", .state = ARM_CP_STATE_AA32,
718 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
719 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
720 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
721 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
722 REGINFO_SENTINEL
725 static const ARMCPRegInfo not_v8_cp_reginfo[] = {
726 /* NB: Some of these registers exist in v8 but with more precise
727 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
729 /* MMU Domain access control / MPU write buffer control */
730 { .name = "DACR",
731 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
732 .access = PL1_RW, .resetvalue = 0,
733 .writefn = dacr_write, .raw_writefn = raw_write,
734 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
735 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
736 /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
737 * For v6 and v5, these mappings are overly broad.
739 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
740 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
741 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
742 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
743 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
744 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
745 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
746 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
747 /* Cache maintenance ops; some of this space may be overridden later. */
748 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
749 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
750 .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
751 REGINFO_SENTINEL
754 static const ARMCPRegInfo not_v6_cp_reginfo[] = {
755 /* Not all pre-v6 cores implemented this WFI, so this is slightly
756 * over-broad.
758 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
759 .access = PL1_W, .type = ARM_CP_WFI },
760 REGINFO_SENTINEL
763 static const ARMCPRegInfo not_v7_cp_reginfo[] = {
764 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
765 * is UNPREDICTABLE; we choose to NOP as most implementations do).
767 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
768 .access = PL1_W, .type = ARM_CP_WFI },
769 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
770 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
771 * OMAPCP will override this space.
773 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
774 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
775 .resetvalue = 0 },
776 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
777 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
778 .resetvalue = 0 },
779 /* v6 doesn't have the cache ID registers but Linux reads them anyway */
780 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
781 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
782 .resetvalue = 0 },
783 /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
784 * implementing it as RAZ means the "debug architecture version" bits
785 * will read as a reserved value, which should cause Linux to not try
786 * to use the debug hardware.
788 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
789 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
790 /* MMU TLB control. Note that the wildcarding means we cover not just
791 * the unified TLB ops but also the dside/iside/inner-shareable variants.
793 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
794 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
795 .type = ARM_CP_NO_RAW },
796 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
797 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
798 .type = ARM_CP_NO_RAW },
799 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
800 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
801 .type = ARM_CP_NO_RAW },
802 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
803 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
804 .type = ARM_CP_NO_RAW },
805 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
806 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
807 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
808 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
809 REGINFO_SENTINEL
812 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
813 uint64_t value)
815 uint32_t mask = 0;
817 /* In ARMv8 most bits of CPACR_EL1 are RES0. */
818 if (!arm_feature(env, ARM_FEATURE_V8)) {
819 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
820 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
821 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
823 if (arm_feature(env, ARM_FEATURE_VFP)) {
824 /* VFP coprocessor: cp10 & cp11 [23:20] */
825 mask |= (1 << 31) | (1 << 30) | (0xf << 20);
827 if (!arm_feature(env, ARM_FEATURE_NEON)) {
828 /* ASEDIS [31] bit is RAO/WI */
829 value |= (1 << 31);
832 /* VFPv3 and upwards with NEON implement 32 double precision
833 * registers (D0-D31).
835 if (!arm_feature(env, ARM_FEATURE_NEON) ||
836 !arm_feature(env, ARM_FEATURE_VFP3)) {
837 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
838 value |= (1 << 30);
841 value &= mask;
843 env->cp15.cpacr_el1 = value;
846 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
847 bool isread)
849 if (arm_feature(env, ARM_FEATURE_V8)) {
850 /* Check if CPACR accesses are to be trapped to EL2 */
851 if (arm_current_el(env) == 1 &&
852 (env->cp15.cptr_el[2] & CPTR_TCPAC) && !arm_is_secure(env)) {
853 return CP_ACCESS_TRAP_EL2;
854 /* Check if CPACR accesses are to be trapped to EL3 */
855 } else if (arm_current_el(env) < 3 &&
856 (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
857 return CP_ACCESS_TRAP_EL3;
861 return CP_ACCESS_OK;
864 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri,
865 bool isread)
867 /* Check if CPTR accesses are set to trap to EL3 */
868 if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
869 return CP_ACCESS_TRAP_EL3;
872 return CP_ACCESS_OK;
875 static const ARMCPRegInfo v6_cp_reginfo[] = {
876 /* prefetch by MVA in v6, NOP in v7 */
877 { .name = "MVA_prefetch",
878 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
879 .access = PL1_W, .type = ARM_CP_NOP },
880 /* We need to break the TB after ISB to execute self-modifying code
881 * correctly and also to take any pending interrupts immediately.
882 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
884 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
885 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore },
886 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
887 .access = PL0_W, .type = ARM_CP_NOP },
888 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
889 .access = PL0_W, .type = ARM_CP_NOP },
890 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
891 .access = PL1_RW,
892 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
893 offsetof(CPUARMState, cp15.ifar_ns) },
894 .resetvalue = 0, },
895 /* Watchpoint Fault Address Register : should actually only be present
896 * for 1136, 1176, 11MPCore.
898 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
899 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
900 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
901 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
902 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
903 .resetvalue = 0, .writefn = cpacr_write },
904 REGINFO_SENTINEL
907 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri,
908 bool isread)
910 /* Performance monitor registers user accessibility is controlled
911 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable
912 * trapping to EL2 or EL3 for other accesses.
914 int el = arm_current_el(env);
916 if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) {
917 return CP_ACCESS_TRAP;
919 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
920 && !arm_is_secure_below_el3(env)) {
921 return CP_ACCESS_TRAP_EL2;
923 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
924 return CP_ACCESS_TRAP_EL3;
927 return CP_ACCESS_OK;
930 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env,
931 const ARMCPRegInfo *ri,
932 bool isread)
934 /* ER: event counter read trap control */
935 if (arm_feature(env, ARM_FEATURE_V8)
936 && arm_current_el(env) == 0
937 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0
938 && isread) {
939 return CP_ACCESS_OK;
942 return pmreg_access(env, ri, isread);
945 static CPAccessResult pmreg_access_swinc(CPUARMState *env,
946 const ARMCPRegInfo *ri,
947 bool isread)
949 /* SW: software increment write trap control */
950 if (arm_feature(env, ARM_FEATURE_V8)
951 && arm_current_el(env) == 0
952 && (env->cp15.c9_pmuserenr & (1 << 1)) != 0
953 && !isread) {
954 return CP_ACCESS_OK;
957 return pmreg_access(env, ri, isread);
960 #ifndef CONFIG_USER_ONLY
962 static CPAccessResult pmreg_access_selr(CPUARMState *env,
963 const ARMCPRegInfo *ri,
964 bool isread)
966 /* ER: event counter read trap control */
967 if (arm_feature(env, ARM_FEATURE_V8)
968 && arm_current_el(env) == 0
969 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) {
970 return CP_ACCESS_OK;
973 return pmreg_access(env, ri, isread);
976 static CPAccessResult pmreg_access_ccntr(CPUARMState *env,
977 const ARMCPRegInfo *ri,
978 bool isread)
980 /* CR: cycle counter read trap control */
981 if (arm_feature(env, ARM_FEATURE_V8)
982 && arm_current_el(env) == 0
983 && (env->cp15.c9_pmuserenr & (1 << 2)) != 0
984 && isread) {
985 return CP_ACCESS_OK;
988 return pmreg_access(env, ri, isread);
991 static inline bool arm_ccnt_enabled(CPUARMState *env)
993 /* This does not support checking PMCCFILTR_EL0 register */
995 if (!(env->cp15.c9_pmcr & PMCRE)) {
996 return false;
999 return true;
1002 void pmccntr_sync(CPUARMState *env)
1004 uint64_t temp_ticks;
1006 temp_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1007 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
1009 if (env->cp15.c9_pmcr & PMCRD) {
1010 /* Increment once every 64 processor clock cycles */
1011 temp_ticks /= 64;
1014 if (arm_ccnt_enabled(env)) {
1015 env->cp15.c15_ccnt = temp_ticks - env->cp15.c15_ccnt;
1019 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1020 uint64_t value)
1022 pmccntr_sync(env);
1024 if (value & PMCRC) {
1025 /* The counter has been reset */
1026 env->cp15.c15_ccnt = 0;
1029 /* only the DP, X, D and E bits are writable */
1030 env->cp15.c9_pmcr &= ~0x39;
1031 env->cp15.c9_pmcr |= (value & 0x39);
1033 pmccntr_sync(env);
1036 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1038 uint64_t total_ticks;
1040 if (!arm_ccnt_enabled(env)) {
1041 /* Counter is disabled, do not change value */
1042 return env->cp15.c15_ccnt;
1045 total_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1046 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
1048 if (env->cp15.c9_pmcr & PMCRD) {
1049 /* Increment once every 64 processor clock cycles */
1050 total_ticks /= 64;
1052 return total_ticks - env->cp15.c15_ccnt;
1055 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1056 uint64_t value)
1058 /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and
1059 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the
1060 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are
1061 * accessed.
1063 env->cp15.c9_pmselr = value & 0x1f;
1066 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1067 uint64_t value)
1069 uint64_t total_ticks;
1071 if (!arm_ccnt_enabled(env)) {
1072 /* Counter is disabled, set the absolute value */
1073 env->cp15.c15_ccnt = value;
1074 return;
1077 total_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1078 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
1080 if (env->cp15.c9_pmcr & PMCRD) {
1081 /* Increment once every 64 processor clock cycles */
1082 total_ticks /= 64;
1084 env->cp15.c15_ccnt = total_ticks - value;
1087 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
1088 uint64_t value)
1090 uint64_t cur_val = pmccntr_read(env, NULL);
1092 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
1095 #else /* CONFIG_USER_ONLY */
1097 void pmccntr_sync(CPUARMState *env)
1101 #endif
1103 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1104 uint64_t value)
1106 pmccntr_sync(env);
1107 env->cp15.pmccfiltr_el0 = value & 0x7E000000;
1108 pmccntr_sync(env);
1111 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1112 uint64_t value)
1114 value &= (1 << 31);
1115 env->cp15.c9_pmcnten |= value;
1118 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1119 uint64_t value)
1121 value &= (1 << 31);
1122 env->cp15.c9_pmcnten &= ~value;
1125 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1126 uint64_t value)
1128 env->cp15.c9_pmovsr &= ~value;
1131 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1132 uint64_t value)
1134 /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when
1135 * PMSELR value is equal to or greater than the number of implemented
1136 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI.
1138 if (env->cp15.c9_pmselr == 0x1f) {
1139 pmccfiltr_write(env, ri, value);
1143 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri)
1145 /* We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER
1146 * are CONSTRAINED UNPREDICTABLE. See comments in pmxevtyper_write().
1148 if (env->cp15.c9_pmselr == 0x1f) {
1149 return env->cp15.pmccfiltr_el0;
1150 } else {
1151 return 0;
1155 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1156 uint64_t value)
1158 if (arm_feature(env, ARM_FEATURE_V8)) {
1159 env->cp15.c9_pmuserenr = value & 0xf;
1160 } else {
1161 env->cp15.c9_pmuserenr = value & 1;
1165 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1166 uint64_t value)
1168 /* We have no event counters so only the C bit can be changed */
1169 value &= (1 << 31);
1170 env->cp15.c9_pminten |= value;
1173 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1174 uint64_t value)
1176 value &= (1 << 31);
1177 env->cp15.c9_pminten &= ~value;
1180 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
1181 uint64_t value)
1183 /* Note that even though the AArch64 view of this register has bits
1184 * [10:0] all RES0 we can only mask the bottom 5, to comply with the
1185 * architectural requirements for bits which are RES0 only in some
1186 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
1187 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
1189 raw_write(env, ri, value & ~0x1FULL);
1192 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1194 /* We only mask off bits that are RES0 both for AArch64 and AArch32.
1195 * For bits that vary between AArch32/64, code needs to check the
1196 * current execution mode before directly using the feature bit.
1198 uint32_t valid_mask = SCR_AARCH64_MASK | SCR_AARCH32_MASK;
1200 if (!arm_feature(env, ARM_FEATURE_EL2)) {
1201 valid_mask &= ~SCR_HCE;
1203 /* On ARMv7, SMD (or SCD as it is called in v7) is only
1204 * supported if EL2 exists. The bit is UNK/SBZP when
1205 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
1206 * when EL2 is unavailable.
1207 * On ARMv8, this bit is always available.
1209 if (arm_feature(env, ARM_FEATURE_V7) &&
1210 !arm_feature(env, ARM_FEATURE_V8)) {
1211 valid_mask &= ~SCR_SMD;
1215 /* Clear all-context RES0 bits. */
1216 value &= valid_mask;
1217 raw_write(env, ri, value);
1220 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1222 ARMCPU *cpu = arm_env_get_cpu(env);
1224 /* Acquire the CSSELR index from the bank corresponding to the CCSIDR
1225 * bank
1227 uint32_t index = A32_BANKED_REG_GET(env, csselr,
1228 ri->secure & ARM_CP_SECSTATE_S);
1230 return cpu->ccsidr[index];
1233 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1234 uint64_t value)
1236 raw_write(env, ri, value & 0xf);
1239 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1241 CPUState *cs = ENV_GET_CPU(env);
1242 uint64_t ret = 0;
1244 if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
1245 ret |= CPSR_I;
1247 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
1248 ret |= CPSR_F;
1250 /* External aborts are not possible in QEMU so A bit is always clear */
1251 return ret;
1254 static const ARMCPRegInfo v7_cp_reginfo[] = {
1255 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
1256 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
1257 .access = PL1_W, .type = ARM_CP_NOP },
1258 /* Performance monitors are implementation defined in v7,
1259 * but with an ARM recommended set of registers, which we
1260 * follow (although we don't actually implement any counters)
1262 * Performance registers fall into three categories:
1263 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
1264 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
1265 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
1266 * For the cases controlled by PMUSERENR we must set .access to PL0_RW
1267 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
1269 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
1270 .access = PL0_RW, .type = ARM_CP_ALIAS,
1271 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
1272 .writefn = pmcntenset_write,
1273 .accessfn = pmreg_access,
1274 .raw_writefn = raw_write },
1275 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64,
1276 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
1277 .access = PL0_RW, .accessfn = pmreg_access,
1278 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
1279 .writefn = pmcntenset_write, .raw_writefn = raw_write },
1280 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
1281 .access = PL0_RW,
1282 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
1283 .accessfn = pmreg_access,
1284 .writefn = pmcntenclr_write,
1285 .type = ARM_CP_ALIAS },
1286 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
1287 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
1288 .access = PL0_RW, .accessfn = pmreg_access,
1289 .type = ARM_CP_ALIAS,
1290 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
1291 .writefn = pmcntenclr_write },
1292 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
1293 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
1294 .accessfn = pmreg_access,
1295 .writefn = pmovsr_write,
1296 .raw_writefn = raw_write },
1297 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64,
1298 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3,
1299 .access = PL0_RW, .accessfn = pmreg_access,
1300 .type = ARM_CP_ALIAS,
1301 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
1302 .writefn = pmovsr_write,
1303 .raw_writefn = raw_write },
1304 /* Unimplemented so WI. */
1305 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
1306 .access = PL0_W, .accessfn = pmreg_access_swinc, .type = ARM_CP_NOP },
1307 #ifndef CONFIG_USER_ONLY
1308 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
1309 .access = PL0_RW, .type = ARM_CP_ALIAS,
1310 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr),
1311 .accessfn = pmreg_access_selr, .writefn = pmselr_write,
1312 .raw_writefn = raw_write},
1313 { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64,
1314 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5,
1315 .access = PL0_RW, .accessfn = pmreg_access_selr,
1316 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr),
1317 .writefn = pmselr_write, .raw_writefn = raw_write, },
1318 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
1319 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_IO,
1320 .readfn = pmccntr_read, .writefn = pmccntr_write32,
1321 .accessfn = pmreg_access_ccntr },
1322 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
1323 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
1324 .access = PL0_RW, .accessfn = pmreg_access_ccntr,
1325 .type = ARM_CP_IO,
1326 .readfn = pmccntr_read, .writefn = pmccntr_write, },
1327 #endif
1328 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
1329 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
1330 .writefn = pmccfiltr_write,
1331 .access = PL0_RW, .accessfn = pmreg_access,
1332 .type = ARM_CP_IO,
1333 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
1334 .resetvalue = 0, },
1335 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
1336 .access = PL0_RW, .type = ARM_CP_NO_RAW, .accessfn = pmreg_access,
1337 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
1338 { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64,
1339 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1,
1340 .access = PL0_RW, .type = ARM_CP_NO_RAW, .accessfn = pmreg_access,
1341 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
1342 /* Unimplemented, RAZ/WI. */
1343 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
1344 .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0,
1345 .accessfn = pmreg_access_xevcntr },
1346 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
1347 .access = PL0_R | PL1_RW, .accessfn = access_tpm,
1348 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
1349 .resetvalue = 0,
1350 .writefn = pmuserenr_write, .raw_writefn = raw_write },
1351 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64,
1352 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0,
1353 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
1354 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
1355 .resetvalue = 0,
1356 .writefn = pmuserenr_write, .raw_writefn = raw_write },
1357 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
1358 .access = PL1_RW, .accessfn = access_tpm,
1359 .type = ARM_CP_ALIAS,
1360 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten),
1361 .resetvalue = 0,
1362 .writefn = pmintenset_write, .raw_writefn = raw_write },
1363 { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64,
1364 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1,
1365 .access = PL1_RW, .accessfn = access_tpm,
1366 .type = ARM_CP_IO,
1367 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
1368 .writefn = pmintenset_write, .raw_writefn = raw_write,
1369 .resetvalue = 0x0 },
1370 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
1371 .access = PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
1372 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
1373 .writefn = pmintenclr_write, },
1374 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64,
1375 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2,
1376 .access = PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
1377 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
1378 .writefn = pmintenclr_write },
1379 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
1380 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
1381 .access = PL1_R, .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
1382 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
1383 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
1384 .access = PL1_RW, .writefn = csselr_write, .resetvalue = 0,
1385 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
1386 offsetof(CPUARMState, cp15.csselr_ns) } },
1387 /* Auxiliary ID register: this actually has an IMPDEF value but for now
1388 * just RAZ for all cores:
1390 { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
1391 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
1392 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1393 /* Auxiliary fault status registers: these also are IMPDEF, and we
1394 * choose to RAZ/WI for all cores.
1396 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
1397 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
1398 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1399 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
1400 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
1401 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1402 /* MAIR can just read-as-written because we don't implement caches
1403 * and so don't need to care about memory attributes.
1405 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
1406 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
1407 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
1408 .resetvalue = 0 },
1409 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64,
1410 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0,
1411 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]),
1412 .resetvalue = 0 },
1413 /* For non-long-descriptor page tables these are PRRR and NMRR;
1414 * regardless they still act as reads-as-written for QEMU.
1416 /* MAIR0/1 are defined separately from their 64-bit counterpart which
1417 * allows them to assign the correct fieldoffset based on the endianness
1418 * handled in the field definitions.
1420 { .name = "MAIR0", .state = ARM_CP_STATE_AA32,
1421 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, .access = PL1_RW,
1422 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
1423 offsetof(CPUARMState, cp15.mair0_ns) },
1424 .resetfn = arm_cp_reset_ignore },
1425 { .name = "MAIR1", .state = ARM_CP_STATE_AA32,
1426 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, .access = PL1_RW,
1427 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
1428 offsetof(CPUARMState, cp15.mair1_ns) },
1429 .resetfn = arm_cp_reset_ignore },
1430 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
1431 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
1432 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
1433 /* 32 bit ITLB invalidates */
1434 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
1435 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
1436 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
1437 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
1438 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
1439 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
1440 /* 32 bit DTLB invalidates */
1441 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
1442 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
1443 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
1444 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
1445 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
1446 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
1447 /* 32 bit TLB invalidates */
1448 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
1449 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
1450 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
1451 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
1452 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
1453 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
1454 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
1455 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
1456 REGINFO_SENTINEL
1459 static const ARMCPRegInfo v7mp_cp_reginfo[] = {
1460 /* 32 bit TLB invalidates, Inner Shareable */
1461 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
1462 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_is_write },
1463 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
1464 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
1465 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
1466 .type = ARM_CP_NO_RAW, .access = PL1_W,
1467 .writefn = tlbiasid_is_write },
1468 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
1469 .type = ARM_CP_NO_RAW, .access = PL1_W,
1470 .writefn = tlbimvaa_is_write },
1471 REGINFO_SENTINEL
1474 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1475 uint64_t value)
1477 value &= 1;
1478 env->teecr = value;
1481 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri,
1482 bool isread)
1484 if (arm_current_el(env) == 0 && (env->teecr & 1)) {
1485 return CP_ACCESS_TRAP;
1487 return CP_ACCESS_OK;
1490 static const ARMCPRegInfo t2ee_cp_reginfo[] = {
1491 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
1492 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
1493 .resetvalue = 0,
1494 .writefn = teecr_write },
1495 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
1496 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
1497 .accessfn = teehbr_access, .resetvalue = 0 },
1498 REGINFO_SENTINEL
1501 static const ARMCPRegInfo v6k_cp_reginfo[] = {
1502 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
1503 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
1504 .access = PL0_RW,
1505 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
1506 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
1507 .access = PL0_RW,
1508 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
1509 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
1510 .resetfn = arm_cp_reset_ignore },
1511 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
1512 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
1513 .access = PL0_R|PL1_W,
1514 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
1515 .resetvalue = 0},
1516 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
1517 .access = PL0_R|PL1_W,
1518 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
1519 offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
1520 .resetfn = arm_cp_reset_ignore },
1521 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
1522 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
1523 .access = PL1_RW,
1524 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
1525 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
1526 .access = PL1_RW,
1527 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
1528 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
1529 .resetvalue = 0 },
1530 REGINFO_SENTINEL
1533 #ifndef CONFIG_USER_ONLY
1535 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri,
1536 bool isread)
1538 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero.
1539 * Writable only at the highest implemented exception level.
1541 int el = arm_current_el(env);
1543 switch (el) {
1544 case 0:
1545 if (!extract32(env->cp15.c14_cntkctl, 0, 2)) {
1546 return CP_ACCESS_TRAP;
1548 break;
1549 case 1:
1550 if (!isread && ri->state == ARM_CP_STATE_AA32 &&
1551 arm_is_secure_below_el3(env)) {
1552 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */
1553 return CP_ACCESS_TRAP_UNCATEGORIZED;
1555 break;
1556 case 2:
1557 case 3:
1558 break;
1561 if (!isread && el < arm_highest_el(env)) {
1562 return CP_ACCESS_TRAP_UNCATEGORIZED;
1565 return CP_ACCESS_OK;
1568 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx,
1569 bool isread)
1571 unsigned int cur_el = arm_current_el(env);
1572 bool secure = arm_is_secure(env);
1574 /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */
1575 if (cur_el == 0 &&
1576 !extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
1577 return CP_ACCESS_TRAP;
1580 if (arm_feature(env, ARM_FEATURE_EL2) &&
1581 timeridx == GTIMER_PHYS && !secure && cur_el < 2 &&
1582 !extract32(env->cp15.cnthctl_el2, 0, 1)) {
1583 return CP_ACCESS_TRAP_EL2;
1585 return CP_ACCESS_OK;
1588 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx,
1589 bool isread)
1591 unsigned int cur_el = arm_current_el(env);
1592 bool secure = arm_is_secure(env);
1594 /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if
1595 * EL0[PV]TEN is zero.
1597 if (cur_el == 0 &&
1598 !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
1599 return CP_ACCESS_TRAP;
1602 if (arm_feature(env, ARM_FEATURE_EL2) &&
1603 timeridx == GTIMER_PHYS && !secure && cur_el < 2 &&
1604 !extract32(env->cp15.cnthctl_el2, 1, 1)) {
1605 return CP_ACCESS_TRAP_EL2;
1607 return CP_ACCESS_OK;
1610 static CPAccessResult gt_pct_access(CPUARMState *env,
1611 const ARMCPRegInfo *ri,
1612 bool isread)
1614 return gt_counter_access(env, GTIMER_PHYS, isread);
1617 static CPAccessResult gt_vct_access(CPUARMState *env,
1618 const ARMCPRegInfo *ri,
1619 bool isread)
1621 return gt_counter_access(env, GTIMER_VIRT, isread);
1624 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
1625 bool isread)
1627 return gt_timer_access(env, GTIMER_PHYS, isread);
1630 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
1631 bool isread)
1633 return gt_timer_access(env, GTIMER_VIRT, isread);
1636 static CPAccessResult gt_stimer_access(CPUARMState *env,
1637 const ARMCPRegInfo *ri,
1638 bool isread)
1640 /* The AArch64 register view of the secure physical timer is
1641 * always accessible from EL3, and configurably accessible from
1642 * Secure EL1.
1644 switch (arm_current_el(env)) {
1645 case 1:
1646 if (!arm_is_secure(env)) {
1647 return CP_ACCESS_TRAP;
1649 if (!(env->cp15.scr_el3 & SCR_ST)) {
1650 return CP_ACCESS_TRAP_EL3;
1652 return CP_ACCESS_OK;
1653 case 0:
1654 case 2:
1655 return CP_ACCESS_TRAP;
1656 case 3:
1657 return CP_ACCESS_OK;
1658 default:
1659 g_assert_not_reached();
1663 static uint64_t gt_get_countervalue(CPUARMState *env)
1665 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / GTIMER_SCALE;
1668 static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
1670 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
1672 if (gt->ctl & 1) {
1673 /* Timer enabled: calculate and set current ISTATUS, irq, and
1674 * reset timer to when ISTATUS next has to change
1676 uint64_t offset = timeridx == GTIMER_VIRT ?
1677 cpu->env.cp15.cntvoff_el2 : 0;
1678 uint64_t count = gt_get_countervalue(&cpu->env);
1679 /* Note that this must be unsigned 64 bit arithmetic: */
1680 int istatus = count - offset >= gt->cval;
1681 uint64_t nexttick;
1682 int irqstate;
1684 gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
1686 irqstate = (istatus && !(gt->ctl & 2));
1687 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
1689 if (istatus) {
1690 /* Next transition is when count rolls back over to zero */
1691 nexttick = UINT64_MAX;
1692 } else {
1693 /* Next transition is when we hit cval */
1694 nexttick = gt->cval + offset;
1696 /* Note that the desired next expiry time might be beyond the
1697 * signed-64-bit range of a QEMUTimer -- in this case we just
1698 * set the timer for as far in the future as possible. When the
1699 * timer expires we will reset the timer for any remaining period.
1701 if (nexttick > INT64_MAX / GTIMER_SCALE) {
1702 nexttick = INT64_MAX / GTIMER_SCALE;
1704 timer_mod(cpu->gt_timer[timeridx], nexttick);
1705 trace_arm_gt_recalc(timeridx, irqstate, nexttick);
1706 } else {
1707 /* Timer disabled: ISTATUS and timer output always clear */
1708 gt->ctl &= ~4;
1709 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0);
1710 timer_del(cpu->gt_timer[timeridx]);
1711 trace_arm_gt_recalc_disabled(timeridx);
1715 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri,
1716 int timeridx)
1718 ARMCPU *cpu = arm_env_get_cpu(env);
1720 timer_del(cpu->gt_timer[timeridx]);
1723 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
1725 return gt_get_countervalue(env);
1728 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
1730 return gt_get_countervalue(env) - env->cp15.cntvoff_el2;
1733 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1734 int timeridx,
1735 uint64_t value)
1737 trace_arm_gt_cval_write(timeridx, value);
1738 env->cp15.c14_timer[timeridx].cval = value;
1739 gt_recalc_timer(arm_env_get_cpu(env), timeridx);
1742 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
1743 int timeridx)
1745 uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0;
1747 return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
1748 (gt_get_countervalue(env) - offset));
1751 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1752 int timeridx,
1753 uint64_t value)
1755 uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0;
1757 trace_arm_gt_tval_write(timeridx, value);
1758 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset +
1759 sextract64(value, 0, 32);
1760 gt_recalc_timer(arm_env_get_cpu(env), timeridx);
1763 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1764 int timeridx,
1765 uint64_t value)
1767 ARMCPU *cpu = arm_env_get_cpu(env);
1768 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
1770 trace_arm_gt_ctl_write(timeridx, value);
1771 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
1772 if ((oldval ^ value) & 1) {
1773 /* Enable toggled */
1774 gt_recalc_timer(cpu, timeridx);
1775 } else if ((oldval ^ value) & 2) {
1776 /* IMASK toggled: don't need to recalculate,
1777 * just set the interrupt line based on ISTATUS
1779 int irqstate = (oldval & 4) && !(value & 2);
1781 trace_arm_gt_imask_toggle(timeridx, irqstate);
1782 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
1786 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1788 gt_timer_reset(env, ri, GTIMER_PHYS);
1791 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1792 uint64_t value)
1794 gt_cval_write(env, ri, GTIMER_PHYS, value);
1797 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1799 return gt_tval_read(env, ri, GTIMER_PHYS);
1802 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1803 uint64_t value)
1805 gt_tval_write(env, ri, GTIMER_PHYS, value);
1808 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1809 uint64_t value)
1811 gt_ctl_write(env, ri, GTIMER_PHYS, value);
1814 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1816 gt_timer_reset(env, ri, GTIMER_VIRT);
1819 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1820 uint64_t value)
1822 gt_cval_write(env, ri, GTIMER_VIRT, value);
1825 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1827 return gt_tval_read(env, ri, GTIMER_VIRT);
1830 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1831 uint64_t value)
1833 gt_tval_write(env, ri, GTIMER_VIRT, value);
1836 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1837 uint64_t value)
1839 gt_ctl_write(env, ri, GTIMER_VIRT, value);
1842 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
1843 uint64_t value)
1845 ARMCPU *cpu = arm_env_get_cpu(env);
1847 trace_arm_gt_cntvoff_write(value);
1848 raw_write(env, ri, value);
1849 gt_recalc_timer(cpu, GTIMER_VIRT);
1852 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1854 gt_timer_reset(env, ri, GTIMER_HYP);
1857 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1858 uint64_t value)
1860 gt_cval_write(env, ri, GTIMER_HYP, value);
1863 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1865 return gt_tval_read(env, ri, GTIMER_HYP);
1868 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1869 uint64_t value)
1871 gt_tval_write(env, ri, GTIMER_HYP, value);
1874 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1875 uint64_t value)
1877 gt_ctl_write(env, ri, GTIMER_HYP, value);
1880 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1882 gt_timer_reset(env, ri, GTIMER_SEC);
1885 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1886 uint64_t value)
1888 gt_cval_write(env, ri, GTIMER_SEC, value);
1891 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1893 return gt_tval_read(env, ri, GTIMER_SEC);
1896 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1897 uint64_t value)
1899 gt_tval_write(env, ri, GTIMER_SEC, value);
1902 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1903 uint64_t value)
1905 gt_ctl_write(env, ri, GTIMER_SEC, value);
1908 void arm_gt_ptimer_cb(void *opaque)
1910 ARMCPU *cpu = opaque;
1912 gt_recalc_timer(cpu, GTIMER_PHYS);
1915 void arm_gt_vtimer_cb(void *opaque)
1917 ARMCPU *cpu = opaque;
1919 gt_recalc_timer(cpu, GTIMER_VIRT);
1922 void arm_gt_htimer_cb(void *opaque)
1924 ARMCPU *cpu = opaque;
1926 gt_recalc_timer(cpu, GTIMER_HYP);
1929 void arm_gt_stimer_cb(void *opaque)
1931 ARMCPU *cpu = opaque;
1933 gt_recalc_timer(cpu, GTIMER_SEC);
1936 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
1937 /* Note that CNTFRQ is purely reads-as-written for the benefit
1938 * of software; writing it doesn't actually change the timer frequency.
1939 * Our reset value matches the fixed frequency we implement the timer at.
1941 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
1942 .type = ARM_CP_ALIAS,
1943 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
1944 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
1946 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
1947 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
1948 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
1949 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
1950 .resetvalue = (1000 * 1000 * 1000) / GTIMER_SCALE,
1952 /* overall control: mostly access permissions */
1953 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
1954 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
1955 .access = PL1_RW,
1956 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
1957 .resetvalue = 0,
1959 /* per-timer control */
1960 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
1961 .secure = ARM_CP_SECSTATE_NS,
1962 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
1963 .accessfn = gt_ptimer_access,
1964 .fieldoffset = offsetoflow32(CPUARMState,
1965 cp15.c14_timer[GTIMER_PHYS].ctl),
1966 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write,
1968 { .name = "CNTP_CTL(S)",
1969 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
1970 .secure = ARM_CP_SECSTATE_S,
1971 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
1972 .accessfn = gt_ptimer_access,
1973 .fieldoffset = offsetoflow32(CPUARMState,
1974 cp15.c14_timer[GTIMER_SEC].ctl),
1975 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
1977 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
1978 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
1979 .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
1980 .accessfn = gt_ptimer_access,
1981 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
1982 .resetvalue = 0,
1983 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write,
1985 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
1986 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
1987 .accessfn = gt_vtimer_access,
1988 .fieldoffset = offsetoflow32(CPUARMState,
1989 cp15.c14_timer[GTIMER_VIRT].ctl),
1990 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write,
1992 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
1993 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
1994 .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
1995 .accessfn = gt_vtimer_access,
1996 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
1997 .resetvalue = 0,
1998 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write,
2000 /* TimerValue views: a 32 bit downcounting view of the underlying state */
2001 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
2002 .secure = ARM_CP_SECSTATE_NS,
2003 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
2004 .accessfn = gt_ptimer_access,
2005 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write,
2007 { .name = "CNTP_TVAL(S)",
2008 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
2009 .secure = ARM_CP_SECSTATE_S,
2010 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
2011 .accessfn = gt_ptimer_access,
2012 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write,
2014 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
2015 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
2016 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
2017 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset,
2018 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write,
2020 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
2021 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
2022 .accessfn = gt_vtimer_access,
2023 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write,
2025 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
2026 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
2027 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
2028 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset,
2029 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write,
2031 /* The counter itself */
2032 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
2033 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
2034 .accessfn = gt_pct_access,
2035 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
2037 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
2038 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
2039 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2040 .accessfn = gt_pct_access, .readfn = gt_cnt_read,
2042 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
2043 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
2044 .accessfn = gt_vct_access,
2045 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
2047 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
2048 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
2049 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2050 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
2052 /* Comparison value, indicating when the timer goes off */
2053 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
2054 .secure = ARM_CP_SECSTATE_NS,
2055 .access = PL1_RW | PL0_R,
2056 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
2057 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
2058 .accessfn = gt_ptimer_access,
2059 .writefn = gt_phys_cval_write, .raw_writefn = raw_write,
2061 { .name = "CNTP_CVAL(S)", .cp = 15, .crm = 14, .opc1 = 2,
2062 .secure = ARM_CP_SECSTATE_S,
2063 .access = PL1_RW | PL0_R,
2064 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
2065 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
2066 .accessfn = gt_ptimer_access,
2067 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
2069 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
2070 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
2071 .access = PL1_RW | PL0_R,
2072 .type = ARM_CP_IO,
2073 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
2074 .resetvalue = 0, .accessfn = gt_ptimer_access,
2075 .writefn = gt_phys_cval_write, .raw_writefn = raw_write,
2077 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
2078 .access = PL1_RW | PL0_R,
2079 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
2080 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
2081 .accessfn = gt_vtimer_access,
2082 .writefn = gt_virt_cval_write, .raw_writefn = raw_write,
2084 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
2085 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
2086 .access = PL1_RW | PL0_R,
2087 .type = ARM_CP_IO,
2088 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
2089 .resetvalue = 0, .accessfn = gt_vtimer_access,
2090 .writefn = gt_virt_cval_write, .raw_writefn = raw_write,
2092 /* Secure timer -- this is actually restricted to only EL3
2093 * and configurably Secure-EL1 via the accessfn.
2095 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64,
2096 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0,
2097 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW,
2098 .accessfn = gt_stimer_access,
2099 .readfn = gt_sec_tval_read,
2100 .writefn = gt_sec_tval_write,
2101 .resetfn = gt_sec_timer_reset,
2103 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64,
2104 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1,
2105 .type = ARM_CP_IO, .access = PL1_RW,
2106 .accessfn = gt_stimer_access,
2107 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl),
2108 .resetvalue = 0,
2109 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
2111 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64,
2112 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2,
2113 .type = ARM_CP_IO, .access = PL1_RW,
2114 .accessfn = gt_stimer_access,
2115 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
2116 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
2118 REGINFO_SENTINEL
2121 #else
2122 /* In user-mode none of the generic timer registers are accessible,
2123 * and their implementation depends on QEMU_CLOCK_VIRTUAL and qdev gpio outputs,
2124 * so instead just don't register any of them.
2126 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
2127 REGINFO_SENTINEL
2130 #endif
2132 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
2134 if (arm_feature(env, ARM_FEATURE_LPAE)) {
2135 raw_write(env, ri, value);
2136 } else if (arm_feature(env, ARM_FEATURE_V7)) {
2137 raw_write(env, ri, value & 0xfffff6ff);
2138 } else {
2139 raw_write(env, ri, value & 0xfffff1ff);
2143 #ifndef CONFIG_USER_ONLY
2144 /* get_phys_addr() isn't present for user-mode-only targets */
2146 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri,
2147 bool isread)
2149 if (ri->opc2 & 4) {
2150 /* The ATS12NSO* operations must trap to EL3 if executed in
2151 * Secure EL1 (which can only happen if EL3 is AArch64).
2152 * They are simply UNDEF if executed from NS EL1.
2153 * They function normally from EL2 or EL3.
2155 if (arm_current_el(env) == 1) {
2156 if (arm_is_secure_below_el3(env)) {
2157 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3;
2159 return CP_ACCESS_TRAP_UNCATEGORIZED;
2162 return CP_ACCESS_OK;
2165 static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
2166 MMUAccessType access_type, ARMMMUIdx mmu_idx)
2168 hwaddr phys_addr;
2169 target_ulong page_size;
2170 int prot;
2171 bool ret;
2172 uint64_t par64;
2173 bool format64 = false;
2174 MemTxAttrs attrs = {};
2175 ARMMMUFaultInfo fi = {};
2176 ARMCacheAttrs cacheattrs = {};
2178 ret = get_phys_addr(env, value, access_type, mmu_idx, &phys_addr, &attrs,
2179 &prot, &page_size, &fi, &cacheattrs);
2181 if (is_a64(env)) {
2182 format64 = true;
2183 } else if (arm_feature(env, ARM_FEATURE_LPAE)) {
2185 * ATS1Cxx:
2186 * * TTBCR.EAE determines whether the result is returned using the
2187 * 32-bit or the 64-bit PAR format
2188 * * Instructions executed in Hyp mode always use the 64bit format
2190 * ATS1S2NSOxx uses the 64bit format if any of the following is true:
2191 * * The Non-secure TTBCR.EAE bit is set to 1
2192 * * The implementation includes EL2, and the value of HCR.VM is 1
2194 * ATS1Hx always uses the 64bit format (not supported yet).
2196 format64 = arm_s1_regime_using_lpae_format(env, mmu_idx);
2198 if (arm_feature(env, ARM_FEATURE_EL2)) {
2199 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
2200 format64 |= env->cp15.hcr_el2 & HCR_VM;
2201 } else {
2202 format64 |= arm_current_el(env) == 2;
2207 if (format64) {
2208 /* Create a 64-bit PAR */
2209 par64 = (1 << 11); /* LPAE bit always set */
2210 if (!ret) {
2211 par64 |= phys_addr & ~0xfffULL;
2212 if (!attrs.secure) {
2213 par64 |= (1 << 9); /* NS */
2215 par64 |= (uint64_t)cacheattrs.attrs << 56; /* ATTR */
2216 par64 |= cacheattrs.shareability << 7; /* SH */
2217 } else {
2218 uint32_t fsr = arm_fi_to_lfsc(&fi);
2220 par64 |= 1; /* F */
2221 par64 |= (fsr & 0x3f) << 1; /* FS */
2222 /* Note that S2WLK and FSTAGE are always zero, because we don't
2223 * implement virtualization and therefore there can't be a stage 2
2224 * fault.
2227 } else {
2228 /* fsr is a DFSR/IFSR value for the short descriptor
2229 * translation table format (with WnR always clear).
2230 * Convert it to a 32-bit PAR.
2232 if (!ret) {
2233 /* We do not set any attribute bits in the PAR */
2234 if (page_size == (1 << 24)
2235 && arm_feature(env, ARM_FEATURE_V7)) {
2236 par64 = (phys_addr & 0xff000000) | (1 << 1);
2237 } else {
2238 par64 = phys_addr & 0xfffff000;
2240 if (!attrs.secure) {
2241 par64 |= (1 << 9); /* NS */
2243 } else {
2244 uint32_t fsr = arm_fi_to_sfsc(&fi);
2246 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) |
2247 ((fsr & 0xf) << 1) | 1;
2250 return par64;
2253 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
2255 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
2256 uint64_t par64;
2257 ARMMMUIdx mmu_idx;
2258 int el = arm_current_el(env);
2259 bool secure = arm_is_secure_below_el3(env);
2261 switch (ri->opc2 & 6) {
2262 case 0:
2263 /* stage 1 current state PL1: ATS1CPR, ATS1CPW */
2264 switch (el) {
2265 case 3:
2266 mmu_idx = ARMMMUIdx_S1E3;
2267 break;
2268 case 2:
2269 mmu_idx = ARMMMUIdx_S1NSE1;
2270 break;
2271 case 1:
2272 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
2273 break;
2274 default:
2275 g_assert_not_reached();
2277 break;
2278 case 2:
2279 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
2280 switch (el) {
2281 case 3:
2282 mmu_idx = ARMMMUIdx_S1SE0;
2283 break;
2284 case 2:
2285 mmu_idx = ARMMMUIdx_S1NSE0;
2286 break;
2287 case 1:
2288 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
2289 break;
2290 default:
2291 g_assert_not_reached();
2293 break;
2294 case 4:
2295 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
2296 mmu_idx = ARMMMUIdx_S12NSE1;
2297 break;
2298 case 6:
2299 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
2300 mmu_idx = ARMMMUIdx_S12NSE0;
2301 break;
2302 default:
2303 g_assert_not_reached();
2306 par64 = do_ats_write(env, value, access_type, mmu_idx);
2308 A32_BANKED_CURRENT_REG_SET(env, par, par64);
2311 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri,
2312 uint64_t value)
2314 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
2315 uint64_t par64;
2317 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_S2NS);
2319 A32_BANKED_CURRENT_REG_SET(env, par, par64);
2322 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri,
2323 bool isread)
2325 if (arm_current_el(env) == 3 && !(env->cp15.scr_el3 & SCR_NS)) {
2326 return CP_ACCESS_TRAP;
2328 return CP_ACCESS_OK;
2331 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
2332 uint64_t value)
2334 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
2335 ARMMMUIdx mmu_idx;
2336 int secure = arm_is_secure_below_el3(env);
2338 switch (ri->opc2 & 6) {
2339 case 0:
2340 switch (ri->opc1) {
2341 case 0: /* AT S1E1R, AT S1E1W */
2342 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
2343 break;
2344 case 4: /* AT S1E2R, AT S1E2W */
2345 mmu_idx = ARMMMUIdx_S1E2;
2346 break;
2347 case 6: /* AT S1E3R, AT S1E3W */
2348 mmu_idx = ARMMMUIdx_S1E3;
2349 break;
2350 default:
2351 g_assert_not_reached();
2353 break;
2354 case 2: /* AT S1E0R, AT S1E0W */
2355 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
2356 break;
2357 case 4: /* AT S12E1R, AT S12E1W */
2358 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S12NSE1;
2359 break;
2360 case 6: /* AT S12E0R, AT S12E0W */
2361 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S12NSE0;
2362 break;
2363 default:
2364 g_assert_not_reached();
2367 env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx);
2369 #endif
2371 static const ARMCPRegInfo vapa_cp_reginfo[] = {
2372 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
2373 .access = PL1_RW, .resetvalue = 0,
2374 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
2375 offsetoflow32(CPUARMState, cp15.par_ns) },
2376 .writefn = par_write },
2377 #ifndef CONFIG_USER_ONLY
2378 /* This underdecoding is safe because the reginfo is NO_RAW. */
2379 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
2380 .access = PL1_W, .accessfn = ats_access,
2381 .writefn = ats_write, .type = ARM_CP_NO_RAW },
2382 #endif
2383 REGINFO_SENTINEL
2386 /* Return basic MPU access permission bits. */
2387 static uint32_t simple_mpu_ap_bits(uint32_t val)
2389 uint32_t ret;
2390 uint32_t mask;
2391 int i;
2392 ret = 0;
2393 mask = 3;
2394 for (i = 0; i < 16; i += 2) {
2395 ret |= (val >> i) & mask;
2396 mask <<= 2;
2398 return ret;
2401 /* Pad basic MPU access permission bits to extended format. */
2402 static uint32_t extended_mpu_ap_bits(uint32_t val)
2404 uint32_t ret;
2405 uint32_t mask;
2406 int i;
2407 ret = 0;
2408 mask = 3;
2409 for (i = 0; i < 16; i += 2) {
2410 ret |= (val & mask) << i;
2411 mask <<= 2;
2413 return ret;
2416 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
2417 uint64_t value)
2419 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
2422 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
2424 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
2427 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
2428 uint64_t value)
2430 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
2433 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
2435 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
2438 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri)
2440 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
2442 if (!u32p) {
2443 return 0;
2446 u32p += env->pmsav7.rnr[M_REG_NS];
2447 return *u32p;
2450 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri,
2451 uint64_t value)
2453 ARMCPU *cpu = arm_env_get_cpu(env);
2454 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
2456 if (!u32p) {
2457 return;
2460 u32p += env->pmsav7.rnr[M_REG_NS];
2461 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
2462 *u32p = value;
2465 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2466 uint64_t value)
2468 ARMCPU *cpu = arm_env_get_cpu(env);
2469 uint32_t nrgs = cpu->pmsav7_dregion;
2471 if (value >= nrgs) {
2472 qemu_log_mask(LOG_GUEST_ERROR,
2473 "PMSAv7 RGNR write >= # supported regions, %" PRIu32
2474 " > %" PRIu32 "\n", (uint32_t)value, nrgs);
2475 return;
2478 raw_write(env, ri, value);
2481 static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
2482 /* Reset for all these registers is handled in arm_cpu_reset(),
2483 * because the PMSAv7 is also used by M-profile CPUs, which do
2484 * not register cpregs but still need the state to be reset.
2486 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0,
2487 .access = PL1_RW, .type = ARM_CP_NO_RAW,
2488 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar),
2489 .readfn = pmsav7_read, .writefn = pmsav7_write,
2490 .resetfn = arm_cp_reset_ignore },
2491 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2,
2492 .access = PL1_RW, .type = ARM_CP_NO_RAW,
2493 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr),
2494 .readfn = pmsav7_read, .writefn = pmsav7_write,
2495 .resetfn = arm_cp_reset_ignore },
2496 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4,
2497 .access = PL1_RW, .type = ARM_CP_NO_RAW,
2498 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr),
2499 .readfn = pmsav7_read, .writefn = pmsav7_write,
2500 .resetfn = arm_cp_reset_ignore },
2501 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0,
2502 .access = PL1_RW,
2503 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]),
2504 .writefn = pmsav7_rgnr_write,
2505 .resetfn = arm_cp_reset_ignore },
2506 REGINFO_SENTINEL
2509 static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
2510 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
2511 .access = PL1_RW, .type = ARM_CP_ALIAS,
2512 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
2513 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
2514 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
2515 .access = PL1_RW, .type = ARM_CP_ALIAS,
2516 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
2517 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
2518 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
2519 .access = PL1_RW,
2520 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
2521 .resetvalue = 0, },
2522 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
2523 .access = PL1_RW,
2524 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
2525 .resetvalue = 0, },
2526 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
2527 .access = PL1_RW,
2528 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
2529 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
2530 .access = PL1_RW,
2531 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
2532 /* Protection region base and size registers */
2533 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
2534 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2535 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
2536 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
2537 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2538 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
2539 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
2540 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2541 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
2542 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
2543 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2544 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
2545 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
2546 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2547 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
2548 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
2549 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2550 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
2551 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
2552 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2553 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
2554 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
2555 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2556 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
2557 REGINFO_SENTINEL
2560 static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
2561 uint64_t value)
2563 TCR *tcr = raw_ptr(env, ri);
2564 int maskshift = extract32(value, 0, 3);
2566 if (!arm_feature(env, ARM_FEATURE_V8)) {
2567 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
2568 /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
2569 * using Long-desciptor translation table format */
2570 value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
2571 } else if (arm_feature(env, ARM_FEATURE_EL3)) {
2572 /* In an implementation that includes the Security Extensions
2573 * TTBCR has additional fields PD0 [4] and PD1 [5] for
2574 * Short-descriptor translation table format.
2576 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
2577 } else {
2578 value &= TTBCR_N;
2582 /* Update the masks corresponding to the TCR bank being written
2583 * Note that we always calculate mask and base_mask, but
2584 * they are only used for short-descriptor tables (ie if EAE is 0);
2585 * for long-descriptor tables the TCR fields are used differently
2586 * and the mask and base_mask values are meaningless.
2588 tcr->raw_tcr = value;
2589 tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift);
2590 tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift);
2593 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2594 uint64_t value)
2596 ARMCPU *cpu = arm_env_get_cpu(env);
2598 if (arm_feature(env, ARM_FEATURE_LPAE)) {
2599 /* With LPAE the TTBCR could result in a change of ASID
2600 * via the TTBCR.A1 bit, so do a TLB flush.
2602 tlb_flush(CPU(cpu));
2604 vmsa_ttbcr_raw_write(env, ri, value);
2607 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2609 TCR *tcr = raw_ptr(env, ri);
2611 /* Reset both the TCR as well as the masks corresponding to the bank of
2612 * the TCR being reset.
2614 tcr->raw_tcr = 0;
2615 tcr->mask = 0;
2616 tcr->base_mask = 0xffffc000u;
2619 static void vmsa_tcr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri,
2620 uint64_t value)
2622 ARMCPU *cpu = arm_env_get_cpu(env);
2623 TCR *tcr = raw_ptr(env, ri);
2625 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
2626 tlb_flush(CPU(cpu));
2627 tcr->raw_tcr = value;
2630 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2631 uint64_t value)
2633 /* 64 bit accesses to the TTBRs can change the ASID and so we
2634 * must flush the TLB.
2636 if (cpreg_field_is_64bit(ri)) {
2637 ARMCPU *cpu = arm_env_get_cpu(env);
2639 tlb_flush(CPU(cpu));
2641 raw_write(env, ri, value);
2644 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2645 uint64_t value)
2647 ARMCPU *cpu = arm_env_get_cpu(env);
2648 CPUState *cs = CPU(cpu);
2650 /* Accesses to VTTBR may change the VMID so we must flush the TLB. */
2651 if (raw_read(env, ri) != value) {
2652 tlb_flush_by_mmuidx(cs,
2653 ARMMMUIdxBit_S12NSE1 |
2654 ARMMMUIdxBit_S12NSE0 |
2655 ARMMMUIdxBit_S2NS);
2656 raw_write(env, ri, value);
2660 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = {
2661 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
2662 .access = PL1_RW, .type = ARM_CP_ALIAS,
2663 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
2664 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, },
2665 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
2666 .access = PL1_RW, .resetvalue = 0,
2667 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
2668 offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
2669 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
2670 .access = PL1_RW, .resetvalue = 0,
2671 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
2672 offsetof(CPUARMState, cp15.dfar_ns) } },
2673 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
2674 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
2675 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
2676 .resetvalue = 0, },
2677 REGINFO_SENTINEL
2680 static const ARMCPRegInfo vmsa_cp_reginfo[] = {
2681 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
2682 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
2683 .access = PL1_RW,
2684 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
2685 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
2686 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
2687 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
2688 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
2689 offsetof(CPUARMState, cp15.ttbr0_ns) } },
2690 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
2691 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
2692 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
2693 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
2694 offsetof(CPUARMState, cp15.ttbr1_ns) } },
2695 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
2696 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
2697 .access = PL1_RW, .writefn = vmsa_tcr_el1_write,
2698 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
2699 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
2700 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
2701 .access = PL1_RW, .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
2702 .raw_writefn = vmsa_ttbcr_raw_write,
2703 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]),
2704 offsetoflow32(CPUARMState, cp15.tcr_el[1])} },
2705 REGINFO_SENTINEL
2708 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
2709 uint64_t value)
2711 env->cp15.c15_ticonfig = value & 0xe7;
2712 /* The OS_TYPE bit in this register changes the reported CPUID! */
2713 env->cp15.c0_cpuid = (value & (1 << 5)) ?
2714 ARM_CPUID_TI915T : ARM_CPUID_TI925T;
2717 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
2718 uint64_t value)
2720 env->cp15.c15_threadid = value & 0xffff;
2723 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
2724 uint64_t value)
2726 /* Wait-for-interrupt (deprecated) */
2727 cpu_interrupt(CPU(arm_env_get_cpu(env)), CPU_INTERRUPT_HALT);
2730 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
2731 uint64_t value)
2733 /* On OMAP there are registers indicating the max/min index of dcache lines
2734 * containing a dirty line; cache flush operations have to reset these.
2736 env->cp15.c15_i_max = 0x000;
2737 env->cp15.c15_i_min = 0xff0;
2740 static const ARMCPRegInfo omap_cp_reginfo[] = {
2741 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
2742 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
2743 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
2744 .resetvalue = 0, },
2745 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
2746 .access = PL1_RW, .type = ARM_CP_NOP },
2747 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
2748 .access = PL1_RW,
2749 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
2750 .writefn = omap_ticonfig_write },
2751 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
2752 .access = PL1_RW,
2753 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
2754 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
2755 .access = PL1_RW, .resetvalue = 0xff0,
2756 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
2757 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
2758 .access = PL1_RW,
2759 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
2760 .writefn = omap_threadid_write },
2761 { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
2762 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
2763 .type = ARM_CP_NO_RAW,
2764 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
2765 /* TODO: Peripheral port remap register:
2766 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
2767 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
2768 * when MMU is off.
2770 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
2771 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
2772 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
2773 .writefn = omap_cachemaint_write },
2774 { .name = "C9", .cp = 15, .crn = 9,
2775 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
2776 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
2777 REGINFO_SENTINEL
2780 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
2781 uint64_t value)
2783 env->cp15.c15_cpar = value & 0x3fff;
2786 static const ARMCPRegInfo xscale_cp_reginfo[] = {
2787 { .name = "XSCALE_CPAR",
2788 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
2789 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
2790 .writefn = xscale_cpar_write, },
2791 { .name = "XSCALE_AUXCR",
2792 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
2793 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
2794 .resetvalue = 0, },
2795 /* XScale specific cache-lockdown: since we have no cache we NOP these
2796 * and hope the guest does not really rely on cache behaviour.
2798 { .name = "XSCALE_LOCK_ICACHE_LINE",
2799 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
2800 .access = PL1_W, .type = ARM_CP_NOP },
2801 { .name = "XSCALE_UNLOCK_ICACHE",
2802 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
2803 .access = PL1_W, .type = ARM_CP_NOP },
2804 { .name = "XSCALE_DCACHE_LOCK",
2805 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
2806 .access = PL1_RW, .type = ARM_CP_NOP },
2807 { .name = "XSCALE_UNLOCK_DCACHE",
2808 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
2809 .access = PL1_W, .type = ARM_CP_NOP },
2810 REGINFO_SENTINEL
2813 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
2814 /* RAZ/WI the whole crn=15 space, when we don't have a more specific
2815 * implementation of this implementation-defined space.
2816 * Ideally this should eventually disappear in favour of actually
2817 * implementing the correct behaviour for all cores.
2819 { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
2820 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
2821 .access = PL1_RW,
2822 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
2823 .resetvalue = 0 },
2824 REGINFO_SENTINEL
2827 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
2828 /* Cache status: RAZ because we have no cache so it's always clean */
2829 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
2830 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2831 .resetvalue = 0 },
2832 REGINFO_SENTINEL
2835 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
2836 /* We never have a a block transfer operation in progress */
2837 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
2838 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2839 .resetvalue = 0 },
2840 /* The cache ops themselves: these all NOP for QEMU */
2841 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
2842 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2843 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
2844 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2845 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
2846 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2847 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
2848 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2849 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
2850 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2851 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
2852 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2853 REGINFO_SENTINEL
2856 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
2857 /* The cache test-and-clean instructions always return (1 << 30)
2858 * to indicate that there are no dirty cache lines.
2860 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
2861 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2862 .resetvalue = (1 << 30) },
2863 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
2864 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2865 .resetvalue = (1 << 30) },
2866 REGINFO_SENTINEL
2869 static const ARMCPRegInfo strongarm_cp_reginfo[] = {
2870 /* Ignore ReadBuffer accesses */
2871 { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
2872 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
2873 .access = PL1_RW, .resetvalue = 0,
2874 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
2875 REGINFO_SENTINEL
2878 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2880 ARMCPU *cpu = arm_env_get_cpu(env);
2881 unsigned int cur_el = arm_current_el(env);
2882 bool secure = arm_is_secure(env);
2884 if (arm_feature(&cpu->env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
2885 return env->cp15.vpidr_el2;
2887 return raw_read(env, ri);
2890 static uint64_t mpidr_read_val(CPUARMState *env)
2892 ARMCPU *cpu = ARM_CPU(arm_env_get_cpu(env));
2893 uint64_t mpidr = cpu->mp_affinity;
2895 if (arm_feature(env, ARM_FEATURE_V7MP)) {
2896 mpidr |= (1U << 31);
2897 /* Cores which are uniprocessor (non-coherent)
2898 * but still implement the MP extensions set
2899 * bit 30. (For instance, Cortex-R5).
2901 if (cpu->mp_is_up) {
2902 mpidr |= (1u << 30);
2905 return mpidr;
2908 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2910 unsigned int cur_el = arm_current_el(env);
2911 bool secure = arm_is_secure(env);
2913 if (arm_feature(env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
2914 return env->cp15.vmpidr_el2;
2916 return mpidr_read_val(env);
2919 static const ARMCPRegInfo mpidr_cp_reginfo[] = {
2920 { .name = "MPIDR", .state = ARM_CP_STATE_BOTH,
2921 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
2922 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
2923 REGINFO_SENTINEL
2926 static const ARMCPRegInfo lpae_cp_reginfo[] = {
2927 /* NOP AMAIR0/1 */
2928 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
2929 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
2930 .access = PL1_RW, .type = ARM_CP_CONST,
2931 .resetvalue = 0 },
2932 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
2933 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
2934 .access = PL1_RW, .type = ARM_CP_CONST,
2935 .resetvalue = 0 },
2936 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
2937 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
2938 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
2939 offsetof(CPUARMState, cp15.par_ns)} },
2940 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
2941 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
2942 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
2943 offsetof(CPUARMState, cp15.ttbr0_ns) },
2944 .writefn = vmsa_ttbr_write, },
2945 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
2946 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
2947 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
2948 offsetof(CPUARMState, cp15.ttbr1_ns) },
2949 .writefn = vmsa_ttbr_write, },
2950 REGINFO_SENTINEL
2953 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2955 return vfp_get_fpcr(env);
2958 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2959 uint64_t value)
2961 vfp_set_fpcr(env, value);
2964 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2966 return vfp_get_fpsr(env);
2969 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2970 uint64_t value)
2972 vfp_set_fpsr(env, value);
2975 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri,
2976 bool isread)
2978 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) {
2979 return CP_ACCESS_TRAP;
2981 return CP_ACCESS_OK;
2984 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
2985 uint64_t value)
2987 env->daif = value & PSTATE_DAIF;
2990 static CPAccessResult aa64_cacheop_access(CPUARMState *env,
2991 const ARMCPRegInfo *ri,
2992 bool isread)
2994 /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless
2995 * SCTLR_EL1.UCI is set.
2997 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCI)) {
2998 return CP_ACCESS_TRAP;
3000 return CP_ACCESS_OK;
3003 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
3004 * Page D4-1736 (DDI0487A.b)
3007 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3008 uint64_t value)
3010 CPUState *cs = ENV_GET_CPU(env);
3012 if (arm_is_secure_below_el3(env)) {
3013 tlb_flush_by_mmuidx(cs,
3014 ARMMMUIdxBit_S1SE1 |
3015 ARMMMUIdxBit_S1SE0);
3016 } else {
3017 tlb_flush_by_mmuidx(cs,
3018 ARMMMUIdxBit_S12NSE1 |
3019 ARMMMUIdxBit_S12NSE0);
3023 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3024 uint64_t value)
3026 CPUState *cs = ENV_GET_CPU(env);
3027 bool sec = arm_is_secure_below_el3(env);
3029 if (sec) {
3030 tlb_flush_by_mmuidx_all_cpus_synced(cs,
3031 ARMMMUIdxBit_S1SE1 |
3032 ARMMMUIdxBit_S1SE0);
3033 } else {
3034 tlb_flush_by_mmuidx_all_cpus_synced(cs,
3035 ARMMMUIdxBit_S12NSE1 |
3036 ARMMMUIdxBit_S12NSE0);
3040 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3041 uint64_t value)
3043 /* Note that the 'ALL' scope must invalidate both stage 1 and
3044 * stage 2 translations, whereas most other scopes only invalidate
3045 * stage 1 translations.
3047 ARMCPU *cpu = arm_env_get_cpu(env);
3048 CPUState *cs = CPU(cpu);
3050 if (arm_is_secure_below_el3(env)) {
3051 tlb_flush_by_mmuidx(cs,
3052 ARMMMUIdxBit_S1SE1 |
3053 ARMMMUIdxBit_S1SE0);
3054 } else {
3055 if (arm_feature(env, ARM_FEATURE_EL2)) {
3056 tlb_flush_by_mmuidx(cs,
3057 ARMMMUIdxBit_S12NSE1 |
3058 ARMMMUIdxBit_S12NSE0 |
3059 ARMMMUIdxBit_S2NS);
3060 } else {
3061 tlb_flush_by_mmuidx(cs,
3062 ARMMMUIdxBit_S12NSE1 |
3063 ARMMMUIdxBit_S12NSE0);
3068 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri,
3069 uint64_t value)
3071 ARMCPU *cpu = arm_env_get_cpu(env);
3072 CPUState *cs = CPU(cpu);
3074 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2);
3077 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri,
3078 uint64_t value)
3080 ARMCPU *cpu = arm_env_get_cpu(env);
3081 CPUState *cs = CPU(cpu);
3083 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E3);
3086 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3087 uint64_t value)
3089 /* Note that the 'ALL' scope must invalidate both stage 1 and
3090 * stage 2 translations, whereas most other scopes only invalidate
3091 * stage 1 translations.
3093 CPUState *cs = ENV_GET_CPU(env);
3094 bool sec = arm_is_secure_below_el3(env);
3095 bool has_el2 = arm_feature(env, ARM_FEATURE_EL2);
3097 if (sec) {
3098 tlb_flush_by_mmuidx_all_cpus_synced(cs,
3099 ARMMMUIdxBit_S1SE1 |
3100 ARMMMUIdxBit_S1SE0);
3101 } else if (has_el2) {
3102 tlb_flush_by_mmuidx_all_cpus_synced(cs,
3103 ARMMMUIdxBit_S12NSE1 |
3104 ARMMMUIdxBit_S12NSE0 |
3105 ARMMMUIdxBit_S2NS);
3106 } else {
3107 tlb_flush_by_mmuidx_all_cpus_synced(cs,
3108 ARMMMUIdxBit_S12NSE1 |
3109 ARMMMUIdxBit_S12NSE0);
3113 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3114 uint64_t value)
3116 CPUState *cs = ENV_GET_CPU(env);
3118 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2);
3121 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3122 uint64_t value)
3124 CPUState *cs = ENV_GET_CPU(env);
3126 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E3);
3129 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3130 uint64_t value)
3132 /* Invalidate by VA, EL1&0 (AArch64 version).
3133 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
3134 * since we don't support flush-for-specific-ASID-only or
3135 * flush-last-level-only.
3137 ARMCPU *cpu = arm_env_get_cpu(env);
3138 CPUState *cs = CPU(cpu);
3139 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3141 if (arm_is_secure_below_el3(env)) {
3142 tlb_flush_page_by_mmuidx(cs, pageaddr,
3143 ARMMMUIdxBit_S1SE1 |
3144 ARMMMUIdxBit_S1SE0);
3145 } else {
3146 tlb_flush_page_by_mmuidx(cs, pageaddr,
3147 ARMMMUIdxBit_S12NSE1 |
3148 ARMMMUIdxBit_S12NSE0);
3152 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri,
3153 uint64_t value)
3155 /* Invalidate by VA, EL2
3156 * Currently handles both VAE2 and VALE2, since we don't support
3157 * flush-last-level-only.
3159 ARMCPU *cpu = arm_env_get_cpu(env);
3160 CPUState *cs = CPU(cpu);
3161 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3163 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2);
3166 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri,
3167 uint64_t value)
3169 /* Invalidate by VA, EL3
3170 * Currently handles both VAE3 and VALE3, since we don't support
3171 * flush-last-level-only.
3173 ARMCPU *cpu = arm_env_get_cpu(env);
3174 CPUState *cs = CPU(cpu);
3175 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3177 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E3);
3180 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3181 uint64_t value)
3183 ARMCPU *cpu = arm_env_get_cpu(env);
3184 CPUState *cs = CPU(cpu);
3185 bool sec = arm_is_secure_below_el3(env);
3186 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3188 if (sec) {
3189 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3190 ARMMMUIdxBit_S1SE1 |
3191 ARMMMUIdxBit_S1SE0);
3192 } else {
3193 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3194 ARMMMUIdxBit_S12NSE1 |
3195 ARMMMUIdxBit_S12NSE0);
3199 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3200 uint64_t value)
3202 CPUState *cs = ENV_GET_CPU(env);
3203 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3205 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3206 ARMMMUIdxBit_S1E2);
3209 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3210 uint64_t value)
3212 CPUState *cs = ENV_GET_CPU(env);
3213 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3215 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3216 ARMMMUIdxBit_S1E3);
3219 static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3220 uint64_t value)
3222 /* Invalidate by IPA. This has to invalidate any structures that
3223 * contain only stage 2 translation information, but does not need
3224 * to apply to structures that contain combined stage 1 and stage 2
3225 * translation information.
3226 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
3228 ARMCPU *cpu = arm_env_get_cpu(env);
3229 CPUState *cs = CPU(cpu);
3230 uint64_t pageaddr;
3232 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
3233 return;
3236 pageaddr = sextract64(value << 12, 0, 48);
3238 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS);
3241 static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3242 uint64_t value)
3244 CPUState *cs = ENV_GET_CPU(env);
3245 uint64_t pageaddr;
3247 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
3248 return;
3251 pageaddr = sextract64(value << 12, 0, 48);
3253 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3254 ARMMMUIdxBit_S2NS);
3257 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri,
3258 bool isread)
3260 /* We don't implement EL2, so the only control on DC ZVA is the
3261 * bit in the SCTLR which can prohibit access for EL0.
3263 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
3264 return CP_ACCESS_TRAP;
3266 return CP_ACCESS_OK;
3269 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
3271 ARMCPU *cpu = arm_env_get_cpu(env);
3272 int dzp_bit = 1 << 4;
3274 /* DZP indicates whether DC ZVA access is allowed */
3275 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) {
3276 dzp_bit = 0;
3278 return cpu->dcz_blocksize | dzp_bit;
3281 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
3282 bool isread)
3284 if (!(env->pstate & PSTATE_SP)) {
3285 /* Access to SP_EL0 is undefined if it's being used as
3286 * the stack pointer.
3288 return CP_ACCESS_TRAP_UNCATEGORIZED;
3290 return CP_ACCESS_OK;
3293 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
3295 return env->pstate & PSTATE_SP;
3298 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
3300 update_spsel(env, val);
3303 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3304 uint64_t value)
3306 ARMCPU *cpu = arm_env_get_cpu(env);
3308 if (raw_read(env, ri) == value) {
3309 /* Skip the TLB flush if nothing actually changed; Linux likes
3310 * to do a lot of pointless SCTLR writes.
3312 return;
3315 if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) {
3316 /* M bit is RAZ/WI for PMSA with no MPU implemented */
3317 value &= ~SCTLR_M;
3320 raw_write(env, ri, value);
3321 /* ??? Lots of these bits are not implemented. */
3322 /* This may enable/disable the MMU, so do a TLB flush. */
3323 tlb_flush(CPU(cpu));
3326 static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri,
3327 bool isread)
3329 if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) {
3330 return CP_ACCESS_TRAP_FP_EL2;
3332 if (env->cp15.cptr_el[3] & CPTR_TFP) {
3333 return CP_ACCESS_TRAP_FP_EL3;
3335 return CP_ACCESS_OK;
3338 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3339 uint64_t value)
3341 env->cp15.mdcr_el3 = value & SDCR_VALID_MASK;
3344 static const ARMCPRegInfo v8_cp_reginfo[] = {
3345 /* Minimal set of EL0-visible registers. This will need to be expanded
3346 * significantly for system emulation of AArch64 CPUs.
3348 { .name = "NZCV", .state = ARM_CP_STATE_AA64,
3349 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
3350 .access = PL0_RW, .type = ARM_CP_NZCV },
3351 { .name = "DAIF", .state = ARM_CP_STATE_AA64,
3352 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
3353 .type = ARM_CP_NO_RAW,
3354 .access = PL0_RW, .accessfn = aa64_daif_access,
3355 .fieldoffset = offsetof(CPUARMState, daif),
3356 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
3357 { .name = "FPCR", .state = ARM_CP_STATE_AA64,
3358 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
3359 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
3360 .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
3361 { .name = "FPSR", .state = ARM_CP_STATE_AA64,
3362 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
3363 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
3364 .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
3365 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
3366 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
3367 .access = PL0_R, .type = ARM_CP_NO_RAW,
3368 .readfn = aa64_dczid_read },
3369 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
3370 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
3371 .access = PL0_W, .type = ARM_CP_DC_ZVA,
3372 #ifndef CONFIG_USER_ONLY
3373 /* Avoid overhead of an access check that always passes in user-mode */
3374 .accessfn = aa64_zva_access,
3375 #endif
3377 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
3378 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
3379 .access = PL1_R, .type = ARM_CP_CURRENTEL },
3380 /* Cache ops: all NOPs since we don't emulate caches */
3381 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
3382 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
3383 .access = PL1_W, .type = ARM_CP_NOP },
3384 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
3385 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
3386 .access = PL1_W, .type = ARM_CP_NOP },
3387 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
3388 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
3389 .access = PL0_W, .type = ARM_CP_NOP,
3390 .accessfn = aa64_cacheop_access },
3391 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
3392 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
3393 .access = PL1_W, .type = ARM_CP_NOP },
3394 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
3395 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
3396 .access = PL1_W, .type = ARM_CP_NOP },
3397 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
3398 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
3399 .access = PL0_W, .type = ARM_CP_NOP,
3400 .accessfn = aa64_cacheop_access },
3401 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
3402 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
3403 .access = PL1_W, .type = ARM_CP_NOP },
3404 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
3405 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
3406 .access = PL0_W, .type = ARM_CP_NOP,
3407 .accessfn = aa64_cacheop_access },
3408 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
3409 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
3410 .access = PL0_W, .type = ARM_CP_NOP,
3411 .accessfn = aa64_cacheop_access },
3412 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
3413 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
3414 .access = PL1_W, .type = ARM_CP_NOP },
3415 /* TLBI operations */
3416 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
3417 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
3418 .access = PL1_W, .type = ARM_CP_NO_RAW,
3419 .writefn = tlbi_aa64_vmalle1is_write },
3420 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
3421 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
3422 .access = PL1_W, .type = ARM_CP_NO_RAW,
3423 .writefn = tlbi_aa64_vae1is_write },
3424 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
3425 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
3426 .access = PL1_W, .type = ARM_CP_NO_RAW,
3427 .writefn = tlbi_aa64_vmalle1is_write },
3428 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
3429 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
3430 .access = PL1_W, .type = ARM_CP_NO_RAW,
3431 .writefn = tlbi_aa64_vae1is_write },
3432 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
3433 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
3434 .access = PL1_W, .type = ARM_CP_NO_RAW,
3435 .writefn = tlbi_aa64_vae1is_write },
3436 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
3437 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
3438 .access = PL1_W, .type = ARM_CP_NO_RAW,
3439 .writefn = tlbi_aa64_vae1is_write },
3440 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
3441 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
3442 .access = PL1_W, .type = ARM_CP_NO_RAW,
3443 .writefn = tlbi_aa64_vmalle1_write },
3444 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
3445 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
3446 .access = PL1_W, .type = ARM_CP_NO_RAW,
3447 .writefn = tlbi_aa64_vae1_write },
3448 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
3449 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
3450 .access = PL1_W, .type = ARM_CP_NO_RAW,
3451 .writefn = tlbi_aa64_vmalle1_write },
3452 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
3453 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
3454 .access = PL1_W, .type = ARM_CP_NO_RAW,
3455 .writefn = tlbi_aa64_vae1_write },
3456 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
3457 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
3458 .access = PL1_W, .type = ARM_CP_NO_RAW,
3459 .writefn = tlbi_aa64_vae1_write },
3460 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
3461 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
3462 .access = PL1_W, .type = ARM_CP_NO_RAW,
3463 .writefn = tlbi_aa64_vae1_write },
3464 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64,
3465 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
3466 .access = PL2_W, .type = ARM_CP_NO_RAW,
3467 .writefn = tlbi_aa64_ipas2e1is_write },
3468 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64,
3469 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
3470 .access = PL2_W, .type = ARM_CP_NO_RAW,
3471 .writefn = tlbi_aa64_ipas2e1is_write },
3472 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64,
3473 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
3474 .access = PL2_W, .type = ARM_CP_NO_RAW,
3475 .writefn = tlbi_aa64_alle1is_write },
3476 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64,
3477 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6,
3478 .access = PL2_W, .type = ARM_CP_NO_RAW,
3479 .writefn = tlbi_aa64_alle1is_write },
3480 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64,
3481 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
3482 .access = PL2_W, .type = ARM_CP_NO_RAW,
3483 .writefn = tlbi_aa64_ipas2e1_write },
3484 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64,
3485 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
3486 .access = PL2_W, .type = ARM_CP_NO_RAW,
3487 .writefn = tlbi_aa64_ipas2e1_write },
3488 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64,
3489 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
3490 .access = PL2_W, .type = ARM_CP_NO_RAW,
3491 .writefn = tlbi_aa64_alle1_write },
3492 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64,
3493 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6,
3494 .access = PL2_W, .type = ARM_CP_NO_RAW,
3495 .writefn = tlbi_aa64_alle1is_write },
3496 #ifndef CONFIG_USER_ONLY
3497 /* 64 bit address translation operations */
3498 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
3499 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
3500 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3501 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
3502 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
3503 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3504 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
3505 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
3506 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3507 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
3508 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
3509 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3510 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64,
3511 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4,
3512 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3513 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64,
3514 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5,
3515 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3516 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64,
3517 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6,
3518 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3519 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64,
3520 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7,
3521 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3522 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
3523 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64,
3524 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0,
3525 .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3526 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64,
3527 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1,
3528 .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3529 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64,
3530 .type = ARM_CP_ALIAS,
3531 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0,
3532 .access = PL1_RW, .resetvalue = 0,
3533 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]),
3534 .writefn = par_write },
3535 #endif
3536 /* TLB invalidate last level of translation table walk */
3537 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
3538 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
3539 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
3540 .type = ARM_CP_NO_RAW, .access = PL1_W,
3541 .writefn = tlbimvaa_is_write },
3542 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
3543 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
3544 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
3545 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
3546 { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
3547 .type = ARM_CP_NO_RAW, .access = PL2_W,
3548 .writefn = tlbimva_hyp_write },
3549 { .name = "TLBIMVALHIS",
3550 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
3551 .type = ARM_CP_NO_RAW, .access = PL2_W,
3552 .writefn = tlbimva_hyp_is_write },
3553 { .name = "TLBIIPAS2",
3554 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
3555 .type = ARM_CP_NO_RAW, .access = PL2_W,
3556 .writefn = tlbiipas2_write },
3557 { .name = "TLBIIPAS2IS",
3558 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
3559 .type = ARM_CP_NO_RAW, .access = PL2_W,
3560 .writefn = tlbiipas2_is_write },
3561 { .name = "TLBIIPAS2L",
3562 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
3563 .type = ARM_CP_NO_RAW, .access = PL2_W,
3564 .writefn = tlbiipas2_write },
3565 { .name = "TLBIIPAS2LIS",
3566 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
3567 .type = ARM_CP_NO_RAW, .access = PL2_W,
3568 .writefn = tlbiipas2_is_write },
3569 /* 32 bit cache operations */
3570 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
3571 .type = ARM_CP_NOP, .access = PL1_W },
3572 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
3573 .type = ARM_CP_NOP, .access = PL1_W },
3574 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
3575 .type = ARM_CP_NOP, .access = PL1_W },
3576 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
3577 .type = ARM_CP_NOP, .access = PL1_W },
3578 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
3579 .type = ARM_CP_NOP, .access = PL1_W },
3580 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
3581 .type = ARM_CP_NOP, .access = PL1_W },
3582 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
3583 .type = ARM_CP_NOP, .access = PL1_W },
3584 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
3585 .type = ARM_CP_NOP, .access = PL1_W },
3586 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
3587 .type = ARM_CP_NOP, .access = PL1_W },
3588 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
3589 .type = ARM_CP_NOP, .access = PL1_W },
3590 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
3591 .type = ARM_CP_NOP, .access = PL1_W },
3592 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
3593 .type = ARM_CP_NOP, .access = PL1_W },
3594 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
3595 .type = ARM_CP_NOP, .access = PL1_W },
3596 /* MMU Domain access control / MPU write buffer control */
3597 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
3598 .access = PL1_RW, .resetvalue = 0,
3599 .writefn = dacr_write, .raw_writefn = raw_write,
3600 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
3601 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
3602 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
3603 .type = ARM_CP_ALIAS,
3604 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
3605 .access = PL1_RW,
3606 .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
3607 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
3608 .type = ARM_CP_ALIAS,
3609 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
3610 .access = PL1_RW,
3611 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) },
3612 /* We rely on the access checks not allowing the guest to write to the
3613 * state field when SPSel indicates that it's being used as the stack
3614 * pointer.
3616 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
3617 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
3618 .access = PL1_RW, .accessfn = sp_el0_access,
3619 .type = ARM_CP_ALIAS,
3620 .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
3621 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
3622 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
3623 .access = PL2_RW, .type = ARM_CP_ALIAS,
3624 .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
3625 { .name = "SPSel", .state = ARM_CP_STATE_AA64,
3626 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
3627 .type = ARM_CP_NO_RAW,
3628 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
3629 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64,
3630 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0,
3631 .type = ARM_CP_ALIAS,
3632 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]),
3633 .access = PL2_RW, .accessfn = fpexc32_access },
3634 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
3635 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
3636 .access = PL2_RW, .resetvalue = 0,
3637 .writefn = dacr_write, .raw_writefn = raw_write,
3638 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
3639 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
3640 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
3641 .access = PL2_RW, .resetvalue = 0,
3642 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
3643 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64,
3644 .type = ARM_CP_ALIAS,
3645 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0,
3646 .access = PL2_RW,
3647 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) },
3648 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64,
3649 .type = ARM_CP_ALIAS,
3650 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1,
3651 .access = PL2_RW,
3652 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) },
3653 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64,
3654 .type = ARM_CP_ALIAS,
3655 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2,
3656 .access = PL2_RW,
3657 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) },
3658 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64,
3659 .type = ARM_CP_ALIAS,
3660 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3,
3661 .access = PL2_RW,
3662 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) },
3663 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64,
3664 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1,
3665 .resetvalue = 0,
3666 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) },
3667 { .name = "SDCR", .type = ARM_CP_ALIAS,
3668 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1,
3669 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
3670 .writefn = sdcr_write,
3671 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) },
3672 REGINFO_SENTINEL
3675 /* Used to describe the behaviour of EL2 regs when EL2 does not exist. */
3676 static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = {
3677 { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64,
3678 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
3679 .access = PL2_RW,
3680 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
3681 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
3682 .type = ARM_CP_NO_RAW,
3683 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
3684 .access = PL2_RW,
3685 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
3686 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
3687 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
3688 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3689 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
3690 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
3691 .access = PL2_RW, .type = ARM_CP_CONST,
3692 .resetvalue = 0 },
3693 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3694 .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
3695 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3696 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
3697 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
3698 .access = PL2_RW, .type = ARM_CP_CONST,
3699 .resetvalue = 0 },
3700 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3701 .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
3702 .access = PL2_RW, .type = ARM_CP_CONST,
3703 .resetvalue = 0 },
3704 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
3705 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
3706 .access = PL2_RW, .type = ARM_CP_CONST,
3707 .resetvalue = 0 },
3708 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
3709 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
3710 .access = PL2_RW, .type = ARM_CP_CONST,
3711 .resetvalue = 0 },
3712 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
3713 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
3714 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3715 { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH,
3716 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
3717 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
3718 .type = ARM_CP_CONST, .resetvalue = 0 },
3719 { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
3720 .cp = 15, .opc1 = 6, .crm = 2,
3721 .access = PL2_RW, .accessfn = access_el3_aa32ns,
3722 .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
3723 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
3724 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
3725 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3726 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
3727 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
3728 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3729 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
3730 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
3731 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3732 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
3733 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
3734 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3735 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
3736 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
3737 .resetvalue = 0 },
3738 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
3739 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
3740 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3741 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
3742 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
3743 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3744 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
3745 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
3746 .resetvalue = 0 },
3747 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
3748 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
3749 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3750 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
3751 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
3752 .resetvalue = 0 },
3753 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
3754 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
3755 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3756 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
3757 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
3758 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3759 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
3760 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
3761 .access = PL2_RW, .accessfn = access_tda,
3762 .type = ARM_CP_CONST, .resetvalue = 0 },
3763 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH,
3764 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
3765 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
3766 .type = ARM_CP_CONST, .resetvalue = 0 },
3767 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
3768 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
3769 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3770 REGINFO_SENTINEL
3773 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3775 ARMCPU *cpu = arm_env_get_cpu(env);
3776 uint64_t valid_mask = HCR_MASK;
3778 if (arm_feature(env, ARM_FEATURE_EL3)) {
3779 valid_mask &= ~HCR_HCD;
3780 } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) {
3781 /* Architecturally HCR.TSC is RES0 if EL3 is not implemented.
3782 * However, if we're using the SMC PSCI conduit then QEMU is
3783 * effectively acting like EL3 firmware and so the guest at
3784 * EL2 should retain the ability to prevent EL1 from being
3785 * able to make SMC calls into the ersatz firmware, so in
3786 * that case HCR.TSC should be read/write.
3788 valid_mask &= ~HCR_TSC;
3791 /* Clear RES0 bits. */
3792 value &= valid_mask;
3794 /* These bits change the MMU setup:
3795 * HCR_VM enables stage 2 translation
3796 * HCR_PTW forbids certain page-table setups
3797 * HCR_DC Disables stage1 and enables stage2 translation
3799 if ((raw_read(env, ri) ^ value) & (HCR_VM | HCR_PTW | HCR_DC)) {
3800 tlb_flush(CPU(cpu));
3802 raw_write(env, ri, value);
3805 static const ARMCPRegInfo el2_cp_reginfo[] = {
3806 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
3807 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
3808 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
3809 .writefn = hcr_write },
3810 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
3811 .type = ARM_CP_ALIAS,
3812 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
3813 .access = PL2_RW,
3814 .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
3815 { .name = "ESR_EL2", .state = ARM_CP_STATE_AA64,
3816 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
3817 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
3818 { .name = "FAR_EL2", .state = ARM_CP_STATE_AA64,
3819 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
3820 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
3821 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
3822 .type = ARM_CP_ALIAS,
3823 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
3824 .access = PL2_RW,
3825 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) },
3826 { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64,
3827 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
3828 .access = PL2_RW, .writefn = vbar_write,
3829 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
3830 .resetvalue = 0 },
3831 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
3832 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
3833 .access = PL3_RW, .type = ARM_CP_ALIAS,
3834 .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
3835 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
3836 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
3837 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
3838 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]) },
3839 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
3840 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
3841 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
3842 .resetvalue = 0 },
3843 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3844 .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
3845 .access = PL2_RW, .type = ARM_CP_ALIAS,
3846 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
3847 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
3848 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
3849 .access = PL2_RW, .type = ARM_CP_CONST,
3850 .resetvalue = 0 },
3851 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
3852 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3853 .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
3854 .access = PL2_RW, .type = ARM_CP_CONST,
3855 .resetvalue = 0 },
3856 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
3857 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
3858 .access = PL2_RW, .type = ARM_CP_CONST,
3859 .resetvalue = 0 },
3860 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
3861 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
3862 .access = PL2_RW, .type = ARM_CP_CONST,
3863 .resetvalue = 0 },
3864 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
3865 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
3866 .access = PL2_RW,
3867 /* no .writefn needed as this can't cause an ASID change;
3868 * no .raw_writefn or .resetfn needed as we never use mask/base_mask
3870 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
3871 { .name = "VTCR", .state = ARM_CP_STATE_AA32,
3872 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
3873 .type = ARM_CP_ALIAS,
3874 .access = PL2_RW, .accessfn = access_el3_aa32ns,
3875 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
3876 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64,
3877 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
3878 .access = PL2_RW,
3879 /* no .writefn needed as this can't cause an ASID change;
3880 * no .raw_writefn or .resetfn needed as we never use mask/base_mask
3882 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
3883 { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
3884 .cp = 15, .opc1 = 6, .crm = 2,
3885 .type = ARM_CP_64BIT | ARM_CP_ALIAS,
3886 .access = PL2_RW, .accessfn = access_el3_aa32ns,
3887 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2),
3888 .writefn = vttbr_write },
3889 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
3890 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
3891 .access = PL2_RW, .writefn = vttbr_write,
3892 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) },
3893 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
3894 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
3895 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
3896 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
3897 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
3898 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
3899 .access = PL2_RW, .resetvalue = 0,
3900 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
3901 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
3902 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
3903 .access = PL2_RW, .resetvalue = 0,
3904 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
3905 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
3906 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
3907 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
3908 { .name = "TLBIALLNSNH",
3909 .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
3910 .type = ARM_CP_NO_RAW, .access = PL2_W,
3911 .writefn = tlbiall_nsnh_write },
3912 { .name = "TLBIALLNSNHIS",
3913 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
3914 .type = ARM_CP_NO_RAW, .access = PL2_W,
3915 .writefn = tlbiall_nsnh_is_write },
3916 { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
3917 .type = ARM_CP_NO_RAW, .access = PL2_W,
3918 .writefn = tlbiall_hyp_write },
3919 { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
3920 .type = ARM_CP_NO_RAW, .access = PL2_W,
3921 .writefn = tlbiall_hyp_is_write },
3922 { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
3923 .type = ARM_CP_NO_RAW, .access = PL2_W,
3924 .writefn = tlbimva_hyp_write },
3925 { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
3926 .type = ARM_CP_NO_RAW, .access = PL2_W,
3927 .writefn = tlbimva_hyp_is_write },
3928 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64,
3929 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
3930 .type = ARM_CP_NO_RAW, .access = PL2_W,
3931 .writefn = tlbi_aa64_alle2_write },
3932 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64,
3933 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
3934 .type = ARM_CP_NO_RAW, .access = PL2_W,
3935 .writefn = tlbi_aa64_vae2_write },
3936 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64,
3937 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
3938 .access = PL2_W, .type = ARM_CP_NO_RAW,
3939 .writefn = tlbi_aa64_vae2_write },
3940 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64,
3941 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
3942 .access = PL2_W, .type = ARM_CP_NO_RAW,
3943 .writefn = tlbi_aa64_alle2is_write },
3944 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64,
3945 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
3946 .type = ARM_CP_NO_RAW, .access = PL2_W,
3947 .writefn = tlbi_aa64_vae2is_write },
3948 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64,
3949 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
3950 .access = PL2_W, .type = ARM_CP_NO_RAW,
3951 .writefn = tlbi_aa64_vae2is_write },
3952 #ifndef CONFIG_USER_ONLY
3953 /* Unlike the other EL2-related AT operations, these must
3954 * UNDEF from EL3 if EL2 is not implemented, which is why we
3955 * define them here rather than with the rest of the AT ops.
3957 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64,
3958 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
3959 .access = PL2_W, .accessfn = at_s1e2_access,
3960 .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3961 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64,
3962 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
3963 .access = PL2_W, .accessfn = at_s1e2_access,
3964 .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3965 /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
3966 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
3967 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
3968 * to behave as if SCR.NS was 1.
3970 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
3971 .access = PL2_W,
3972 .writefn = ats1h_write, .type = ARM_CP_NO_RAW },
3973 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
3974 .access = PL2_W,
3975 .writefn = ats1h_write, .type = ARM_CP_NO_RAW },
3976 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
3977 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
3978 /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
3979 * reset values as IMPDEF. We choose to reset to 3 to comply with
3980 * both ARMv7 and ARMv8.
3982 .access = PL2_RW, .resetvalue = 3,
3983 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) },
3984 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
3985 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
3986 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
3987 .writefn = gt_cntvoff_write,
3988 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
3989 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
3990 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO,
3991 .writefn = gt_cntvoff_write,
3992 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
3993 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
3994 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
3995 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
3996 .type = ARM_CP_IO, .access = PL2_RW,
3997 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
3998 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
3999 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
4000 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO,
4001 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
4002 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
4003 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
4004 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
4005 .resetfn = gt_hyp_timer_reset,
4006 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write },
4007 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
4008 .type = ARM_CP_IO,
4009 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
4010 .access = PL2_RW,
4011 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl),
4012 .resetvalue = 0,
4013 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write },
4014 #endif
4015 /* The only field of MDCR_EL2 that has a defined architectural reset value
4016 * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N; but we
4017 * don't impelment any PMU event counters, so using zero as a reset
4018 * value for MDCR_EL2 is okay
4020 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
4021 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
4022 .access = PL2_RW, .resetvalue = 0,
4023 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), },
4024 { .name = "HPFAR", .state = ARM_CP_STATE_AA32,
4025 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
4026 .access = PL2_RW, .accessfn = access_el3_aa32ns,
4027 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
4028 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64,
4029 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
4030 .access = PL2_RW,
4031 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
4032 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
4033 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
4034 .access = PL2_RW,
4035 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) },
4036 REGINFO_SENTINEL
4039 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
4040 bool isread)
4042 /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2.
4043 * At Secure EL1 it traps to EL3.
4045 if (arm_current_el(env) == 3) {
4046 return CP_ACCESS_OK;
4048 if (arm_is_secure_below_el3(env)) {
4049 return CP_ACCESS_TRAP_EL3;
4051 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */
4052 if (isread) {
4053 return CP_ACCESS_OK;
4055 return CP_ACCESS_TRAP_UNCATEGORIZED;
4058 static const ARMCPRegInfo el3_cp_reginfo[] = {
4059 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
4060 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
4061 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
4062 .resetvalue = 0, .writefn = scr_write },
4063 { .name = "SCR", .type = ARM_CP_ALIAS,
4064 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
4065 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
4066 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
4067 .writefn = scr_write },
4068 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
4069 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
4070 .access = PL3_RW, .resetvalue = 0,
4071 .fieldoffset = offsetof(CPUARMState, cp15.sder) },
4072 { .name = "SDER",
4073 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
4074 .access = PL3_RW, .resetvalue = 0,
4075 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
4076 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
4077 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
4078 .writefn = vbar_write, .resetvalue = 0,
4079 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
4080 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
4081 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
4082 .access = PL3_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
4083 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
4084 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
4085 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
4086 .access = PL3_RW,
4087 /* no .writefn needed as this can't cause an ASID change;
4088 * we must provide a .raw_writefn and .resetfn because we handle
4089 * reset and migration for the AArch32 TTBCR(S), which might be
4090 * using mask and base_mask.
4092 .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write,
4093 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
4094 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
4095 .type = ARM_CP_ALIAS,
4096 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
4097 .access = PL3_RW,
4098 .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
4099 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
4100 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
4101 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
4102 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
4103 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
4104 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
4105 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
4106 .type = ARM_CP_ALIAS,
4107 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
4108 .access = PL3_RW,
4109 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) },
4110 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
4111 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
4112 .access = PL3_RW, .writefn = vbar_write,
4113 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
4114 .resetvalue = 0 },
4115 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
4116 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
4117 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
4118 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
4119 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64,
4120 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2,
4121 .access = PL3_RW, .resetvalue = 0,
4122 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) },
4123 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64,
4124 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0,
4125 .access = PL3_RW, .type = ARM_CP_CONST,
4126 .resetvalue = 0 },
4127 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH,
4128 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0,
4129 .access = PL3_RW, .type = ARM_CP_CONST,
4130 .resetvalue = 0 },
4131 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH,
4132 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1,
4133 .access = PL3_RW, .type = ARM_CP_CONST,
4134 .resetvalue = 0 },
4135 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64,
4136 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0,
4137 .access = PL3_W, .type = ARM_CP_NO_RAW,
4138 .writefn = tlbi_aa64_alle3is_write },
4139 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64,
4140 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1,
4141 .access = PL3_W, .type = ARM_CP_NO_RAW,
4142 .writefn = tlbi_aa64_vae3is_write },
4143 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64,
4144 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5,
4145 .access = PL3_W, .type = ARM_CP_NO_RAW,
4146 .writefn = tlbi_aa64_vae3is_write },
4147 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64,
4148 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0,
4149 .access = PL3_W, .type = ARM_CP_NO_RAW,
4150 .writefn = tlbi_aa64_alle3_write },
4151 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64,
4152 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1,
4153 .access = PL3_W, .type = ARM_CP_NO_RAW,
4154 .writefn = tlbi_aa64_vae3_write },
4155 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64,
4156 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5,
4157 .access = PL3_W, .type = ARM_CP_NO_RAW,
4158 .writefn = tlbi_aa64_vae3_write },
4159 REGINFO_SENTINEL
4162 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
4163 bool isread)
4165 /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64,
4166 * but the AArch32 CTR has its own reginfo struct)
4168 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
4169 return CP_ACCESS_TRAP;
4171 return CP_ACCESS_OK;
4174 static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri,
4175 uint64_t value)
4177 /* Writes to OSLAR_EL1 may update the OS lock status, which can be
4178 * read via a bit in OSLSR_EL1.
4180 int oslock;
4182 if (ri->state == ARM_CP_STATE_AA32) {
4183 oslock = (value == 0xC5ACCE55);
4184 } else {
4185 oslock = value & 1;
4188 env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock);
4191 static const ARMCPRegInfo debug_cp_reginfo[] = {
4192 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
4193 * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1;
4194 * unlike DBGDRAR it is never accessible from EL0.
4195 * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64
4196 * accessor.
4198 { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
4199 .access = PL0_R, .accessfn = access_tdra,
4200 .type = ARM_CP_CONST, .resetvalue = 0 },
4201 { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64,
4202 .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
4203 .access = PL1_R, .accessfn = access_tdra,
4204 .type = ARM_CP_CONST, .resetvalue = 0 },
4205 { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
4206 .access = PL0_R, .accessfn = access_tdra,
4207 .type = ARM_CP_CONST, .resetvalue = 0 },
4208 /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */
4209 { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH,
4210 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
4211 .access = PL1_RW, .accessfn = access_tda,
4212 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1),
4213 .resetvalue = 0 },
4214 /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1.
4215 * We don't implement the configurable EL0 access.
4217 { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH,
4218 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
4219 .type = ARM_CP_ALIAS,
4220 .access = PL1_R, .accessfn = access_tda,
4221 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), },
4222 { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH,
4223 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4,
4224 .access = PL1_W, .type = ARM_CP_NO_RAW,
4225 .accessfn = access_tdosa,
4226 .writefn = oslar_write },
4227 { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH,
4228 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4,
4229 .access = PL1_R, .resetvalue = 10,
4230 .accessfn = access_tdosa,
4231 .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) },
4232 /* Dummy OSDLR_EL1: 32-bit Linux will read this */
4233 { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH,
4234 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4,
4235 .access = PL1_RW, .accessfn = access_tdosa,
4236 .type = ARM_CP_NOP },
4237 /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't
4238 * implement vector catch debug events yet.
4240 { .name = "DBGVCR",
4241 .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
4242 .access = PL1_RW, .accessfn = access_tda,
4243 .type = ARM_CP_NOP },
4244 /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor
4245 * to save and restore a 32-bit guest's DBGVCR)
4247 { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64,
4248 .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0,
4249 .access = PL2_RW, .accessfn = access_tda,
4250 .type = ARM_CP_NOP },
4251 /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications
4252 * Channel but Linux may try to access this register. The 32-bit
4253 * alias is DBGDCCINT.
4255 { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH,
4256 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
4257 .access = PL1_RW, .accessfn = access_tda,
4258 .type = ARM_CP_NOP },
4259 REGINFO_SENTINEL
4262 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = {
4263 /* 64 bit access versions of the (dummy) debug registers */
4264 { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
4265 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
4266 { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
4267 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
4268 REGINFO_SENTINEL
4271 /* Return the exception level to which SVE-disabled exceptions should
4272 * be taken, or 0 if SVE is enabled.
4274 static int sve_exception_el(CPUARMState *env)
4276 #ifndef CONFIG_USER_ONLY
4277 unsigned current_el = arm_current_el(env);
4279 /* The CPACR.ZEN controls traps to EL1:
4280 * 0, 2 : trap EL0 and EL1 accesses
4281 * 1 : trap only EL0 accesses
4282 * 3 : trap no accesses
4284 switch (extract32(env->cp15.cpacr_el1, 16, 2)) {
4285 default:
4286 if (current_el <= 1) {
4287 /* Trap to PL1, which might be EL1 or EL3 */
4288 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
4289 return 3;
4291 return 1;
4293 break;
4294 case 1:
4295 if (current_el == 0) {
4296 return 1;
4298 break;
4299 case 3:
4300 break;
4303 /* Similarly for CPACR.FPEN, after having checked ZEN. */
4304 switch (extract32(env->cp15.cpacr_el1, 20, 2)) {
4305 default:
4306 if (current_el <= 1) {
4307 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
4308 return 3;
4310 return 1;
4312 break;
4313 case 1:
4314 if (current_el == 0) {
4315 return 1;
4317 break;
4318 case 3:
4319 break;
4322 /* CPTR_EL2. Check both TZ and TFP. */
4323 if (current_el <= 2
4324 && (env->cp15.cptr_el[2] & (CPTR_TFP | CPTR_TZ))
4325 && !arm_is_secure_below_el3(env)) {
4326 return 2;
4329 /* CPTR_EL3. Check both EZ and TFP. */
4330 if (!(env->cp15.cptr_el[3] & CPTR_EZ)
4331 || (env->cp15.cptr_el[3] & CPTR_TFP)) {
4332 return 3;
4334 #endif
4335 return 0;
4338 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4339 uint64_t value)
4341 /* Bits other than [3:0] are RAZ/WI. */
4342 raw_write(env, ri, value & 0xf);
4345 static const ARMCPRegInfo zcr_el1_reginfo = {
4346 .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64,
4347 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0,
4348 .access = PL1_RW, .type = ARM_CP_SVE | ARM_CP_FPU,
4349 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]),
4350 .writefn = zcr_write, .raw_writefn = raw_write
4353 static const ARMCPRegInfo zcr_el2_reginfo = {
4354 .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
4355 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
4356 .access = PL2_RW, .type = ARM_CP_SVE | ARM_CP_FPU,
4357 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]),
4358 .writefn = zcr_write, .raw_writefn = raw_write
4361 static const ARMCPRegInfo zcr_no_el2_reginfo = {
4362 .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
4363 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
4364 .access = PL2_RW, .type = ARM_CP_SVE | ARM_CP_FPU,
4365 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore
4368 static const ARMCPRegInfo zcr_el3_reginfo = {
4369 .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64,
4370 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0,
4371 .access = PL3_RW, .type = ARM_CP_SVE | ARM_CP_FPU,
4372 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]),
4373 .writefn = zcr_write, .raw_writefn = raw_write
4376 void hw_watchpoint_update(ARMCPU *cpu, int n)
4378 CPUARMState *env = &cpu->env;
4379 vaddr len = 0;
4380 vaddr wvr = env->cp15.dbgwvr[n];
4381 uint64_t wcr = env->cp15.dbgwcr[n];
4382 int mask;
4383 int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;
4385 if (env->cpu_watchpoint[n]) {
4386 cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]);
4387 env->cpu_watchpoint[n] = NULL;
4390 if (!extract64(wcr, 0, 1)) {
4391 /* E bit clear : watchpoint disabled */
4392 return;
4395 switch (extract64(wcr, 3, 2)) {
4396 case 0:
4397 /* LSC 00 is reserved and must behave as if the wp is disabled */
4398 return;
4399 case 1:
4400 flags |= BP_MEM_READ;
4401 break;
4402 case 2:
4403 flags |= BP_MEM_WRITE;
4404 break;
4405 case 3:
4406 flags |= BP_MEM_ACCESS;
4407 break;
4410 /* Attempts to use both MASK and BAS fields simultaneously are
4411 * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
4412 * thus generating a watchpoint for every byte in the masked region.
4414 mask = extract64(wcr, 24, 4);
4415 if (mask == 1 || mask == 2) {
4416 /* Reserved values of MASK; we must act as if the mask value was
4417 * some non-reserved value, or as if the watchpoint were disabled.
4418 * We choose the latter.
4420 return;
4421 } else if (mask) {
4422 /* Watchpoint covers an aligned area up to 2GB in size */
4423 len = 1ULL << mask;
4424 /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
4425 * whether the watchpoint fires when the unmasked bits match; we opt
4426 * to generate the exceptions.
4428 wvr &= ~(len - 1);
4429 } else {
4430 /* Watchpoint covers bytes defined by the byte address select bits */
4431 int bas = extract64(wcr, 5, 8);
4432 int basstart;
4434 if (bas == 0) {
4435 /* This must act as if the watchpoint is disabled */
4436 return;
4439 if (extract64(wvr, 2, 1)) {
4440 /* Deprecated case of an only 4-aligned address. BAS[7:4] are
4441 * ignored, and BAS[3:0] define which bytes to watch.
4443 bas &= 0xf;
4445 /* The BAS bits are supposed to be programmed to indicate a contiguous
4446 * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
4447 * we fire for each byte in the word/doubleword addressed by the WVR.
4448 * We choose to ignore any non-zero bits after the first range of 1s.
4450 basstart = ctz32(bas);
4451 len = cto32(bas >> basstart);
4452 wvr += basstart;
4455 cpu_watchpoint_insert(CPU(cpu), wvr, len, flags,
4456 &env->cpu_watchpoint[n]);
4459 void hw_watchpoint_update_all(ARMCPU *cpu)
4461 int i;
4462 CPUARMState *env = &cpu->env;
4464 /* Completely clear out existing QEMU watchpoints and our array, to
4465 * avoid possible stale entries following migration load.
4467 cpu_watchpoint_remove_all(CPU(cpu), BP_CPU);
4468 memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint));
4470 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) {
4471 hw_watchpoint_update(cpu, i);
4475 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4476 uint64_t value)
4478 ARMCPU *cpu = arm_env_get_cpu(env);
4479 int i = ri->crm;
4481 /* Bits [63:49] are hardwired to the value of bit [48]; that is, the
4482 * register reads and behaves as if values written are sign extended.
4483 * Bits [1:0] are RES0.
4485 value = sextract64(value, 0, 49) & ~3ULL;
4487 raw_write(env, ri, value);
4488 hw_watchpoint_update(cpu, i);
4491 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4492 uint64_t value)
4494 ARMCPU *cpu = arm_env_get_cpu(env);
4495 int i = ri->crm;
4497 raw_write(env, ri, value);
4498 hw_watchpoint_update(cpu, i);
4501 void hw_breakpoint_update(ARMCPU *cpu, int n)
4503 CPUARMState *env = &cpu->env;
4504 uint64_t bvr = env->cp15.dbgbvr[n];
4505 uint64_t bcr = env->cp15.dbgbcr[n];
4506 vaddr addr;
4507 int bt;
4508 int flags = BP_CPU;
4510 if (env->cpu_breakpoint[n]) {
4511 cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]);
4512 env->cpu_breakpoint[n] = NULL;
4515 if (!extract64(bcr, 0, 1)) {
4516 /* E bit clear : watchpoint disabled */
4517 return;
4520 bt = extract64(bcr, 20, 4);
4522 switch (bt) {
4523 case 4: /* unlinked address mismatch (reserved if AArch64) */
4524 case 5: /* linked address mismatch (reserved if AArch64) */
4525 qemu_log_mask(LOG_UNIMP,
4526 "arm: address mismatch breakpoint types not implemented");
4527 return;
4528 case 0: /* unlinked address match */
4529 case 1: /* linked address match */
4531 /* Bits [63:49] are hardwired to the value of bit [48]; that is,
4532 * we behave as if the register was sign extended. Bits [1:0] are
4533 * RES0. The BAS field is used to allow setting breakpoints on 16
4534 * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether
4535 * a bp will fire if the addresses covered by the bp and the addresses
4536 * covered by the insn overlap but the insn doesn't start at the
4537 * start of the bp address range. We choose to require the insn and
4538 * the bp to have the same address. The constraints on writing to
4539 * BAS enforced in dbgbcr_write mean we have only four cases:
4540 * 0b0000 => no breakpoint
4541 * 0b0011 => breakpoint on addr
4542 * 0b1100 => breakpoint on addr + 2
4543 * 0b1111 => breakpoint on addr
4544 * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
4546 int bas = extract64(bcr, 5, 4);
4547 addr = sextract64(bvr, 0, 49) & ~3ULL;
4548 if (bas == 0) {
4549 return;
4551 if (bas == 0xc) {
4552 addr += 2;
4554 break;
4556 case 2: /* unlinked context ID match */
4557 case 8: /* unlinked VMID match (reserved if no EL2) */
4558 case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
4559 qemu_log_mask(LOG_UNIMP,
4560 "arm: unlinked context breakpoint types not implemented");
4561 return;
4562 case 9: /* linked VMID match (reserved if no EL2) */
4563 case 11: /* linked context ID and VMID match (reserved if no EL2) */
4564 case 3: /* linked context ID match */
4565 default:
4566 /* We must generate no events for Linked context matches (unless
4567 * they are linked to by some other bp/wp, which is handled in
4568 * updates for the linking bp/wp). We choose to also generate no events
4569 * for reserved values.
4571 return;
4574 cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]);
4577 void hw_breakpoint_update_all(ARMCPU *cpu)
4579 int i;
4580 CPUARMState *env = &cpu->env;
4582 /* Completely clear out existing QEMU breakpoints and our array, to
4583 * avoid possible stale entries following migration load.
4585 cpu_breakpoint_remove_all(CPU(cpu), BP_CPU);
4586 memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint));
4588 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) {
4589 hw_breakpoint_update(cpu, i);
4593 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4594 uint64_t value)
4596 ARMCPU *cpu = arm_env_get_cpu(env);
4597 int i = ri->crm;
4599 raw_write(env, ri, value);
4600 hw_breakpoint_update(cpu, i);
4603 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4604 uint64_t value)
4606 ARMCPU *cpu = arm_env_get_cpu(env);
4607 int i = ri->crm;
4609 /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only
4610 * copy of BAS[0].
4612 value = deposit64(value, 6, 1, extract64(value, 5, 1));
4613 value = deposit64(value, 8, 1, extract64(value, 7, 1));
4615 raw_write(env, ri, value);
4616 hw_breakpoint_update(cpu, i);
4619 static void define_debug_regs(ARMCPU *cpu)
4621 /* Define v7 and v8 architectural debug registers.
4622 * These are just dummy implementations for now.
4624 int i;
4625 int wrps, brps, ctx_cmps;
4626 ARMCPRegInfo dbgdidr = {
4627 .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
4628 .access = PL0_R, .accessfn = access_tda,
4629 .type = ARM_CP_CONST, .resetvalue = cpu->dbgdidr,
4632 /* Note that all these register fields hold "number of Xs minus 1". */
4633 brps = extract32(cpu->dbgdidr, 24, 4);
4634 wrps = extract32(cpu->dbgdidr, 28, 4);
4635 ctx_cmps = extract32(cpu->dbgdidr, 20, 4);
4637 assert(ctx_cmps <= brps);
4639 /* The DBGDIDR and ID_AA64DFR0_EL1 define various properties
4640 * of the debug registers such as number of breakpoints;
4641 * check that if they both exist then they agree.
4643 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
4644 assert(extract32(cpu->id_aa64dfr0, 12, 4) == brps);
4645 assert(extract32(cpu->id_aa64dfr0, 20, 4) == wrps);
4646 assert(extract32(cpu->id_aa64dfr0, 28, 4) == ctx_cmps);
4649 define_one_arm_cp_reg(cpu, &dbgdidr);
4650 define_arm_cp_regs(cpu, debug_cp_reginfo);
4652 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) {
4653 define_arm_cp_regs(cpu, debug_lpae_cp_reginfo);
4656 for (i = 0; i < brps + 1; i++) {
4657 ARMCPRegInfo dbgregs[] = {
4658 { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH,
4659 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4,
4660 .access = PL1_RW, .accessfn = access_tda,
4661 .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]),
4662 .writefn = dbgbvr_write, .raw_writefn = raw_write
4664 { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH,
4665 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5,
4666 .access = PL1_RW, .accessfn = access_tda,
4667 .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]),
4668 .writefn = dbgbcr_write, .raw_writefn = raw_write
4670 REGINFO_SENTINEL
4672 define_arm_cp_regs(cpu, dbgregs);
4675 for (i = 0; i < wrps + 1; i++) {
4676 ARMCPRegInfo dbgregs[] = {
4677 { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH,
4678 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6,
4679 .access = PL1_RW, .accessfn = access_tda,
4680 .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]),
4681 .writefn = dbgwvr_write, .raw_writefn = raw_write
4683 { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH,
4684 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7,
4685 .access = PL1_RW, .accessfn = access_tda,
4686 .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]),
4687 .writefn = dbgwcr_write, .raw_writefn = raw_write
4689 REGINFO_SENTINEL
4691 define_arm_cp_regs(cpu, dbgregs);
4695 /* We don't know until after realize whether there's a GICv3
4696 * attached, and that is what registers the gicv3 sysregs.
4697 * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1
4698 * at runtime.
4700 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri)
4702 ARMCPU *cpu = arm_env_get_cpu(env);
4703 uint64_t pfr1 = cpu->id_pfr1;
4705 if (env->gicv3state) {
4706 pfr1 |= 1 << 28;
4708 return pfr1;
4711 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri)
4713 ARMCPU *cpu = arm_env_get_cpu(env);
4714 uint64_t pfr0 = cpu->id_aa64pfr0;
4716 if (env->gicv3state) {
4717 pfr0 |= 1 << 24;
4719 return pfr0;
4722 void register_cp_regs_for_features(ARMCPU *cpu)
4724 /* Register all the coprocessor registers based on feature bits */
4725 CPUARMState *env = &cpu->env;
4726 if (arm_feature(env, ARM_FEATURE_M)) {
4727 /* M profile has no coprocessor registers */
4728 return;
4731 define_arm_cp_regs(cpu, cp_reginfo);
4732 if (!arm_feature(env, ARM_FEATURE_V8)) {
4733 /* Must go early as it is full of wildcards that may be
4734 * overridden by later definitions.
4736 define_arm_cp_regs(cpu, not_v8_cp_reginfo);
4739 if (arm_feature(env, ARM_FEATURE_V6)) {
4740 /* The ID registers all have impdef reset values */
4741 ARMCPRegInfo v6_idregs[] = {
4742 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
4743 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
4744 .access = PL1_R, .type = ARM_CP_CONST,
4745 .resetvalue = cpu->id_pfr0 },
4746 /* ID_PFR1 is not a plain ARM_CP_CONST because we don't know
4747 * the value of the GIC field until after we define these regs.
4749 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
4750 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
4751 .access = PL1_R, .type = ARM_CP_NO_RAW,
4752 .readfn = id_pfr1_read,
4753 .writefn = arm_cp_write_ignore },
4754 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
4755 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
4756 .access = PL1_R, .type = ARM_CP_CONST,
4757 .resetvalue = cpu->id_dfr0 },
4758 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
4759 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
4760 .access = PL1_R, .type = ARM_CP_CONST,
4761 .resetvalue = cpu->id_afr0 },
4762 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
4763 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
4764 .access = PL1_R, .type = ARM_CP_CONST,
4765 .resetvalue = cpu->id_mmfr0 },
4766 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
4767 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
4768 .access = PL1_R, .type = ARM_CP_CONST,
4769 .resetvalue = cpu->id_mmfr1 },
4770 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
4771 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
4772 .access = PL1_R, .type = ARM_CP_CONST,
4773 .resetvalue = cpu->id_mmfr2 },
4774 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
4775 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
4776 .access = PL1_R, .type = ARM_CP_CONST,
4777 .resetvalue = cpu->id_mmfr3 },
4778 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
4779 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
4780 .access = PL1_R, .type = ARM_CP_CONST,
4781 .resetvalue = cpu->id_isar0 },
4782 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
4783 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
4784 .access = PL1_R, .type = ARM_CP_CONST,
4785 .resetvalue = cpu->id_isar1 },
4786 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
4787 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
4788 .access = PL1_R, .type = ARM_CP_CONST,
4789 .resetvalue = cpu->id_isar2 },
4790 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
4791 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
4792 .access = PL1_R, .type = ARM_CP_CONST,
4793 .resetvalue = cpu->id_isar3 },
4794 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
4795 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
4796 .access = PL1_R, .type = ARM_CP_CONST,
4797 .resetvalue = cpu->id_isar4 },
4798 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
4799 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
4800 .access = PL1_R, .type = ARM_CP_CONST,
4801 .resetvalue = cpu->id_isar5 },
4802 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH,
4803 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6,
4804 .access = PL1_R, .type = ARM_CP_CONST,
4805 .resetvalue = cpu->id_mmfr4 },
4806 /* 7 is as yet unallocated and must RAZ */
4807 { .name = "ID_ISAR7_RESERVED", .state = ARM_CP_STATE_BOTH,
4808 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7,
4809 .access = PL1_R, .type = ARM_CP_CONST,
4810 .resetvalue = 0 },
4811 REGINFO_SENTINEL
4813 define_arm_cp_regs(cpu, v6_idregs);
4814 define_arm_cp_regs(cpu, v6_cp_reginfo);
4815 } else {
4816 define_arm_cp_regs(cpu, not_v6_cp_reginfo);
4818 if (arm_feature(env, ARM_FEATURE_V6K)) {
4819 define_arm_cp_regs(cpu, v6k_cp_reginfo);
4821 if (arm_feature(env, ARM_FEATURE_V7MP) &&
4822 !arm_feature(env, ARM_FEATURE_PMSA)) {
4823 define_arm_cp_regs(cpu, v7mp_cp_reginfo);
4825 if (arm_feature(env, ARM_FEATURE_V7)) {
4826 /* v7 performance monitor control register: same implementor
4827 * field as main ID register, and we implement only the cycle
4828 * count register.
4830 #ifndef CONFIG_USER_ONLY
4831 ARMCPRegInfo pmcr = {
4832 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
4833 .access = PL0_RW,
4834 .type = ARM_CP_IO | ARM_CP_ALIAS,
4835 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
4836 .accessfn = pmreg_access, .writefn = pmcr_write,
4837 .raw_writefn = raw_write,
4839 ARMCPRegInfo pmcr64 = {
4840 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
4841 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
4842 .access = PL0_RW, .accessfn = pmreg_access,
4843 .type = ARM_CP_IO,
4844 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
4845 .resetvalue = cpu->midr & 0xff000000,
4846 .writefn = pmcr_write, .raw_writefn = raw_write,
4848 define_one_arm_cp_reg(cpu, &pmcr);
4849 define_one_arm_cp_reg(cpu, &pmcr64);
4850 #endif
4851 ARMCPRegInfo clidr = {
4852 .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
4853 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
4854 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr
4856 define_one_arm_cp_reg(cpu, &clidr);
4857 define_arm_cp_regs(cpu, v7_cp_reginfo);
4858 define_debug_regs(cpu);
4859 } else {
4860 define_arm_cp_regs(cpu, not_v7_cp_reginfo);
4862 if (arm_feature(env, ARM_FEATURE_V8)) {
4863 /* AArch64 ID registers, which all have impdef reset values.
4864 * Note that within the ID register ranges the unused slots
4865 * must all RAZ, not UNDEF; future architecture versions may
4866 * define new registers here.
4868 ARMCPRegInfo v8_idregs[] = {
4869 /* ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST because we don't
4870 * know the right value for the GIC field until after we
4871 * define these regs.
4873 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
4874 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
4875 .access = PL1_R, .type = ARM_CP_NO_RAW,
4876 .readfn = id_aa64pfr0_read,
4877 .writefn = arm_cp_write_ignore },
4878 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
4879 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
4880 .access = PL1_R, .type = ARM_CP_CONST,
4881 .resetvalue = cpu->id_aa64pfr1},
4882 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4883 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2,
4884 .access = PL1_R, .type = ARM_CP_CONST,
4885 .resetvalue = 0 },
4886 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4887 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3,
4888 .access = PL1_R, .type = ARM_CP_CONST,
4889 .resetvalue = 0 },
4890 { .name = "ID_AA64PFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4891 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4,
4892 .access = PL1_R, .type = ARM_CP_CONST,
4893 .resetvalue = 0 },
4894 { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4895 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5,
4896 .access = PL1_R, .type = ARM_CP_CONST,
4897 .resetvalue = 0 },
4898 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4899 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6,
4900 .access = PL1_R, .type = ARM_CP_CONST,
4901 .resetvalue = 0 },
4902 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4903 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7,
4904 .access = PL1_R, .type = ARM_CP_CONST,
4905 .resetvalue = 0 },
4906 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
4907 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
4908 .access = PL1_R, .type = ARM_CP_CONST,
4909 .resetvalue = cpu->id_aa64dfr0 },
4910 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
4911 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
4912 .access = PL1_R, .type = ARM_CP_CONST,
4913 .resetvalue = cpu->id_aa64dfr1 },
4914 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4915 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2,
4916 .access = PL1_R, .type = ARM_CP_CONST,
4917 .resetvalue = 0 },
4918 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4919 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3,
4920 .access = PL1_R, .type = ARM_CP_CONST,
4921 .resetvalue = 0 },
4922 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
4923 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
4924 .access = PL1_R, .type = ARM_CP_CONST,
4925 .resetvalue = cpu->id_aa64afr0 },
4926 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
4927 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
4928 .access = PL1_R, .type = ARM_CP_CONST,
4929 .resetvalue = cpu->id_aa64afr1 },
4930 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4931 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6,
4932 .access = PL1_R, .type = ARM_CP_CONST,
4933 .resetvalue = 0 },
4934 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4935 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7,
4936 .access = PL1_R, .type = ARM_CP_CONST,
4937 .resetvalue = 0 },
4938 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
4939 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
4940 .access = PL1_R, .type = ARM_CP_CONST,
4941 .resetvalue = cpu->id_aa64isar0 },
4942 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
4943 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
4944 .access = PL1_R, .type = ARM_CP_CONST,
4945 .resetvalue = cpu->id_aa64isar1 },
4946 { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4947 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2,
4948 .access = PL1_R, .type = ARM_CP_CONST,
4949 .resetvalue = 0 },
4950 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4951 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3,
4952 .access = PL1_R, .type = ARM_CP_CONST,
4953 .resetvalue = 0 },
4954 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4955 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4,
4956 .access = PL1_R, .type = ARM_CP_CONST,
4957 .resetvalue = 0 },
4958 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4959 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5,
4960 .access = PL1_R, .type = ARM_CP_CONST,
4961 .resetvalue = 0 },
4962 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4963 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6,
4964 .access = PL1_R, .type = ARM_CP_CONST,
4965 .resetvalue = 0 },
4966 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4967 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7,
4968 .access = PL1_R, .type = ARM_CP_CONST,
4969 .resetvalue = 0 },
4970 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
4971 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
4972 .access = PL1_R, .type = ARM_CP_CONST,
4973 .resetvalue = cpu->id_aa64mmfr0 },
4974 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
4975 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
4976 .access = PL1_R, .type = ARM_CP_CONST,
4977 .resetvalue = cpu->id_aa64mmfr1 },
4978 { .name = "ID_AA64MMFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4979 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2,
4980 .access = PL1_R, .type = ARM_CP_CONST,
4981 .resetvalue = 0 },
4982 { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4983 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3,
4984 .access = PL1_R, .type = ARM_CP_CONST,
4985 .resetvalue = 0 },
4986 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4987 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4,
4988 .access = PL1_R, .type = ARM_CP_CONST,
4989 .resetvalue = 0 },
4990 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4991 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5,
4992 .access = PL1_R, .type = ARM_CP_CONST,
4993 .resetvalue = 0 },
4994 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4995 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6,
4996 .access = PL1_R, .type = ARM_CP_CONST,
4997 .resetvalue = 0 },
4998 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4999 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7,
5000 .access = PL1_R, .type = ARM_CP_CONST,
5001 .resetvalue = 0 },
5002 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
5003 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
5004 .access = PL1_R, .type = ARM_CP_CONST,
5005 .resetvalue = cpu->mvfr0 },
5006 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
5007 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
5008 .access = PL1_R, .type = ARM_CP_CONST,
5009 .resetvalue = cpu->mvfr1 },
5010 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
5011 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
5012 .access = PL1_R, .type = ARM_CP_CONST,
5013 .resetvalue = cpu->mvfr2 },
5014 { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5015 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3,
5016 .access = PL1_R, .type = ARM_CP_CONST,
5017 .resetvalue = 0 },
5018 { .name = "MVFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5019 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4,
5020 .access = PL1_R, .type = ARM_CP_CONST,
5021 .resetvalue = 0 },
5022 { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5023 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5,
5024 .access = PL1_R, .type = ARM_CP_CONST,
5025 .resetvalue = 0 },
5026 { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5027 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6,
5028 .access = PL1_R, .type = ARM_CP_CONST,
5029 .resetvalue = 0 },
5030 { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5031 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7,
5032 .access = PL1_R, .type = ARM_CP_CONST,
5033 .resetvalue = 0 },
5034 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32,
5035 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6,
5036 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
5037 .resetvalue = cpu->pmceid0 },
5038 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64,
5039 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6,
5040 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
5041 .resetvalue = cpu->pmceid0 },
5042 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32,
5043 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7,
5044 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
5045 .resetvalue = cpu->pmceid1 },
5046 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64,
5047 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7,
5048 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
5049 .resetvalue = cpu->pmceid1 },
5050 REGINFO_SENTINEL
5052 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */
5053 if (!arm_feature(env, ARM_FEATURE_EL3) &&
5054 !arm_feature(env, ARM_FEATURE_EL2)) {
5055 ARMCPRegInfo rvbar = {
5056 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64,
5057 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
5058 .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar
5060 define_one_arm_cp_reg(cpu, &rvbar);
5062 define_arm_cp_regs(cpu, v8_idregs);
5063 define_arm_cp_regs(cpu, v8_cp_reginfo);
5065 if (arm_feature(env, ARM_FEATURE_EL2)) {
5066 uint64_t vmpidr_def = mpidr_read_val(env);
5067 ARMCPRegInfo vpidr_regs[] = {
5068 { .name = "VPIDR", .state = ARM_CP_STATE_AA32,
5069 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
5070 .access = PL2_RW, .accessfn = access_el3_aa32ns,
5071 .resetvalue = cpu->midr,
5072 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
5073 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64,
5074 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
5075 .access = PL2_RW, .resetvalue = cpu->midr,
5076 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
5077 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32,
5078 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
5079 .access = PL2_RW, .accessfn = access_el3_aa32ns,
5080 .resetvalue = vmpidr_def,
5081 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
5082 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64,
5083 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
5084 .access = PL2_RW,
5085 .resetvalue = vmpidr_def,
5086 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
5087 REGINFO_SENTINEL
5089 define_arm_cp_regs(cpu, vpidr_regs);
5090 define_arm_cp_regs(cpu, el2_cp_reginfo);
5091 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */
5092 if (!arm_feature(env, ARM_FEATURE_EL3)) {
5093 ARMCPRegInfo rvbar = {
5094 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
5095 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
5096 .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar
5098 define_one_arm_cp_reg(cpu, &rvbar);
5100 } else {
5101 /* If EL2 is missing but higher ELs are enabled, we need to
5102 * register the no_el2 reginfos.
5104 if (arm_feature(env, ARM_FEATURE_EL3)) {
5105 /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value
5106 * of MIDR_EL1 and MPIDR_EL1.
5108 ARMCPRegInfo vpidr_regs[] = {
5109 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH,
5110 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
5111 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
5112 .type = ARM_CP_CONST, .resetvalue = cpu->midr,
5113 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
5114 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH,
5115 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
5116 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
5117 .type = ARM_CP_NO_RAW,
5118 .writefn = arm_cp_write_ignore, .readfn = mpidr_read },
5119 REGINFO_SENTINEL
5121 define_arm_cp_regs(cpu, vpidr_regs);
5122 define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo);
5125 if (arm_feature(env, ARM_FEATURE_EL3)) {
5126 define_arm_cp_regs(cpu, el3_cp_reginfo);
5127 ARMCPRegInfo el3_regs[] = {
5128 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
5129 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
5130 .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar },
5131 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
5132 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
5133 .access = PL3_RW,
5134 .raw_writefn = raw_write, .writefn = sctlr_write,
5135 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]),
5136 .resetvalue = cpu->reset_sctlr },
5137 REGINFO_SENTINEL
5140 define_arm_cp_regs(cpu, el3_regs);
5142 /* The behaviour of NSACR is sufficiently various that we don't
5143 * try to describe it in a single reginfo:
5144 * if EL3 is 64 bit, then trap to EL3 from S EL1,
5145 * reads as constant 0xc00 from NS EL1 and NS EL2
5146 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2
5147 * if v7 without EL3, register doesn't exist
5148 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2
5150 if (arm_feature(env, ARM_FEATURE_EL3)) {
5151 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
5152 ARMCPRegInfo nsacr = {
5153 .name = "NSACR", .type = ARM_CP_CONST,
5154 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
5155 .access = PL1_RW, .accessfn = nsacr_access,
5156 .resetvalue = 0xc00
5158 define_one_arm_cp_reg(cpu, &nsacr);
5159 } else {
5160 ARMCPRegInfo nsacr = {
5161 .name = "NSACR",
5162 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
5163 .access = PL3_RW | PL1_R,
5164 .resetvalue = 0,
5165 .fieldoffset = offsetof(CPUARMState, cp15.nsacr)
5167 define_one_arm_cp_reg(cpu, &nsacr);
5169 } else {
5170 if (arm_feature(env, ARM_FEATURE_V8)) {
5171 ARMCPRegInfo nsacr = {
5172 .name = "NSACR", .type = ARM_CP_CONST,
5173 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
5174 .access = PL1_R,
5175 .resetvalue = 0xc00
5177 define_one_arm_cp_reg(cpu, &nsacr);
5181 if (arm_feature(env, ARM_FEATURE_PMSA)) {
5182 if (arm_feature(env, ARM_FEATURE_V6)) {
5183 /* PMSAv6 not implemented */
5184 assert(arm_feature(env, ARM_FEATURE_V7));
5185 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
5186 define_arm_cp_regs(cpu, pmsav7_cp_reginfo);
5187 } else {
5188 define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
5190 } else {
5191 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
5192 define_arm_cp_regs(cpu, vmsa_cp_reginfo);
5194 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
5195 define_arm_cp_regs(cpu, t2ee_cp_reginfo);
5197 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
5198 define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
5200 if (arm_feature(env, ARM_FEATURE_VAPA)) {
5201 define_arm_cp_regs(cpu, vapa_cp_reginfo);
5203 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
5204 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
5206 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
5207 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
5209 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
5210 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
5212 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
5213 define_arm_cp_regs(cpu, omap_cp_reginfo);
5215 if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
5216 define_arm_cp_regs(cpu, strongarm_cp_reginfo);
5218 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
5219 define_arm_cp_regs(cpu, xscale_cp_reginfo);
5221 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
5222 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
5224 if (arm_feature(env, ARM_FEATURE_LPAE)) {
5225 define_arm_cp_regs(cpu, lpae_cp_reginfo);
5227 /* Slightly awkwardly, the OMAP and StrongARM cores need all of
5228 * cp15 crn=0 to be writes-ignored, whereas for other cores they should
5229 * be read-only (ie write causes UNDEF exception).
5232 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
5233 /* Pre-v8 MIDR space.
5234 * Note that the MIDR isn't a simple constant register because
5235 * of the TI925 behaviour where writes to another register can
5236 * cause the MIDR value to change.
5238 * Unimplemented registers in the c15 0 0 0 space default to
5239 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
5240 * and friends override accordingly.
5242 { .name = "MIDR",
5243 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
5244 .access = PL1_R, .resetvalue = cpu->midr,
5245 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
5246 .readfn = midr_read,
5247 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
5248 .type = ARM_CP_OVERRIDE },
5249 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
5250 { .name = "DUMMY",
5251 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
5252 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5253 { .name = "DUMMY",
5254 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
5255 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5256 { .name = "DUMMY",
5257 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
5258 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5259 { .name = "DUMMY",
5260 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
5261 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5262 { .name = "DUMMY",
5263 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
5264 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5265 REGINFO_SENTINEL
5267 ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
5268 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
5269 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
5270 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr,
5271 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
5272 .readfn = midr_read },
5273 /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */
5274 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
5275 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
5276 .access = PL1_R, .resetvalue = cpu->midr },
5277 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
5278 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7,
5279 .access = PL1_R, .resetvalue = cpu->midr },
5280 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
5281 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
5282 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->revidr },
5283 REGINFO_SENTINEL
5285 ARMCPRegInfo id_cp_reginfo[] = {
5286 /* These are common to v8 and pre-v8 */
5287 { .name = "CTR",
5288 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
5289 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
5290 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
5291 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
5292 .access = PL0_R, .accessfn = ctr_el0_access,
5293 .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
5294 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
5295 { .name = "TCMTR",
5296 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
5297 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5298 REGINFO_SENTINEL
5300 /* TLBTR is specific to VMSA */
5301 ARMCPRegInfo id_tlbtr_reginfo = {
5302 .name = "TLBTR",
5303 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
5304 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0,
5306 /* MPUIR is specific to PMSA V6+ */
5307 ARMCPRegInfo id_mpuir_reginfo = {
5308 .name = "MPUIR",
5309 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
5310 .access = PL1_R, .type = ARM_CP_CONST,
5311 .resetvalue = cpu->pmsav7_dregion << 8
5313 ARMCPRegInfo crn0_wi_reginfo = {
5314 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
5315 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
5316 .type = ARM_CP_NOP | ARM_CP_OVERRIDE
5318 if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
5319 arm_feature(env, ARM_FEATURE_STRONGARM)) {
5320 ARMCPRegInfo *r;
5321 /* Register the blanket "writes ignored" value first to cover the
5322 * whole space. Then update the specific ID registers to allow write
5323 * access, so that they ignore writes rather than causing them to
5324 * UNDEF.
5326 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
5327 for (r = id_pre_v8_midr_cp_reginfo;
5328 r->type != ARM_CP_SENTINEL; r++) {
5329 r->access = PL1_RW;
5331 for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) {
5332 r->access = PL1_RW;
5334 id_tlbtr_reginfo.access = PL1_RW;
5335 id_tlbtr_reginfo.access = PL1_RW;
5337 if (arm_feature(env, ARM_FEATURE_V8)) {
5338 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
5339 } else {
5340 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
5342 define_arm_cp_regs(cpu, id_cp_reginfo);
5343 if (!arm_feature(env, ARM_FEATURE_PMSA)) {
5344 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo);
5345 } else if (arm_feature(env, ARM_FEATURE_V7)) {
5346 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
5350 if (arm_feature(env, ARM_FEATURE_MPIDR)) {
5351 define_arm_cp_regs(cpu, mpidr_cp_reginfo);
5354 if (arm_feature(env, ARM_FEATURE_AUXCR)) {
5355 ARMCPRegInfo auxcr_reginfo[] = {
5356 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
5357 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
5358 .access = PL1_RW, .type = ARM_CP_CONST,
5359 .resetvalue = cpu->reset_auxcr },
5360 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH,
5361 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1,
5362 .access = PL2_RW, .type = ARM_CP_CONST,
5363 .resetvalue = 0 },
5364 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64,
5365 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1,
5366 .access = PL3_RW, .type = ARM_CP_CONST,
5367 .resetvalue = 0 },
5368 REGINFO_SENTINEL
5370 define_arm_cp_regs(cpu, auxcr_reginfo);
5373 if (arm_feature(env, ARM_FEATURE_CBAR)) {
5374 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
5375 /* 32 bit view is [31:18] 0...0 [43:32]. */
5376 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
5377 | extract64(cpu->reset_cbar, 32, 12);
5378 ARMCPRegInfo cbar_reginfo[] = {
5379 { .name = "CBAR",
5380 .type = ARM_CP_CONST,
5381 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
5382 .access = PL1_R, .resetvalue = cpu->reset_cbar },
5383 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
5384 .type = ARM_CP_CONST,
5385 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
5386 .access = PL1_R, .resetvalue = cbar32 },
5387 REGINFO_SENTINEL
5389 /* We don't implement a r/w 64 bit CBAR currently */
5390 assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
5391 define_arm_cp_regs(cpu, cbar_reginfo);
5392 } else {
5393 ARMCPRegInfo cbar = {
5394 .name = "CBAR",
5395 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
5396 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar,
5397 .fieldoffset = offsetof(CPUARMState,
5398 cp15.c15_config_base_address)
5400 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
5401 cbar.access = PL1_R;
5402 cbar.fieldoffset = 0;
5403 cbar.type = ARM_CP_CONST;
5405 define_one_arm_cp_reg(cpu, &cbar);
5409 if (arm_feature(env, ARM_FEATURE_VBAR)) {
5410 ARMCPRegInfo vbar_cp_reginfo[] = {
5411 { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
5412 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
5413 .access = PL1_RW, .writefn = vbar_write,
5414 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
5415 offsetof(CPUARMState, cp15.vbar_ns) },
5416 .resetvalue = 0 },
5417 REGINFO_SENTINEL
5419 define_arm_cp_regs(cpu, vbar_cp_reginfo);
5422 /* Generic registers whose values depend on the implementation */
5424 ARMCPRegInfo sctlr = {
5425 .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
5426 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
5427 .access = PL1_RW,
5428 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
5429 offsetof(CPUARMState, cp15.sctlr_ns) },
5430 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
5431 .raw_writefn = raw_write,
5433 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
5434 /* Normally we would always end the TB on an SCTLR write, but Linux
5435 * arch/arm/mach-pxa/sleep.S expects two instructions following
5436 * an MMU enable to execute from cache. Imitate this behaviour.
5438 sctlr.type |= ARM_CP_SUPPRESS_TB_END;
5440 define_one_arm_cp_reg(cpu, &sctlr);
5443 if (arm_feature(env, ARM_FEATURE_SVE)) {
5444 define_one_arm_cp_reg(cpu, &zcr_el1_reginfo);
5445 if (arm_feature(env, ARM_FEATURE_EL2)) {
5446 define_one_arm_cp_reg(cpu, &zcr_el2_reginfo);
5447 } else {
5448 define_one_arm_cp_reg(cpu, &zcr_no_el2_reginfo);
5450 if (arm_feature(env, ARM_FEATURE_EL3)) {
5451 define_one_arm_cp_reg(cpu, &zcr_el3_reginfo);
5456 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu)
5458 CPUState *cs = CPU(cpu);
5459 CPUARMState *env = &cpu->env;
5461 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
5462 gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg,
5463 aarch64_fpu_gdb_set_reg,
5464 34, "aarch64-fpu.xml", 0);
5465 } else if (arm_feature(env, ARM_FEATURE_NEON)) {
5466 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
5467 51, "arm-neon.xml", 0);
5468 } else if (arm_feature(env, ARM_FEATURE_VFP3)) {
5469 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
5470 35, "arm-vfp3.xml", 0);
5471 } else if (arm_feature(env, ARM_FEATURE_VFP)) {
5472 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
5473 19, "arm-vfp.xml", 0);
5477 /* Sort alphabetically by type name, except for "any". */
5478 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
5480 ObjectClass *class_a = (ObjectClass *)a;
5481 ObjectClass *class_b = (ObjectClass *)b;
5482 const char *name_a, *name_b;
5484 name_a = object_class_get_name(class_a);
5485 name_b = object_class_get_name(class_b);
5486 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
5487 return 1;
5488 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
5489 return -1;
5490 } else {
5491 return strcmp(name_a, name_b);
5495 static void arm_cpu_list_entry(gpointer data, gpointer user_data)
5497 ObjectClass *oc = data;
5498 CPUListState *s = user_data;
5499 const char *typename;
5500 char *name;
5502 typename = object_class_get_name(oc);
5503 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
5504 (*s->cpu_fprintf)(s->file, " %s\n",
5505 name);
5506 g_free(name);
5509 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf)
5511 CPUListState s = {
5512 .file = f,
5513 .cpu_fprintf = cpu_fprintf,
5515 GSList *list;
5517 list = object_class_get_list(TYPE_ARM_CPU, false);
5518 list = g_slist_sort(list, arm_cpu_list_compare);
5519 (*cpu_fprintf)(f, "Available CPUs:\n");
5520 g_slist_foreach(list, arm_cpu_list_entry, &s);
5521 g_slist_free(list);
5522 #ifdef CONFIG_KVM
5523 /* The 'host' CPU type is dynamically registered only if KVM is
5524 * enabled, so we have to special-case it here:
5526 (*cpu_fprintf)(f, " host (only available in KVM mode)\n");
5527 #endif
5530 static void arm_cpu_add_definition(gpointer data, gpointer user_data)
5532 ObjectClass *oc = data;
5533 CpuDefinitionInfoList **cpu_list = user_data;
5534 CpuDefinitionInfoList *entry;
5535 CpuDefinitionInfo *info;
5536 const char *typename;
5538 typename = object_class_get_name(oc);
5539 info = g_malloc0(sizeof(*info));
5540 info->name = g_strndup(typename,
5541 strlen(typename) - strlen("-" TYPE_ARM_CPU));
5542 info->q_typename = g_strdup(typename);
5544 entry = g_malloc0(sizeof(*entry));
5545 entry->value = info;
5546 entry->next = *cpu_list;
5547 *cpu_list = entry;
5550 CpuDefinitionInfoList *arch_query_cpu_definitions(Error **errp)
5552 CpuDefinitionInfoList *cpu_list = NULL;
5553 GSList *list;
5555 list = object_class_get_list(TYPE_ARM_CPU, false);
5556 g_slist_foreach(list, arm_cpu_add_definition, &cpu_list);
5557 g_slist_free(list);
5559 return cpu_list;
5562 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
5563 void *opaque, int state, int secstate,
5564 int crm, int opc1, int opc2)
5566 /* Private utility function for define_one_arm_cp_reg_with_opaque():
5567 * add a single reginfo struct to the hash table.
5569 uint32_t *key = g_new(uint32_t, 1);
5570 ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo));
5571 int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0;
5572 int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0;
5574 /* Reset the secure state to the specific incoming state. This is
5575 * necessary as the register may have been defined with both states.
5577 r2->secure = secstate;
5579 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
5580 /* Register is banked (using both entries in array).
5581 * Overwriting fieldoffset as the array is only used to define
5582 * banked registers but later only fieldoffset is used.
5584 r2->fieldoffset = r->bank_fieldoffsets[ns];
5587 if (state == ARM_CP_STATE_AA32) {
5588 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
5589 /* If the register is banked then we don't need to migrate or
5590 * reset the 32-bit instance in certain cases:
5592 * 1) If the register has both 32-bit and 64-bit instances then we
5593 * can count on the 64-bit instance taking care of the
5594 * non-secure bank.
5595 * 2) If ARMv8 is enabled then we can count on a 64-bit version
5596 * taking care of the secure bank. This requires that separate
5597 * 32 and 64-bit definitions are provided.
5599 if ((r->state == ARM_CP_STATE_BOTH && ns) ||
5600 (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) {
5601 r2->type |= ARM_CP_ALIAS;
5603 } else if ((secstate != r->secure) && !ns) {
5604 /* The register is not banked so we only want to allow migration of
5605 * the non-secure instance.
5607 r2->type |= ARM_CP_ALIAS;
5610 if (r->state == ARM_CP_STATE_BOTH) {
5611 /* We assume it is a cp15 register if the .cp field is left unset.
5613 if (r2->cp == 0) {
5614 r2->cp = 15;
5617 #ifdef HOST_WORDS_BIGENDIAN
5618 if (r2->fieldoffset) {
5619 r2->fieldoffset += sizeof(uint32_t);
5621 #endif
5624 if (state == ARM_CP_STATE_AA64) {
5625 /* To allow abbreviation of ARMCPRegInfo
5626 * definitions, we treat cp == 0 as equivalent to
5627 * the value for "standard guest-visible sysreg".
5628 * STATE_BOTH definitions are also always "standard
5629 * sysreg" in their AArch64 view (the .cp value may
5630 * be non-zero for the benefit of the AArch32 view).
5632 if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) {
5633 r2->cp = CP_REG_ARM64_SYSREG_CP;
5635 *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm,
5636 r2->opc0, opc1, opc2);
5637 } else {
5638 *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2);
5640 if (opaque) {
5641 r2->opaque = opaque;
5643 /* reginfo passed to helpers is correct for the actual access,
5644 * and is never ARM_CP_STATE_BOTH:
5646 r2->state = state;
5647 /* Make sure reginfo passed to helpers for wildcarded regs
5648 * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
5650 r2->crm = crm;
5651 r2->opc1 = opc1;
5652 r2->opc2 = opc2;
5653 /* By convention, for wildcarded registers only the first
5654 * entry is used for migration; the others are marked as
5655 * ALIAS so we don't try to transfer the register
5656 * multiple times. Special registers (ie NOP/WFI) are
5657 * never migratable and not even raw-accessible.
5659 if ((r->type & ARM_CP_SPECIAL)) {
5660 r2->type |= ARM_CP_NO_RAW;
5662 if (((r->crm == CP_ANY) && crm != 0) ||
5663 ((r->opc1 == CP_ANY) && opc1 != 0) ||
5664 ((r->opc2 == CP_ANY) && opc2 != 0)) {
5665 r2->type |= ARM_CP_ALIAS;
5668 /* Check that raw accesses are either forbidden or handled. Note that
5669 * we can't assert this earlier because the setup of fieldoffset for
5670 * banked registers has to be done first.
5672 if (!(r2->type & ARM_CP_NO_RAW)) {
5673 assert(!raw_accessors_invalid(r2));
5676 /* Overriding of an existing definition must be explicitly
5677 * requested.
5679 if (!(r->type & ARM_CP_OVERRIDE)) {
5680 ARMCPRegInfo *oldreg;
5681 oldreg = g_hash_table_lookup(cpu->cp_regs, key);
5682 if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) {
5683 fprintf(stderr, "Register redefined: cp=%d %d bit "
5684 "crn=%d crm=%d opc1=%d opc2=%d, "
5685 "was %s, now %s\n", r2->cp, 32 + 32 * is64,
5686 r2->crn, r2->crm, r2->opc1, r2->opc2,
5687 oldreg->name, r2->name);
5688 g_assert_not_reached();
5691 g_hash_table_insert(cpu->cp_regs, key, r2);
5695 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
5696 const ARMCPRegInfo *r, void *opaque)
5698 /* Define implementations of coprocessor registers.
5699 * We store these in a hashtable because typically
5700 * there are less than 150 registers in a space which
5701 * is 16*16*16*8*8 = 262144 in size.
5702 * Wildcarding is supported for the crm, opc1 and opc2 fields.
5703 * If a register is defined twice then the second definition is
5704 * used, so this can be used to define some generic registers and
5705 * then override them with implementation specific variations.
5706 * At least one of the original and the second definition should
5707 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
5708 * against accidental use.
5710 * The state field defines whether the register is to be
5711 * visible in the AArch32 or AArch64 execution state. If the
5712 * state is set to ARM_CP_STATE_BOTH then we synthesise a
5713 * reginfo structure for the AArch32 view, which sees the lower
5714 * 32 bits of the 64 bit register.
5716 * Only registers visible in AArch64 may set r->opc0; opc0 cannot
5717 * be wildcarded. AArch64 registers are always considered to be 64
5718 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
5719 * the register, if any.
5721 int crm, opc1, opc2, state;
5722 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
5723 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
5724 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
5725 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
5726 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
5727 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
5728 /* 64 bit registers have only CRm and Opc1 fields */
5729 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
5730 /* op0 only exists in the AArch64 encodings */
5731 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
5732 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
5733 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
5734 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
5735 * encodes a minimum access level for the register. We roll this
5736 * runtime check into our general permission check code, so check
5737 * here that the reginfo's specified permissions are strict enough
5738 * to encompass the generic architectural permission check.
5740 if (r->state != ARM_CP_STATE_AA32) {
5741 int mask = 0;
5742 switch (r->opc1) {
5743 case 0: case 1: case 2:
5744 /* min_EL EL1 */
5745 mask = PL1_RW;
5746 break;
5747 case 3:
5748 /* min_EL EL0 */
5749 mask = PL0_RW;
5750 break;
5751 case 4:
5752 /* min_EL EL2 */
5753 mask = PL2_RW;
5754 break;
5755 case 5:
5756 /* unallocated encoding, so not possible */
5757 assert(false);
5758 break;
5759 case 6:
5760 /* min_EL EL3 */
5761 mask = PL3_RW;
5762 break;
5763 case 7:
5764 /* min_EL EL1, secure mode only (we don't check the latter) */
5765 mask = PL1_RW;
5766 break;
5767 default:
5768 /* broken reginfo with out-of-range opc1 */
5769 assert(false);
5770 break;
5772 /* assert our permissions are not too lax (stricter is fine) */
5773 assert((r->access & ~mask) == 0);
5776 /* Check that the register definition has enough info to handle
5777 * reads and writes if they are permitted.
5779 if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) {
5780 if (r->access & PL3_R) {
5781 assert((r->fieldoffset ||
5782 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
5783 r->readfn);
5785 if (r->access & PL3_W) {
5786 assert((r->fieldoffset ||
5787 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
5788 r->writefn);
5791 /* Bad type field probably means missing sentinel at end of reg list */
5792 assert(cptype_valid(r->type));
5793 for (crm = crmmin; crm <= crmmax; crm++) {
5794 for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
5795 for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
5796 for (state = ARM_CP_STATE_AA32;
5797 state <= ARM_CP_STATE_AA64; state++) {
5798 if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
5799 continue;
5801 if (state == ARM_CP_STATE_AA32) {
5802 /* Under AArch32 CP registers can be common
5803 * (same for secure and non-secure world) or banked.
5805 switch (r->secure) {
5806 case ARM_CP_SECSTATE_S:
5807 case ARM_CP_SECSTATE_NS:
5808 add_cpreg_to_hashtable(cpu, r, opaque, state,
5809 r->secure, crm, opc1, opc2);
5810 break;
5811 default:
5812 add_cpreg_to_hashtable(cpu, r, opaque, state,
5813 ARM_CP_SECSTATE_S,
5814 crm, opc1, opc2);
5815 add_cpreg_to_hashtable(cpu, r, opaque, state,
5816 ARM_CP_SECSTATE_NS,
5817 crm, opc1, opc2);
5818 break;
5820 } else {
5821 /* AArch64 registers get mapped to non-secure instance
5822 * of AArch32 */
5823 add_cpreg_to_hashtable(cpu, r, opaque, state,
5824 ARM_CP_SECSTATE_NS,
5825 crm, opc1, opc2);
5833 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
5834 const ARMCPRegInfo *regs, void *opaque)
5836 /* Define a whole list of registers */
5837 const ARMCPRegInfo *r;
5838 for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
5839 define_one_arm_cp_reg_with_opaque(cpu, r, opaque);
5843 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
5845 return g_hash_table_lookup(cpregs, &encoded_cp);
5848 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
5849 uint64_t value)
5851 /* Helper coprocessor write function for write-ignore registers */
5854 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
5856 /* Helper coprocessor write function for read-as-zero registers */
5857 return 0;
5860 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
5862 /* Helper coprocessor reset function for do-nothing-on-reset registers */
5865 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type)
5867 /* Return true if it is not valid for us to switch to
5868 * this CPU mode (ie all the UNPREDICTABLE cases in
5869 * the ARM ARM CPSRWriteByInstr pseudocode).
5872 /* Changes to or from Hyp via MSR and CPS are illegal. */
5873 if (write_type == CPSRWriteByInstr &&
5874 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP ||
5875 mode == ARM_CPU_MODE_HYP)) {
5876 return 1;
5879 switch (mode) {
5880 case ARM_CPU_MODE_USR:
5881 return 0;
5882 case ARM_CPU_MODE_SYS:
5883 case ARM_CPU_MODE_SVC:
5884 case ARM_CPU_MODE_ABT:
5885 case ARM_CPU_MODE_UND:
5886 case ARM_CPU_MODE_IRQ:
5887 case ARM_CPU_MODE_FIQ:
5888 /* Note that we don't implement the IMPDEF NSACR.RFR which in v7
5889 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.)
5891 /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR
5892 * and CPS are treated as illegal mode changes.
5894 if (write_type == CPSRWriteByInstr &&
5895 (env->cp15.hcr_el2 & HCR_TGE) &&
5896 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON &&
5897 !arm_is_secure_below_el3(env)) {
5898 return 1;
5900 return 0;
5901 case ARM_CPU_MODE_HYP:
5902 return !arm_feature(env, ARM_FEATURE_EL2)
5903 || arm_current_el(env) < 2 || arm_is_secure(env);
5904 case ARM_CPU_MODE_MON:
5905 return arm_current_el(env) < 3;
5906 default:
5907 return 1;
5911 uint32_t cpsr_read(CPUARMState *env)
5913 int ZF;
5914 ZF = (env->ZF == 0);
5915 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
5916 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
5917 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
5918 | ((env->condexec_bits & 0xfc) << 8)
5919 | (env->GE << 16) | (env->daif & CPSR_AIF);
5922 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
5923 CPSRWriteType write_type)
5925 uint32_t changed_daif;
5927 if (mask & CPSR_NZCV) {
5928 env->ZF = (~val) & CPSR_Z;
5929 env->NF = val;
5930 env->CF = (val >> 29) & 1;
5931 env->VF = (val << 3) & 0x80000000;
5933 if (mask & CPSR_Q)
5934 env->QF = ((val & CPSR_Q) != 0);
5935 if (mask & CPSR_T)
5936 env->thumb = ((val & CPSR_T) != 0);
5937 if (mask & CPSR_IT_0_1) {
5938 env->condexec_bits &= ~3;
5939 env->condexec_bits |= (val >> 25) & 3;
5941 if (mask & CPSR_IT_2_7) {
5942 env->condexec_bits &= 3;
5943 env->condexec_bits |= (val >> 8) & 0xfc;
5945 if (mask & CPSR_GE) {
5946 env->GE = (val >> 16) & 0xf;
5949 /* In a V7 implementation that includes the security extensions but does
5950 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
5951 * whether non-secure software is allowed to change the CPSR_F and CPSR_A
5952 * bits respectively.
5954 * In a V8 implementation, it is permitted for privileged software to
5955 * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
5957 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) &&
5958 arm_feature(env, ARM_FEATURE_EL3) &&
5959 !arm_feature(env, ARM_FEATURE_EL2) &&
5960 !arm_is_secure(env)) {
5962 changed_daif = (env->daif ^ val) & mask;
5964 if (changed_daif & CPSR_A) {
5965 /* Check to see if we are allowed to change the masking of async
5966 * abort exceptions from a non-secure state.
5968 if (!(env->cp15.scr_el3 & SCR_AW)) {
5969 qemu_log_mask(LOG_GUEST_ERROR,
5970 "Ignoring attempt to switch CPSR_A flag from "
5971 "non-secure world with SCR.AW bit clear\n");
5972 mask &= ~CPSR_A;
5976 if (changed_daif & CPSR_F) {
5977 /* Check to see if we are allowed to change the masking of FIQ
5978 * exceptions from a non-secure state.
5980 if (!(env->cp15.scr_el3 & SCR_FW)) {
5981 qemu_log_mask(LOG_GUEST_ERROR,
5982 "Ignoring attempt to switch CPSR_F flag from "
5983 "non-secure world with SCR.FW bit clear\n");
5984 mask &= ~CPSR_F;
5987 /* Check whether non-maskable FIQ (NMFI) support is enabled.
5988 * If this bit is set software is not allowed to mask
5989 * FIQs, but is allowed to set CPSR_F to 0.
5991 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
5992 (val & CPSR_F)) {
5993 qemu_log_mask(LOG_GUEST_ERROR,
5994 "Ignoring attempt to enable CPSR_F flag "
5995 "(non-maskable FIQ [NMFI] support enabled)\n");
5996 mask &= ~CPSR_F;
6001 env->daif &= ~(CPSR_AIF & mask);
6002 env->daif |= val & CPSR_AIF & mask;
6004 if (write_type != CPSRWriteRaw &&
6005 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) {
6006 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) {
6007 /* Note that we can only get here in USR mode if this is a
6008 * gdb stub write; for this case we follow the architectural
6009 * behaviour for guest writes in USR mode of ignoring an attempt
6010 * to switch mode. (Those are caught by translate.c for writes
6011 * triggered by guest instructions.)
6013 mask &= ~CPSR_M;
6014 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) {
6015 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in
6016 * v7, and has defined behaviour in v8:
6017 * + leave CPSR.M untouched
6018 * + allow changes to the other CPSR fields
6019 * + set PSTATE.IL
6020 * For user changes via the GDB stub, we don't set PSTATE.IL,
6021 * as this would be unnecessarily harsh for a user error.
6023 mask &= ~CPSR_M;
6024 if (write_type != CPSRWriteByGDBStub &&
6025 arm_feature(env, ARM_FEATURE_V8)) {
6026 mask |= CPSR_IL;
6027 val |= CPSR_IL;
6029 } else {
6030 switch_mode(env, val & CPSR_M);
6033 mask &= ~CACHED_CPSR_BITS;
6034 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
6037 /* Sign/zero extend */
6038 uint32_t HELPER(sxtb16)(uint32_t x)
6040 uint32_t res;
6041 res = (uint16_t)(int8_t)x;
6042 res |= (uint32_t)(int8_t)(x >> 16) << 16;
6043 return res;
6046 uint32_t HELPER(uxtb16)(uint32_t x)
6048 uint32_t res;
6049 res = (uint16_t)(uint8_t)x;
6050 res |= (uint32_t)(uint8_t)(x >> 16) << 16;
6051 return res;
6054 int32_t HELPER(sdiv)(int32_t num, int32_t den)
6056 if (den == 0)
6057 return 0;
6058 if (num == INT_MIN && den == -1)
6059 return INT_MIN;
6060 return num / den;
6063 uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
6065 if (den == 0)
6066 return 0;
6067 return num / den;
6070 uint32_t HELPER(rbit)(uint32_t x)
6072 return revbit32(x);
6075 #if defined(CONFIG_USER_ONLY)
6077 /* These should probably raise undefined insn exceptions. */
6078 void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
6080 ARMCPU *cpu = arm_env_get_cpu(env);
6082 cpu_abort(CPU(cpu), "v7m_msr %d\n", reg);
6085 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
6087 ARMCPU *cpu = arm_env_get_cpu(env);
6089 cpu_abort(CPU(cpu), "v7m_mrs %d\n", reg);
6090 return 0;
6093 void HELPER(v7m_bxns)(CPUARMState *env, uint32_t dest)
6095 /* translate.c should never generate calls here in user-only mode */
6096 g_assert_not_reached();
6099 void HELPER(v7m_blxns)(CPUARMState *env, uint32_t dest)
6101 /* translate.c should never generate calls here in user-only mode */
6102 g_assert_not_reached();
6105 uint32_t HELPER(v7m_tt)(CPUARMState *env, uint32_t addr, uint32_t op)
6107 /* The TT instructions can be used by unprivileged code, but in
6108 * user-only emulation we don't have the MPU.
6109 * Luckily since we know we are NonSecure unprivileged (and that in
6110 * turn means that the A flag wasn't specified), all the bits in the
6111 * register must be zero:
6112 * IREGION: 0 because IRVALID is 0
6113 * IRVALID: 0 because NS
6114 * S: 0 because NS
6115 * NSRW: 0 because NS
6116 * NSR: 0 because NS
6117 * RW: 0 because unpriv and A flag not set
6118 * R: 0 because unpriv and A flag not set
6119 * SRVALID: 0 because NS
6120 * MRVALID: 0 because unpriv and A flag not set
6121 * SREGION: 0 becaus SRVALID is 0
6122 * MREGION: 0 because MRVALID is 0
6124 return 0;
6127 void switch_mode(CPUARMState *env, int mode)
6129 ARMCPU *cpu = arm_env_get_cpu(env);
6131 if (mode != ARM_CPU_MODE_USR) {
6132 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
6136 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
6137 uint32_t cur_el, bool secure)
6139 return 1;
6142 void aarch64_sync_64_to_32(CPUARMState *env)
6144 g_assert_not_reached();
6147 #else
6149 void switch_mode(CPUARMState *env, int mode)
6151 int old_mode;
6152 int i;
6154 old_mode = env->uncached_cpsr & CPSR_M;
6155 if (mode == old_mode)
6156 return;
6158 if (old_mode == ARM_CPU_MODE_FIQ) {
6159 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
6160 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
6161 } else if (mode == ARM_CPU_MODE_FIQ) {
6162 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
6163 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
6166 i = bank_number(old_mode);
6167 env->banked_r13[i] = env->regs[13];
6168 env->banked_r14[i] = env->regs[14];
6169 env->banked_spsr[i] = env->spsr;
6171 i = bank_number(mode);
6172 env->regs[13] = env->banked_r13[i];
6173 env->regs[14] = env->banked_r14[i];
6174 env->spsr = env->banked_spsr[i];
6177 /* Physical Interrupt Target EL Lookup Table
6179 * [ From ARM ARM section G1.13.4 (Table G1-15) ]
6181 * The below multi-dimensional table is used for looking up the target
6182 * exception level given numerous condition criteria. Specifically, the
6183 * target EL is based on SCR and HCR routing controls as well as the
6184 * currently executing EL and secure state.
6186 * Dimensions:
6187 * target_el_table[2][2][2][2][2][4]
6188 * | | | | | +--- Current EL
6189 * | | | | +------ Non-secure(0)/Secure(1)
6190 * | | | +--------- HCR mask override
6191 * | | +------------ SCR exec state control
6192 * | +--------------- SCR mask override
6193 * +------------------ 32-bit(0)/64-bit(1) EL3
6195 * The table values are as such:
6196 * 0-3 = EL0-EL3
6197 * -1 = Cannot occur
6199 * The ARM ARM target EL table includes entries indicating that an "exception
6200 * is not taken". The two cases where this is applicable are:
6201 * 1) An exception is taken from EL3 but the SCR does not have the exception
6202 * routed to EL3.
6203 * 2) An exception is taken from EL2 but the HCR does not have the exception
6204 * routed to EL2.
6205 * In these two cases, the below table contain a target of EL1. This value is
6206 * returned as it is expected that the consumer of the table data will check
6207 * for "target EL >= current EL" to ensure the exception is not taken.
6209 * SCR HCR
6210 * 64 EA AMO From
6211 * BIT IRQ IMO Non-secure Secure
6212 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3
6214 static const int8_t target_el_table[2][2][2][2][2][4] = {
6215 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
6216 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},
6217 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
6218 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},},
6219 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
6220 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},
6221 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
6222 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},},
6223 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },},
6224 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},
6225 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, -1, 1 },},
6226 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},},
6227 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
6228 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},
6229 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
6230 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},},},
6234 * Determine the target EL for physical exceptions
6236 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
6237 uint32_t cur_el, bool secure)
6239 CPUARMState *env = cs->env_ptr;
6240 int rw;
6241 int scr;
6242 int hcr;
6243 int target_el;
6244 /* Is the highest EL AArch64? */
6245 int is64 = arm_feature(env, ARM_FEATURE_AARCH64);
6247 if (arm_feature(env, ARM_FEATURE_EL3)) {
6248 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
6249 } else {
6250 /* Either EL2 is the highest EL (and so the EL2 register width
6251 * is given by is64); or there is no EL2 or EL3, in which case
6252 * the value of 'rw' does not affect the table lookup anyway.
6254 rw = is64;
6257 switch (excp_idx) {
6258 case EXCP_IRQ:
6259 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
6260 hcr = ((env->cp15.hcr_el2 & HCR_IMO) == HCR_IMO);
6261 break;
6262 case EXCP_FIQ:
6263 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
6264 hcr = ((env->cp15.hcr_el2 & HCR_FMO) == HCR_FMO);
6265 break;
6266 default:
6267 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
6268 hcr = ((env->cp15.hcr_el2 & HCR_AMO) == HCR_AMO);
6269 break;
6272 /* If HCR.TGE is set then HCR is treated as being 1 */
6273 hcr |= ((env->cp15.hcr_el2 & HCR_TGE) == HCR_TGE);
6275 /* Perform a table-lookup for the target EL given the current state */
6276 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];
6278 assert(target_el > 0);
6280 return target_el;
6283 static bool v7m_stack_write(ARMCPU *cpu, uint32_t addr, uint32_t value,
6284 ARMMMUIdx mmu_idx, bool ignfault)
6286 CPUState *cs = CPU(cpu);
6287 CPUARMState *env = &cpu->env;
6288 MemTxAttrs attrs = {};
6289 MemTxResult txres;
6290 target_ulong page_size;
6291 hwaddr physaddr;
6292 int prot;
6293 ARMMMUFaultInfo fi;
6294 bool secure = mmu_idx & ARM_MMU_IDX_M_S;
6295 int exc;
6296 bool exc_secure;
6298 if (get_phys_addr(env, addr, MMU_DATA_STORE, mmu_idx, &physaddr,
6299 &attrs, &prot, &page_size, &fi, NULL)) {
6300 /* MPU/SAU lookup failed */
6301 if (fi.type == ARMFault_QEMU_SFault) {
6302 qemu_log_mask(CPU_LOG_INT,
6303 "...SecureFault with SFSR.AUVIOL during stacking\n");
6304 env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK | R_V7M_SFSR_SFARVALID_MASK;
6305 env->v7m.sfar = addr;
6306 exc = ARMV7M_EXCP_SECURE;
6307 exc_secure = false;
6308 } else {
6309 qemu_log_mask(CPU_LOG_INT, "...MemManageFault with CFSR.MSTKERR\n");
6310 env->v7m.cfsr[secure] |= R_V7M_CFSR_MSTKERR_MASK;
6311 exc = ARMV7M_EXCP_MEM;
6312 exc_secure = secure;
6314 goto pend_fault;
6316 address_space_stl_le(arm_addressspace(cs, attrs), physaddr, value,
6317 attrs, &txres);
6318 if (txres != MEMTX_OK) {
6319 /* BusFault trying to write the data */
6320 qemu_log_mask(CPU_LOG_INT, "...BusFault with BFSR.STKERR\n");
6321 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_STKERR_MASK;
6322 exc = ARMV7M_EXCP_BUS;
6323 exc_secure = false;
6324 goto pend_fault;
6326 return true;
6328 pend_fault:
6329 /* By pending the exception at this point we are making
6330 * the IMPDEF choice "overridden exceptions pended" (see the
6331 * MergeExcInfo() pseudocode). The other choice would be to not
6332 * pend them now and then make a choice about which to throw away
6333 * later if we have two derived exceptions.
6334 * The only case when we must not pend the exception but instead
6335 * throw it away is if we are doing the push of the callee registers
6336 * and we've already generated a derived exception. Even in this
6337 * case we will still update the fault status registers.
6339 if (!ignfault) {
6340 armv7m_nvic_set_pending_derived(env->nvic, exc, exc_secure);
6342 return false;
6345 static bool v7m_stack_read(ARMCPU *cpu, uint32_t *dest, uint32_t addr,
6346 ARMMMUIdx mmu_idx)
6348 CPUState *cs = CPU(cpu);
6349 CPUARMState *env = &cpu->env;
6350 MemTxAttrs attrs = {};
6351 MemTxResult txres;
6352 target_ulong page_size;
6353 hwaddr physaddr;
6354 int prot;
6355 ARMMMUFaultInfo fi;
6356 bool secure = mmu_idx & ARM_MMU_IDX_M_S;
6357 int exc;
6358 bool exc_secure;
6359 uint32_t value;
6361 if (get_phys_addr(env, addr, MMU_DATA_LOAD, mmu_idx, &physaddr,
6362 &attrs, &prot, &page_size, &fi, NULL)) {
6363 /* MPU/SAU lookup failed */
6364 if (fi.type == ARMFault_QEMU_SFault) {
6365 qemu_log_mask(CPU_LOG_INT,
6366 "...SecureFault with SFSR.AUVIOL during unstack\n");
6367 env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK | R_V7M_SFSR_SFARVALID_MASK;
6368 env->v7m.sfar = addr;
6369 exc = ARMV7M_EXCP_SECURE;
6370 exc_secure = false;
6371 } else {
6372 qemu_log_mask(CPU_LOG_INT,
6373 "...MemManageFault with CFSR.MUNSTKERR\n");
6374 env->v7m.cfsr[secure] |= R_V7M_CFSR_MUNSTKERR_MASK;
6375 exc = ARMV7M_EXCP_MEM;
6376 exc_secure = secure;
6378 goto pend_fault;
6381 value = address_space_ldl(arm_addressspace(cs, attrs), physaddr,
6382 attrs, &txres);
6383 if (txres != MEMTX_OK) {
6384 /* BusFault trying to read the data */
6385 qemu_log_mask(CPU_LOG_INT, "...BusFault with BFSR.UNSTKERR\n");
6386 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_UNSTKERR_MASK;
6387 exc = ARMV7M_EXCP_BUS;
6388 exc_secure = false;
6389 goto pend_fault;
6392 *dest = value;
6393 return true;
6395 pend_fault:
6396 /* By pending the exception at this point we are making
6397 * the IMPDEF choice "overridden exceptions pended" (see the
6398 * MergeExcInfo() pseudocode). The other choice would be to not
6399 * pend them now and then make a choice about which to throw away
6400 * later if we have two derived exceptions.
6402 armv7m_nvic_set_pending(env->nvic, exc, exc_secure);
6403 return false;
6406 /* Return true if we're using the process stack pointer (not the MSP) */
6407 static bool v7m_using_psp(CPUARMState *env)
6409 /* Handler mode always uses the main stack; for thread mode
6410 * the CONTROL.SPSEL bit determines the answer.
6411 * Note that in v7M it is not possible to be in Handler mode with
6412 * CONTROL.SPSEL non-zero, but in v8M it is, so we must check both.
6414 return !arm_v7m_is_handler_mode(env) &&
6415 env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK;
6418 /* Write to v7M CONTROL.SPSEL bit for the specified security bank.
6419 * This may change the current stack pointer between Main and Process
6420 * stack pointers if it is done for the CONTROL register for the current
6421 * security state.
6423 static void write_v7m_control_spsel_for_secstate(CPUARMState *env,
6424 bool new_spsel,
6425 bool secstate)
6427 bool old_is_psp = v7m_using_psp(env);
6429 env->v7m.control[secstate] =
6430 deposit32(env->v7m.control[secstate],
6431 R_V7M_CONTROL_SPSEL_SHIFT,
6432 R_V7M_CONTROL_SPSEL_LENGTH, new_spsel);
6434 if (secstate == env->v7m.secure) {
6435 bool new_is_psp = v7m_using_psp(env);
6436 uint32_t tmp;
6438 if (old_is_psp != new_is_psp) {
6439 tmp = env->v7m.other_sp;
6440 env->v7m.other_sp = env->regs[13];
6441 env->regs[13] = tmp;
6446 /* Write to v7M CONTROL.SPSEL bit. This may change the current
6447 * stack pointer between Main and Process stack pointers.
6449 static void write_v7m_control_spsel(CPUARMState *env, bool new_spsel)
6451 write_v7m_control_spsel_for_secstate(env, new_spsel, env->v7m.secure);
6454 void write_v7m_exception(CPUARMState *env, uint32_t new_exc)
6456 /* Write a new value to v7m.exception, thus transitioning into or out
6457 * of Handler mode; this may result in a change of active stack pointer.
6459 bool new_is_psp, old_is_psp = v7m_using_psp(env);
6460 uint32_t tmp;
6462 env->v7m.exception = new_exc;
6464 new_is_psp = v7m_using_psp(env);
6466 if (old_is_psp != new_is_psp) {
6467 tmp = env->v7m.other_sp;
6468 env->v7m.other_sp = env->regs[13];
6469 env->regs[13] = tmp;
6473 /* Switch M profile security state between NS and S */
6474 static void switch_v7m_security_state(CPUARMState *env, bool new_secstate)
6476 uint32_t new_ss_msp, new_ss_psp;
6478 if (env->v7m.secure == new_secstate) {
6479 return;
6482 /* All the banked state is accessed by looking at env->v7m.secure
6483 * except for the stack pointer; rearrange the SP appropriately.
6485 new_ss_msp = env->v7m.other_ss_msp;
6486 new_ss_psp = env->v7m.other_ss_psp;
6488 if (v7m_using_psp(env)) {
6489 env->v7m.other_ss_psp = env->regs[13];
6490 env->v7m.other_ss_msp = env->v7m.other_sp;
6491 } else {
6492 env->v7m.other_ss_msp = env->regs[13];
6493 env->v7m.other_ss_psp = env->v7m.other_sp;
6496 env->v7m.secure = new_secstate;
6498 if (v7m_using_psp(env)) {
6499 env->regs[13] = new_ss_psp;
6500 env->v7m.other_sp = new_ss_msp;
6501 } else {
6502 env->regs[13] = new_ss_msp;
6503 env->v7m.other_sp = new_ss_psp;
6507 void HELPER(v7m_bxns)(CPUARMState *env, uint32_t dest)
6509 /* Handle v7M BXNS:
6510 * - if the return value is a magic value, do exception return (like BX)
6511 * - otherwise bit 0 of the return value is the target security state
6513 uint32_t min_magic;
6515 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
6516 /* Covers FNC_RETURN and EXC_RETURN magic */
6517 min_magic = FNC_RETURN_MIN_MAGIC;
6518 } else {
6519 /* EXC_RETURN magic only */
6520 min_magic = EXC_RETURN_MIN_MAGIC;
6523 if (dest >= min_magic) {
6524 /* This is an exception return magic value; put it where
6525 * do_v7m_exception_exit() expects and raise EXCEPTION_EXIT.
6526 * Note that if we ever add gen_ss_advance() singlestep support to
6527 * M profile this should count as an "instruction execution complete"
6528 * event (compare gen_bx_excret_final_code()).
6530 env->regs[15] = dest & ~1;
6531 env->thumb = dest & 1;
6532 HELPER(exception_internal)(env, EXCP_EXCEPTION_EXIT);
6533 /* notreached */
6536 /* translate.c should have made BXNS UNDEF unless we're secure */
6537 assert(env->v7m.secure);
6539 switch_v7m_security_state(env, dest & 1);
6540 env->thumb = 1;
6541 env->regs[15] = dest & ~1;
6544 void HELPER(v7m_blxns)(CPUARMState *env, uint32_t dest)
6546 /* Handle v7M BLXNS:
6547 * - bit 0 of the destination address is the target security state
6550 /* At this point regs[15] is the address just after the BLXNS */
6551 uint32_t nextinst = env->regs[15] | 1;
6552 uint32_t sp = env->regs[13] - 8;
6553 uint32_t saved_psr;
6555 /* translate.c will have made BLXNS UNDEF unless we're secure */
6556 assert(env->v7m.secure);
6558 if (dest & 1) {
6559 /* target is Secure, so this is just a normal BLX,
6560 * except that the low bit doesn't indicate Thumb/not.
6562 env->regs[14] = nextinst;
6563 env->thumb = 1;
6564 env->regs[15] = dest & ~1;
6565 return;
6568 /* Target is non-secure: first push a stack frame */
6569 if (!QEMU_IS_ALIGNED(sp, 8)) {
6570 qemu_log_mask(LOG_GUEST_ERROR,
6571 "BLXNS with misaligned SP is UNPREDICTABLE\n");
6574 saved_psr = env->v7m.exception;
6575 if (env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK) {
6576 saved_psr |= XPSR_SFPA;
6579 /* Note that these stores can throw exceptions on MPU faults */
6580 cpu_stl_data(env, sp, nextinst);
6581 cpu_stl_data(env, sp + 4, saved_psr);
6583 env->regs[13] = sp;
6584 env->regs[14] = 0xfeffffff;
6585 if (arm_v7m_is_handler_mode(env)) {
6586 /* Write a dummy value to IPSR, to avoid leaking the current secure
6587 * exception number to non-secure code. This is guaranteed not
6588 * to cause write_v7m_exception() to actually change stacks.
6590 write_v7m_exception(env, 1);
6592 switch_v7m_security_state(env, 0);
6593 env->thumb = 1;
6594 env->regs[15] = dest;
6597 static uint32_t *get_v7m_sp_ptr(CPUARMState *env, bool secure, bool threadmode,
6598 bool spsel)
6600 /* Return a pointer to the location where we currently store the
6601 * stack pointer for the requested security state and thread mode.
6602 * This pointer will become invalid if the CPU state is updated
6603 * such that the stack pointers are switched around (eg changing
6604 * the SPSEL control bit).
6605 * Compare the v8M ARM ARM pseudocode LookUpSP_with_security_mode().
6606 * Unlike that pseudocode, we require the caller to pass us in the
6607 * SPSEL control bit value; this is because we also use this
6608 * function in handling of pushing of the callee-saves registers
6609 * part of the v8M stack frame (pseudocode PushCalleeStack()),
6610 * and in the tailchain codepath the SPSEL bit comes from the exception
6611 * return magic LR value from the previous exception. The pseudocode
6612 * opencodes the stack-selection in PushCalleeStack(), but we prefer
6613 * to make this utility function generic enough to do the job.
6615 bool want_psp = threadmode && spsel;
6617 if (secure == env->v7m.secure) {
6618 if (want_psp == v7m_using_psp(env)) {
6619 return &env->regs[13];
6620 } else {
6621 return &env->v7m.other_sp;
6623 } else {
6624 if (want_psp) {
6625 return &env->v7m.other_ss_psp;
6626 } else {
6627 return &env->v7m.other_ss_msp;
6632 static bool arm_v7m_load_vector(ARMCPU *cpu, int exc, bool targets_secure,
6633 uint32_t *pvec)
6635 CPUState *cs = CPU(cpu);
6636 CPUARMState *env = &cpu->env;
6637 MemTxResult result;
6638 uint32_t addr = env->v7m.vecbase[targets_secure] + exc * 4;
6639 uint32_t vector_entry;
6640 MemTxAttrs attrs = {};
6641 ARMMMUIdx mmu_idx;
6642 bool exc_secure;
6644 mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, targets_secure, true);
6646 /* We don't do a get_phys_addr() here because the rules for vector
6647 * loads are special: they always use the default memory map, and
6648 * the default memory map permits reads from all addresses.
6649 * Since there's no easy way to pass through to pmsav8_mpu_lookup()
6650 * that we want this special case which would always say "yes",
6651 * we just do the SAU lookup here followed by a direct physical load.
6653 attrs.secure = targets_secure;
6654 attrs.user = false;
6656 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
6657 V8M_SAttributes sattrs = {};
6659 v8m_security_lookup(env, addr, MMU_DATA_LOAD, mmu_idx, &sattrs);
6660 if (sattrs.ns) {
6661 attrs.secure = false;
6662 } else if (!targets_secure) {
6663 /* NS access to S memory */
6664 goto load_fail;
6668 vector_entry = address_space_ldl(arm_addressspace(cs, attrs), addr,
6669 attrs, &result);
6670 if (result != MEMTX_OK) {
6671 goto load_fail;
6673 *pvec = vector_entry;
6674 return true;
6676 load_fail:
6677 /* All vector table fetch fails are reported as HardFault, with
6678 * HFSR.VECTTBL and .FORCED set. (FORCED is set because
6679 * technically the underlying exception is a MemManage or BusFault
6680 * that is escalated to HardFault.) This is a terminal exception,
6681 * so we will either take the HardFault immediately or else enter
6682 * lockup (the latter case is handled in armv7m_nvic_set_pending_derived()).
6684 exc_secure = targets_secure ||
6685 !(cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK);
6686 env->v7m.hfsr |= R_V7M_HFSR_VECTTBL_MASK | R_V7M_HFSR_FORCED_MASK;
6687 armv7m_nvic_set_pending_derived(env->nvic, ARMV7M_EXCP_HARD, exc_secure);
6688 return false;
6691 static bool v7m_push_callee_stack(ARMCPU *cpu, uint32_t lr, bool dotailchain,
6692 bool ignore_faults)
6694 /* For v8M, push the callee-saves register part of the stack frame.
6695 * Compare the v8M pseudocode PushCalleeStack().
6696 * In the tailchaining case this may not be the current stack.
6698 CPUARMState *env = &cpu->env;
6699 uint32_t *frame_sp_p;
6700 uint32_t frameptr;
6701 ARMMMUIdx mmu_idx;
6702 bool stacked_ok;
6704 if (dotailchain) {
6705 bool mode = lr & R_V7M_EXCRET_MODE_MASK;
6706 bool priv = !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_NPRIV_MASK) ||
6707 !mode;
6709 mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, M_REG_S, priv);
6710 frame_sp_p = get_v7m_sp_ptr(env, M_REG_S, mode,
6711 lr & R_V7M_EXCRET_SPSEL_MASK);
6712 } else {
6713 mmu_idx = core_to_arm_mmu_idx(env, cpu_mmu_index(env, false));
6714 frame_sp_p = &env->regs[13];
6717 frameptr = *frame_sp_p - 0x28;
6719 /* Write as much of the stack frame as we can. A write failure may
6720 * cause us to pend a derived exception.
6722 stacked_ok =
6723 v7m_stack_write(cpu, frameptr, 0xfefa125b, mmu_idx, ignore_faults) &&
6724 v7m_stack_write(cpu, frameptr + 0x8, env->regs[4], mmu_idx,
6725 ignore_faults) &&
6726 v7m_stack_write(cpu, frameptr + 0xc, env->regs[5], mmu_idx,
6727 ignore_faults) &&
6728 v7m_stack_write(cpu, frameptr + 0x10, env->regs[6], mmu_idx,
6729 ignore_faults) &&
6730 v7m_stack_write(cpu, frameptr + 0x14, env->regs[7], mmu_idx,
6731 ignore_faults) &&
6732 v7m_stack_write(cpu, frameptr + 0x18, env->regs[8], mmu_idx,
6733 ignore_faults) &&
6734 v7m_stack_write(cpu, frameptr + 0x1c, env->regs[9], mmu_idx,
6735 ignore_faults) &&
6736 v7m_stack_write(cpu, frameptr + 0x20, env->regs[10], mmu_idx,
6737 ignore_faults) &&
6738 v7m_stack_write(cpu, frameptr + 0x24, env->regs[11], mmu_idx,
6739 ignore_faults);
6741 /* Update SP regardless of whether any of the stack accesses failed.
6742 * When we implement v8M stack limit checking then this attempt to
6743 * update SP might also fail and result in a derived exception.
6745 *frame_sp_p = frameptr;
6747 return !stacked_ok;
6750 static void v7m_exception_taken(ARMCPU *cpu, uint32_t lr, bool dotailchain,
6751 bool ignore_stackfaults)
6753 /* Do the "take the exception" parts of exception entry,
6754 * but not the pushing of state to the stack. This is
6755 * similar to the pseudocode ExceptionTaken() function.
6757 CPUARMState *env = &cpu->env;
6758 uint32_t addr;
6759 bool targets_secure;
6760 int exc;
6761 bool push_failed = false;
6763 armv7m_nvic_get_pending_irq_info(env->nvic, &exc, &targets_secure);
6765 if (arm_feature(env, ARM_FEATURE_V8)) {
6766 if (arm_feature(env, ARM_FEATURE_M_SECURITY) &&
6767 (lr & R_V7M_EXCRET_S_MASK)) {
6768 /* The background code (the owner of the registers in the
6769 * exception frame) is Secure. This means it may either already
6770 * have or now needs to push callee-saves registers.
6772 if (targets_secure) {
6773 if (dotailchain && !(lr & R_V7M_EXCRET_ES_MASK)) {
6774 /* We took an exception from Secure to NonSecure
6775 * (which means the callee-saved registers got stacked)
6776 * and are now tailchaining to a Secure exception.
6777 * Clear DCRS so eventual return from this Secure
6778 * exception unstacks the callee-saved registers.
6780 lr &= ~R_V7M_EXCRET_DCRS_MASK;
6782 } else {
6783 /* We're going to a non-secure exception; push the
6784 * callee-saves registers to the stack now, if they're
6785 * not already saved.
6787 if (lr & R_V7M_EXCRET_DCRS_MASK &&
6788 !(dotailchain && (lr & R_V7M_EXCRET_ES_MASK))) {
6789 push_failed = v7m_push_callee_stack(cpu, lr, dotailchain,
6790 ignore_stackfaults);
6792 lr |= R_V7M_EXCRET_DCRS_MASK;
6796 lr &= ~R_V7M_EXCRET_ES_MASK;
6797 if (targets_secure || !arm_feature(env, ARM_FEATURE_M_SECURITY)) {
6798 lr |= R_V7M_EXCRET_ES_MASK;
6800 lr &= ~R_V7M_EXCRET_SPSEL_MASK;
6801 if (env->v7m.control[targets_secure] & R_V7M_CONTROL_SPSEL_MASK) {
6802 lr |= R_V7M_EXCRET_SPSEL_MASK;
6805 /* Clear registers if necessary to prevent non-secure exception
6806 * code being able to see register values from secure code.
6807 * Where register values become architecturally UNKNOWN we leave
6808 * them with their previous values.
6810 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
6811 if (!targets_secure) {
6812 /* Always clear the caller-saved registers (they have been
6813 * pushed to the stack earlier in v7m_push_stack()).
6814 * Clear callee-saved registers if the background code is
6815 * Secure (in which case these regs were saved in
6816 * v7m_push_callee_stack()).
6818 int i;
6820 for (i = 0; i < 13; i++) {
6821 /* r4..r11 are callee-saves, zero only if EXCRET.S == 1 */
6822 if (i < 4 || i > 11 || (lr & R_V7M_EXCRET_S_MASK)) {
6823 env->regs[i] = 0;
6826 /* Clear EAPSR */
6827 xpsr_write(env, 0, XPSR_NZCV | XPSR_Q | XPSR_GE | XPSR_IT);
6832 if (push_failed && !ignore_stackfaults) {
6833 /* Derived exception on callee-saves register stacking:
6834 * we might now want to take a different exception which
6835 * targets a different security state, so try again from the top.
6837 v7m_exception_taken(cpu, lr, true, true);
6838 return;
6841 if (!arm_v7m_load_vector(cpu, exc, targets_secure, &addr)) {
6842 /* Vector load failed: derived exception */
6843 v7m_exception_taken(cpu, lr, true, true);
6844 return;
6847 /* Now we've done everything that might cause a derived exception
6848 * we can go ahead and activate whichever exception we're going to
6849 * take (which might now be the derived exception).
6851 armv7m_nvic_acknowledge_irq(env->nvic);
6853 /* Switch to target security state -- must do this before writing SPSEL */
6854 switch_v7m_security_state(env, targets_secure);
6855 write_v7m_control_spsel(env, 0);
6856 arm_clear_exclusive(env);
6857 /* Clear IT bits */
6858 env->condexec_bits = 0;
6859 env->regs[14] = lr;
6860 env->regs[15] = addr & 0xfffffffe;
6861 env->thumb = addr & 1;
6864 static bool v7m_push_stack(ARMCPU *cpu)
6866 /* Do the "set up stack frame" part of exception entry,
6867 * similar to pseudocode PushStack().
6868 * Return true if we generate a derived exception (and so
6869 * should ignore further stack faults trying to process
6870 * that derived exception.)
6872 bool stacked_ok;
6873 CPUARMState *env = &cpu->env;
6874 uint32_t xpsr = xpsr_read(env);
6875 uint32_t frameptr = env->regs[13];
6876 ARMMMUIdx mmu_idx = core_to_arm_mmu_idx(env, cpu_mmu_index(env, false));
6878 /* Align stack pointer if the guest wants that */
6879 if ((frameptr & 4) &&
6880 (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_STKALIGN_MASK)) {
6881 frameptr -= 4;
6882 xpsr |= XPSR_SPREALIGN;
6885 frameptr -= 0x20;
6887 /* Write as much of the stack frame as we can. If we fail a stack
6888 * write this will result in a derived exception being pended
6889 * (which may be taken in preference to the one we started with
6890 * if it has higher priority).
6892 stacked_ok =
6893 v7m_stack_write(cpu, frameptr, env->regs[0], mmu_idx, false) &&
6894 v7m_stack_write(cpu, frameptr + 4, env->regs[1], mmu_idx, false) &&
6895 v7m_stack_write(cpu, frameptr + 8, env->regs[2], mmu_idx, false) &&
6896 v7m_stack_write(cpu, frameptr + 12, env->regs[3], mmu_idx, false) &&
6897 v7m_stack_write(cpu, frameptr + 16, env->regs[12], mmu_idx, false) &&
6898 v7m_stack_write(cpu, frameptr + 20, env->regs[14], mmu_idx, false) &&
6899 v7m_stack_write(cpu, frameptr + 24, env->regs[15], mmu_idx, false) &&
6900 v7m_stack_write(cpu, frameptr + 28, xpsr, mmu_idx, false);
6902 /* Update SP regardless of whether any of the stack accesses failed.
6903 * When we implement v8M stack limit checking then this attempt to
6904 * update SP might also fail and result in a derived exception.
6906 env->regs[13] = frameptr;
6908 return !stacked_ok;
6911 static void do_v7m_exception_exit(ARMCPU *cpu)
6913 CPUARMState *env = &cpu->env;
6914 CPUState *cs = CPU(cpu);
6915 uint32_t excret;
6916 uint32_t xpsr;
6917 bool ufault = false;
6918 bool sfault = false;
6919 bool return_to_sp_process;
6920 bool return_to_handler;
6921 bool rettobase = false;
6922 bool exc_secure = false;
6923 bool return_to_secure;
6925 /* If we're not in Handler mode then jumps to magic exception-exit
6926 * addresses don't have magic behaviour. However for the v8M
6927 * security extensions the magic secure-function-return has to
6928 * work in thread mode too, so to avoid doing an extra check in
6929 * the generated code we allow exception-exit magic to also cause the
6930 * internal exception and bring us here in thread mode. Correct code
6931 * will never try to do this (the following insn fetch will always
6932 * fault) so we the overhead of having taken an unnecessary exception
6933 * doesn't matter.
6935 if (!arm_v7m_is_handler_mode(env)) {
6936 return;
6939 /* In the spec pseudocode ExceptionReturn() is called directly
6940 * from BXWritePC() and gets the full target PC value including
6941 * bit zero. In QEMU's implementation we treat it as a normal
6942 * jump-to-register (which is then caught later on), and so split
6943 * the target value up between env->regs[15] and env->thumb in
6944 * gen_bx(). Reconstitute it.
6946 excret = env->regs[15];
6947 if (env->thumb) {
6948 excret |= 1;
6951 qemu_log_mask(CPU_LOG_INT, "Exception return: magic PC %" PRIx32
6952 " previous exception %d\n",
6953 excret, env->v7m.exception);
6955 if ((excret & R_V7M_EXCRET_RES1_MASK) != R_V7M_EXCRET_RES1_MASK) {
6956 qemu_log_mask(LOG_GUEST_ERROR, "M profile: zero high bits in exception "
6957 "exit PC value 0x%" PRIx32 " are UNPREDICTABLE\n",
6958 excret);
6961 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
6962 /* EXC_RETURN.ES validation check (R_SMFL). We must do this before
6963 * we pick which FAULTMASK to clear.
6965 if (!env->v7m.secure &&
6966 ((excret & R_V7M_EXCRET_ES_MASK) ||
6967 !(excret & R_V7M_EXCRET_DCRS_MASK))) {
6968 sfault = 1;
6969 /* For all other purposes, treat ES as 0 (R_HXSR) */
6970 excret &= ~R_V7M_EXCRET_ES_MASK;
6974 if (env->v7m.exception != ARMV7M_EXCP_NMI) {
6975 /* Auto-clear FAULTMASK on return from other than NMI.
6976 * If the security extension is implemented then this only
6977 * happens if the raw execution priority is >= 0; the
6978 * value of the ES bit in the exception return value indicates
6979 * which security state's faultmask to clear. (v8M ARM ARM R_KBNF.)
6981 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
6982 exc_secure = excret & R_V7M_EXCRET_ES_MASK;
6983 if (armv7m_nvic_raw_execution_priority(env->nvic) >= 0) {
6984 env->v7m.faultmask[exc_secure] = 0;
6986 } else {
6987 env->v7m.faultmask[M_REG_NS] = 0;
6991 switch (armv7m_nvic_complete_irq(env->nvic, env->v7m.exception,
6992 exc_secure)) {
6993 case -1:
6994 /* attempt to exit an exception that isn't active */
6995 ufault = true;
6996 break;
6997 case 0:
6998 /* still an irq active now */
6999 break;
7000 case 1:
7001 /* we returned to base exception level, no nesting.
7002 * (In the pseudocode this is written using "NestedActivation != 1"
7003 * where we have 'rettobase == false'.)
7005 rettobase = true;
7006 break;
7007 default:
7008 g_assert_not_reached();
7011 return_to_handler = !(excret & R_V7M_EXCRET_MODE_MASK);
7012 return_to_sp_process = excret & R_V7M_EXCRET_SPSEL_MASK;
7013 return_to_secure = arm_feature(env, ARM_FEATURE_M_SECURITY) &&
7014 (excret & R_V7M_EXCRET_S_MASK);
7016 if (arm_feature(env, ARM_FEATURE_V8)) {
7017 if (!arm_feature(env, ARM_FEATURE_M_SECURITY)) {
7018 /* UNPREDICTABLE if S == 1 or DCRS == 0 or ES == 1 (R_XLCP);
7019 * we choose to take the UsageFault.
7021 if ((excret & R_V7M_EXCRET_S_MASK) ||
7022 (excret & R_V7M_EXCRET_ES_MASK) ||
7023 !(excret & R_V7M_EXCRET_DCRS_MASK)) {
7024 ufault = true;
7027 if (excret & R_V7M_EXCRET_RES0_MASK) {
7028 ufault = true;
7030 } else {
7031 /* For v7M we only recognize certain combinations of the low bits */
7032 switch (excret & 0xf) {
7033 case 1: /* Return to Handler */
7034 break;
7035 case 13: /* Return to Thread using Process stack */
7036 case 9: /* Return to Thread using Main stack */
7037 /* We only need to check NONBASETHRDENA for v7M, because in
7038 * v8M this bit does not exist (it is RES1).
7040 if (!rettobase &&
7041 !(env->v7m.ccr[env->v7m.secure] &
7042 R_V7M_CCR_NONBASETHRDENA_MASK)) {
7043 ufault = true;
7045 break;
7046 default:
7047 ufault = true;
7051 if (sfault) {
7052 env->v7m.sfsr |= R_V7M_SFSR_INVER_MASK;
7053 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
7054 v7m_exception_taken(cpu, excret, true, false);
7055 qemu_log_mask(CPU_LOG_INT, "...taking SecureFault on existing "
7056 "stackframe: failed EXC_RETURN.ES validity check\n");
7057 return;
7060 if (ufault) {
7061 /* Bad exception return: instead of popping the exception
7062 * stack, directly take a usage fault on the current stack.
7064 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
7065 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
7066 v7m_exception_taken(cpu, excret, true, false);
7067 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on existing "
7068 "stackframe: failed exception return integrity check\n");
7069 return;
7072 /* Set CONTROL.SPSEL from excret.SPSEL. Since we're still in
7073 * Handler mode (and will be until we write the new XPSR.Interrupt
7074 * field) this does not switch around the current stack pointer.
7076 write_v7m_control_spsel_for_secstate(env, return_to_sp_process, exc_secure);
7078 switch_v7m_security_state(env, return_to_secure);
7081 /* The stack pointer we should be reading the exception frame from
7082 * depends on bits in the magic exception return type value (and
7083 * for v8M isn't necessarily the stack pointer we will eventually
7084 * end up resuming execution with). Get a pointer to the location
7085 * in the CPU state struct where the SP we need is currently being
7086 * stored; we will use and modify it in place.
7087 * We use this limited C variable scope so we don't accidentally
7088 * use 'frame_sp_p' after we do something that makes it invalid.
7090 uint32_t *frame_sp_p = get_v7m_sp_ptr(env,
7091 return_to_secure,
7092 !return_to_handler,
7093 return_to_sp_process);
7094 uint32_t frameptr = *frame_sp_p;
7095 bool pop_ok = true;
7096 ARMMMUIdx mmu_idx;
7098 mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, return_to_secure,
7099 !return_to_handler);
7101 if (!QEMU_IS_ALIGNED(frameptr, 8) &&
7102 arm_feature(env, ARM_FEATURE_V8)) {
7103 qemu_log_mask(LOG_GUEST_ERROR,
7104 "M profile exception return with non-8-aligned SP "
7105 "for destination state is UNPREDICTABLE\n");
7108 /* Do we need to pop callee-saved registers? */
7109 if (return_to_secure &&
7110 ((excret & R_V7M_EXCRET_ES_MASK) == 0 ||
7111 (excret & R_V7M_EXCRET_DCRS_MASK) == 0)) {
7112 uint32_t expected_sig = 0xfefa125b;
7113 uint32_t actual_sig = ldl_phys(cs->as, frameptr);
7115 if (expected_sig != actual_sig) {
7116 /* Take a SecureFault on the current stack */
7117 env->v7m.sfsr |= R_V7M_SFSR_INVIS_MASK;
7118 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
7119 v7m_exception_taken(cpu, excret, true, false);
7120 qemu_log_mask(CPU_LOG_INT, "...taking SecureFault on existing "
7121 "stackframe: failed exception return integrity "
7122 "signature check\n");
7123 return;
7126 pop_ok =
7127 v7m_stack_read(cpu, &env->regs[4], frameptr + 0x8, mmu_idx) &&
7128 v7m_stack_read(cpu, &env->regs[4], frameptr + 0x8, mmu_idx) &&
7129 v7m_stack_read(cpu, &env->regs[5], frameptr + 0xc, mmu_idx) &&
7130 v7m_stack_read(cpu, &env->regs[6], frameptr + 0x10, mmu_idx) &&
7131 v7m_stack_read(cpu, &env->regs[7], frameptr + 0x14, mmu_idx) &&
7132 v7m_stack_read(cpu, &env->regs[8], frameptr + 0x18, mmu_idx) &&
7133 v7m_stack_read(cpu, &env->regs[9], frameptr + 0x1c, mmu_idx) &&
7134 v7m_stack_read(cpu, &env->regs[10], frameptr + 0x20, mmu_idx) &&
7135 v7m_stack_read(cpu, &env->regs[11], frameptr + 0x24, mmu_idx);
7137 frameptr += 0x28;
7140 /* Pop registers */
7141 pop_ok = pop_ok &&
7142 v7m_stack_read(cpu, &env->regs[0], frameptr, mmu_idx) &&
7143 v7m_stack_read(cpu, &env->regs[1], frameptr + 0x4, mmu_idx) &&
7144 v7m_stack_read(cpu, &env->regs[2], frameptr + 0x8, mmu_idx) &&
7145 v7m_stack_read(cpu, &env->regs[3], frameptr + 0xc, mmu_idx) &&
7146 v7m_stack_read(cpu, &env->regs[12], frameptr + 0x10, mmu_idx) &&
7147 v7m_stack_read(cpu, &env->regs[14], frameptr + 0x14, mmu_idx) &&
7148 v7m_stack_read(cpu, &env->regs[15], frameptr + 0x18, mmu_idx) &&
7149 v7m_stack_read(cpu, &xpsr, frameptr + 0x1c, mmu_idx);
7151 if (!pop_ok) {
7152 /* v7m_stack_read() pended a fault, so take it (as a tail
7153 * chained exception on the same stack frame)
7155 v7m_exception_taken(cpu, excret, true, false);
7156 return;
7159 /* Returning from an exception with a PC with bit 0 set is defined
7160 * behaviour on v8M (bit 0 is ignored), but for v7M it was specified
7161 * to be UNPREDICTABLE. In practice actual v7M hardware seems to ignore
7162 * the lsbit, and there are several RTOSes out there which incorrectly
7163 * assume the r15 in the stack frame should be a Thumb-style "lsbit
7164 * indicates ARM/Thumb" value, so ignore the bit on v7M as well, but
7165 * complain about the badly behaved guest.
7167 if (env->regs[15] & 1) {
7168 env->regs[15] &= ~1U;
7169 if (!arm_feature(env, ARM_FEATURE_V8)) {
7170 qemu_log_mask(LOG_GUEST_ERROR,
7171 "M profile return from interrupt with misaligned "
7172 "PC is UNPREDICTABLE on v7M\n");
7176 if (arm_feature(env, ARM_FEATURE_V8)) {
7177 /* For v8M we have to check whether the xPSR exception field
7178 * matches the EXCRET value for return to handler/thread
7179 * before we commit to changing the SP and xPSR.
7181 bool will_be_handler = (xpsr & XPSR_EXCP) != 0;
7182 if (return_to_handler != will_be_handler) {
7183 /* Take an INVPC UsageFault on the current stack.
7184 * By this point we will have switched to the security state
7185 * for the background state, so this UsageFault will target
7186 * that state.
7188 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
7189 env->v7m.secure);
7190 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
7191 v7m_exception_taken(cpu, excret, true, false);
7192 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on existing "
7193 "stackframe: failed exception return integrity "
7194 "check\n");
7195 return;
7199 /* Commit to consuming the stack frame */
7200 frameptr += 0x20;
7201 /* Undo stack alignment (the SPREALIGN bit indicates that the original
7202 * pre-exception SP was not 8-aligned and we added a padding word to
7203 * align it, so we undo this by ORing in the bit that increases it
7204 * from the current 8-aligned value to the 8-unaligned value. (Adding 4
7205 * would work too but a logical OR is how the pseudocode specifies it.)
7207 if (xpsr & XPSR_SPREALIGN) {
7208 frameptr |= 4;
7210 *frame_sp_p = frameptr;
7212 /* This xpsr_write() will invalidate frame_sp_p as it may switch stack */
7213 xpsr_write(env, xpsr, ~XPSR_SPREALIGN);
7215 /* The restored xPSR exception field will be zero if we're
7216 * resuming in Thread mode. If that doesn't match what the
7217 * exception return excret specified then this is a UsageFault.
7218 * v7M requires we make this check here; v8M did it earlier.
7220 if (return_to_handler != arm_v7m_is_handler_mode(env)) {
7221 /* Take an INVPC UsageFault by pushing the stack again;
7222 * we know we're v7M so this is never a Secure UsageFault.
7224 bool ignore_stackfaults;
7226 assert(!arm_feature(env, ARM_FEATURE_V8));
7227 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, false);
7228 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
7229 ignore_stackfaults = v7m_push_stack(cpu);
7230 v7m_exception_taken(cpu, excret, false, ignore_stackfaults);
7231 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on new stackframe: "
7232 "failed exception return integrity check\n");
7233 return;
7236 /* Otherwise, we have a successful exception exit. */
7237 arm_clear_exclusive(env);
7238 qemu_log_mask(CPU_LOG_INT, "...successful exception return\n");
7241 static bool do_v7m_function_return(ARMCPU *cpu)
7243 /* v8M security extensions magic function return.
7244 * We may either:
7245 * (1) throw an exception (longjump)
7246 * (2) return true if we successfully handled the function return
7247 * (3) return false if we failed a consistency check and have
7248 * pended a UsageFault that needs to be taken now
7250 * At this point the magic return value is split between env->regs[15]
7251 * and env->thumb. We don't bother to reconstitute it because we don't
7252 * need it (all values are handled the same way).
7254 CPUARMState *env = &cpu->env;
7255 uint32_t newpc, newpsr, newpsr_exc;
7257 qemu_log_mask(CPU_LOG_INT, "...really v7M secure function return\n");
7260 bool threadmode, spsel;
7261 TCGMemOpIdx oi;
7262 ARMMMUIdx mmu_idx;
7263 uint32_t *frame_sp_p;
7264 uint32_t frameptr;
7266 /* Pull the return address and IPSR from the Secure stack */
7267 threadmode = !arm_v7m_is_handler_mode(env);
7268 spsel = env->v7m.control[M_REG_S] & R_V7M_CONTROL_SPSEL_MASK;
7270 frame_sp_p = get_v7m_sp_ptr(env, true, threadmode, spsel);
7271 frameptr = *frame_sp_p;
7273 /* These loads may throw an exception (for MPU faults). We want to
7274 * do them as secure, so work out what MMU index that is.
7276 mmu_idx = arm_v7m_mmu_idx_for_secstate(env, true);
7277 oi = make_memop_idx(MO_LE, arm_to_core_mmu_idx(mmu_idx));
7278 newpc = helper_le_ldul_mmu(env, frameptr, oi, 0);
7279 newpsr = helper_le_ldul_mmu(env, frameptr + 4, oi, 0);
7281 /* Consistency checks on new IPSR */
7282 newpsr_exc = newpsr & XPSR_EXCP;
7283 if (!((env->v7m.exception == 0 && newpsr_exc == 0) ||
7284 (env->v7m.exception == 1 && newpsr_exc != 0))) {
7285 /* Pend the fault and tell our caller to take it */
7286 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
7287 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
7288 env->v7m.secure);
7289 qemu_log_mask(CPU_LOG_INT,
7290 "...taking INVPC UsageFault: "
7291 "IPSR consistency check failed\n");
7292 return false;
7295 *frame_sp_p = frameptr + 8;
7298 /* This invalidates frame_sp_p */
7299 switch_v7m_security_state(env, true);
7300 env->v7m.exception = newpsr_exc;
7301 env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_SFPA_MASK;
7302 if (newpsr & XPSR_SFPA) {
7303 env->v7m.control[M_REG_S] |= R_V7M_CONTROL_SFPA_MASK;
7305 xpsr_write(env, 0, XPSR_IT);
7306 env->thumb = newpc & 1;
7307 env->regs[15] = newpc & ~1;
7309 qemu_log_mask(CPU_LOG_INT, "...function return successful\n");
7310 return true;
7313 static void arm_log_exception(int idx)
7315 if (qemu_loglevel_mask(CPU_LOG_INT)) {
7316 const char *exc = NULL;
7317 static const char * const excnames[] = {
7318 [EXCP_UDEF] = "Undefined Instruction",
7319 [EXCP_SWI] = "SVC",
7320 [EXCP_PREFETCH_ABORT] = "Prefetch Abort",
7321 [EXCP_DATA_ABORT] = "Data Abort",
7322 [EXCP_IRQ] = "IRQ",
7323 [EXCP_FIQ] = "FIQ",
7324 [EXCP_BKPT] = "Breakpoint",
7325 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit",
7326 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage",
7327 [EXCP_HVC] = "Hypervisor Call",
7328 [EXCP_HYP_TRAP] = "Hypervisor Trap",
7329 [EXCP_SMC] = "Secure Monitor Call",
7330 [EXCP_VIRQ] = "Virtual IRQ",
7331 [EXCP_VFIQ] = "Virtual FIQ",
7332 [EXCP_SEMIHOST] = "Semihosting call",
7333 [EXCP_NOCP] = "v7M NOCP UsageFault",
7334 [EXCP_INVSTATE] = "v7M INVSTATE UsageFault",
7337 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
7338 exc = excnames[idx];
7340 if (!exc) {
7341 exc = "unknown";
7343 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc);
7347 static bool v7m_read_half_insn(ARMCPU *cpu, ARMMMUIdx mmu_idx,
7348 uint32_t addr, uint16_t *insn)
7350 /* Load a 16-bit portion of a v7M instruction, returning true on success,
7351 * or false on failure (in which case we will have pended the appropriate
7352 * exception).
7353 * We need to do the instruction fetch's MPU and SAU checks
7354 * like this because there is no MMU index that would allow
7355 * doing the load with a single function call. Instead we must
7356 * first check that the security attributes permit the load
7357 * and that they don't mismatch on the two halves of the instruction,
7358 * and then we do the load as a secure load (ie using the security
7359 * attributes of the address, not the CPU, as architecturally required).
7361 CPUState *cs = CPU(cpu);
7362 CPUARMState *env = &cpu->env;
7363 V8M_SAttributes sattrs = {};
7364 MemTxAttrs attrs = {};
7365 ARMMMUFaultInfo fi = {};
7366 MemTxResult txres;
7367 target_ulong page_size;
7368 hwaddr physaddr;
7369 int prot;
7371 v8m_security_lookup(env, addr, MMU_INST_FETCH, mmu_idx, &sattrs);
7372 if (!sattrs.nsc || sattrs.ns) {
7373 /* This must be the second half of the insn, and it straddles a
7374 * region boundary with the second half not being S&NSC.
7376 env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK;
7377 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
7378 qemu_log_mask(CPU_LOG_INT,
7379 "...really SecureFault with SFSR.INVEP\n");
7380 return false;
7382 if (get_phys_addr(env, addr, MMU_INST_FETCH, mmu_idx,
7383 &physaddr, &attrs, &prot, &page_size, &fi, NULL)) {
7384 /* the MPU lookup failed */
7385 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_IACCVIOL_MASK;
7386 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM, env->v7m.secure);
7387 qemu_log_mask(CPU_LOG_INT, "...really MemManage with CFSR.IACCVIOL\n");
7388 return false;
7390 *insn = address_space_lduw_le(arm_addressspace(cs, attrs), physaddr,
7391 attrs, &txres);
7392 if (txres != MEMTX_OK) {
7393 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_IBUSERR_MASK;
7394 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_BUS, false);
7395 qemu_log_mask(CPU_LOG_INT, "...really BusFault with CFSR.IBUSERR\n");
7396 return false;
7398 return true;
7401 static bool v7m_handle_execute_nsc(ARMCPU *cpu)
7403 /* Check whether this attempt to execute code in a Secure & NS-Callable
7404 * memory region is for an SG instruction; if so, then emulate the
7405 * effect of the SG instruction and return true. Otherwise pend
7406 * the correct kind of exception and return false.
7408 CPUARMState *env = &cpu->env;
7409 ARMMMUIdx mmu_idx;
7410 uint16_t insn;
7412 /* We should never get here unless get_phys_addr_pmsav8() caused
7413 * an exception for NS executing in S&NSC memory.
7415 assert(!env->v7m.secure);
7416 assert(arm_feature(env, ARM_FEATURE_M_SECURITY));
7418 /* We want to do the MPU lookup as secure; work out what mmu_idx that is */
7419 mmu_idx = arm_v7m_mmu_idx_for_secstate(env, true);
7421 if (!v7m_read_half_insn(cpu, mmu_idx, env->regs[15], &insn)) {
7422 return false;
7425 if (!env->thumb) {
7426 goto gen_invep;
7429 if (insn != 0xe97f) {
7430 /* Not an SG instruction first half (we choose the IMPDEF
7431 * early-SG-check option).
7433 goto gen_invep;
7436 if (!v7m_read_half_insn(cpu, mmu_idx, env->regs[15] + 2, &insn)) {
7437 return false;
7440 if (insn != 0xe97f) {
7441 /* Not an SG instruction second half (yes, both halves of the SG
7442 * insn have the same hex value)
7444 goto gen_invep;
7447 /* OK, we have confirmed that we really have an SG instruction.
7448 * We know we're NS in S memory so don't need to repeat those checks.
7450 qemu_log_mask(CPU_LOG_INT, "...really an SG instruction at 0x%08" PRIx32
7451 ", executing it\n", env->regs[15]);
7452 env->regs[14] &= ~1;
7453 switch_v7m_security_state(env, true);
7454 xpsr_write(env, 0, XPSR_IT);
7455 env->regs[15] += 4;
7456 return true;
7458 gen_invep:
7459 env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK;
7460 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
7461 qemu_log_mask(CPU_LOG_INT,
7462 "...really SecureFault with SFSR.INVEP\n");
7463 return false;
7466 void arm_v7m_cpu_do_interrupt(CPUState *cs)
7468 ARMCPU *cpu = ARM_CPU(cs);
7469 CPUARMState *env = &cpu->env;
7470 uint32_t lr;
7471 bool ignore_stackfaults;
7473 arm_log_exception(cs->exception_index);
7475 /* For exceptions we just mark as pending on the NVIC, and let that
7476 handle it. */
7477 switch (cs->exception_index) {
7478 case EXCP_UDEF:
7479 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
7480 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_UNDEFINSTR_MASK;
7481 break;
7482 case EXCP_NOCP:
7483 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
7484 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_NOCP_MASK;
7485 break;
7486 case EXCP_INVSTATE:
7487 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
7488 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVSTATE_MASK;
7489 break;
7490 case EXCP_SWI:
7491 /* The PC already points to the next instruction. */
7492 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC, env->v7m.secure);
7493 break;
7494 case EXCP_PREFETCH_ABORT:
7495 case EXCP_DATA_ABORT:
7496 /* Note that for M profile we don't have a guest facing FSR, but
7497 * the env->exception.fsr will be populated by the code that
7498 * raises the fault, in the A profile short-descriptor format.
7500 switch (env->exception.fsr & 0xf) {
7501 case M_FAKE_FSR_NSC_EXEC:
7502 /* Exception generated when we try to execute code at an address
7503 * which is marked as Secure & Non-Secure Callable and the CPU
7504 * is in the Non-Secure state. The only instruction which can
7505 * be executed like this is SG (and that only if both halves of
7506 * the SG instruction have the same security attributes.)
7507 * Everything else must generate an INVEP SecureFault, so we
7508 * emulate the SG instruction here.
7510 if (v7m_handle_execute_nsc(cpu)) {
7511 return;
7513 break;
7514 case M_FAKE_FSR_SFAULT:
7515 /* Various flavours of SecureFault for attempts to execute or
7516 * access data in the wrong security state.
7518 switch (cs->exception_index) {
7519 case EXCP_PREFETCH_ABORT:
7520 if (env->v7m.secure) {
7521 env->v7m.sfsr |= R_V7M_SFSR_INVTRAN_MASK;
7522 qemu_log_mask(CPU_LOG_INT,
7523 "...really SecureFault with SFSR.INVTRAN\n");
7524 } else {
7525 env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK;
7526 qemu_log_mask(CPU_LOG_INT,
7527 "...really SecureFault with SFSR.INVEP\n");
7529 break;
7530 case EXCP_DATA_ABORT:
7531 /* This must be an NS access to S memory */
7532 env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK;
7533 qemu_log_mask(CPU_LOG_INT,
7534 "...really SecureFault with SFSR.AUVIOL\n");
7535 break;
7537 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
7538 break;
7539 case 0x8: /* External Abort */
7540 switch (cs->exception_index) {
7541 case EXCP_PREFETCH_ABORT:
7542 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_IBUSERR_MASK;
7543 qemu_log_mask(CPU_LOG_INT, "...with CFSR.IBUSERR\n");
7544 break;
7545 case EXCP_DATA_ABORT:
7546 env->v7m.cfsr[M_REG_NS] |=
7547 (R_V7M_CFSR_PRECISERR_MASK | R_V7M_CFSR_BFARVALID_MASK);
7548 env->v7m.bfar = env->exception.vaddress;
7549 qemu_log_mask(CPU_LOG_INT,
7550 "...with CFSR.PRECISERR and BFAR 0x%x\n",
7551 env->v7m.bfar);
7552 break;
7554 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_BUS, false);
7555 break;
7556 default:
7557 /* All other FSR values are either MPU faults or "can't happen
7558 * for M profile" cases.
7560 switch (cs->exception_index) {
7561 case EXCP_PREFETCH_ABORT:
7562 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_IACCVIOL_MASK;
7563 qemu_log_mask(CPU_LOG_INT, "...with CFSR.IACCVIOL\n");
7564 break;
7565 case EXCP_DATA_ABORT:
7566 env->v7m.cfsr[env->v7m.secure] |=
7567 (R_V7M_CFSR_DACCVIOL_MASK | R_V7M_CFSR_MMARVALID_MASK);
7568 env->v7m.mmfar[env->v7m.secure] = env->exception.vaddress;
7569 qemu_log_mask(CPU_LOG_INT,
7570 "...with CFSR.DACCVIOL and MMFAR 0x%x\n",
7571 env->v7m.mmfar[env->v7m.secure]);
7572 break;
7574 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM,
7575 env->v7m.secure);
7576 break;
7578 break;
7579 case EXCP_BKPT:
7580 if (semihosting_enabled()) {
7581 int nr;
7582 nr = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env)) & 0xff;
7583 if (nr == 0xab) {
7584 env->regs[15] += 2;
7585 qemu_log_mask(CPU_LOG_INT,
7586 "...handling as semihosting call 0x%x\n",
7587 env->regs[0]);
7588 env->regs[0] = do_arm_semihosting(env);
7589 return;
7592 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG, false);
7593 break;
7594 case EXCP_IRQ:
7595 break;
7596 case EXCP_EXCEPTION_EXIT:
7597 if (env->regs[15] < EXC_RETURN_MIN_MAGIC) {
7598 /* Must be v8M security extension function return */
7599 assert(env->regs[15] >= FNC_RETURN_MIN_MAGIC);
7600 assert(arm_feature(env, ARM_FEATURE_M_SECURITY));
7601 if (do_v7m_function_return(cpu)) {
7602 return;
7604 } else {
7605 do_v7m_exception_exit(cpu);
7606 return;
7608 break;
7609 default:
7610 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
7611 return; /* Never happens. Keep compiler happy. */
7614 if (arm_feature(env, ARM_FEATURE_V8)) {
7615 lr = R_V7M_EXCRET_RES1_MASK |
7616 R_V7M_EXCRET_DCRS_MASK |
7617 R_V7M_EXCRET_FTYPE_MASK;
7618 /* The S bit indicates whether we should return to Secure
7619 * or NonSecure (ie our current state).
7620 * The ES bit indicates whether we're taking this exception
7621 * to Secure or NonSecure (ie our target state). We set it
7622 * later, in v7m_exception_taken().
7623 * The SPSEL bit is also set in v7m_exception_taken() for v8M.
7624 * This corresponds to the ARM ARM pseudocode for v8M setting
7625 * some LR bits in PushStack() and some in ExceptionTaken();
7626 * the distinction matters for the tailchain cases where we
7627 * can take an exception without pushing the stack.
7629 if (env->v7m.secure) {
7630 lr |= R_V7M_EXCRET_S_MASK;
7632 } else {
7633 lr = R_V7M_EXCRET_RES1_MASK |
7634 R_V7M_EXCRET_S_MASK |
7635 R_V7M_EXCRET_DCRS_MASK |
7636 R_V7M_EXCRET_FTYPE_MASK |
7637 R_V7M_EXCRET_ES_MASK;
7638 if (env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK) {
7639 lr |= R_V7M_EXCRET_SPSEL_MASK;
7642 if (!arm_v7m_is_handler_mode(env)) {
7643 lr |= R_V7M_EXCRET_MODE_MASK;
7646 ignore_stackfaults = v7m_push_stack(cpu);
7647 v7m_exception_taken(cpu, lr, false, ignore_stackfaults);
7648 qemu_log_mask(CPU_LOG_INT, "... as %d\n", env->v7m.exception);
7651 /* Function used to synchronize QEMU's AArch64 register set with AArch32
7652 * register set. This is necessary when switching between AArch32 and AArch64
7653 * execution state.
7655 void aarch64_sync_32_to_64(CPUARMState *env)
7657 int i;
7658 uint32_t mode = env->uncached_cpsr & CPSR_M;
7660 /* We can blanket copy R[0:7] to X[0:7] */
7661 for (i = 0; i < 8; i++) {
7662 env->xregs[i] = env->regs[i];
7665 /* Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
7666 * Otherwise, they come from the banked user regs.
7668 if (mode == ARM_CPU_MODE_FIQ) {
7669 for (i = 8; i < 13; i++) {
7670 env->xregs[i] = env->usr_regs[i - 8];
7672 } else {
7673 for (i = 8; i < 13; i++) {
7674 env->xregs[i] = env->regs[i];
7678 /* Registers x13-x23 are the various mode SP and FP registers. Registers
7679 * r13 and r14 are only copied if we are in that mode, otherwise we copy
7680 * from the mode banked register.
7682 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
7683 env->xregs[13] = env->regs[13];
7684 env->xregs[14] = env->regs[14];
7685 } else {
7686 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
7687 /* HYP is an exception in that it is copied from r14 */
7688 if (mode == ARM_CPU_MODE_HYP) {
7689 env->xregs[14] = env->regs[14];
7690 } else {
7691 env->xregs[14] = env->banked_r14[bank_number(ARM_CPU_MODE_USR)];
7695 if (mode == ARM_CPU_MODE_HYP) {
7696 env->xregs[15] = env->regs[13];
7697 } else {
7698 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
7701 if (mode == ARM_CPU_MODE_IRQ) {
7702 env->xregs[16] = env->regs[14];
7703 env->xregs[17] = env->regs[13];
7704 } else {
7705 env->xregs[16] = env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)];
7706 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
7709 if (mode == ARM_CPU_MODE_SVC) {
7710 env->xregs[18] = env->regs[14];
7711 env->xregs[19] = env->regs[13];
7712 } else {
7713 env->xregs[18] = env->banked_r14[bank_number(ARM_CPU_MODE_SVC)];
7714 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
7717 if (mode == ARM_CPU_MODE_ABT) {
7718 env->xregs[20] = env->regs[14];
7719 env->xregs[21] = env->regs[13];
7720 } else {
7721 env->xregs[20] = env->banked_r14[bank_number(ARM_CPU_MODE_ABT)];
7722 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
7725 if (mode == ARM_CPU_MODE_UND) {
7726 env->xregs[22] = env->regs[14];
7727 env->xregs[23] = env->regs[13];
7728 } else {
7729 env->xregs[22] = env->banked_r14[bank_number(ARM_CPU_MODE_UND)];
7730 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
7733 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
7734 * mode, then we can copy from r8-r14. Otherwise, we copy from the
7735 * FIQ bank for r8-r14.
7737 if (mode == ARM_CPU_MODE_FIQ) {
7738 for (i = 24; i < 31; i++) {
7739 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */
7741 } else {
7742 for (i = 24; i < 29; i++) {
7743 env->xregs[i] = env->fiq_regs[i - 24];
7745 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
7746 env->xregs[30] = env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)];
7749 env->pc = env->regs[15];
7752 /* Function used to synchronize QEMU's AArch32 register set with AArch64
7753 * register set. This is necessary when switching between AArch32 and AArch64
7754 * execution state.
7756 void aarch64_sync_64_to_32(CPUARMState *env)
7758 int i;
7759 uint32_t mode = env->uncached_cpsr & CPSR_M;
7761 /* We can blanket copy X[0:7] to R[0:7] */
7762 for (i = 0; i < 8; i++) {
7763 env->regs[i] = env->xregs[i];
7766 /* Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
7767 * Otherwise, we copy x8-x12 into the banked user regs.
7769 if (mode == ARM_CPU_MODE_FIQ) {
7770 for (i = 8; i < 13; i++) {
7771 env->usr_regs[i - 8] = env->xregs[i];
7773 } else {
7774 for (i = 8; i < 13; i++) {
7775 env->regs[i] = env->xregs[i];
7779 /* Registers r13 & r14 depend on the current mode.
7780 * If we are in a given mode, we copy the corresponding x registers to r13
7781 * and r14. Otherwise, we copy the x register to the banked r13 and r14
7782 * for the mode.
7784 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
7785 env->regs[13] = env->xregs[13];
7786 env->regs[14] = env->xregs[14];
7787 } else {
7788 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];
7790 /* HYP is an exception in that it does not have its own banked r14 but
7791 * shares the USR r14
7793 if (mode == ARM_CPU_MODE_HYP) {
7794 env->regs[14] = env->xregs[14];
7795 } else {
7796 env->banked_r14[bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
7800 if (mode == ARM_CPU_MODE_HYP) {
7801 env->regs[13] = env->xregs[15];
7802 } else {
7803 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
7806 if (mode == ARM_CPU_MODE_IRQ) {
7807 env->regs[14] = env->xregs[16];
7808 env->regs[13] = env->xregs[17];
7809 } else {
7810 env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
7811 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
7814 if (mode == ARM_CPU_MODE_SVC) {
7815 env->regs[14] = env->xregs[18];
7816 env->regs[13] = env->xregs[19];
7817 } else {
7818 env->banked_r14[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
7819 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
7822 if (mode == ARM_CPU_MODE_ABT) {
7823 env->regs[14] = env->xregs[20];
7824 env->regs[13] = env->xregs[21];
7825 } else {
7826 env->banked_r14[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
7827 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
7830 if (mode == ARM_CPU_MODE_UND) {
7831 env->regs[14] = env->xregs[22];
7832 env->regs[13] = env->xregs[23];
7833 } else {
7834 env->banked_r14[bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
7835 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
7838 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
7839 * mode, then we can copy to r8-r14. Otherwise, we copy to the
7840 * FIQ bank for r8-r14.
7842 if (mode == ARM_CPU_MODE_FIQ) {
7843 for (i = 24; i < 31; i++) {
7844 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */
7846 } else {
7847 for (i = 24; i < 29; i++) {
7848 env->fiq_regs[i - 24] = env->xregs[i];
7850 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
7851 env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
7854 env->regs[15] = env->pc;
7857 static void arm_cpu_do_interrupt_aarch32(CPUState *cs)
7859 ARMCPU *cpu = ARM_CPU(cs);
7860 CPUARMState *env = &cpu->env;
7861 uint32_t addr;
7862 uint32_t mask;
7863 int new_mode;
7864 uint32_t offset;
7865 uint32_t moe;
7867 /* If this is a debug exception we must update the DBGDSCR.MOE bits */
7868 switch (env->exception.syndrome >> ARM_EL_EC_SHIFT) {
7869 case EC_BREAKPOINT:
7870 case EC_BREAKPOINT_SAME_EL:
7871 moe = 1;
7872 break;
7873 case EC_WATCHPOINT:
7874 case EC_WATCHPOINT_SAME_EL:
7875 moe = 10;
7876 break;
7877 case EC_AA32_BKPT:
7878 moe = 3;
7879 break;
7880 case EC_VECTORCATCH:
7881 moe = 5;
7882 break;
7883 default:
7884 moe = 0;
7885 break;
7888 if (moe) {
7889 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
7892 /* TODO: Vectored interrupt controller. */
7893 switch (cs->exception_index) {
7894 case EXCP_UDEF:
7895 new_mode = ARM_CPU_MODE_UND;
7896 addr = 0x04;
7897 mask = CPSR_I;
7898 if (env->thumb)
7899 offset = 2;
7900 else
7901 offset = 4;
7902 break;
7903 case EXCP_SWI:
7904 new_mode = ARM_CPU_MODE_SVC;
7905 addr = 0x08;
7906 mask = CPSR_I;
7907 /* The PC already points to the next instruction. */
7908 offset = 0;
7909 break;
7910 case EXCP_BKPT:
7911 env->exception.fsr = 2;
7912 /* Fall through to prefetch abort. */
7913 case EXCP_PREFETCH_ABORT:
7914 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
7915 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
7916 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
7917 env->exception.fsr, (uint32_t)env->exception.vaddress);
7918 new_mode = ARM_CPU_MODE_ABT;
7919 addr = 0x0c;
7920 mask = CPSR_A | CPSR_I;
7921 offset = 4;
7922 break;
7923 case EXCP_DATA_ABORT:
7924 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
7925 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
7926 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
7927 env->exception.fsr,
7928 (uint32_t)env->exception.vaddress);
7929 new_mode = ARM_CPU_MODE_ABT;
7930 addr = 0x10;
7931 mask = CPSR_A | CPSR_I;
7932 offset = 8;
7933 break;
7934 case EXCP_IRQ:
7935 new_mode = ARM_CPU_MODE_IRQ;
7936 addr = 0x18;
7937 /* Disable IRQ and imprecise data aborts. */
7938 mask = CPSR_A | CPSR_I;
7939 offset = 4;
7940 if (env->cp15.scr_el3 & SCR_IRQ) {
7941 /* IRQ routed to monitor mode */
7942 new_mode = ARM_CPU_MODE_MON;
7943 mask |= CPSR_F;
7945 break;
7946 case EXCP_FIQ:
7947 new_mode = ARM_CPU_MODE_FIQ;
7948 addr = 0x1c;
7949 /* Disable FIQ, IRQ and imprecise data aborts. */
7950 mask = CPSR_A | CPSR_I | CPSR_F;
7951 if (env->cp15.scr_el3 & SCR_FIQ) {
7952 /* FIQ routed to monitor mode */
7953 new_mode = ARM_CPU_MODE_MON;
7955 offset = 4;
7956 break;
7957 case EXCP_VIRQ:
7958 new_mode = ARM_CPU_MODE_IRQ;
7959 addr = 0x18;
7960 /* Disable IRQ and imprecise data aborts. */
7961 mask = CPSR_A | CPSR_I;
7962 offset = 4;
7963 break;
7964 case EXCP_VFIQ:
7965 new_mode = ARM_CPU_MODE_FIQ;
7966 addr = 0x1c;
7967 /* Disable FIQ, IRQ and imprecise data aborts. */
7968 mask = CPSR_A | CPSR_I | CPSR_F;
7969 offset = 4;
7970 break;
7971 case EXCP_SMC:
7972 new_mode = ARM_CPU_MODE_MON;
7973 addr = 0x08;
7974 mask = CPSR_A | CPSR_I | CPSR_F;
7975 offset = 0;
7976 break;
7977 default:
7978 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
7979 return; /* Never happens. Keep compiler happy. */
7982 if (new_mode == ARM_CPU_MODE_MON) {
7983 addr += env->cp15.mvbar;
7984 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
7985 /* High vectors. When enabled, base address cannot be remapped. */
7986 addr += 0xffff0000;
7987 } else {
7988 /* ARM v7 architectures provide a vector base address register to remap
7989 * the interrupt vector table.
7990 * This register is only followed in non-monitor mode, and is banked.
7991 * Note: only bits 31:5 are valid.
7993 addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
7996 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
7997 env->cp15.scr_el3 &= ~SCR_NS;
8000 switch_mode (env, new_mode);
8001 /* For exceptions taken to AArch32 we must clear the SS bit in both
8002 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
8004 env->uncached_cpsr &= ~PSTATE_SS;
8005 env->spsr = cpsr_read(env);
8006 /* Clear IT bits. */
8007 env->condexec_bits = 0;
8008 /* Switch to the new mode, and to the correct instruction set. */
8009 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
8010 /* Set new mode endianness */
8011 env->uncached_cpsr &= ~CPSR_E;
8012 if (env->cp15.sctlr_el[arm_current_el(env)] & SCTLR_EE) {
8013 env->uncached_cpsr |= CPSR_E;
8015 env->daif |= mask;
8016 /* this is a lie, as the was no c1_sys on V4T/V5, but who cares
8017 * and we should just guard the thumb mode on V4 */
8018 if (arm_feature(env, ARM_FEATURE_V4T)) {
8019 env->thumb = (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
8021 env->regs[14] = env->regs[15] + offset;
8022 env->regs[15] = addr;
8025 /* Handle exception entry to a target EL which is using AArch64 */
8026 static void arm_cpu_do_interrupt_aarch64(CPUState *cs)
8028 ARMCPU *cpu = ARM_CPU(cs);
8029 CPUARMState *env = &cpu->env;
8030 unsigned int new_el = env->exception.target_el;
8031 target_ulong addr = env->cp15.vbar_el[new_el];
8032 unsigned int new_mode = aarch64_pstate_mode(new_el, true);
8034 if (arm_current_el(env) < new_el) {
8035 /* Entry vector offset depends on whether the implemented EL
8036 * immediately lower than the target level is using AArch32 or AArch64
8038 bool is_aa64;
8040 switch (new_el) {
8041 case 3:
8042 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0;
8043 break;
8044 case 2:
8045 is_aa64 = (env->cp15.hcr_el2 & HCR_RW) != 0;
8046 break;
8047 case 1:
8048 is_aa64 = is_a64(env);
8049 break;
8050 default:
8051 g_assert_not_reached();
8054 if (is_aa64) {
8055 addr += 0x400;
8056 } else {
8057 addr += 0x600;
8059 } else if (pstate_read(env) & PSTATE_SP) {
8060 addr += 0x200;
8063 switch (cs->exception_index) {
8064 case EXCP_PREFETCH_ABORT:
8065 case EXCP_DATA_ABORT:
8066 env->cp15.far_el[new_el] = env->exception.vaddress;
8067 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n",
8068 env->cp15.far_el[new_el]);
8069 /* fall through */
8070 case EXCP_BKPT:
8071 case EXCP_UDEF:
8072 case EXCP_SWI:
8073 case EXCP_HVC:
8074 case EXCP_HYP_TRAP:
8075 case EXCP_SMC:
8076 env->cp15.esr_el[new_el] = env->exception.syndrome;
8077 break;
8078 case EXCP_IRQ:
8079 case EXCP_VIRQ:
8080 addr += 0x80;
8081 break;
8082 case EXCP_FIQ:
8083 case EXCP_VFIQ:
8084 addr += 0x100;
8085 break;
8086 case EXCP_SEMIHOST:
8087 qemu_log_mask(CPU_LOG_INT,
8088 "...handling as semihosting call 0x%" PRIx64 "\n",
8089 env->xregs[0]);
8090 env->xregs[0] = do_arm_semihosting(env);
8091 return;
8092 default:
8093 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
8096 if (is_a64(env)) {
8097 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = pstate_read(env);
8098 aarch64_save_sp(env, arm_current_el(env));
8099 env->elr_el[new_el] = env->pc;
8100 } else {
8101 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = cpsr_read(env);
8102 env->elr_el[new_el] = env->regs[15];
8104 aarch64_sync_32_to_64(env);
8106 env->condexec_bits = 0;
8108 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n",
8109 env->elr_el[new_el]);
8111 pstate_write(env, PSTATE_DAIF | new_mode);
8112 env->aarch64 = 1;
8113 aarch64_restore_sp(env, new_el);
8115 env->pc = addr;
8117 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n",
8118 new_el, env->pc, pstate_read(env));
8121 static inline bool check_for_semihosting(CPUState *cs)
8123 /* Check whether this exception is a semihosting call; if so
8124 * then handle it and return true; otherwise return false.
8126 ARMCPU *cpu = ARM_CPU(cs);
8127 CPUARMState *env = &cpu->env;
8129 if (is_a64(env)) {
8130 if (cs->exception_index == EXCP_SEMIHOST) {
8131 /* This is always the 64-bit semihosting exception.
8132 * The "is this usermode" and "is semihosting enabled"
8133 * checks have been done at translate time.
8135 qemu_log_mask(CPU_LOG_INT,
8136 "...handling as semihosting call 0x%" PRIx64 "\n",
8137 env->xregs[0]);
8138 env->xregs[0] = do_arm_semihosting(env);
8139 return true;
8141 return false;
8142 } else {
8143 uint32_t imm;
8145 /* Only intercept calls from privileged modes, to provide some
8146 * semblance of security.
8148 if (cs->exception_index != EXCP_SEMIHOST &&
8149 (!semihosting_enabled() ||
8150 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR))) {
8151 return false;
8154 switch (cs->exception_index) {
8155 case EXCP_SEMIHOST:
8156 /* This is always a semihosting call; the "is this usermode"
8157 * and "is semihosting enabled" checks have been done at
8158 * translate time.
8160 break;
8161 case EXCP_SWI:
8162 /* Check for semihosting interrupt. */
8163 if (env->thumb) {
8164 imm = arm_lduw_code(env, env->regs[15] - 2, arm_sctlr_b(env))
8165 & 0xff;
8166 if (imm == 0xab) {
8167 break;
8169 } else {
8170 imm = arm_ldl_code(env, env->regs[15] - 4, arm_sctlr_b(env))
8171 & 0xffffff;
8172 if (imm == 0x123456) {
8173 break;
8176 return false;
8177 case EXCP_BKPT:
8178 /* See if this is a semihosting syscall. */
8179 if (env->thumb) {
8180 imm = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env))
8181 & 0xff;
8182 if (imm == 0xab) {
8183 env->regs[15] += 2;
8184 break;
8187 return false;
8188 default:
8189 return false;
8192 qemu_log_mask(CPU_LOG_INT,
8193 "...handling as semihosting call 0x%x\n",
8194 env->regs[0]);
8195 env->regs[0] = do_arm_semihosting(env);
8196 return true;
8200 /* Handle a CPU exception for A and R profile CPUs.
8201 * Do any appropriate logging, handle PSCI calls, and then hand off
8202 * to the AArch64-entry or AArch32-entry function depending on the
8203 * target exception level's register width.
8205 void arm_cpu_do_interrupt(CPUState *cs)
8207 ARMCPU *cpu = ARM_CPU(cs);
8208 CPUARMState *env = &cpu->env;
8209 unsigned int new_el = env->exception.target_el;
8211 assert(!arm_feature(env, ARM_FEATURE_M));
8213 arm_log_exception(cs->exception_index);
8214 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env),
8215 new_el);
8216 if (qemu_loglevel_mask(CPU_LOG_INT)
8217 && !excp_is_internal(cs->exception_index)) {
8218 qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n",
8219 env->exception.syndrome >> ARM_EL_EC_SHIFT,
8220 env->exception.syndrome);
8223 if (arm_is_psci_call(cpu, cs->exception_index)) {
8224 arm_handle_psci_call(cpu);
8225 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
8226 return;
8229 /* Semihosting semantics depend on the register width of the
8230 * code that caused the exception, not the target exception level,
8231 * so must be handled here.
8233 if (check_for_semihosting(cs)) {
8234 return;
8237 assert(!excp_is_internal(cs->exception_index));
8238 if (arm_el_is_aa64(env, new_el)) {
8239 arm_cpu_do_interrupt_aarch64(cs);
8240 } else {
8241 arm_cpu_do_interrupt_aarch32(cs);
8244 /* Hooks may change global state so BQL should be held, also the
8245 * BQL needs to be held for any modification of
8246 * cs->interrupt_request.
8248 g_assert(qemu_mutex_iothread_locked());
8250 arm_call_el_change_hook(cpu);
8252 if (!kvm_enabled()) {
8253 cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
8257 /* Return the exception level which controls this address translation regime */
8258 static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx)
8260 switch (mmu_idx) {
8261 case ARMMMUIdx_S2NS:
8262 case ARMMMUIdx_S1E2:
8263 return 2;
8264 case ARMMMUIdx_S1E3:
8265 return 3;
8266 case ARMMMUIdx_S1SE0:
8267 return arm_el_is_aa64(env, 3) ? 1 : 3;
8268 case ARMMMUIdx_S1SE1:
8269 case ARMMMUIdx_S1NSE0:
8270 case ARMMMUIdx_S1NSE1:
8271 case ARMMMUIdx_MPrivNegPri:
8272 case ARMMMUIdx_MUserNegPri:
8273 case ARMMMUIdx_MPriv:
8274 case ARMMMUIdx_MUser:
8275 case ARMMMUIdx_MSPrivNegPri:
8276 case ARMMMUIdx_MSUserNegPri:
8277 case ARMMMUIdx_MSPriv:
8278 case ARMMMUIdx_MSUser:
8279 return 1;
8280 default:
8281 g_assert_not_reached();
8285 /* Return the SCTLR value which controls this address translation regime */
8286 static inline uint32_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx)
8288 return env->cp15.sctlr_el[regime_el(env, mmu_idx)];
8291 /* Return true if the specified stage of address translation is disabled */
8292 static inline bool regime_translation_disabled(CPUARMState *env,
8293 ARMMMUIdx mmu_idx)
8295 if (arm_feature(env, ARM_FEATURE_M)) {
8296 switch (env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] &
8297 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) {
8298 case R_V7M_MPU_CTRL_ENABLE_MASK:
8299 /* Enabled, but not for HardFault and NMI */
8300 return mmu_idx & ARM_MMU_IDX_M_NEGPRI;
8301 case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK:
8302 /* Enabled for all cases */
8303 return false;
8304 case 0:
8305 default:
8306 /* HFNMIENA set and ENABLE clear is UNPREDICTABLE, but
8307 * we warned about that in armv7m_nvic.c when the guest set it.
8309 return true;
8313 if (mmu_idx == ARMMMUIdx_S2NS) {
8314 return (env->cp15.hcr_el2 & HCR_VM) == 0;
8316 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0;
8319 static inline bool regime_translation_big_endian(CPUARMState *env,
8320 ARMMMUIdx mmu_idx)
8322 return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0;
8325 /* Return the TCR controlling this translation regime */
8326 static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx)
8328 if (mmu_idx == ARMMMUIdx_S2NS) {
8329 return &env->cp15.vtcr_el2;
8331 return &env->cp15.tcr_el[regime_el(env, mmu_idx)];
8334 /* Convert a possible stage1+2 MMU index into the appropriate
8335 * stage 1 MMU index
8337 static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx)
8339 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
8340 mmu_idx += (ARMMMUIdx_S1NSE0 - ARMMMUIdx_S12NSE0);
8342 return mmu_idx;
8345 /* Returns TBI0 value for current regime el */
8346 uint32_t arm_regime_tbi0(CPUARMState *env, ARMMMUIdx mmu_idx)
8348 TCR *tcr;
8349 uint32_t el;
8351 /* For EL0 and EL1, TBI is controlled by stage 1's TCR, so convert
8352 * a stage 1+2 mmu index into the appropriate stage 1 mmu index.
8354 mmu_idx = stage_1_mmu_idx(mmu_idx);
8356 tcr = regime_tcr(env, mmu_idx);
8357 el = regime_el(env, mmu_idx);
8359 if (el > 1) {
8360 return extract64(tcr->raw_tcr, 20, 1);
8361 } else {
8362 return extract64(tcr->raw_tcr, 37, 1);
8366 /* Returns TBI1 value for current regime el */
8367 uint32_t arm_regime_tbi1(CPUARMState *env, ARMMMUIdx mmu_idx)
8369 TCR *tcr;
8370 uint32_t el;
8372 /* For EL0 and EL1, TBI is controlled by stage 1's TCR, so convert
8373 * a stage 1+2 mmu index into the appropriate stage 1 mmu index.
8375 mmu_idx = stage_1_mmu_idx(mmu_idx);
8377 tcr = regime_tcr(env, mmu_idx);
8378 el = regime_el(env, mmu_idx);
8380 if (el > 1) {
8381 return 0;
8382 } else {
8383 return extract64(tcr->raw_tcr, 38, 1);
8387 /* Return the TTBR associated with this translation regime */
8388 static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx,
8389 int ttbrn)
8391 if (mmu_idx == ARMMMUIdx_S2NS) {
8392 return env->cp15.vttbr_el2;
8394 if (ttbrn == 0) {
8395 return env->cp15.ttbr0_el[regime_el(env, mmu_idx)];
8396 } else {
8397 return env->cp15.ttbr1_el[regime_el(env, mmu_idx)];
8401 /* Return true if the translation regime is using LPAE format page tables */
8402 static inline bool regime_using_lpae_format(CPUARMState *env,
8403 ARMMMUIdx mmu_idx)
8405 int el = regime_el(env, mmu_idx);
8406 if (el == 2 || arm_el_is_aa64(env, el)) {
8407 return true;
8409 if (arm_feature(env, ARM_FEATURE_LPAE)
8410 && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) {
8411 return true;
8413 return false;
8416 /* Returns true if the stage 1 translation regime is using LPAE format page
8417 * tables. Used when raising alignment exceptions, whose FSR changes depending
8418 * on whether the long or short descriptor format is in use. */
8419 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx)
8421 mmu_idx = stage_1_mmu_idx(mmu_idx);
8423 return regime_using_lpae_format(env, mmu_idx);
8426 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx)
8428 switch (mmu_idx) {
8429 case ARMMMUIdx_S1SE0:
8430 case ARMMMUIdx_S1NSE0:
8431 case ARMMMUIdx_MUser:
8432 case ARMMMUIdx_MSUser:
8433 case ARMMMUIdx_MUserNegPri:
8434 case ARMMMUIdx_MSUserNegPri:
8435 return true;
8436 default:
8437 return false;
8438 case ARMMMUIdx_S12NSE0:
8439 case ARMMMUIdx_S12NSE1:
8440 g_assert_not_reached();
8444 /* Translate section/page access permissions to page
8445 * R/W protection flags
8447 * @env: CPUARMState
8448 * @mmu_idx: MMU index indicating required translation regime
8449 * @ap: The 3-bit access permissions (AP[2:0])
8450 * @domain_prot: The 2-bit domain access permissions
8452 static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx,
8453 int ap, int domain_prot)
8455 bool is_user = regime_is_user(env, mmu_idx);
8457 if (domain_prot == 3) {
8458 return PAGE_READ | PAGE_WRITE;
8461 switch (ap) {
8462 case 0:
8463 if (arm_feature(env, ARM_FEATURE_V7)) {
8464 return 0;
8466 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) {
8467 case SCTLR_S:
8468 return is_user ? 0 : PAGE_READ;
8469 case SCTLR_R:
8470 return PAGE_READ;
8471 default:
8472 return 0;
8474 case 1:
8475 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
8476 case 2:
8477 if (is_user) {
8478 return PAGE_READ;
8479 } else {
8480 return PAGE_READ | PAGE_WRITE;
8482 case 3:
8483 return PAGE_READ | PAGE_WRITE;
8484 case 4: /* Reserved. */
8485 return 0;
8486 case 5:
8487 return is_user ? 0 : PAGE_READ;
8488 case 6:
8489 return PAGE_READ;
8490 case 7:
8491 if (!arm_feature(env, ARM_FEATURE_V6K)) {
8492 return 0;
8494 return PAGE_READ;
8495 default:
8496 g_assert_not_reached();
8500 /* Translate section/page access permissions to page
8501 * R/W protection flags.
8503 * @ap: The 2-bit simple AP (AP[2:1])
8504 * @is_user: TRUE if accessing from PL0
8506 static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user)
8508 switch (ap) {
8509 case 0:
8510 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
8511 case 1:
8512 return PAGE_READ | PAGE_WRITE;
8513 case 2:
8514 return is_user ? 0 : PAGE_READ;
8515 case 3:
8516 return PAGE_READ;
8517 default:
8518 g_assert_not_reached();
8522 static inline int
8523 simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap)
8525 return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx));
8528 /* Translate S2 section/page access permissions to protection flags
8530 * @env: CPUARMState
8531 * @s2ap: The 2-bit stage2 access permissions (S2AP)
8532 * @xn: XN (execute-never) bit
8534 static int get_S2prot(CPUARMState *env, int s2ap, int xn)
8536 int prot = 0;
8538 if (s2ap & 1) {
8539 prot |= PAGE_READ;
8541 if (s2ap & 2) {
8542 prot |= PAGE_WRITE;
8544 if (!xn) {
8545 if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) {
8546 prot |= PAGE_EXEC;
8549 return prot;
8552 /* Translate section/page access permissions to protection flags
8554 * @env: CPUARMState
8555 * @mmu_idx: MMU index indicating required translation regime
8556 * @is_aa64: TRUE if AArch64
8557 * @ap: The 2-bit simple AP (AP[2:1])
8558 * @ns: NS (non-secure) bit
8559 * @xn: XN (execute-never) bit
8560 * @pxn: PXN (privileged execute-never) bit
8562 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
8563 int ap, int ns, int xn, int pxn)
8565 bool is_user = regime_is_user(env, mmu_idx);
8566 int prot_rw, user_rw;
8567 bool have_wxn;
8568 int wxn = 0;
8570 assert(mmu_idx != ARMMMUIdx_S2NS);
8572 user_rw = simple_ap_to_rw_prot_is_user(ap, true);
8573 if (is_user) {
8574 prot_rw = user_rw;
8575 } else {
8576 prot_rw = simple_ap_to_rw_prot_is_user(ap, false);
8579 if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) {
8580 return prot_rw;
8583 /* TODO have_wxn should be replaced with
8584 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
8585 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
8586 * compatible processors have EL2, which is required for [U]WXN.
8588 have_wxn = arm_feature(env, ARM_FEATURE_LPAE);
8590 if (have_wxn) {
8591 wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN;
8594 if (is_aa64) {
8595 switch (regime_el(env, mmu_idx)) {
8596 case 1:
8597 if (!is_user) {
8598 xn = pxn || (user_rw & PAGE_WRITE);
8600 break;
8601 case 2:
8602 case 3:
8603 break;
8605 } else if (arm_feature(env, ARM_FEATURE_V7)) {
8606 switch (regime_el(env, mmu_idx)) {
8607 case 1:
8608 case 3:
8609 if (is_user) {
8610 xn = xn || !(user_rw & PAGE_READ);
8611 } else {
8612 int uwxn = 0;
8613 if (have_wxn) {
8614 uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN;
8616 xn = xn || !(prot_rw & PAGE_READ) || pxn ||
8617 (uwxn && (user_rw & PAGE_WRITE));
8619 break;
8620 case 2:
8621 break;
8623 } else {
8624 xn = wxn = 0;
8627 if (xn || (wxn && (prot_rw & PAGE_WRITE))) {
8628 return prot_rw;
8630 return prot_rw | PAGE_EXEC;
8633 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx,
8634 uint32_t *table, uint32_t address)
8636 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
8637 TCR *tcr = regime_tcr(env, mmu_idx);
8639 if (address & tcr->mask) {
8640 if (tcr->raw_tcr & TTBCR_PD1) {
8641 /* Translation table walk disabled for TTBR1 */
8642 return false;
8644 *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000;
8645 } else {
8646 if (tcr->raw_tcr & TTBCR_PD0) {
8647 /* Translation table walk disabled for TTBR0 */
8648 return false;
8650 *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask;
8652 *table |= (address >> 18) & 0x3ffc;
8653 return true;
8656 /* Translate a S1 pagetable walk through S2 if needed. */
8657 static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx,
8658 hwaddr addr, MemTxAttrs txattrs,
8659 ARMMMUFaultInfo *fi)
8661 if ((mmu_idx == ARMMMUIdx_S1NSE0 || mmu_idx == ARMMMUIdx_S1NSE1) &&
8662 !regime_translation_disabled(env, ARMMMUIdx_S2NS)) {
8663 target_ulong s2size;
8664 hwaddr s2pa;
8665 int s2prot;
8666 int ret;
8668 ret = get_phys_addr_lpae(env, addr, 0, ARMMMUIdx_S2NS, &s2pa,
8669 &txattrs, &s2prot, &s2size, fi, NULL);
8670 if (ret) {
8671 assert(fi->type != ARMFault_None);
8672 fi->s2addr = addr;
8673 fi->stage2 = true;
8674 fi->s1ptw = true;
8675 return ~0;
8677 addr = s2pa;
8679 return addr;
8682 /* All loads done in the course of a page table walk go through here.
8683 * TODO: rather than ignoring errors from physical memory reads (which
8684 * are external aborts in ARM terminology) we should propagate this
8685 * error out so that we can turn it into a Data Abort if this walk
8686 * was being done for a CPU load/store or an address translation instruction
8687 * (but not if it was for a debug access).
8689 static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure,
8690 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi)
8692 ARMCPU *cpu = ARM_CPU(cs);
8693 CPUARMState *env = &cpu->env;
8694 MemTxAttrs attrs = {};
8695 MemTxResult result = MEMTX_OK;
8696 AddressSpace *as;
8697 uint32_t data;
8699 attrs.secure = is_secure;
8700 as = arm_addressspace(cs, attrs);
8701 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi);
8702 if (fi->s1ptw) {
8703 return 0;
8705 if (regime_translation_big_endian(env, mmu_idx)) {
8706 data = address_space_ldl_be(as, addr, attrs, &result);
8707 } else {
8708 data = address_space_ldl_le(as, addr, attrs, &result);
8710 if (result == MEMTX_OK) {
8711 return data;
8713 fi->type = ARMFault_SyncExternalOnWalk;
8714 fi->ea = arm_extabort_type(result);
8715 return 0;
8718 static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure,
8719 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi)
8721 ARMCPU *cpu = ARM_CPU(cs);
8722 CPUARMState *env = &cpu->env;
8723 MemTxAttrs attrs = {};
8724 MemTxResult result = MEMTX_OK;
8725 AddressSpace *as;
8726 uint64_t data;
8728 attrs.secure = is_secure;
8729 as = arm_addressspace(cs, attrs);
8730 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi);
8731 if (fi->s1ptw) {
8732 return 0;
8734 if (regime_translation_big_endian(env, mmu_idx)) {
8735 data = address_space_ldq_be(as, addr, attrs, &result);
8736 } else {
8737 data = address_space_ldq_le(as, addr, attrs, &result);
8739 if (result == MEMTX_OK) {
8740 return data;
8742 fi->type = ARMFault_SyncExternalOnWalk;
8743 fi->ea = arm_extabort_type(result);
8744 return 0;
8747 static bool get_phys_addr_v5(CPUARMState *env, uint32_t address,
8748 MMUAccessType access_type, ARMMMUIdx mmu_idx,
8749 hwaddr *phys_ptr, int *prot,
8750 target_ulong *page_size,
8751 ARMMMUFaultInfo *fi)
8753 CPUState *cs = CPU(arm_env_get_cpu(env));
8754 int level = 1;
8755 uint32_t table;
8756 uint32_t desc;
8757 int type;
8758 int ap;
8759 int domain = 0;
8760 int domain_prot;
8761 hwaddr phys_addr;
8762 uint32_t dacr;
8764 /* Pagetable walk. */
8765 /* Lookup l1 descriptor. */
8766 if (!get_level1_table_address(env, mmu_idx, &table, address)) {
8767 /* Section translation fault if page walk is disabled by PD0 or PD1 */
8768 fi->type = ARMFault_Translation;
8769 goto do_fault;
8771 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
8772 mmu_idx, fi);
8773 if (fi->type != ARMFault_None) {
8774 goto do_fault;
8776 type = (desc & 3);
8777 domain = (desc >> 5) & 0x0f;
8778 if (regime_el(env, mmu_idx) == 1) {
8779 dacr = env->cp15.dacr_ns;
8780 } else {
8781 dacr = env->cp15.dacr_s;
8783 domain_prot = (dacr >> (domain * 2)) & 3;
8784 if (type == 0) {
8785 /* Section translation fault. */
8786 fi->type = ARMFault_Translation;
8787 goto do_fault;
8789 if (type != 2) {
8790 level = 2;
8792 if (domain_prot == 0 || domain_prot == 2) {
8793 fi->type = ARMFault_Domain;
8794 goto do_fault;
8796 if (type == 2) {
8797 /* 1Mb section. */
8798 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
8799 ap = (desc >> 10) & 3;
8800 *page_size = 1024 * 1024;
8801 } else {
8802 /* Lookup l2 entry. */
8803 if (type == 1) {
8804 /* Coarse pagetable. */
8805 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
8806 } else {
8807 /* Fine pagetable. */
8808 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
8810 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
8811 mmu_idx, fi);
8812 if (fi->type != ARMFault_None) {
8813 goto do_fault;
8815 switch (desc & 3) {
8816 case 0: /* Page translation fault. */
8817 fi->type = ARMFault_Translation;
8818 goto do_fault;
8819 case 1: /* 64k page. */
8820 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
8821 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
8822 *page_size = 0x10000;
8823 break;
8824 case 2: /* 4k page. */
8825 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
8826 ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
8827 *page_size = 0x1000;
8828 break;
8829 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
8830 if (type == 1) {
8831 /* ARMv6/XScale extended small page format */
8832 if (arm_feature(env, ARM_FEATURE_XSCALE)
8833 || arm_feature(env, ARM_FEATURE_V6)) {
8834 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
8835 *page_size = 0x1000;
8836 } else {
8837 /* UNPREDICTABLE in ARMv5; we choose to take a
8838 * page translation fault.
8840 fi->type = ARMFault_Translation;
8841 goto do_fault;
8843 } else {
8844 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
8845 *page_size = 0x400;
8847 ap = (desc >> 4) & 3;
8848 break;
8849 default:
8850 /* Never happens, but compiler isn't smart enough to tell. */
8851 abort();
8854 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
8855 *prot |= *prot ? PAGE_EXEC : 0;
8856 if (!(*prot & (1 << access_type))) {
8857 /* Access permission fault. */
8858 fi->type = ARMFault_Permission;
8859 goto do_fault;
8861 *phys_ptr = phys_addr;
8862 return false;
8863 do_fault:
8864 fi->domain = domain;
8865 fi->level = level;
8866 return true;
8869 static bool get_phys_addr_v6(CPUARMState *env, uint32_t address,
8870 MMUAccessType access_type, ARMMMUIdx mmu_idx,
8871 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
8872 target_ulong *page_size, ARMMMUFaultInfo *fi)
8874 CPUState *cs = CPU(arm_env_get_cpu(env));
8875 int level = 1;
8876 uint32_t table;
8877 uint32_t desc;
8878 uint32_t xn;
8879 uint32_t pxn = 0;
8880 int type;
8881 int ap;
8882 int domain = 0;
8883 int domain_prot;
8884 hwaddr phys_addr;
8885 uint32_t dacr;
8886 bool ns;
8888 /* Pagetable walk. */
8889 /* Lookup l1 descriptor. */
8890 if (!get_level1_table_address(env, mmu_idx, &table, address)) {
8891 /* Section translation fault if page walk is disabled by PD0 or PD1 */
8892 fi->type = ARMFault_Translation;
8893 goto do_fault;
8895 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
8896 mmu_idx, fi);
8897 if (fi->type != ARMFault_None) {
8898 goto do_fault;
8900 type = (desc & 3);
8901 if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) {
8902 /* Section translation fault, or attempt to use the encoding
8903 * which is Reserved on implementations without PXN.
8905 fi->type = ARMFault_Translation;
8906 goto do_fault;
8908 if ((type == 1) || !(desc & (1 << 18))) {
8909 /* Page or Section. */
8910 domain = (desc >> 5) & 0x0f;
8912 if (regime_el(env, mmu_idx) == 1) {
8913 dacr = env->cp15.dacr_ns;
8914 } else {
8915 dacr = env->cp15.dacr_s;
8917 if (type == 1) {
8918 level = 2;
8920 domain_prot = (dacr >> (domain * 2)) & 3;
8921 if (domain_prot == 0 || domain_prot == 2) {
8922 /* Section or Page domain fault */
8923 fi->type = ARMFault_Domain;
8924 goto do_fault;
8926 if (type != 1) {
8927 if (desc & (1 << 18)) {
8928 /* Supersection. */
8929 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
8930 phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32;
8931 phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36;
8932 *page_size = 0x1000000;
8933 } else {
8934 /* Section. */
8935 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
8936 *page_size = 0x100000;
8938 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
8939 xn = desc & (1 << 4);
8940 pxn = desc & 1;
8941 ns = extract32(desc, 19, 1);
8942 } else {
8943 if (arm_feature(env, ARM_FEATURE_PXN)) {
8944 pxn = (desc >> 2) & 1;
8946 ns = extract32(desc, 3, 1);
8947 /* Lookup l2 entry. */
8948 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
8949 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
8950 mmu_idx, fi);
8951 if (fi->type != ARMFault_None) {
8952 goto do_fault;
8954 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
8955 switch (desc & 3) {
8956 case 0: /* Page translation fault. */
8957 fi->type = ARMFault_Translation;
8958 goto do_fault;
8959 case 1: /* 64k page. */
8960 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
8961 xn = desc & (1 << 15);
8962 *page_size = 0x10000;
8963 break;
8964 case 2: case 3: /* 4k page. */
8965 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
8966 xn = desc & 1;
8967 *page_size = 0x1000;
8968 break;
8969 default:
8970 /* Never happens, but compiler isn't smart enough to tell. */
8971 abort();
8974 if (domain_prot == 3) {
8975 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
8976 } else {
8977 if (pxn && !regime_is_user(env, mmu_idx)) {
8978 xn = 1;
8980 if (xn && access_type == MMU_INST_FETCH) {
8981 fi->type = ARMFault_Permission;
8982 goto do_fault;
8985 if (arm_feature(env, ARM_FEATURE_V6K) &&
8986 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) {
8987 /* The simplified model uses AP[0] as an access control bit. */
8988 if ((ap & 1) == 0) {
8989 /* Access flag fault. */
8990 fi->type = ARMFault_AccessFlag;
8991 goto do_fault;
8993 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1);
8994 } else {
8995 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
8997 if (*prot && !xn) {
8998 *prot |= PAGE_EXEC;
9000 if (!(*prot & (1 << access_type))) {
9001 /* Access permission fault. */
9002 fi->type = ARMFault_Permission;
9003 goto do_fault;
9006 if (ns) {
9007 /* The NS bit will (as required by the architecture) have no effect if
9008 * the CPU doesn't support TZ or this is a non-secure translation
9009 * regime, because the attribute will already be non-secure.
9011 attrs->secure = false;
9013 *phys_ptr = phys_addr;
9014 return false;
9015 do_fault:
9016 fi->domain = domain;
9017 fi->level = level;
9018 return true;
9022 * check_s2_mmu_setup
9023 * @cpu: ARMCPU
9024 * @is_aa64: True if the translation regime is in AArch64 state
9025 * @startlevel: Suggested starting level
9026 * @inputsize: Bitsize of IPAs
9027 * @stride: Page-table stride (See the ARM ARM)
9029 * Returns true if the suggested S2 translation parameters are OK and
9030 * false otherwise.
9032 static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level,
9033 int inputsize, int stride)
9035 const int grainsize = stride + 3;
9036 int startsizecheck;
9038 /* Negative levels are never allowed. */
9039 if (level < 0) {
9040 return false;
9043 startsizecheck = inputsize - ((3 - level) * stride + grainsize);
9044 if (startsizecheck < 1 || startsizecheck > stride + 4) {
9045 return false;
9048 if (is_aa64) {
9049 CPUARMState *env = &cpu->env;
9050 unsigned int pamax = arm_pamax(cpu);
9052 switch (stride) {
9053 case 13: /* 64KB Pages. */
9054 if (level == 0 || (level == 1 && pamax <= 42)) {
9055 return false;
9057 break;
9058 case 11: /* 16KB Pages. */
9059 if (level == 0 || (level == 1 && pamax <= 40)) {
9060 return false;
9062 break;
9063 case 9: /* 4KB Pages. */
9064 if (level == 0 && pamax <= 42) {
9065 return false;
9067 break;
9068 default:
9069 g_assert_not_reached();
9072 /* Inputsize checks. */
9073 if (inputsize > pamax &&
9074 (arm_el_is_aa64(env, 1) || inputsize > 40)) {
9075 /* This is CONSTRAINED UNPREDICTABLE and we choose to fault. */
9076 return false;
9078 } else {
9079 /* AArch32 only supports 4KB pages. Assert on that. */
9080 assert(stride == 9);
9082 if (level == 0) {
9083 return false;
9086 return true;
9089 /* Translate from the 4-bit stage 2 representation of
9090 * memory attributes (without cache-allocation hints) to
9091 * the 8-bit representation of the stage 1 MAIR registers
9092 * (which includes allocation hints).
9094 * ref: shared/translation/attrs/S2AttrDecode()
9095 * .../S2ConvertAttrsHints()
9097 static uint8_t convert_stage2_attrs(CPUARMState *env, uint8_t s2attrs)
9099 uint8_t hiattr = extract32(s2attrs, 2, 2);
9100 uint8_t loattr = extract32(s2attrs, 0, 2);
9101 uint8_t hihint = 0, lohint = 0;
9103 if (hiattr != 0) { /* normal memory */
9104 if ((env->cp15.hcr_el2 & HCR_CD) != 0) { /* cache disabled */
9105 hiattr = loattr = 1; /* non-cacheable */
9106 } else {
9107 if (hiattr != 1) { /* Write-through or write-back */
9108 hihint = 3; /* RW allocate */
9110 if (loattr != 1) { /* Write-through or write-back */
9111 lohint = 3; /* RW allocate */
9116 return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint;
9119 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
9120 MMUAccessType access_type, ARMMMUIdx mmu_idx,
9121 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
9122 target_ulong *page_size_ptr,
9123 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
9125 ARMCPU *cpu = arm_env_get_cpu(env);
9126 CPUState *cs = CPU(cpu);
9127 /* Read an LPAE long-descriptor translation table. */
9128 ARMFaultType fault_type = ARMFault_Translation;
9129 uint32_t level;
9130 uint32_t epd = 0;
9131 int32_t t0sz, t1sz;
9132 uint32_t tg;
9133 uint64_t ttbr;
9134 int ttbr_select;
9135 hwaddr descaddr, indexmask, indexmask_grainsize;
9136 uint32_t tableattrs;
9137 target_ulong page_size;
9138 uint32_t attrs;
9139 int32_t stride = 9;
9140 int32_t addrsize;
9141 int inputsize;
9142 int32_t tbi = 0;
9143 TCR *tcr = regime_tcr(env, mmu_idx);
9144 int ap, ns, xn, pxn;
9145 uint32_t el = regime_el(env, mmu_idx);
9146 bool ttbr1_valid = true;
9147 uint64_t descaddrmask;
9148 bool aarch64 = arm_el_is_aa64(env, el);
9150 /* TODO:
9151 * This code does not handle the different format TCR for VTCR_EL2.
9152 * This code also does not support shareability levels.
9153 * Attribute and permission bit handling should also be checked when adding
9154 * support for those page table walks.
9156 if (aarch64) {
9157 level = 0;
9158 addrsize = 64;
9159 if (el > 1) {
9160 if (mmu_idx != ARMMMUIdx_S2NS) {
9161 tbi = extract64(tcr->raw_tcr, 20, 1);
9163 } else {
9164 if (extract64(address, 55, 1)) {
9165 tbi = extract64(tcr->raw_tcr, 38, 1);
9166 } else {
9167 tbi = extract64(tcr->raw_tcr, 37, 1);
9170 tbi *= 8;
9172 /* If we are in 64-bit EL2 or EL3 then there is no TTBR1, so mark it
9173 * invalid.
9175 if (el > 1) {
9176 ttbr1_valid = false;
9178 } else {
9179 level = 1;
9180 addrsize = 32;
9181 /* There is no TTBR1 for EL2 */
9182 if (el == 2) {
9183 ttbr1_valid = false;
9187 /* Determine whether this address is in the region controlled by
9188 * TTBR0 or TTBR1 (or if it is in neither region and should fault).
9189 * This is a Non-secure PL0/1 stage 1 translation, so controlled by
9190 * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32:
9192 if (aarch64) {
9193 /* AArch64 translation. */
9194 t0sz = extract32(tcr->raw_tcr, 0, 6);
9195 t0sz = MIN(t0sz, 39);
9196 t0sz = MAX(t0sz, 16);
9197 } else if (mmu_idx != ARMMMUIdx_S2NS) {
9198 /* AArch32 stage 1 translation. */
9199 t0sz = extract32(tcr->raw_tcr, 0, 3);
9200 } else {
9201 /* AArch32 stage 2 translation. */
9202 bool sext = extract32(tcr->raw_tcr, 4, 1);
9203 bool sign = extract32(tcr->raw_tcr, 3, 1);
9204 /* Address size is 40-bit for a stage 2 translation,
9205 * and t0sz can be negative (from -8 to 7),
9206 * so we need to adjust it to use the TTBR selecting logic below.
9208 addrsize = 40;
9209 t0sz = sextract32(tcr->raw_tcr, 0, 4) + 8;
9211 /* If the sign-extend bit is not the same as t0sz[3], the result
9212 * is unpredictable. Flag this as a guest error. */
9213 if (sign != sext) {
9214 qemu_log_mask(LOG_GUEST_ERROR,
9215 "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n");
9218 t1sz = extract32(tcr->raw_tcr, 16, 6);
9219 if (aarch64) {
9220 t1sz = MIN(t1sz, 39);
9221 t1sz = MAX(t1sz, 16);
9223 if (t0sz && !extract64(address, addrsize - t0sz, t0sz - tbi)) {
9224 /* there is a ttbr0 region and we are in it (high bits all zero) */
9225 ttbr_select = 0;
9226 } else if (ttbr1_valid && t1sz &&
9227 !extract64(~address, addrsize - t1sz, t1sz - tbi)) {
9228 /* there is a ttbr1 region and we are in it (high bits all one) */
9229 ttbr_select = 1;
9230 } else if (!t0sz) {
9231 /* ttbr0 region is "everything not in the ttbr1 region" */
9232 ttbr_select = 0;
9233 } else if (!t1sz && ttbr1_valid) {
9234 /* ttbr1 region is "everything not in the ttbr0 region" */
9235 ttbr_select = 1;
9236 } else {
9237 /* in the gap between the two regions, this is a Translation fault */
9238 fault_type = ARMFault_Translation;
9239 goto do_fault;
9242 /* Note that QEMU ignores shareability and cacheability attributes,
9243 * so we don't need to do anything with the SH, ORGN, IRGN fields
9244 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the
9245 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
9246 * implement any ASID-like capability so we can ignore it (instead
9247 * we will always flush the TLB any time the ASID is changed).
9249 if (ttbr_select == 0) {
9250 ttbr = regime_ttbr(env, mmu_idx, 0);
9251 if (el < 2) {
9252 epd = extract32(tcr->raw_tcr, 7, 1);
9254 inputsize = addrsize - t0sz;
9256 tg = extract32(tcr->raw_tcr, 14, 2);
9257 if (tg == 1) { /* 64KB pages */
9258 stride = 13;
9260 if (tg == 2) { /* 16KB pages */
9261 stride = 11;
9263 } else {
9264 /* We should only be here if TTBR1 is valid */
9265 assert(ttbr1_valid);
9267 ttbr = regime_ttbr(env, mmu_idx, 1);
9268 epd = extract32(tcr->raw_tcr, 23, 1);
9269 inputsize = addrsize - t1sz;
9271 tg = extract32(tcr->raw_tcr, 30, 2);
9272 if (tg == 3) { /* 64KB pages */
9273 stride = 13;
9275 if (tg == 1) { /* 16KB pages */
9276 stride = 11;
9280 /* Here we should have set up all the parameters for the translation:
9281 * inputsize, ttbr, epd, stride, tbi
9284 if (epd) {
9285 /* Translation table walk disabled => Translation fault on TLB miss
9286 * Note: This is always 0 on 64-bit EL2 and EL3.
9288 goto do_fault;
9291 if (mmu_idx != ARMMMUIdx_S2NS) {
9292 /* The starting level depends on the virtual address size (which can
9293 * be up to 48 bits) and the translation granule size. It indicates
9294 * the number of strides (stride bits at a time) needed to
9295 * consume the bits of the input address. In the pseudocode this is:
9296 * level = 4 - RoundUp((inputsize - grainsize) / stride)
9297 * where their 'inputsize' is our 'inputsize', 'grainsize' is
9298 * our 'stride + 3' and 'stride' is our 'stride'.
9299 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
9300 * = 4 - (inputsize - stride - 3 + stride - 1) / stride
9301 * = 4 - (inputsize - 4) / stride;
9303 level = 4 - (inputsize - 4) / stride;
9304 } else {
9305 /* For stage 2 translations the starting level is specified by the
9306 * VTCR_EL2.SL0 field (whose interpretation depends on the page size)
9308 uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2);
9309 uint32_t startlevel;
9310 bool ok;
9312 if (!aarch64 || stride == 9) {
9313 /* AArch32 or 4KB pages */
9314 startlevel = 2 - sl0;
9315 } else {
9316 /* 16KB or 64KB pages */
9317 startlevel = 3 - sl0;
9320 /* Check that the starting level is valid. */
9321 ok = check_s2_mmu_setup(cpu, aarch64, startlevel,
9322 inputsize, stride);
9323 if (!ok) {
9324 fault_type = ARMFault_Translation;
9325 goto do_fault;
9327 level = startlevel;
9330 indexmask_grainsize = (1ULL << (stride + 3)) - 1;
9331 indexmask = (1ULL << (inputsize - (stride * (4 - level)))) - 1;
9333 /* Now we can extract the actual base address from the TTBR */
9334 descaddr = extract64(ttbr, 0, 48);
9335 descaddr &= ~indexmask;
9337 /* The address field in the descriptor goes up to bit 39 for ARMv7
9338 * but up to bit 47 for ARMv8, but we use the descaddrmask
9339 * up to bit 39 for AArch32, because we don't need other bits in that case
9340 * to construct next descriptor address (anyway they should be all zeroes).
9342 descaddrmask = ((1ull << (aarch64 ? 48 : 40)) - 1) &
9343 ~indexmask_grainsize;
9345 /* Secure accesses start with the page table in secure memory and
9346 * can be downgraded to non-secure at any step. Non-secure accesses
9347 * remain non-secure. We implement this by just ORing in the NSTable/NS
9348 * bits at each step.
9350 tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4);
9351 for (;;) {
9352 uint64_t descriptor;
9353 bool nstable;
9355 descaddr |= (address >> (stride * (4 - level))) & indexmask;
9356 descaddr &= ~7ULL;
9357 nstable = extract32(tableattrs, 4, 1);
9358 descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fi);
9359 if (fi->type != ARMFault_None) {
9360 goto do_fault;
9363 if (!(descriptor & 1) ||
9364 (!(descriptor & 2) && (level == 3))) {
9365 /* Invalid, or the Reserved level 3 encoding */
9366 goto do_fault;
9368 descaddr = descriptor & descaddrmask;
9370 if ((descriptor & 2) && (level < 3)) {
9371 /* Table entry. The top five bits are attributes which may
9372 * propagate down through lower levels of the table (and
9373 * which are all arranged so that 0 means "no effect", so
9374 * we can gather them up by ORing in the bits at each level).
9376 tableattrs |= extract64(descriptor, 59, 5);
9377 level++;
9378 indexmask = indexmask_grainsize;
9379 continue;
9381 /* Block entry at level 1 or 2, or page entry at level 3.
9382 * These are basically the same thing, although the number
9383 * of bits we pull in from the vaddr varies.
9385 page_size = (1ULL << ((stride * (4 - level)) + 3));
9386 descaddr |= (address & (page_size - 1));
9387 /* Extract attributes from the descriptor */
9388 attrs = extract64(descriptor, 2, 10)
9389 | (extract64(descriptor, 52, 12) << 10);
9391 if (mmu_idx == ARMMMUIdx_S2NS) {
9392 /* Stage 2 table descriptors do not include any attribute fields */
9393 break;
9395 /* Merge in attributes from table descriptors */
9396 attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */
9397 attrs |= extract32(tableattrs, 3, 1) << 5; /* APTable[1] => AP[2] */
9398 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
9399 * means "force PL1 access only", which means forcing AP[1] to 0.
9401 if (extract32(tableattrs, 2, 1)) {
9402 attrs &= ~(1 << 4);
9404 attrs |= nstable << 3; /* NS */
9405 break;
9407 /* Here descaddr is the final physical address, and attributes
9408 * are all in attrs.
9410 fault_type = ARMFault_AccessFlag;
9411 if ((attrs & (1 << 8)) == 0) {
9412 /* Access flag */
9413 goto do_fault;
9416 ap = extract32(attrs, 4, 2);
9417 xn = extract32(attrs, 12, 1);
9419 if (mmu_idx == ARMMMUIdx_S2NS) {
9420 ns = true;
9421 *prot = get_S2prot(env, ap, xn);
9422 } else {
9423 ns = extract32(attrs, 3, 1);
9424 pxn = extract32(attrs, 11, 1);
9425 *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn);
9428 fault_type = ARMFault_Permission;
9429 if (!(*prot & (1 << access_type))) {
9430 goto do_fault;
9433 if (ns) {
9434 /* The NS bit will (as required by the architecture) have no effect if
9435 * the CPU doesn't support TZ or this is a non-secure translation
9436 * regime, because the attribute will already be non-secure.
9438 txattrs->secure = false;
9441 if (cacheattrs != NULL) {
9442 if (mmu_idx == ARMMMUIdx_S2NS) {
9443 cacheattrs->attrs = convert_stage2_attrs(env,
9444 extract32(attrs, 0, 4));
9445 } else {
9446 /* Index into MAIR registers for cache attributes */
9447 uint8_t attrindx = extract32(attrs, 0, 3);
9448 uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)];
9449 assert(attrindx <= 7);
9450 cacheattrs->attrs = extract64(mair, attrindx * 8, 8);
9452 cacheattrs->shareability = extract32(attrs, 6, 2);
9455 *phys_ptr = descaddr;
9456 *page_size_ptr = page_size;
9457 return false;
9459 do_fault:
9460 fi->type = fault_type;
9461 fi->level = level;
9462 /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */
9463 fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_S2NS);
9464 return true;
9467 static inline void get_phys_addr_pmsav7_default(CPUARMState *env,
9468 ARMMMUIdx mmu_idx,
9469 int32_t address, int *prot)
9471 if (!arm_feature(env, ARM_FEATURE_M)) {
9472 *prot = PAGE_READ | PAGE_WRITE;
9473 switch (address) {
9474 case 0xF0000000 ... 0xFFFFFFFF:
9475 if (regime_sctlr(env, mmu_idx) & SCTLR_V) {
9476 /* hivecs execing is ok */
9477 *prot |= PAGE_EXEC;
9479 break;
9480 case 0x00000000 ... 0x7FFFFFFF:
9481 *prot |= PAGE_EXEC;
9482 break;
9484 } else {
9485 /* Default system address map for M profile cores.
9486 * The architecture specifies which regions are execute-never;
9487 * at the MPU level no other checks are defined.
9489 switch (address) {
9490 case 0x00000000 ... 0x1fffffff: /* ROM */
9491 case 0x20000000 ... 0x3fffffff: /* SRAM */
9492 case 0x60000000 ... 0x7fffffff: /* RAM */
9493 case 0x80000000 ... 0x9fffffff: /* RAM */
9494 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
9495 break;
9496 case 0x40000000 ... 0x5fffffff: /* Peripheral */
9497 case 0xa0000000 ... 0xbfffffff: /* Device */
9498 case 0xc0000000 ... 0xdfffffff: /* Device */
9499 case 0xe0000000 ... 0xffffffff: /* System */
9500 *prot = PAGE_READ | PAGE_WRITE;
9501 break;
9502 default:
9503 g_assert_not_reached();
9508 static bool pmsav7_use_background_region(ARMCPU *cpu,
9509 ARMMMUIdx mmu_idx, bool is_user)
9511 /* Return true if we should use the default memory map as a
9512 * "background" region if there are no hits against any MPU regions.
9514 CPUARMState *env = &cpu->env;
9516 if (is_user) {
9517 return false;
9520 if (arm_feature(env, ARM_FEATURE_M)) {
9521 return env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)]
9522 & R_V7M_MPU_CTRL_PRIVDEFENA_MASK;
9523 } else {
9524 return regime_sctlr(env, mmu_idx) & SCTLR_BR;
9528 static inline bool m_is_ppb_region(CPUARMState *env, uint32_t address)
9530 /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */
9531 return arm_feature(env, ARM_FEATURE_M) &&
9532 extract32(address, 20, 12) == 0xe00;
9535 static inline bool m_is_system_region(CPUARMState *env, uint32_t address)
9537 /* True if address is in the M profile system region
9538 * 0xe0000000 - 0xffffffff
9540 return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7;
9543 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address,
9544 MMUAccessType access_type, ARMMMUIdx mmu_idx,
9545 hwaddr *phys_ptr, int *prot,
9546 ARMMMUFaultInfo *fi)
9548 ARMCPU *cpu = arm_env_get_cpu(env);
9549 int n;
9550 bool is_user = regime_is_user(env, mmu_idx);
9552 *phys_ptr = address;
9553 *prot = 0;
9555 if (regime_translation_disabled(env, mmu_idx) ||
9556 m_is_ppb_region(env, address)) {
9557 /* MPU disabled or M profile PPB access: use default memory map.
9558 * The other case which uses the default memory map in the
9559 * v7M ARM ARM pseudocode is exception vector reads from the vector
9560 * table. In QEMU those accesses are done in arm_v7m_load_vector(),
9561 * which always does a direct read using address_space_ldl(), rather
9562 * than going via this function, so we don't need to check that here.
9564 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
9565 } else { /* MPU enabled */
9566 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
9567 /* region search */
9568 uint32_t base = env->pmsav7.drbar[n];
9569 uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5);
9570 uint32_t rmask;
9571 bool srdis = false;
9573 if (!(env->pmsav7.drsr[n] & 0x1)) {
9574 continue;
9577 if (!rsize) {
9578 qemu_log_mask(LOG_GUEST_ERROR,
9579 "DRSR[%d]: Rsize field cannot be 0\n", n);
9580 continue;
9582 rsize++;
9583 rmask = (1ull << rsize) - 1;
9585 if (base & rmask) {
9586 qemu_log_mask(LOG_GUEST_ERROR,
9587 "DRBAR[%d]: 0x%" PRIx32 " misaligned "
9588 "to DRSR region size, mask = 0x%" PRIx32 "\n",
9589 n, base, rmask);
9590 continue;
9593 if (address < base || address > base + rmask) {
9594 continue;
9597 /* Region matched */
9599 if (rsize >= 8) { /* no subregions for regions < 256 bytes */
9600 int i, snd;
9601 uint32_t srdis_mask;
9603 rsize -= 3; /* sub region size (power of 2) */
9604 snd = ((address - base) >> rsize) & 0x7;
9605 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1);
9607 srdis_mask = srdis ? 0x3 : 0x0;
9608 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) {
9609 /* This will check in groups of 2, 4 and then 8, whether
9610 * the subregion bits are consistent. rsize is incremented
9611 * back up to give the region size, considering consistent
9612 * adjacent subregions as one region. Stop testing if rsize
9613 * is already big enough for an entire QEMU page.
9615 int snd_rounded = snd & ~(i - 1);
9616 uint32_t srdis_multi = extract32(env->pmsav7.drsr[n],
9617 snd_rounded + 8, i);
9618 if (srdis_mask ^ srdis_multi) {
9619 break;
9621 srdis_mask = (srdis_mask << i) | srdis_mask;
9622 rsize++;
9625 if (rsize < TARGET_PAGE_BITS) {
9626 qemu_log_mask(LOG_UNIMP,
9627 "DRSR[%d]: No support for MPU (sub)region "
9628 "alignment of %" PRIu32 " bits. Minimum is %d\n",
9629 n, rsize, TARGET_PAGE_BITS);
9630 continue;
9632 if (srdis) {
9633 continue;
9635 break;
9638 if (n == -1) { /* no hits */
9639 if (!pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
9640 /* background fault */
9641 fi->type = ARMFault_Background;
9642 return true;
9644 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
9645 } else { /* a MPU hit! */
9646 uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3);
9647 uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1);
9649 if (m_is_system_region(env, address)) {
9650 /* System space is always execute never */
9651 xn = 1;
9654 if (is_user) { /* User mode AP bit decoding */
9655 switch (ap) {
9656 case 0:
9657 case 1:
9658 case 5:
9659 break; /* no access */
9660 case 3:
9661 *prot |= PAGE_WRITE;
9662 /* fall through */
9663 case 2:
9664 case 6:
9665 *prot |= PAGE_READ | PAGE_EXEC;
9666 break;
9667 case 7:
9668 /* for v7M, same as 6; for R profile a reserved value */
9669 if (arm_feature(env, ARM_FEATURE_M)) {
9670 *prot |= PAGE_READ | PAGE_EXEC;
9671 break;
9673 /* fall through */
9674 default:
9675 qemu_log_mask(LOG_GUEST_ERROR,
9676 "DRACR[%d]: Bad value for AP bits: 0x%"
9677 PRIx32 "\n", n, ap);
9679 } else { /* Priv. mode AP bits decoding */
9680 switch (ap) {
9681 case 0:
9682 break; /* no access */
9683 case 1:
9684 case 2:
9685 case 3:
9686 *prot |= PAGE_WRITE;
9687 /* fall through */
9688 case 5:
9689 case 6:
9690 *prot |= PAGE_READ | PAGE_EXEC;
9691 break;
9692 case 7:
9693 /* for v7M, same as 6; for R profile a reserved value */
9694 if (arm_feature(env, ARM_FEATURE_M)) {
9695 *prot |= PAGE_READ | PAGE_EXEC;
9696 break;
9698 /* fall through */
9699 default:
9700 qemu_log_mask(LOG_GUEST_ERROR,
9701 "DRACR[%d]: Bad value for AP bits: 0x%"
9702 PRIx32 "\n", n, ap);
9706 /* execute never */
9707 if (xn) {
9708 *prot &= ~PAGE_EXEC;
9713 fi->type = ARMFault_Permission;
9714 fi->level = 1;
9715 return !(*prot & (1 << access_type));
9718 static bool v8m_is_sau_exempt(CPUARMState *env,
9719 uint32_t address, MMUAccessType access_type)
9721 /* The architecture specifies that certain address ranges are
9722 * exempt from v8M SAU/IDAU checks.
9724 return
9725 (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) ||
9726 (address >= 0xe0000000 && address <= 0xe0002fff) ||
9727 (address >= 0xe000e000 && address <= 0xe000efff) ||
9728 (address >= 0xe002e000 && address <= 0xe002efff) ||
9729 (address >= 0xe0040000 && address <= 0xe0041fff) ||
9730 (address >= 0xe00ff000 && address <= 0xe00fffff);
9733 static void v8m_security_lookup(CPUARMState *env, uint32_t address,
9734 MMUAccessType access_type, ARMMMUIdx mmu_idx,
9735 V8M_SAttributes *sattrs)
9737 /* Look up the security attributes for this address. Compare the
9738 * pseudocode SecurityCheck() function.
9739 * We assume the caller has zero-initialized *sattrs.
9741 ARMCPU *cpu = arm_env_get_cpu(env);
9742 int r;
9744 /* TODO: implement IDAU */
9746 if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) {
9747 /* 0xf0000000..0xffffffff is always S for insn fetches */
9748 return;
9751 if (v8m_is_sau_exempt(env, address, access_type)) {
9752 sattrs->ns = !regime_is_secure(env, mmu_idx);
9753 return;
9756 switch (env->sau.ctrl & 3) {
9757 case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */
9758 break;
9759 case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */
9760 sattrs->ns = true;
9761 break;
9762 default: /* SAU.ENABLE == 1 */
9763 for (r = 0; r < cpu->sau_sregion; r++) {
9764 if (env->sau.rlar[r] & 1) {
9765 uint32_t base = env->sau.rbar[r] & ~0x1f;
9766 uint32_t limit = env->sau.rlar[r] | 0x1f;
9768 if (base <= address && limit >= address) {
9769 if (sattrs->srvalid) {
9770 /* If we hit in more than one region then we must report
9771 * as Secure, not NS-Callable, with no valid region
9772 * number info.
9774 sattrs->ns = false;
9775 sattrs->nsc = false;
9776 sattrs->sregion = 0;
9777 sattrs->srvalid = false;
9778 break;
9779 } else {
9780 if (env->sau.rlar[r] & 2) {
9781 sattrs->nsc = true;
9782 } else {
9783 sattrs->ns = true;
9785 sattrs->srvalid = true;
9786 sattrs->sregion = r;
9792 /* TODO when we support the IDAU then it may override the result here */
9793 break;
9797 static bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
9798 MMUAccessType access_type, ARMMMUIdx mmu_idx,
9799 hwaddr *phys_ptr, MemTxAttrs *txattrs,
9800 int *prot, ARMMMUFaultInfo *fi, uint32_t *mregion)
9802 /* Perform a PMSAv8 MPU lookup (without also doing the SAU check
9803 * that a full phys-to-virt translation does).
9804 * mregion is (if not NULL) set to the region number which matched,
9805 * or -1 if no region number is returned (MPU off, address did not
9806 * hit a region, address hit in multiple regions).
9808 ARMCPU *cpu = arm_env_get_cpu(env);
9809 bool is_user = regime_is_user(env, mmu_idx);
9810 uint32_t secure = regime_is_secure(env, mmu_idx);
9811 int n;
9812 int matchregion = -1;
9813 bool hit = false;
9815 *phys_ptr = address;
9816 *prot = 0;
9817 if (mregion) {
9818 *mregion = -1;
9821 /* Unlike the ARM ARM pseudocode, we don't need to check whether this
9822 * was an exception vector read from the vector table (which is always
9823 * done using the default system address map), because those accesses
9824 * are done in arm_v7m_load_vector(), which always does a direct
9825 * read using address_space_ldl(), rather than going via this function.
9827 if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */
9828 hit = true;
9829 } else if (m_is_ppb_region(env, address)) {
9830 hit = true;
9831 } else if (pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
9832 hit = true;
9833 } else {
9834 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
9835 /* region search */
9836 /* Note that the base address is bits [31:5] from the register
9837 * with bits [4:0] all zeroes, but the limit address is bits
9838 * [31:5] from the register with bits [4:0] all ones.
9840 uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f;
9841 uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f;
9843 if (!(env->pmsav8.rlar[secure][n] & 0x1)) {
9844 /* Region disabled */
9845 continue;
9848 if (address < base || address > limit) {
9849 continue;
9852 if (hit) {
9853 /* Multiple regions match -- always a failure (unlike
9854 * PMSAv7 where highest-numbered-region wins)
9856 fi->type = ARMFault_Permission;
9857 fi->level = 1;
9858 return true;
9861 matchregion = n;
9862 hit = true;
9864 if (base & ~TARGET_PAGE_MASK) {
9865 qemu_log_mask(LOG_UNIMP,
9866 "MPU_RBAR[%d]: No support for MPU region base"
9867 "address of 0x%" PRIx32 ". Minimum alignment is "
9868 "%d\n",
9869 n, base, TARGET_PAGE_BITS);
9870 continue;
9872 if ((limit + 1) & ~TARGET_PAGE_MASK) {
9873 qemu_log_mask(LOG_UNIMP,
9874 "MPU_RBAR[%d]: No support for MPU region limit"
9875 "address of 0x%" PRIx32 ". Minimum alignment is "
9876 "%d\n",
9877 n, limit, TARGET_PAGE_BITS);
9878 continue;
9883 if (!hit) {
9884 /* background fault */
9885 fi->type = ARMFault_Background;
9886 return true;
9889 if (matchregion == -1) {
9890 /* hit using the background region */
9891 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
9892 } else {
9893 uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2);
9894 uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1);
9896 if (m_is_system_region(env, address)) {
9897 /* System space is always execute never */
9898 xn = 1;
9901 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap);
9902 if (*prot && !xn) {
9903 *prot |= PAGE_EXEC;
9905 /* We don't need to look the attribute up in the MAIR0/MAIR1
9906 * registers because that only tells us about cacheability.
9908 if (mregion) {
9909 *mregion = matchregion;
9913 fi->type = ARMFault_Permission;
9914 fi->level = 1;
9915 return !(*prot & (1 << access_type));
9919 static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address,
9920 MMUAccessType access_type, ARMMMUIdx mmu_idx,
9921 hwaddr *phys_ptr, MemTxAttrs *txattrs,
9922 int *prot, ARMMMUFaultInfo *fi)
9924 uint32_t secure = regime_is_secure(env, mmu_idx);
9925 V8M_SAttributes sattrs = {};
9927 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
9928 v8m_security_lookup(env, address, access_type, mmu_idx, &sattrs);
9929 if (access_type == MMU_INST_FETCH) {
9930 /* Instruction fetches always use the MMU bank and the
9931 * transaction attribute determined by the fetch address,
9932 * regardless of CPU state. This is painful for QEMU
9933 * to handle, because it would mean we need to encode
9934 * into the mmu_idx not just the (user, negpri) information
9935 * for the current security state but also that for the
9936 * other security state, which would balloon the number
9937 * of mmu_idx values needed alarmingly.
9938 * Fortunately we can avoid this because it's not actually
9939 * possible to arbitrarily execute code from memory with
9940 * the wrong security attribute: it will always generate
9941 * an exception of some kind or another, apart from the
9942 * special case of an NS CPU executing an SG instruction
9943 * in S&NSC memory. So we always just fail the translation
9944 * here and sort things out in the exception handler
9945 * (including possibly emulating an SG instruction).
9947 if (sattrs.ns != !secure) {
9948 if (sattrs.nsc) {
9949 fi->type = ARMFault_QEMU_NSCExec;
9950 } else {
9951 fi->type = ARMFault_QEMU_SFault;
9953 *phys_ptr = address;
9954 *prot = 0;
9955 return true;
9957 } else {
9958 /* For data accesses we always use the MMU bank indicated
9959 * by the current CPU state, but the security attributes
9960 * might downgrade a secure access to nonsecure.
9962 if (sattrs.ns) {
9963 txattrs->secure = false;
9964 } else if (!secure) {
9965 /* NS access to S memory must fault.
9966 * Architecturally we should first check whether the
9967 * MPU information for this address indicates that we
9968 * are doing an unaligned access to Device memory, which
9969 * should generate a UsageFault instead. QEMU does not
9970 * currently check for that kind of unaligned access though.
9971 * If we added it we would need to do so as a special case
9972 * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt().
9974 fi->type = ARMFault_QEMU_SFault;
9975 *phys_ptr = address;
9976 *prot = 0;
9977 return true;
9982 return pmsav8_mpu_lookup(env, address, access_type, mmu_idx, phys_ptr,
9983 txattrs, prot, fi, NULL);
9986 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address,
9987 MMUAccessType access_type, ARMMMUIdx mmu_idx,
9988 hwaddr *phys_ptr, int *prot,
9989 ARMMMUFaultInfo *fi)
9991 int n;
9992 uint32_t mask;
9993 uint32_t base;
9994 bool is_user = regime_is_user(env, mmu_idx);
9996 if (regime_translation_disabled(env, mmu_idx)) {
9997 /* MPU disabled. */
9998 *phys_ptr = address;
9999 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
10000 return false;
10003 *phys_ptr = address;
10004 for (n = 7; n >= 0; n--) {
10005 base = env->cp15.c6_region[n];
10006 if ((base & 1) == 0) {
10007 continue;
10009 mask = 1 << ((base >> 1) & 0x1f);
10010 /* Keep this shift separate from the above to avoid an
10011 (undefined) << 32. */
10012 mask = (mask << 1) - 1;
10013 if (((base ^ address) & ~mask) == 0) {
10014 break;
10017 if (n < 0) {
10018 fi->type = ARMFault_Background;
10019 return true;
10022 if (access_type == MMU_INST_FETCH) {
10023 mask = env->cp15.pmsav5_insn_ap;
10024 } else {
10025 mask = env->cp15.pmsav5_data_ap;
10027 mask = (mask >> (n * 4)) & 0xf;
10028 switch (mask) {
10029 case 0:
10030 fi->type = ARMFault_Permission;
10031 fi->level = 1;
10032 return true;
10033 case 1:
10034 if (is_user) {
10035 fi->type = ARMFault_Permission;
10036 fi->level = 1;
10037 return true;
10039 *prot = PAGE_READ | PAGE_WRITE;
10040 break;
10041 case 2:
10042 *prot = PAGE_READ;
10043 if (!is_user) {
10044 *prot |= PAGE_WRITE;
10046 break;
10047 case 3:
10048 *prot = PAGE_READ | PAGE_WRITE;
10049 break;
10050 case 5:
10051 if (is_user) {
10052 fi->type = ARMFault_Permission;
10053 fi->level = 1;
10054 return true;
10056 *prot = PAGE_READ;
10057 break;
10058 case 6:
10059 *prot = PAGE_READ;
10060 break;
10061 default:
10062 /* Bad permission. */
10063 fi->type = ARMFault_Permission;
10064 fi->level = 1;
10065 return true;
10067 *prot |= PAGE_EXEC;
10068 return false;
10071 /* Combine either inner or outer cacheability attributes for normal
10072 * memory, according to table D4-42 and pseudocode procedure
10073 * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM).
10075 * NB: only stage 1 includes allocation hints (RW bits), leading to
10076 * some asymmetry.
10078 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2)
10080 if (s1 == 4 || s2 == 4) {
10081 /* non-cacheable has precedence */
10082 return 4;
10083 } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) {
10084 /* stage 1 write-through takes precedence */
10085 return s1;
10086 } else if (extract32(s2, 2, 2) == 2) {
10087 /* stage 2 write-through takes precedence, but the allocation hint
10088 * is still taken from stage 1
10090 return (2 << 2) | extract32(s1, 0, 2);
10091 } else { /* write-back */
10092 return s1;
10096 /* Combine S1 and S2 cacheability/shareability attributes, per D4.5.4
10097 * and CombineS1S2Desc()
10099 * @s1: Attributes from stage 1 walk
10100 * @s2: Attributes from stage 2 walk
10102 static ARMCacheAttrs combine_cacheattrs(ARMCacheAttrs s1, ARMCacheAttrs s2)
10104 uint8_t s1lo = extract32(s1.attrs, 0, 4), s2lo = extract32(s2.attrs, 0, 4);
10105 uint8_t s1hi = extract32(s1.attrs, 4, 4), s2hi = extract32(s2.attrs, 4, 4);
10106 ARMCacheAttrs ret;
10108 /* Combine shareability attributes (table D4-43) */
10109 if (s1.shareability == 2 || s2.shareability == 2) {
10110 /* if either are outer-shareable, the result is outer-shareable */
10111 ret.shareability = 2;
10112 } else if (s1.shareability == 3 || s2.shareability == 3) {
10113 /* if either are inner-shareable, the result is inner-shareable */
10114 ret.shareability = 3;
10115 } else {
10116 /* both non-shareable */
10117 ret.shareability = 0;
10120 /* Combine memory type and cacheability attributes */
10121 if (s1hi == 0 || s2hi == 0) {
10122 /* Device has precedence over normal */
10123 if (s1lo == 0 || s2lo == 0) {
10124 /* nGnRnE has precedence over anything */
10125 ret.attrs = 0;
10126 } else if (s1lo == 4 || s2lo == 4) {
10127 /* non-Reordering has precedence over Reordering */
10128 ret.attrs = 4; /* nGnRE */
10129 } else if (s1lo == 8 || s2lo == 8) {
10130 /* non-Gathering has precedence over Gathering */
10131 ret.attrs = 8; /* nGRE */
10132 } else {
10133 ret.attrs = 0xc; /* GRE */
10136 /* Any location for which the resultant memory type is any
10137 * type of Device memory is always treated as Outer Shareable.
10139 ret.shareability = 2;
10140 } else { /* Normal memory */
10141 /* Outer/inner cacheability combine independently */
10142 ret.attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4
10143 | combine_cacheattr_nibble(s1lo, s2lo);
10145 if (ret.attrs == 0x44) {
10146 /* Any location for which the resultant memory type is Normal
10147 * Inner Non-cacheable, Outer Non-cacheable is always treated
10148 * as Outer Shareable.
10150 ret.shareability = 2;
10154 return ret;
10158 /* get_phys_addr - get the physical address for this virtual address
10160 * Find the physical address corresponding to the given virtual address,
10161 * by doing a translation table walk on MMU based systems or using the
10162 * MPU state on MPU based systems.
10164 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
10165 * prot and page_size may not be filled in, and the populated fsr value provides
10166 * information on why the translation aborted, in the format of a
10167 * DFSR/IFSR fault register, with the following caveats:
10168 * * we honour the short vs long DFSR format differences.
10169 * * the WnR bit is never set (the caller must do this).
10170 * * for PSMAv5 based systems we don't bother to return a full FSR format
10171 * value.
10173 * @env: CPUARMState
10174 * @address: virtual address to get physical address for
10175 * @access_type: 0 for read, 1 for write, 2 for execute
10176 * @mmu_idx: MMU index indicating required translation regime
10177 * @phys_ptr: set to the physical address corresponding to the virtual address
10178 * @attrs: set to the memory transaction attributes to use
10179 * @prot: set to the permissions for the page containing phys_ptr
10180 * @page_size: set to the size of the page containing phys_ptr
10181 * @fi: set to fault info if the translation fails
10182 * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes
10184 static bool get_phys_addr(CPUARMState *env, target_ulong address,
10185 MMUAccessType access_type, ARMMMUIdx mmu_idx,
10186 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
10187 target_ulong *page_size,
10188 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
10190 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
10191 /* Call ourselves recursively to do the stage 1 and then stage 2
10192 * translations.
10194 if (arm_feature(env, ARM_FEATURE_EL2)) {
10195 hwaddr ipa;
10196 int s2_prot;
10197 int ret;
10198 ARMCacheAttrs cacheattrs2 = {};
10200 ret = get_phys_addr(env, address, access_type,
10201 stage_1_mmu_idx(mmu_idx), &ipa, attrs,
10202 prot, page_size, fi, cacheattrs);
10204 /* If S1 fails or S2 is disabled, return early. */
10205 if (ret || regime_translation_disabled(env, ARMMMUIdx_S2NS)) {
10206 *phys_ptr = ipa;
10207 return ret;
10210 /* S1 is done. Now do S2 translation. */
10211 ret = get_phys_addr_lpae(env, ipa, access_type, ARMMMUIdx_S2NS,
10212 phys_ptr, attrs, &s2_prot,
10213 page_size, fi,
10214 cacheattrs != NULL ? &cacheattrs2 : NULL);
10215 fi->s2addr = ipa;
10216 /* Combine the S1 and S2 perms. */
10217 *prot &= s2_prot;
10219 /* Combine the S1 and S2 cache attributes, if needed */
10220 if (!ret && cacheattrs != NULL) {
10221 *cacheattrs = combine_cacheattrs(*cacheattrs, cacheattrs2);
10224 return ret;
10225 } else {
10227 * For non-EL2 CPUs a stage1+stage2 translation is just stage 1.
10229 mmu_idx = stage_1_mmu_idx(mmu_idx);
10233 /* The page table entries may downgrade secure to non-secure, but
10234 * cannot upgrade an non-secure translation regime's attributes
10235 * to secure.
10237 attrs->secure = regime_is_secure(env, mmu_idx);
10238 attrs->user = regime_is_user(env, mmu_idx);
10240 /* Fast Context Switch Extension. This doesn't exist at all in v8.
10241 * In v7 and earlier it affects all stage 1 translations.
10243 if (address < 0x02000000 && mmu_idx != ARMMMUIdx_S2NS
10244 && !arm_feature(env, ARM_FEATURE_V8)) {
10245 if (regime_el(env, mmu_idx) == 3) {
10246 address += env->cp15.fcseidr_s;
10247 } else {
10248 address += env->cp15.fcseidr_ns;
10252 if (arm_feature(env, ARM_FEATURE_PMSA)) {
10253 bool ret;
10254 *page_size = TARGET_PAGE_SIZE;
10256 if (arm_feature(env, ARM_FEATURE_V8)) {
10257 /* PMSAv8 */
10258 ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx,
10259 phys_ptr, attrs, prot, fi);
10260 } else if (arm_feature(env, ARM_FEATURE_V7)) {
10261 /* PMSAv7 */
10262 ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx,
10263 phys_ptr, prot, fi);
10264 } else {
10265 /* Pre-v7 MPU */
10266 ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx,
10267 phys_ptr, prot, fi);
10269 qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32
10270 " mmu_idx %u -> %s (prot %c%c%c)\n",
10271 access_type == MMU_DATA_LOAD ? "reading" :
10272 (access_type == MMU_DATA_STORE ? "writing" : "execute"),
10273 (uint32_t)address, mmu_idx,
10274 ret ? "Miss" : "Hit",
10275 *prot & PAGE_READ ? 'r' : '-',
10276 *prot & PAGE_WRITE ? 'w' : '-',
10277 *prot & PAGE_EXEC ? 'x' : '-');
10279 return ret;
10282 /* Definitely a real MMU, not an MPU */
10284 if (regime_translation_disabled(env, mmu_idx)) {
10285 /* MMU disabled. */
10286 *phys_ptr = address;
10287 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
10288 *page_size = TARGET_PAGE_SIZE;
10289 return 0;
10292 if (regime_using_lpae_format(env, mmu_idx)) {
10293 return get_phys_addr_lpae(env, address, access_type, mmu_idx,
10294 phys_ptr, attrs, prot, page_size,
10295 fi, cacheattrs);
10296 } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) {
10297 return get_phys_addr_v6(env, address, access_type, mmu_idx,
10298 phys_ptr, attrs, prot, page_size, fi);
10299 } else {
10300 return get_phys_addr_v5(env, address, access_type, mmu_idx,
10301 phys_ptr, prot, page_size, fi);
10305 /* Walk the page table and (if the mapping exists) add the page
10306 * to the TLB. Return false on success, or true on failure. Populate
10307 * fsr with ARM DFSR/IFSR fault register format value on failure.
10309 bool arm_tlb_fill(CPUState *cs, vaddr address,
10310 MMUAccessType access_type, int mmu_idx,
10311 ARMMMUFaultInfo *fi)
10313 ARMCPU *cpu = ARM_CPU(cs);
10314 CPUARMState *env = &cpu->env;
10315 hwaddr phys_addr;
10316 target_ulong page_size;
10317 int prot;
10318 int ret;
10319 MemTxAttrs attrs = {};
10321 ret = get_phys_addr(env, address, access_type,
10322 core_to_arm_mmu_idx(env, mmu_idx), &phys_addr,
10323 &attrs, &prot, &page_size, fi, NULL);
10324 if (!ret) {
10325 /* Map a single [sub]page. */
10326 phys_addr &= TARGET_PAGE_MASK;
10327 address &= TARGET_PAGE_MASK;
10328 tlb_set_page_with_attrs(cs, address, phys_addr, attrs,
10329 prot, mmu_idx, page_size);
10330 return 0;
10333 return ret;
10336 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr,
10337 MemTxAttrs *attrs)
10339 ARMCPU *cpu = ARM_CPU(cs);
10340 CPUARMState *env = &cpu->env;
10341 hwaddr phys_addr;
10342 target_ulong page_size;
10343 int prot;
10344 bool ret;
10345 ARMMMUFaultInfo fi = {};
10346 ARMMMUIdx mmu_idx = core_to_arm_mmu_idx(env, cpu_mmu_index(env, false));
10348 *attrs = (MemTxAttrs) {};
10350 ret = get_phys_addr(env, addr, 0, mmu_idx, &phys_addr,
10351 attrs, &prot, &page_size, &fi, NULL);
10353 if (ret) {
10354 return -1;
10356 return phys_addr;
10359 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
10361 uint32_t mask;
10362 unsigned el = arm_current_el(env);
10364 /* First handle registers which unprivileged can read */
10366 switch (reg) {
10367 case 0 ... 7: /* xPSR sub-fields */
10368 mask = 0;
10369 if ((reg & 1) && el) {
10370 mask |= XPSR_EXCP; /* IPSR (unpriv. reads as zero) */
10372 if (!(reg & 4)) {
10373 mask |= XPSR_NZCV | XPSR_Q; /* APSR */
10375 /* EPSR reads as zero */
10376 return xpsr_read(env) & mask;
10377 break;
10378 case 20: /* CONTROL */
10379 return env->v7m.control[env->v7m.secure];
10380 case 0x94: /* CONTROL_NS */
10381 /* We have to handle this here because unprivileged Secure code
10382 * can read the NS CONTROL register.
10384 if (!env->v7m.secure) {
10385 return 0;
10387 return env->v7m.control[M_REG_NS];
10390 if (el == 0) {
10391 return 0; /* unprivileged reads others as zero */
10394 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
10395 switch (reg) {
10396 case 0x88: /* MSP_NS */
10397 if (!env->v7m.secure) {
10398 return 0;
10400 return env->v7m.other_ss_msp;
10401 case 0x89: /* PSP_NS */
10402 if (!env->v7m.secure) {
10403 return 0;
10405 return env->v7m.other_ss_psp;
10406 case 0x90: /* PRIMASK_NS */
10407 if (!env->v7m.secure) {
10408 return 0;
10410 return env->v7m.primask[M_REG_NS];
10411 case 0x91: /* BASEPRI_NS */
10412 if (!env->v7m.secure) {
10413 return 0;
10415 return env->v7m.basepri[M_REG_NS];
10416 case 0x93: /* FAULTMASK_NS */
10417 if (!env->v7m.secure) {
10418 return 0;
10420 return env->v7m.faultmask[M_REG_NS];
10421 case 0x98: /* SP_NS */
10423 /* This gives the non-secure SP selected based on whether we're
10424 * currently in handler mode or not, using the NS CONTROL.SPSEL.
10426 bool spsel = env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK;
10428 if (!env->v7m.secure) {
10429 return 0;
10431 if (!arm_v7m_is_handler_mode(env) && spsel) {
10432 return env->v7m.other_ss_psp;
10433 } else {
10434 return env->v7m.other_ss_msp;
10437 default:
10438 break;
10442 switch (reg) {
10443 case 8: /* MSP */
10444 return v7m_using_psp(env) ? env->v7m.other_sp : env->regs[13];
10445 case 9: /* PSP */
10446 return v7m_using_psp(env) ? env->regs[13] : env->v7m.other_sp;
10447 case 16: /* PRIMASK */
10448 return env->v7m.primask[env->v7m.secure];
10449 case 17: /* BASEPRI */
10450 case 18: /* BASEPRI_MAX */
10451 return env->v7m.basepri[env->v7m.secure];
10452 case 19: /* FAULTMASK */
10453 return env->v7m.faultmask[env->v7m.secure];
10454 default:
10455 qemu_log_mask(LOG_GUEST_ERROR, "Attempt to read unknown special"
10456 " register %d\n", reg);
10457 return 0;
10461 void HELPER(v7m_msr)(CPUARMState *env, uint32_t maskreg, uint32_t val)
10463 /* We're passed bits [11..0] of the instruction; extract
10464 * SYSm and the mask bits.
10465 * Invalid combinations of SYSm and mask are UNPREDICTABLE;
10466 * we choose to treat them as if the mask bits were valid.
10467 * NB that the pseudocode 'mask' variable is bits [11..10],
10468 * whereas ours is [11..8].
10470 uint32_t mask = extract32(maskreg, 8, 4);
10471 uint32_t reg = extract32(maskreg, 0, 8);
10473 if (arm_current_el(env) == 0 && reg > 7) {
10474 /* only xPSR sub-fields may be written by unprivileged */
10475 return;
10478 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
10479 switch (reg) {
10480 case 0x88: /* MSP_NS */
10481 if (!env->v7m.secure) {
10482 return;
10484 env->v7m.other_ss_msp = val;
10485 return;
10486 case 0x89: /* PSP_NS */
10487 if (!env->v7m.secure) {
10488 return;
10490 env->v7m.other_ss_psp = val;
10491 return;
10492 case 0x90: /* PRIMASK_NS */
10493 if (!env->v7m.secure) {
10494 return;
10496 env->v7m.primask[M_REG_NS] = val & 1;
10497 return;
10498 case 0x91: /* BASEPRI_NS */
10499 if (!env->v7m.secure) {
10500 return;
10502 env->v7m.basepri[M_REG_NS] = val & 0xff;
10503 return;
10504 case 0x93: /* FAULTMASK_NS */
10505 if (!env->v7m.secure) {
10506 return;
10508 env->v7m.faultmask[M_REG_NS] = val & 1;
10509 return;
10510 case 0x94: /* CONTROL_NS */
10511 if (!env->v7m.secure) {
10512 return;
10514 write_v7m_control_spsel_for_secstate(env,
10515 val & R_V7M_CONTROL_SPSEL_MASK,
10516 M_REG_NS);
10517 env->v7m.control[M_REG_NS] &= ~R_V7M_CONTROL_NPRIV_MASK;
10518 env->v7m.control[M_REG_NS] |= val & R_V7M_CONTROL_NPRIV_MASK;
10519 return;
10520 case 0x98: /* SP_NS */
10522 /* This gives the non-secure SP selected based on whether we're
10523 * currently in handler mode or not, using the NS CONTROL.SPSEL.
10525 bool spsel = env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK;
10527 if (!env->v7m.secure) {
10528 return;
10530 if (!arm_v7m_is_handler_mode(env) && spsel) {
10531 env->v7m.other_ss_psp = val;
10532 } else {
10533 env->v7m.other_ss_msp = val;
10535 return;
10537 default:
10538 break;
10542 switch (reg) {
10543 case 0 ... 7: /* xPSR sub-fields */
10544 /* only APSR is actually writable */
10545 if (!(reg & 4)) {
10546 uint32_t apsrmask = 0;
10548 if (mask & 8) {
10549 apsrmask |= XPSR_NZCV | XPSR_Q;
10551 if ((mask & 4) && arm_feature(env, ARM_FEATURE_THUMB_DSP)) {
10552 apsrmask |= XPSR_GE;
10554 xpsr_write(env, val, apsrmask);
10556 break;
10557 case 8: /* MSP */
10558 if (v7m_using_psp(env)) {
10559 env->v7m.other_sp = val;
10560 } else {
10561 env->regs[13] = val;
10563 break;
10564 case 9: /* PSP */
10565 if (v7m_using_psp(env)) {
10566 env->regs[13] = val;
10567 } else {
10568 env->v7m.other_sp = val;
10570 break;
10571 case 16: /* PRIMASK */
10572 env->v7m.primask[env->v7m.secure] = val & 1;
10573 break;
10574 case 17: /* BASEPRI */
10575 env->v7m.basepri[env->v7m.secure] = val & 0xff;
10576 break;
10577 case 18: /* BASEPRI_MAX */
10578 val &= 0xff;
10579 if (val != 0 && (val < env->v7m.basepri[env->v7m.secure]
10580 || env->v7m.basepri[env->v7m.secure] == 0)) {
10581 env->v7m.basepri[env->v7m.secure] = val;
10583 break;
10584 case 19: /* FAULTMASK */
10585 env->v7m.faultmask[env->v7m.secure] = val & 1;
10586 break;
10587 case 20: /* CONTROL */
10588 /* Writing to the SPSEL bit only has an effect if we are in
10589 * thread mode; other bits can be updated by any privileged code.
10590 * write_v7m_control_spsel() deals with updating the SPSEL bit in
10591 * env->v7m.control, so we only need update the others.
10592 * For v7M, we must just ignore explicit writes to SPSEL in handler
10593 * mode; for v8M the write is permitted but will have no effect.
10595 if (arm_feature(env, ARM_FEATURE_V8) ||
10596 !arm_v7m_is_handler_mode(env)) {
10597 write_v7m_control_spsel(env, (val & R_V7M_CONTROL_SPSEL_MASK) != 0);
10599 env->v7m.control[env->v7m.secure] &= ~R_V7M_CONTROL_NPRIV_MASK;
10600 env->v7m.control[env->v7m.secure] |= val & R_V7M_CONTROL_NPRIV_MASK;
10601 break;
10602 default:
10603 qemu_log_mask(LOG_GUEST_ERROR, "Attempt to write unknown special"
10604 " register %d\n", reg);
10605 return;
10609 uint32_t HELPER(v7m_tt)(CPUARMState *env, uint32_t addr, uint32_t op)
10611 /* Implement the TT instruction. op is bits [7:6] of the insn. */
10612 bool forceunpriv = op & 1;
10613 bool alt = op & 2;
10614 V8M_SAttributes sattrs = {};
10615 uint32_t tt_resp;
10616 bool r, rw, nsr, nsrw, mrvalid;
10617 int prot;
10618 ARMMMUFaultInfo fi = {};
10619 MemTxAttrs attrs = {};
10620 hwaddr phys_addr;
10621 ARMMMUIdx mmu_idx;
10622 uint32_t mregion;
10623 bool targetpriv;
10624 bool targetsec = env->v7m.secure;
10626 /* Work out what the security state and privilege level we're
10627 * interested in is...
10629 if (alt) {
10630 targetsec = !targetsec;
10633 if (forceunpriv) {
10634 targetpriv = false;
10635 } else {
10636 targetpriv = arm_v7m_is_handler_mode(env) ||
10637 !(env->v7m.control[targetsec] & R_V7M_CONTROL_NPRIV_MASK);
10640 /* ...and then figure out which MMU index this is */
10641 mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, targetsec, targetpriv);
10643 /* We know that the MPU and SAU don't care about the access type
10644 * for our purposes beyond that we don't want to claim to be
10645 * an insn fetch, so we arbitrarily call this a read.
10648 /* MPU region info only available for privileged or if
10649 * inspecting the other MPU state.
10651 if (arm_current_el(env) != 0 || alt) {
10652 /* We can ignore the return value as prot is always set */
10653 pmsav8_mpu_lookup(env, addr, MMU_DATA_LOAD, mmu_idx,
10654 &phys_addr, &attrs, &prot, &fi, &mregion);
10655 if (mregion == -1) {
10656 mrvalid = false;
10657 mregion = 0;
10658 } else {
10659 mrvalid = true;
10661 r = prot & PAGE_READ;
10662 rw = prot & PAGE_WRITE;
10663 } else {
10664 r = false;
10665 rw = false;
10666 mrvalid = false;
10667 mregion = 0;
10670 if (env->v7m.secure) {
10671 v8m_security_lookup(env, addr, MMU_DATA_LOAD, mmu_idx, &sattrs);
10672 nsr = sattrs.ns && r;
10673 nsrw = sattrs.ns && rw;
10674 } else {
10675 sattrs.ns = true;
10676 nsr = false;
10677 nsrw = false;
10680 tt_resp = (sattrs.iregion << 24) |
10681 (sattrs.irvalid << 23) |
10682 ((!sattrs.ns) << 22) |
10683 (nsrw << 21) |
10684 (nsr << 20) |
10685 (rw << 19) |
10686 (r << 18) |
10687 (sattrs.srvalid << 17) |
10688 (mrvalid << 16) |
10689 (sattrs.sregion << 8) |
10690 mregion;
10692 return tt_resp;
10695 #endif
10697 void HELPER(dc_zva)(CPUARMState *env, uint64_t vaddr_in)
10699 /* Implement DC ZVA, which zeroes a fixed-length block of memory.
10700 * Note that we do not implement the (architecturally mandated)
10701 * alignment fault for attempts to use this on Device memory
10702 * (which matches the usual QEMU behaviour of not implementing either
10703 * alignment faults or any memory attribute handling).
10706 ARMCPU *cpu = arm_env_get_cpu(env);
10707 uint64_t blocklen = 4 << cpu->dcz_blocksize;
10708 uint64_t vaddr = vaddr_in & ~(blocklen - 1);
10710 #ifndef CONFIG_USER_ONLY
10712 /* Slightly awkwardly, QEMU's TARGET_PAGE_SIZE may be less than
10713 * the block size so we might have to do more than one TLB lookup.
10714 * We know that in fact for any v8 CPU the page size is at least 4K
10715 * and the block size must be 2K or less, but TARGET_PAGE_SIZE is only
10716 * 1K as an artefact of legacy v5 subpage support being present in the
10717 * same QEMU executable.
10719 int maxidx = DIV_ROUND_UP(blocklen, TARGET_PAGE_SIZE);
10720 void *hostaddr[maxidx];
10721 int try, i;
10722 unsigned mmu_idx = cpu_mmu_index(env, false);
10723 TCGMemOpIdx oi = make_memop_idx(MO_UB, mmu_idx);
10725 for (try = 0; try < 2; try++) {
10727 for (i = 0; i < maxidx; i++) {
10728 hostaddr[i] = tlb_vaddr_to_host(env,
10729 vaddr + TARGET_PAGE_SIZE * i,
10730 1, mmu_idx);
10731 if (!hostaddr[i]) {
10732 break;
10735 if (i == maxidx) {
10736 /* If it's all in the TLB it's fair game for just writing to;
10737 * we know we don't need to update dirty status, etc.
10739 for (i = 0; i < maxidx - 1; i++) {
10740 memset(hostaddr[i], 0, TARGET_PAGE_SIZE);
10742 memset(hostaddr[i], 0, blocklen - (i * TARGET_PAGE_SIZE));
10743 return;
10745 /* OK, try a store and see if we can populate the tlb. This
10746 * might cause an exception if the memory isn't writable,
10747 * in which case we will longjmp out of here. We must for
10748 * this purpose use the actual register value passed to us
10749 * so that we get the fault address right.
10751 helper_ret_stb_mmu(env, vaddr_in, 0, oi, GETPC());
10752 /* Now we can populate the other TLB entries, if any */
10753 for (i = 0; i < maxidx; i++) {
10754 uint64_t va = vaddr + TARGET_PAGE_SIZE * i;
10755 if (va != (vaddr_in & TARGET_PAGE_MASK)) {
10756 helper_ret_stb_mmu(env, va, 0, oi, GETPC());
10761 /* Slow path (probably attempt to do this to an I/O device or
10762 * similar, or clearing of a block of code we have translations
10763 * cached for). Just do a series of byte writes as the architecture
10764 * demands. It's not worth trying to use a cpu_physical_memory_map(),
10765 * memset(), unmap() sequence here because:
10766 * + we'd need to account for the blocksize being larger than a page
10767 * + the direct-RAM access case is almost always going to be dealt
10768 * with in the fastpath code above, so there's no speed benefit
10769 * + we would have to deal with the map returning NULL because the
10770 * bounce buffer was in use
10772 for (i = 0; i < blocklen; i++) {
10773 helper_ret_stb_mmu(env, vaddr + i, 0, oi, GETPC());
10776 #else
10777 memset(g2h(vaddr), 0, blocklen);
10778 #endif
10781 /* Note that signed overflow is undefined in C. The following routines are
10782 careful to use unsigned types where modulo arithmetic is required.
10783 Failure to do so _will_ break on newer gcc. */
10785 /* Signed saturating arithmetic. */
10787 /* Perform 16-bit signed saturating addition. */
10788 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
10790 uint16_t res;
10792 res = a + b;
10793 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
10794 if (a & 0x8000)
10795 res = 0x8000;
10796 else
10797 res = 0x7fff;
10799 return res;
10802 /* Perform 8-bit signed saturating addition. */
10803 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
10805 uint8_t res;
10807 res = a + b;
10808 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
10809 if (a & 0x80)
10810 res = 0x80;
10811 else
10812 res = 0x7f;
10814 return res;
10817 /* Perform 16-bit signed saturating subtraction. */
10818 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
10820 uint16_t res;
10822 res = a - b;
10823 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
10824 if (a & 0x8000)
10825 res = 0x8000;
10826 else
10827 res = 0x7fff;
10829 return res;
10832 /* Perform 8-bit signed saturating subtraction. */
10833 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
10835 uint8_t res;
10837 res = a - b;
10838 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
10839 if (a & 0x80)
10840 res = 0x80;
10841 else
10842 res = 0x7f;
10844 return res;
10847 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
10848 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
10849 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
10850 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
10851 #define PFX q
10853 #include "op_addsub.h"
10855 /* Unsigned saturating arithmetic. */
10856 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
10858 uint16_t res;
10859 res = a + b;
10860 if (res < a)
10861 res = 0xffff;
10862 return res;
10865 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
10867 if (a > b)
10868 return a - b;
10869 else
10870 return 0;
10873 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
10875 uint8_t res;
10876 res = a + b;
10877 if (res < a)
10878 res = 0xff;
10879 return res;
10882 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
10884 if (a > b)
10885 return a - b;
10886 else
10887 return 0;
10890 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
10891 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
10892 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
10893 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
10894 #define PFX uq
10896 #include "op_addsub.h"
10898 /* Signed modulo arithmetic. */
10899 #define SARITH16(a, b, n, op) do { \
10900 int32_t sum; \
10901 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
10902 RESULT(sum, n, 16); \
10903 if (sum >= 0) \
10904 ge |= 3 << (n * 2); \
10905 } while(0)
10907 #define SARITH8(a, b, n, op) do { \
10908 int32_t sum; \
10909 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
10910 RESULT(sum, n, 8); \
10911 if (sum >= 0) \
10912 ge |= 1 << n; \
10913 } while(0)
10916 #define ADD16(a, b, n) SARITH16(a, b, n, +)
10917 #define SUB16(a, b, n) SARITH16(a, b, n, -)
10918 #define ADD8(a, b, n) SARITH8(a, b, n, +)
10919 #define SUB8(a, b, n) SARITH8(a, b, n, -)
10920 #define PFX s
10921 #define ARITH_GE
10923 #include "op_addsub.h"
10925 /* Unsigned modulo arithmetic. */
10926 #define ADD16(a, b, n) do { \
10927 uint32_t sum; \
10928 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
10929 RESULT(sum, n, 16); \
10930 if ((sum >> 16) == 1) \
10931 ge |= 3 << (n * 2); \
10932 } while(0)
10934 #define ADD8(a, b, n) do { \
10935 uint32_t sum; \
10936 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
10937 RESULT(sum, n, 8); \
10938 if ((sum >> 8) == 1) \
10939 ge |= 1 << n; \
10940 } while(0)
10942 #define SUB16(a, b, n) do { \
10943 uint32_t sum; \
10944 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
10945 RESULT(sum, n, 16); \
10946 if ((sum >> 16) == 0) \
10947 ge |= 3 << (n * 2); \
10948 } while(0)
10950 #define SUB8(a, b, n) do { \
10951 uint32_t sum; \
10952 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
10953 RESULT(sum, n, 8); \
10954 if ((sum >> 8) == 0) \
10955 ge |= 1 << n; \
10956 } while(0)
10958 #define PFX u
10959 #define ARITH_GE
10961 #include "op_addsub.h"
10963 /* Halved signed arithmetic. */
10964 #define ADD16(a, b, n) \
10965 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
10966 #define SUB16(a, b, n) \
10967 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
10968 #define ADD8(a, b, n) \
10969 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
10970 #define SUB8(a, b, n) \
10971 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
10972 #define PFX sh
10974 #include "op_addsub.h"
10976 /* Halved unsigned arithmetic. */
10977 #define ADD16(a, b, n) \
10978 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
10979 #define SUB16(a, b, n) \
10980 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
10981 #define ADD8(a, b, n) \
10982 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
10983 #define SUB8(a, b, n) \
10984 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
10985 #define PFX uh
10987 #include "op_addsub.h"
10989 static inline uint8_t do_usad(uint8_t a, uint8_t b)
10991 if (a > b)
10992 return a - b;
10993 else
10994 return b - a;
10997 /* Unsigned sum of absolute byte differences. */
10998 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
11000 uint32_t sum;
11001 sum = do_usad(a, b);
11002 sum += do_usad(a >> 8, b >> 8);
11003 sum += do_usad(a >> 16, b >>16);
11004 sum += do_usad(a >> 24, b >> 24);
11005 return sum;
11008 /* For ARMv6 SEL instruction. */
11009 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
11011 uint32_t mask;
11013 mask = 0;
11014 if (flags & 1)
11015 mask |= 0xff;
11016 if (flags & 2)
11017 mask |= 0xff00;
11018 if (flags & 4)
11019 mask |= 0xff0000;
11020 if (flags & 8)
11021 mask |= 0xff000000;
11022 return (a & mask) | (b & ~mask);
11025 /* VFP support. We follow the convention used for VFP instructions:
11026 Single precision routines have a "s" suffix, double precision a
11027 "d" suffix. */
11029 /* Convert host exception flags to vfp form. */
11030 static inline int vfp_exceptbits_from_host(int host_bits)
11032 int target_bits = 0;
11034 if (host_bits & float_flag_invalid)
11035 target_bits |= 1;
11036 if (host_bits & float_flag_divbyzero)
11037 target_bits |= 2;
11038 if (host_bits & float_flag_overflow)
11039 target_bits |= 4;
11040 if (host_bits & (float_flag_underflow | float_flag_output_denormal))
11041 target_bits |= 8;
11042 if (host_bits & float_flag_inexact)
11043 target_bits |= 0x10;
11044 if (host_bits & float_flag_input_denormal)
11045 target_bits |= 0x80;
11046 return target_bits;
11049 uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env)
11051 int i;
11052 uint32_t fpscr;
11054 fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff)
11055 | (env->vfp.vec_len << 16)
11056 | (env->vfp.vec_stride << 20);
11057 i = get_float_exception_flags(&env->vfp.fp_status);
11058 i |= get_float_exception_flags(&env->vfp.standard_fp_status);
11059 fpscr |= vfp_exceptbits_from_host(i);
11060 return fpscr;
11063 uint32_t vfp_get_fpscr(CPUARMState *env)
11065 return HELPER(vfp_get_fpscr)(env);
11068 /* Convert vfp exception flags to target form. */
11069 static inline int vfp_exceptbits_to_host(int target_bits)
11071 int host_bits = 0;
11073 if (target_bits & 1)
11074 host_bits |= float_flag_invalid;
11075 if (target_bits & 2)
11076 host_bits |= float_flag_divbyzero;
11077 if (target_bits & 4)
11078 host_bits |= float_flag_overflow;
11079 if (target_bits & 8)
11080 host_bits |= float_flag_underflow;
11081 if (target_bits & 0x10)
11082 host_bits |= float_flag_inexact;
11083 if (target_bits & 0x80)
11084 host_bits |= float_flag_input_denormal;
11085 return host_bits;
11088 void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val)
11090 int i;
11091 uint32_t changed;
11093 changed = env->vfp.xregs[ARM_VFP_FPSCR];
11094 env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff);
11095 env->vfp.vec_len = (val >> 16) & 7;
11096 env->vfp.vec_stride = (val >> 20) & 3;
11098 changed ^= val;
11099 if (changed & (3 << 22)) {
11100 i = (val >> 22) & 3;
11101 switch (i) {
11102 case FPROUNDING_TIEEVEN:
11103 i = float_round_nearest_even;
11104 break;
11105 case FPROUNDING_POSINF:
11106 i = float_round_up;
11107 break;
11108 case FPROUNDING_NEGINF:
11109 i = float_round_down;
11110 break;
11111 case FPROUNDING_ZERO:
11112 i = float_round_to_zero;
11113 break;
11115 set_float_rounding_mode(i, &env->vfp.fp_status);
11117 if (changed & (1 << 24)) {
11118 set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
11119 set_flush_inputs_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
11121 if (changed & (1 << 25))
11122 set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status);
11124 i = vfp_exceptbits_to_host(val);
11125 set_float_exception_flags(i, &env->vfp.fp_status);
11126 set_float_exception_flags(0, &env->vfp.standard_fp_status);
11129 void vfp_set_fpscr(CPUARMState *env, uint32_t val)
11131 HELPER(vfp_set_fpscr)(env, val);
11134 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
11136 #define VFP_BINOP(name) \
11137 float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
11139 float_status *fpst = fpstp; \
11140 return float32_ ## name(a, b, fpst); \
11142 float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
11144 float_status *fpst = fpstp; \
11145 return float64_ ## name(a, b, fpst); \
11147 VFP_BINOP(add)
11148 VFP_BINOP(sub)
11149 VFP_BINOP(mul)
11150 VFP_BINOP(div)
11151 VFP_BINOP(min)
11152 VFP_BINOP(max)
11153 VFP_BINOP(minnum)
11154 VFP_BINOP(maxnum)
11155 #undef VFP_BINOP
11157 float32 VFP_HELPER(neg, s)(float32 a)
11159 return float32_chs(a);
11162 float64 VFP_HELPER(neg, d)(float64 a)
11164 return float64_chs(a);
11167 float32 VFP_HELPER(abs, s)(float32 a)
11169 return float32_abs(a);
11172 float64 VFP_HELPER(abs, d)(float64 a)
11174 return float64_abs(a);
11177 float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env)
11179 return float32_sqrt(a, &env->vfp.fp_status);
11182 float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env)
11184 return float64_sqrt(a, &env->vfp.fp_status);
11187 /* XXX: check quiet/signaling case */
11188 #define DO_VFP_cmp(p, type) \
11189 void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env) \
11191 uint32_t flags; \
11192 switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
11193 case 0: flags = 0x6; break; \
11194 case -1: flags = 0x8; break; \
11195 case 1: flags = 0x2; break; \
11196 default: case 2: flags = 0x3; break; \
11198 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
11199 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
11201 void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \
11203 uint32_t flags; \
11204 switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
11205 case 0: flags = 0x6; break; \
11206 case -1: flags = 0x8; break; \
11207 case 1: flags = 0x2; break; \
11208 default: case 2: flags = 0x3; break; \
11210 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
11211 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
11213 DO_VFP_cmp(s, float32)
11214 DO_VFP_cmp(d, float64)
11215 #undef DO_VFP_cmp
11217 /* Integer to float and float to integer conversions */
11219 #define CONV_ITOF(name, fsz, sign) \
11220 float##fsz HELPER(name)(uint32_t x, void *fpstp) \
11222 float_status *fpst = fpstp; \
11223 return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \
11226 #define CONV_FTOI(name, fsz, sign, round) \
11227 uint32_t HELPER(name)(float##fsz x, void *fpstp) \
11229 float_status *fpst = fpstp; \
11230 if (float##fsz##_is_any_nan(x)) { \
11231 float_raise(float_flag_invalid, fpst); \
11232 return 0; \
11234 return float##fsz##_to_##sign##int32##round(x, fpst); \
11237 #define FLOAT_CONVS(name, p, fsz, sign) \
11238 CONV_ITOF(vfp_##name##to##p, fsz, sign) \
11239 CONV_FTOI(vfp_to##name##p, fsz, sign, ) \
11240 CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero)
11242 FLOAT_CONVS(si, s, 32, )
11243 FLOAT_CONVS(si, d, 64, )
11244 FLOAT_CONVS(ui, s, 32, u)
11245 FLOAT_CONVS(ui, d, 64, u)
11247 #undef CONV_ITOF
11248 #undef CONV_FTOI
11249 #undef FLOAT_CONVS
11251 /* floating point conversion */
11252 float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env)
11254 float64 r = float32_to_float64(x, &env->vfp.fp_status);
11255 /* ARM requires that S<->D conversion of any kind of NaN generates
11256 * a quiet NaN by forcing the most significant frac bit to 1.
11258 return float64_maybe_silence_nan(r, &env->vfp.fp_status);
11261 float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env)
11263 float32 r = float64_to_float32(x, &env->vfp.fp_status);
11264 /* ARM requires that S<->D conversion of any kind of NaN generates
11265 * a quiet NaN by forcing the most significant frac bit to 1.
11267 return float32_maybe_silence_nan(r, &env->vfp.fp_status);
11270 /* VFP3 fixed point conversion. */
11271 #define VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
11272 float##fsz HELPER(vfp_##name##to##p)(uint##isz##_t x, uint32_t shift, \
11273 void *fpstp) \
11275 float_status *fpst = fpstp; \
11276 float##fsz tmp; \
11277 tmp = itype##_to_##float##fsz(x, fpst); \
11278 return float##fsz##_scalbn(tmp, -(int)shift, fpst); \
11281 /* Notice that we want only input-denormal exception flags from the
11282 * scalbn operation: the other possible flags (overflow+inexact if
11283 * we overflow to infinity, output-denormal) aren't correct for the
11284 * complete scale-and-convert operation.
11286 #define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, round) \
11287 uint##isz##_t HELPER(vfp_to##name##p##round)(float##fsz x, \
11288 uint32_t shift, \
11289 void *fpstp) \
11291 float_status *fpst = fpstp; \
11292 int old_exc_flags = get_float_exception_flags(fpst); \
11293 float##fsz tmp; \
11294 if (float##fsz##_is_any_nan(x)) { \
11295 float_raise(float_flag_invalid, fpst); \
11296 return 0; \
11298 tmp = float##fsz##_scalbn(x, shift, fpst); \
11299 old_exc_flags |= get_float_exception_flags(fpst) \
11300 & float_flag_input_denormal; \
11301 set_float_exception_flags(old_exc_flags, fpst); \
11302 return float##fsz##_to_##itype##round(tmp, fpst); \
11305 #define VFP_CONV_FIX(name, p, fsz, isz, itype) \
11306 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
11307 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, _round_to_zero) \
11308 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
11310 #define VFP_CONV_FIX_A64(name, p, fsz, isz, itype) \
11311 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
11312 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
11314 VFP_CONV_FIX(sh, d, 64, 64, int16)
11315 VFP_CONV_FIX(sl, d, 64, 64, int32)
11316 VFP_CONV_FIX_A64(sq, d, 64, 64, int64)
11317 VFP_CONV_FIX(uh, d, 64, 64, uint16)
11318 VFP_CONV_FIX(ul, d, 64, 64, uint32)
11319 VFP_CONV_FIX_A64(uq, d, 64, 64, uint64)
11320 VFP_CONV_FIX(sh, s, 32, 32, int16)
11321 VFP_CONV_FIX(sl, s, 32, 32, int32)
11322 VFP_CONV_FIX_A64(sq, s, 32, 64, int64)
11323 VFP_CONV_FIX(uh, s, 32, 32, uint16)
11324 VFP_CONV_FIX(ul, s, 32, 32, uint32)
11325 VFP_CONV_FIX_A64(uq, s, 32, 64, uint64)
11326 #undef VFP_CONV_FIX
11327 #undef VFP_CONV_FIX_FLOAT
11328 #undef VFP_CONV_FLOAT_FIX_ROUND
11330 /* Set the current fp rounding mode and return the old one.
11331 * The argument is a softfloat float_round_ value.
11333 uint32_t HELPER(set_rmode)(uint32_t rmode, CPUARMState *env)
11335 float_status *fp_status = &env->vfp.fp_status;
11337 uint32_t prev_rmode = get_float_rounding_mode(fp_status);
11338 set_float_rounding_mode(rmode, fp_status);
11340 return prev_rmode;
11343 /* Set the current fp rounding mode in the standard fp status and return
11344 * the old one. This is for NEON instructions that need to change the
11345 * rounding mode but wish to use the standard FPSCR values for everything
11346 * else. Always set the rounding mode back to the correct value after
11347 * modifying it.
11348 * The argument is a softfloat float_round_ value.
11350 uint32_t HELPER(set_neon_rmode)(uint32_t rmode, CPUARMState *env)
11352 float_status *fp_status = &env->vfp.standard_fp_status;
11354 uint32_t prev_rmode = get_float_rounding_mode(fp_status);
11355 set_float_rounding_mode(rmode, fp_status);
11357 return prev_rmode;
11360 /* Half precision conversions. */
11361 static float32 do_fcvt_f16_to_f32(uint32_t a, CPUARMState *env, float_status *s)
11363 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
11364 float32 r = float16_to_float32(make_float16(a), ieee, s);
11365 if (ieee) {
11366 return float32_maybe_silence_nan(r, s);
11368 return r;
11371 static uint32_t do_fcvt_f32_to_f16(float32 a, CPUARMState *env, float_status *s)
11373 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
11374 float16 r = float32_to_float16(a, ieee, s);
11375 if (ieee) {
11376 r = float16_maybe_silence_nan(r, s);
11378 return float16_val(r);
11381 float32 HELPER(neon_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
11383 return do_fcvt_f16_to_f32(a, env, &env->vfp.standard_fp_status);
11386 uint32_t HELPER(neon_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
11388 return do_fcvt_f32_to_f16(a, env, &env->vfp.standard_fp_status);
11391 float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
11393 return do_fcvt_f16_to_f32(a, env, &env->vfp.fp_status);
11396 uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
11398 return do_fcvt_f32_to_f16(a, env, &env->vfp.fp_status);
11401 float64 HELPER(vfp_fcvt_f16_to_f64)(uint32_t a, CPUARMState *env)
11403 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
11404 float64 r = float16_to_float64(make_float16(a), ieee, &env->vfp.fp_status);
11405 if (ieee) {
11406 return float64_maybe_silence_nan(r, &env->vfp.fp_status);
11408 return r;
11411 uint32_t HELPER(vfp_fcvt_f64_to_f16)(float64 a, CPUARMState *env)
11413 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
11414 float16 r = float64_to_float16(a, ieee, &env->vfp.fp_status);
11415 if (ieee) {
11416 r = float16_maybe_silence_nan(r, &env->vfp.fp_status);
11418 return float16_val(r);
11421 #define float32_two make_float32(0x40000000)
11422 #define float32_three make_float32(0x40400000)
11423 #define float32_one_point_five make_float32(0x3fc00000)
11425 float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env)
11427 float_status *s = &env->vfp.standard_fp_status;
11428 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
11429 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
11430 if (!(float32_is_zero(a) || float32_is_zero(b))) {
11431 float_raise(float_flag_input_denormal, s);
11433 return float32_two;
11435 return float32_sub(float32_two, float32_mul(a, b, s), s);
11438 float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env)
11440 float_status *s = &env->vfp.standard_fp_status;
11441 float32 product;
11442 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
11443 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
11444 if (!(float32_is_zero(a) || float32_is_zero(b))) {
11445 float_raise(float_flag_input_denormal, s);
11447 return float32_one_point_five;
11449 product = float32_mul(a, b, s);
11450 return float32_div(float32_sub(float32_three, product, s), float32_two, s);
11453 /* NEON helpers. */
11455 /* Constants 256 and 512 are used in some helpers; we avoid relying on
11456 * int->float conversions at run-time. */
11457 #define float64_256 make_float64(0x4070000000000000LL)
11458 #define float64_512 make_float64(0x4080000000000000LL)
11459 #define float32_maxnorm make_float32(0x7f7fffff)
11460 #define float64_maxnorm make_float64(0x7fefffffffffffffLL)
11462 /* Reciprocal functions
11464 * The algorithm that must be used to calculate the estimate
11465 * is specified by the ARM ARM, see FPRecipEstimate()
11468 static float64 recip_estimate(float64 a, float_status *real_fp_status)
11470 /* These calculations mustn't set any fp exception flags,
11471 * so we use a local copy of the fp_status.
11473 float_status dummy_status = *real_fp_status;
11474 float_status *s = &dummy_status;
11475 /* q = (int)(a * 512.0) */
11476 float64 q = float64_mul(float64_512, a, s);
11477 int64_t q_int = float64_to_int64_round_to_zero(q, s);
11479 /* r = 1.0 / (((double)q + 0.5) / 512.0) */
11480 q = int64_to_float64(q_int, s);
11481 q = float64_add(q, float64_half, s);
11482 q = float64_div(q, float64_512, s);
11483 q = float64_div(float64_one, q, s);
11485 /* s = (int)(256.0 * r + 0.5) */
11486 q = float64_mul(q, float64_256, s);
11487 q = float64_add(q, float64_half, s);
11488 q_int = float64_to_int64_round_to_zero(q, s);
11490 /* return (double)s / 256.0 */
11491 return float64_div(int64_to_float64(q_int, s), float64_256, s);
11494 /* Common wrapper to call recip_estimate */
11495 static float64 call_recip_estimate(float64 num, int off, float_status *fpst)
11497 uint64_t val64 = float64_val(num);
11498 uint64_t frac = extract64(val64, 0, 52);
11499 int64_t exp = extract64(val64, 52, 11);
11500 uint64_t sbit;
11501 float64 scaled, estimate;
11503 /* Generate the scaled number for the estimate function */
11504 if (exp == 0) {
11505 if (extract64(frac, 51, 1) == 0) {
11506 exp = -1;
11507 frac = extract64(frac, 0, 50) << 2;
11508 } else {
11509 frac = extract64(frac, 0, 51) << 1;
11513 /* scaled = '0' : '01111111110' : fraction<51:44> : Zeros(44); */
11514 scaled = make_float64((0x3feULL << 52)
11515 | extract64(frac, 44, 8) << 44);
11517 estimate = recip_estimate(scaled, fpst);
11519 /* Build new result */
11520 val64 = float64_val(estimate);
11521 sbit = 0x8000000000000000ULL & val64;
11522 exp = off - exp;
11523 frac = extract64(val64, 0, 52);
11525 if (exp == 0) {
11526 frac = 1ULL << 51 | extract64(frac, 1, 51);
11527 } else if (exp == -1) {
11528 frac = 1ULL << 50 | extract64(frac, 2, 50);
11529 exp = 0;
11532 return make_float64(sbit | (exp << 52) | frac);
11535 static bool round_to_inf(float_status *fpst, bool sign_bit)
11537 switch (fpst->float_rounding_mode) {
11538 case float_round_nearest_even: /* Round to Nearest */
11539 return true;
11540 case float_round_up: /* Round to +Inf */
11541 return !sign_bit;
11542 case float_round_down: /* Round to -Inf */
11543 return sign_bit;
11544 case float_round_to_zero: /* Round to Zero */
11545 return false;
11548 g_assert_not_reached();
11551 float32 HELPER(recpe_f32)(float32 input, void *fpstp)
11553 float_status *fpst = fpstp;
11554 float32 f32 = float32_squash_input_denormal(input, fpst);
11555 uint32_t f32_val = float32_val(f32);
11556 uint32_t f32_sbit = 0x80000000ULL & f32_val;
11557 int32_t f32_exp = extract32(f32_val, 23, 8);
11558 uint32_t f32_frac = extract32(f32_val, 0, 23);
11559 float64 f64, r64;
11560 uint64_t r64_val;
11561 int64_t r64_exp;
11562 uint64_t r64_frac;
11564 if (float32_is_any_nan(f32)) {
11565 float32 nan = f32;
11566 if (float32_is_signaling_nan(f32, fpst)) {
11567 float_raise(float_flag_invalid, fpst);
11568 nan = float32_maybe_silence_nan(f32, fpst);
11570 if (fpst->default_nan_mode) {
11571 nan = float32_default_nan(fpst);
11573 return nan;
11574 } else if (float32_is_infinity(f32)) {
11575 return float32_set_sign(float32_zero, float32_is_neg(f32));
11576 } else if (float32_is_zero(f32)) {
11577 float_raise(float_flag_divbyzero, fpst);
11578 return float32_set_sign(float32_infinity, float32_is_neg(f32));
11579 } else if ((f32_val & ~(1ULL << 31)) < (1ULL << 21)) {
11580 /* Abs(value) < 2.0^-128 */
11581 float_raise(float_flag_overflow | float_flag_inexact, fpst);
11582 if (round_to_inf(fpst, f32_sbit)) {
11583 return float32_set_sign(float32_infinity, float32_is_neg(f32));
11584 } else {
11585 return float32_set_sign(float32_maxnorm, float32_is_neg(f32));
11587 } else if (f32_exp >= 253 && fpst->flush_to_zero) {
11588 float_raise(float_flag_underflow, fpst);
11589 return float32_set_sign(float32_zero, float32_is_neg(f32));
11593 f64 = make_float64(((int64_t)(f32_exp) << 52) | (int64_t)(f32_frac) << 29);
11594 r64 = call_recip_estimate(f64, 253, fpst);
11595 r64_val = float64_val(r64);
11596 r64_exp = extract64(r64_val, 52, 11);
11597 r64_frac = extract64(r64_val, 0, 52);
11599 /* result = sign : result_exp<7:0> : fraction<51:29>; */
11600 return make_float32(f32_sbit |
11601 (r64_exp & 0xff) << 23 |
11602 extract64(r64_frac, 29, 24));
11605 float64 HELPER(recpe_f64)(float64 input, void *fpstp)
11607 float_status *fpst = fpstp;
11608 float64 f64 = float64_squash_input_denormal(input, fpst);
11609 uint64_t f64_val = float64_val(f64);
11610 uint64_t f64_sbit = 0x8000000000000000ULL & f64_val;
11611 int64_t f64_exp = extract64(f64_val, 52, 11);
11612 float64 r64;
11613 uint64_t r64_val;
11614 int64_t r64_exp;
11615 uint64_t r64_frac;
11617 /* Deal with any special cases */
11618 if (float64_is_any_nan(f64)) {
11619 float64 nan = f64;
11620 if (float64_is_signaling_nan(f64, fpst)) {
11621 float_raise(float_flag_invalid, fpst);
11622 nan = float64_maybe_silence_nan(f64, fpst);
11624 if (fpst->default_nan_mode) {
11625 nan = float64_default_nan(fpst);
11627 return nan;
11628 } else if (float64_is_infinity(f64)) {
11629 return float64_set_sign(float64_zero, float64_is_neg(f64));
11630 } else if (float64_is_zero(f64)) {
11631 float_raise(float_flag_divbyzero, fpst);
11632 return float64_set_sign(float64_infinity, float64_is_neg(f64));
11633 } else if ((f64_val & ~(1ULL << 63)) < (1ULL << 50)) {
11634 /* Abs(value) < 2.0^-1024 */
11635 float_raise(float_flag_overflow | float_flag_inexact, fpst);
11636 if (round_to_inf(fpst, f64_sbit)) {
11637 return float64_set_sign(float64_infinity, float64_is_neg(f64));
11638 } else {
11639 return float64_set_sign(float64_maxnorm, float64_is_neg(f64));
11641 } else if (f64_exp >= 2045 && fpst->flush_to_zero) {
11642 float_raise(float_flag_underflow, fpst);
11643 return float64_set_sign(float64_zero, float64_is_neg(f64));
11646 r64 = call_recip_estimate(f64, 2045, fpst);
11647 r64_val = float64_val(r64);
11648 r64_exp = extract64(r64_val, 52, 11);
11649 r64_frac = extract64(r64_val, 0, 52);
11651 /* result = sign : result_exp<10:0> : fraction<51:0> */
11652 return make_float64(f64_sbit |
11653 ((r64_exp & 0x7ff) << 52) |
11654 r64_frac);
11657 /* The algorithm that must be used to calculate the estimate
11658 * is specified by the ARM ARM.
11660 static float64 recip_sqrt_estimate(float64 a, float_status *real_fp_status)
11662 /* These calculations mustn't set any fp exception flags,
11663 * so we use a local copy of the fp_status.
11665 float_status dummy_status = *real_fp_status;
11666 float_status *s = &dummy_status;
11667 float64 q;
11668 int64_t q_int;
11670 if (float64_lt(a, float64_half, s)) {
11671 /* range 0.25 <= a < 0.5 */
11673 /* a in units of 1/512 rounded down */
11674 /* q0 = (int)(a * 512.0); */
11675 q = float64_mul(float64_512, a, s);
11676 q_int = float64_to_int64_round_to_zero(q, s);
11678 /* reciprocal root r */
11679 /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0); */
11680 q = int64_to_float64(q_int, s);
11681 q = float64_add(q, float64_half, s);
11682 q = float64_div(q, float64_512, s);
11683 q = float64_sqrt(q, s);
11684 q = float64_div(float64_one, q, s);
11685 } else {
11686 /* range 0.5 <= a < 1.0 */
11688 /* a in units of 1/256 rounded down */
11689 /* q1 = (int)(a * 256.0); */
11690 q = float64_mul(float64_256, a, s);
11691 int64_t q_int = float64_to_int64_round_to_zero(q, s);
11693 /* reciprocal root r */
11694 /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */
11695 q = int64_to_float64(q_int, s);
11696 q = float64_add(q, float64_half, s);
11697 q = float64_div(q, float64_256, s);
11698 q = float64_sqrt(q, s);
11699 q = float64_div(float64_one, q, s);
11701 /* r in units of 1/256 rounded to nearest */
11702 /* s = (int)(256.0 * r + 0.5); */
11704 q = float64_mul(q, float64_256,s );
11705 q = float64_add(q, float64_half, s);
11706 q_int = float64_to_int64_round_to_zero(q, s);
11708 /* return (double)s / 256.0;*/
11709 return float64_div(int64_to_float64(q_int, s), float64_256, s);
11712 float32 HELPER(rsqrte_f32)(float32 input, void *fpstp)
11714 float_status *s = fpstp;
11715 float32 f32 = float32_squash_input_denormal(input, s);
11716 uint32_t val = float32_val(f32);
11717 uint32_t f32_sbit = 0x80000000 & val;
11718 int32_t f32_exp = extract32(val, 23, 8);
11719 uint32_t f32_frac = extract32(val, 0, 23);
11720 uint64_t f64_frac;
11721 uint64_t val64;
11722 int result_exp;
11723 float64 f64;
11725 if (float32_is_any_nan(f32)) {
11726 float32 nan = f32;
11727 if (float32_is_signaling_nan(f32, s)) {
11728 float_raise(float_flag_invalid, s);
11729 nan = float32_maybe_silence_nan(f32, s);
11731 if (s->default_nan_mode) {
11732 nan = float32_default_nan(s);
11734 return nan;
11735 } else if (float32_is_zero(f32)) {
11736 float_raise(float_flag_divbyzero, s);
11737 return float32_set_sign(float32_infinity, float32_is_neg(f32));
11738 } else if (float32_is_neg(f32)) {
11739 float_raise(float_flag_invalid, s);
11740 return float32_default_nan(s);
11741 } else if (float32_is_infinity(f32)) {
11742 return float32_zero;
11745 /* Scale and normalize to a double-precision value between 0.25 and 1.0,
11746 * preserving the parity of the exponent. */
11748 f64_frac = ((uint64_t) f32_frac) << 29;
11749 if (f32_exp == 0) {
11750 while (extract64(f64_frac, 51, 1) == 0) {
11751 f64_frac = f64_frac << 1;
11752 f32_exp = f32_exp-1;
11754 f64_frac = extract64(f64_frac, 0, 51) << 1;
11757 if (extract64(f32_exp, 0, 1) == 0) {
11758 f64 = make_float64(((uint64_t) f32_sbit) << 32
11759 | (0x3feULL << 52)
11760 | f64_frac);
11761 } else {
11762 f64 = make_float64(((uint64_t) f32_sbit) << 32
11763 | (0x3fdULL << 52)
11764 | f64_frac);
11767 result_exp = (380 - f32_exp) / 2;
11769 f64 = recip_sqrt_estimate(f64, s);
11771 val64 = float64_val(f64);
11773 val = ((result_exp & 0xff) << 23)
11774 | ((val64 >> 29) & 0x7fffff);
11775 return make_float32(val);
11778 float64 HELPER(rsqrte_f64)(float64 input, void *fpstp)
11780 float_status *s = fpstp;
11781 float64 f64 = float64_squash_input_denormal(input, s);
11782 uint64_t val = float64_val(f64);
11783 uint64_t f64_sbit = 0x8000000000000000ULL & val;
11784 int64_t f64_exp = extract64(val, 52, 11);
11785 uint64_t f64_frac = extract64(val, 0, 52);
11786 int64_t result_exp;
11787 uint64_t result_frac;
11789 if (float64_is_any_nan(f64)) {
11790 float64 nan = f64;
11791 if (float64_is_signaling_nan(f64, s)) {
11792 float_raise(float_flag_invalid, s);
11793 nan = float64_maybe_silence_nan(f64, s);
11795 if (s->default_nan_mode) {
11796 nan = float64_default_nan(s);
11798 return nan;
11799 } else if (float64_is_zero(f64)) {
11800 float_raise(float_flag_divbyzero, s);
11801 return float64_set_sign(float64_infinity, float64_is_neg(f64));
11802 } else if (float64_is_neg(f64)) {
11803 float_raise(float_flag_invalid, s);
11804 return float64_default_nan(s);
11805 } else if (float64_is_infinity(f64)) {
11806 return float64_zero;
11809 /* Scale and normalize to a double-precision value between 0.25 and 1.0,
11810 * preserving the parity of the exponent. */
11812 if (f64_exp == 0) {
11813 while (extract64(f64_frac, 51, 1) == 0) {
11814 f64_frac = f64_frac << 1;
11815 f64_exp = f64_exp - 1;
11817 f64_frac = extract64(f64_frac, 0, 51) << 1;
11820 if (extract64(f64_exp, 0, 1) == 0) {
11821 f64 = make_float64(f64_sbit
11822 | (0x3feULL << 52)
11823 | f64_frac);
11824 } else {
11825 f64 = make_float64(f64_sbit
11826 | (0x3fdULL << 52)
11827 | f64_frac);
11830 result_exp = (3068 - f64_exp) / 2;
11832 f64 = recip_sqrt_estimate(f64, s);
11834 result_frac = extract64(float64_val(f64), 0, 52);
11836 return make_float64(f64_sbit |
11837 ((result_exp & 0x7ff) << 52) |
11838 result_frac);
11841 uint32_t HELPER(recpe_u32)(uint32_t a, void *fpstp)
11843 float_status *s = fpstp;
11844 float64 f64;
11846 if ((a & 0x80000000) == 0) {
11847 return 0xffffffff;
11850 f64 = make_float64((0x3feULL << 52)
11851 | ((int64_t)(a & 0x7fffffff) << 21));
11853 f64 = recip_estimate(f64, s);
11855 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
11858 uint32_t HELPER(rsqrte_u32)(uint32_t a, void *fpstp)
11860 float_status *fpst = fpstp;
11861 float64 f64;
11863 if ((a & 0xc0000000) == 0) {
11864 return 0xffffffff;
11867 if (a & 0x80000000) {
11868 f64 = make_float64((0x3feULL << 52)
11869 | ((uint64_t)(a & 0x7fffffff) << 21));
11870 } else { /* bits 31-30 == '01' */
11871 f64 = make_float64((0x3fdULL << 52)
11872 | ((uint64_t)(a & 0x3fffffff) << 22));
11875 f64 = recip_sqrt_estimate(f64, fpst);
11877 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
11880 /* VFPv4 fused multiply-accumulate */
11881 float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp)
11883 float_status *fpst = fpstp;
11884 return float32_muladd(a, b, c, 0, fpst);
11887 float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp)
11889 float_status *fpst = fpstp;
11890 return float64_muladd(a, b, c, 0, fpst);
11893 /* ARMv8 round to integral */
11894 float32 HELPER(rints_exact)(float32 x, void *fp_status)
11896 return float32_round_to_int(x, fp_status);
11899 float64 HELPER(rintd_exact)(float64 x, void *fp_status)
11901 return float64_round_to_int(x, fp_status);
11904 float32 HELPER(rints)(float32 x, void *fp_status)
11906 int old_flags = get_float_exception_flags(fp_status), new_flags;
11907 float32 ret;
11909 ret = float32_round_to_int(x, fp_status);
11911 /* Suppress any inexact exceptions the conversion produced */
11912 if (!(old_flags & float_flag_inexact)) {
11913 new_flags = get_float_exception_flags(fp_status);
11914 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
11917 return ret;
11920 float64 HELPER(rintd)(float64 x, void *fp_status)
11922 int old_flags = get_float_exception_flags(fp_status), new_flags;
11923 float64 ret;
11925 ret = float64_round_to_int(x, fp_status);
11927 new_flags = get_float_exception_flags(fp_status);
11929 /* Suppress any inexact exceptions the conversion produced */
11930 if (!(old_flags & float_flag_inexact)) {
11931 new_flags = get_float_exception_flags(fp_status);
11932 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
11935 return ret;
11938 /* Convert ARM rounding mode to softfloat */
11939 int arm_rmode_to_sf(int rmode)
11941 switch (rmode) {
11942 case FPROUNDING_TIEAWAY:
11943 rmode = float_round_ties_away;
11944 break;
11945 case FPROUNDING_ODD:
11946 /* FIXME: add support for TIEAWAY and ODD */
11947 qemu_log_mask(LOG_UNIMP, "arm: unimplemented rounding mode: %d\n",
11948 rmode);
11949 case FPROUNDING_TIEEVEN:
11950 default:
11951 rmode = float_round_nearest_even;
11952 break;
11953 case FPROUNDING_POSINF:
11954 rmode = float_round_up;
11955 break;
11956 case FPROUNDING_NEGINF:
11957 rmode = float_round_down;
11958 break;
11959 case FPROUNDING_ZERO:
11960 rmode = float_round_to_zero;
11961 break;
11963 return rmode;
11966 /* CRC helpers.
11967 * The upper bytes of val (above the number specified by 'bytes') must have
11968 * been zeroed out by the caller.
11970 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
11972 uint8_t buf[4];
11974 stl_le_p(buf, val);
11976 /* zlib crc32 converts the accumulator and output to one's complement. */
11977 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
11980 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
11982 uint8_t buf[4];
11984 stl_le_p(buf, val);
11986 /* Linux crc32c converts the output to one's complement. */
11987 return crc32c(acc, buf, bytes) ^ 0xffffffff;
11990 /* Return the exception level to which FP-disabled exceptions should
11991 * be taken, or 0 if FP is enabled.
11993 static inline int fp_exception_el(CPUARMState *env)
11995 #ifndef CONFIG_USER_ONLY
11996 int fpen;
11997 int cur_el = arm_current_el(env);
11999 /* CPACR and the CPTR registers don't exist before v6, so FP is
12000 * always accessible
12002 if (!arm_feature(env, ARM_FEATURE_V6)) {
12003 return 0;
12006 /* The CPACR controls traps to EL1, or PL1 if we're 32 bit:
12007 * 0, 2 : trap EL0 and EL1/PL1 accesses
12008 * 1 : trap only EL0 accesses
12009 * 3 : trap no accesses
12011 fpen = extract32(env->cp15.cpacr_el1, 20, 2);
12012 switch (fpen) {
12013 case 0:
12014 case 2:
12015 if (cur_el == 0 || cur_el == 1) {
12016 /* Trap to PL1, which might be EL1 or EL3 */
12017 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
12018 return 3;
12020 return 1;
12022 if (cur_el == 3 && !is_a64(env)) {
12023 /* Secure PL1 running at EL3 */
12024 return 3;
12026 break;
12027 case 1:
12028 if (cur_el == 0) {
12029 return 1;
12031 break;
12032 case 3:
12033 break;
12036 /* For the CPTR registers we don't need to guard with an ARM_FEATURE
12037 * check because zero bits in the registers mean "don't trap".
12040 /* CPTR_EL2 : present in v7VE or v8 */
12041 if (cur_el <= 2 && extract32(env->cp15.cptr_el[2], 10, 1)
12042 && !arm_is_secure_below_el3(env)) {
12043 /* Trap FP ops at EL2, NS-EL1 or NS-EL0 to EL2 */
12044 return 2;
12047 /* CPTR_EL3 : present in v8 */
12048 if (extract32(env->cp15.cptr_el[3], 10, 1)) {
12049 /* Trap all FP ops to EL3 */
12050 return 3;
12052 #endif
12053 return 0;
12056 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
12057 target_ulong *cs_base, uint32_t *pflags)
12059 ARMMMUIdx mmu_idx = core_to_arm_mmu_idx(env, cpu_mmu_index(env, false));
12060 int fp_el = fp_exception_el(env);
12061 uint32_t flags;
12063 if (is_a64(env)) {
12064 int sve_el = sve_exception_el(env);
12065 uint32_t zcr_len;
12067 *pc = env->pc;
12068 flags = ARM_TBFLAG_AARCH64_STATE_MASK;
12069 /* Get control bits for tagged addresses */
12070 flags |= (arm_regime_tbi0(env, mmu_idx) << ARM_TBFLAG_TBI0_SHIFT);
12071 flags |= (arm_regime_tbi1(env, mmu_idx) << ARM_TBFLAG_TBI1_SHIFT);
12072 flags |= sve_el << ARM_TBFLAG_SVEEXC_EL_SHIFT;
12074 /* If SVE is disabled, but FP is enabled,
12075 then the effective len is 0. */
12076 if (sve_el != 0 && fp_el == 0) {
12077 zcr_len = 0;
12078 } else {
12079 int current_el = arm_current_el(env);
12081 zcr_len = env->vfp.zcr_el[current_el <= 1 ? 1 : current_el];
12082 zcr_len &= 0xf;
12083 if (current_el < 2 && arm_feature(env, ARM_FEATURE_EL2)) {
12084 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[2]);
12086 if (current_el < 3 && arm_feature(env, ARM_FEATURE_EL3)) {
12087 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[3]);
12090 flags |= zcr_len << ARM_TBFLAG_ZCR_LEN_SHIFT;
12091 } else {
12092 *pc = env->regs[15];
12093 flags = (env->thumb << ARM_TBFLAG_THUMB_SHIFT)
12094 | (env->vfp.vec_len << ARM_TBFLAG_VECLEN_SHIFT)
12095 | (env->vfp.vec_stride << ARM_TBFLAG_VECSTRIDE_SHIFT)
12096 | (env->condexec_bits << ARM_TBFLAG_CONDEXEC_SHIFT)
12097 | (arm_sctlr_b(env) << ARM_TBFLAG_SCTLR_B_SHIFT);
12098 if (!(access_secure_reg(env))) {
12099 flags |= ARM_TBFLAG_NS_MASK;
12101 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)
12102 || arm_el_is_aa64(env, 1)) {
12103 flags |= ARM_TBFLAG_VFPEN_MASK;
12105 flags |= (extract32(env->cp15.c15_cpar, 0, 2)
12106 << ARM_TBFLAG_XSCALE_CPAR_SHIFT);
12109 flags |= (arm_to_core_mmu_idx(mmu_idx) << ARM_TBFLAG_MMUIDX_SHIFT);
12111 /* The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
12112 * states defined in the ARM ARM for software singlestep:
12113 * SS_ACTIVE PSTATE.SS State
12114 * 0 x Inactive (the TB flag for SS is always 0)
12115 * 1 0 Active-pending
12116 * 1 1 Active-not-pending
12118 if (arm_singlestep_active(env)) {
12119 flags |= ARM_TBFLAG_SS_ACTIVE_MASK;
12120 if (is_a64(env)) {
12121 if (env->pstate & PSTATE_SS) {
12122 flags |= ARM_TBFLAG_PSTATE_SS_MASK;
12124 } else {
12125 if (env->uncached_cpsr & PSTATE_SS) {
12126 flags |= ARM_TBFLAG_PSTATE_SS_MASK;
12130 if (arm_cpu_data_is_big_endian(env)) {
12131 flags |= ARM_TBFLAG_BE_DATA_MASK;
12133 flags |= fp_el << ARM_TBFLAG_FPEXC_EL_SHIFT;
12135 if (arm_v7m_is_handler_mode(env)) {
12136 flags |= ARM_TBFLAG_HANDLER_MASK;
12139 *pflags = flags;
12140 *cs_base = 0;