hw/acpi: piix4_pm_init(): take fw_cfg object no more
[qemu.git] / fpu / softfloat-specialize.h
blobfa1214a4b8b073da33ae9401c0814c0a82104805
1 /*
2 * QEMU float support
4 * The code in this source file is derived from release 2a of the SoftFloat
5 * IEC/IEEE Floating-point Arithmetic Package. Those parts of the code (and
6 * some later contributions) are provided under that license, as detailed below.
7 * It has subsequently been modified by contributors to the QEMU Project,
8 * so some portions are provided under:
9 * the SoftFloat-2a license
10 * the BSD license
11 * GPL-v2-or-later
13 * Any future contributions to this file after December 1st 2014 will be
14 * taken to be licensed under the Softfloat-2a license unless specifically
15 * indicated otherwise.
19 ===============================================================================
20 This C source fragment is part of the SoftFloat IEC/IEEE Floating-point
21 Arithmetic Package, Release 2a.
23 Written by John R. Hauser. This work was made possible in part by the
24 International Computer Science Institute, located at Suite 600, 1947 Center
25 Street, Berkeley, California 94704. Funding was partially provided by the
26 National Science Foundation under grant MIP-9311980. The original version
27 of this code was written as part of a project to build a fixed-point vector
28 processor in collaboration with the University of California at Berkeley,
29 overseen by Profs. Nelson Morgan and John Wawrzynek. More information
30 is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
31 arithmetic/SoftFloat.html'.
33 THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort
34 has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
35 TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO
36 PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
37 AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
39 Derivative works are acceptable, even for commercial purposes, so long as
40 (1) they include prominent notice that the work is derivative, and (2) they
41 include prominent notice akin to these four paragraphs for those parts of
42 this code that are retained.
44 ===============================================================================
47 /* BSD licensing:
48 * Copyright (c) 2006, Fabrice Bellard
49 * All rights reserved.
51 * Redistribution and use in source and binary forms, with or without
52 * modification, are permitted provided that the following conditions are met:
54 * 1. Redistributions of source code must retain the above copyright notice,
55 * this list of conditions and the following disclaimer.
57 * 2. Redistributions in binary form must reproduce the above copyright notice,
58 * this list of conditions and the following disclaimer in the documentation
59 * and/or other materials provided with the distribution.
61 * 3. Neither the name of the copyright holder nor the names of its contributors
62 * may be used to endorse or promote products derived from this software without
63 * specific prior written permission.
65 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
66 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
67 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
68 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
69 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
70 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
71 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
72 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
73 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
74 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
75 * THE POSSIBILITY OF SUCH DAMAGE.
78 /* Portions of this work are licensed under the terms of the GNU GPL,
79 * version 2 or later. See the COPYING file in the top-level directory.
82 /* Does the target distinguish signaling NaNs from non-signaling NaNs
83 * by setting the most significant bit of the mantissa for a signaling NaN?
84 * (The more common choice is to have it be zero for SNaN and one for QNaN.)
86 #if defined(TARGET_MIPS) || defined(TARGET_SH4) || defined(TARGET_UNICORE32)
87 #define SNAN_BIT_IS_ONE 1
88 #else
89 #define SNAN_BIT_IS_ONE 0
90 #endif
92 #if defined(TARGET_XTENSA)
93 /* Define for architectures which deviate from IEEE in not supporting
94 * signaling NaNs (so all NaNs are treated as quiet).
96 #define NO_SIGNALING_NANS 1
97 #endif
99 /*----------------------------------------------------------------------------
100 | The pattern for a default generated half-precision NaN.
101 *----------------------------------------------------------------------------*/
102 #if defined(TARGET_ARM)
103 const float16 float16_default_nan = const_float16(0x7E00);
104 #elif SNAN_BIT_IS_ONE
105 const float16 float16_default_nan = const_float16(0x7DFF);
106 #else
107 const float16 float16_default_nan = const_float16(0xFE00);
108 #endif
110 /*----------------------------------------------------------------------------
111 | The pattern for a default generated single-precision NaN.
112 *----------------------------------------------------------------------------*/
113 #if defined(TARGET_SPARC)
114 const float32 float32_default_nan = const_float32(0x7FFFFFFF);
115 #elif defined(TARGET_PPC) || defined(TARGET_ARM) || defined(TARGET_ALPHA) || \
116 defined(TARGET_XTENSA)
117 const float32 float32_default_nan = const_float32(0x7FC00000);
118 #elif SNAN_BIT_IS_ONE
119 const float32 float32_default_nan = const_float32(0x7FBFFFFF);
120 #else
121 const float32 float32_default_nan = const_float32(0xFFC00000);
122 #endif
124 /*----------------------------------------------------------------------------
125 | The pattern for a default generated double-precision NaN.
126 *----------------------------------------------------------------------------*/
127 #if defined(TARGET_SPARC)
128 const float64 float64_default_nan = const_float64(LIT64( 0x7FFFFFFFFFFFFFFF ));
129 #elif defined(TARGET_PPC) || defined(TARGET_ARM) || defined(TARGET_ALPHA)
130 const float64 float64_default_nan = const_float64(LIT64( 0x7FF8000000000000 ));
131 #elif SNAN_BIT_IS_ONE
132 const float64 float64_default_nan = const_float64(LIT64(0x7FF7FFFFFFFFFFFF));
133 #else
134 const float64 float64_default_nan = const_float64(LIT64( 0xFFF8000000000000 ));
135 #endif
137 /*----------------------------------------------------------------------------
138 | The pattern for a default generated extended double-precision NaN.
139 *----------------------------------------------------------------------------*/
140 #if SNAN_BIT_IS_ONE
141 #define floatx80_default_nan_high 0x7FFF
142 #define floatx80_default_nan_low LIT64(0xBFFFFFFFFFFFFFFF)
143 #else
144 #define floatx80_default_nan_high 0xFFFF
145 #define floatx80_default_nan_low LIT64( 0xC000000000000000 )
146 #endif
148 const floatx80 floatx80_default_nan
149 = make_floatx80_init(floatx80_default_nan_high, floatx80_default_nan_low);
151 /*----------------------------------------------------------------------------
152 | The pattern for a default generated quadruple-precision NaN. The `high' and
153 | `low' values hold the most- and least-significant bits, respectively.
154 *----------------------------------------------------------------------------*/
155 #if SNAN_BIT_IS_ONE
156 #define float128_default_nan_high LIT64(0x7FFF7FFFFFFFFFFF)
157 #define float128_default_nan_low LIT64(0xFFFFFFFFFFFFFFFF)
158 #else
159 #define float128_default_nan_high LIT64( 0xFFFF800000000000 )
160 #define float128_default_nan_low LIT64( 0x0000000000000000 )
161 #endif
163 const float128 float128_default_nan
164 = make_float128_init(float128_default_nan_high, float128_default_nan_low);
166 /*----------------------------------------------------------------------------
167 | Raises the exceptions specified by `flags'. Floating-point traps can be
168 | defined here if desired. It is currently not possible for such a trap
169 | to substitute a result value. If traps are not implemented, this routine
170 | should be simply `float_exception_flags |= flags;'.
171 *----------------------------------------------------------------------------*/
173 void float_raise(int8 flags, float_status *status)
175 status->float_exception_flags |= flags;
178 /*----------------------------------------------------------------------------
179 | Internal canonical NaN format.
180 *----------------------------------------------------------------------------*/
181 typedef struct {
182 flag sign;
183 uint64_t high, low;
184 } commonNaNT;
186 #ifdef NO_SIGNALING_NANS
187 int float16_is_quiet_nan(float16 a_)
189 return float16_is_any_nan(a_);
192 int float16_is_signaling_nan(float16 a_)
194 return 0;
196 #else
197 /*----------------------------------------------------------------------------
198 | Returns 1 if the half-precision floating-point value `a' is a quiet
199 | NaN; otherwise returns 0.
200 *----------------------------------------------------------------------------*/
202 int float16_is_quiet_nan(float16 a_)
204 uint16_t a = float16_val(a_);
205 #if SNAN_BIT_IS_ONE
206 return (((a >> 9) & 0x3F) == 0x3E) && (a & 0x1FF);
207 #else
208 return ((a & ~0x8000) >= 0x7c80);
209 #endif
212 /*----------------------------------------------------------------------------
213 | Returns 1 if the half-precision floating-point value `a' is a signaling
214 | NaN; otherwise returns 0.
215 *----------------------------------------------------------------------------*/
217 int float16_is_signaling_nan(float16 a_)
219 uint16_t a = float16_val(a_);
220 #if SNAN_BIT_IS_ONE
221 return ((a & ~0x8000) >= 0x7c80);
222 #else
223 return (((a >> 9) & 0x3F) == 0x3E) && (a & 0x1FF);
224 #endif
226 #endif
228 /*----------------------------------------------------------------------------
229 | Returns a quiet NaN if the half-precision floating point value `a' is a
230 | signaling NaN; otherwise returns `a'.
231 *----------------------------------------------------------------------------*/
232 float16 float16_maybe_silence_nan(float16 a_)
234 if (float16_is_signaling_nan(a_)) {
235 #if SNAN_BIT_IS_ONE
236 # if defined(TARGET_MIPS) || defined(TARGET_SH4) || defined(TARGET_UNICORE32)
237 return float16_default_nan;
238 # else
239 # error Rules for silencing a signaling NaN are target-specific
240 # endif
241 #else
242 uint16_t a = float16_val(a_);
243 a |= (1 << 9);
244 return make_float16(a);
245 #endif
247 return a_;
250 /*----------------------------------------------------------------------------
251 | Returns the result of converting the half-precision floating-point NaN
252 | `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
253 | exception is raised.
254 *----------------------------------------------------------------------------*/
256 static commonNaNT float16ToCommonNaN(float16 a, float_status *status)
258 commonNaNT z;
260 if (float16_is_signaling_nan(a)) {
261 float_raise(float_flag_invalid, status);
263 z.sign = float16_val(a) >> 15;
264 z.low = 0;
265 z.high = ((uint64_t) float16_val(a))<<54;
266 return z;
269 /*----------------------------------------------------------------------------
270 | Returns the result of converting the canonical NaN `a' to the half-
271 | precision floating-point format.
272 *----------------------------------------------------------------------------*/
274 static float16 commonNaNToFloat16(commonNaNT a, float_status *status)
276 uint16_t mantissa = a.high>>54;
278 if (status->default_nan_mode) {
279 return float16_default_nan;
282 if (mantissa) {
283 return make_float16(((((uint16_t) a.sign) << 15)
284 | (0x1F << 10) | mantissa));
285 } else {
286 return float16_default_nan;
290 #ifdef NO_SIGNALING_NANS
291 int float32_is_quiet_nan(float32 a_)
293 return float32_is_any_nan(a_);
296 int float32_is_signaling_nan(float32 a_)
298 return 0;
300 #else
301 /*----------------------------------------------------------------------------
302 | Returns 1 if the single-precision floating-point value `a' is a quiet
303 | NaN; otherwise returns 0.
304 *----------------------------------------------------------------------------*/
306 int float32_is_quiet_nan( float32 a_ )
308 uint32_t a = float32_val(a_);
309 #if SNAN_BIT_IS_ONE
310 return (((a >> 22) & 0x1ff) == 0x1fe) && (a & 0x003fffff);
311 #else
312 return ((uint32_t)(a << 1) >= 0xff800000);
313 #endif
316 /*----------------------------------------------------------------------------
317 | Returns 1 if the single-precision floating-point value `a' is a signaling
318 | NaN; otherwise returns 0.
319 *----------------------------------------------------------------------------*/
321 int float32_is_signaling_nan( float32 a_ )
323 uint32_t a = float32_val(a_);
324 #if SNAN_BIT_IS_ONE
325 return ((uint32_t)(a << 1) >= 0xff800000);
326 #else
327 return ( ( ( a>>22 ) & 0x1FF ) == 0x1FE ) && ( a & 0x003FFFFF );
328 #endif
330 #endif
332 /*----------------------------------------------------------------------------
333 | Returns a quiet NaN if the single-precision floating point value `a' is a
334 | signaling NaN; otherwise returns `a'.
335 *----------------------------------------------------------------------------*/
337 float32 float32_maybe_silence_nan( float32 a_ )
339 if (float32_is_signaling_nan(a_)) {
340 #if SNAN_BIT_IS_ONE
341 # if defined(TARGET_MIPS) || defined(TARGET_SH4) || defined(TARGET_UNICORE32)
342 return float32_default_nan;
343 # else
344 # error Rules for silencing a signaling NaN are target-specific
345 # endif
346 #else
347 uint32_t a = float32_val(a_);
348 a |= (1 << 22);
349 return make_float32(a);
350 #endif
352 return a_;
355 /*----------------------------------------------------------------------------
356 | Returns the result of converting the single-precision floating-point NaN
357 | `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
358 | exception is raised.
359 *----------------------------------------------------------------------------*/
361 static commonNaNT float32ToCommonNaN(float32 a, float_status *status)
363 commonNaNT z;
365 if (float32_is_signaling_nan(a)) {
366 float_raise(float_flag_invalid, status);
368 z.sign = float32_val(a)>>31;
369 z.low = 0;
370 z.high = ( (uint64_t) float32_val(a) )<<41;
371 return z;
374 /*----------------------------------------------------------------------------
375 | Returns the result of converting the canonical NaN `a' to the single-
376 | precision floating-point format.
377 *----------------------------------------------------------------------------*/
379 static float32 commonNaNToFloat32(commonNaNT a, float_status *status)
381 uint32_t mantissa = a.high>>41;
383 if (status->default_nan_mode) {
384 return float32_default_nan;
387 if ( mantissa )
388 return make_float32(
389 ( ( (uint32_t) a.sign )<<31 ) | 0x7F800000 | ( a.high>>41 ) );
390 else
391 return float32_default_nan;
394 /*----------------------------------------------------------------------------
395 | Select which NaN to propagate for a two-input operation.
396 | IEEE754 doesn't specify all the details of this, so the
397 | algorithm is target-specific.
398 | The routine is passed various bits of information about the
399 | two NaNs and should return 0 to select NaN a and 1 for NaN b.
400 | Note that signalling NaNs are always squashed to quiet NaNs
401 | by the caller, by calling floatXX_maybe_silence_nan() before
402 | returning them.
404 | aIsLargerSignificand is only valid if both a and b are NaNs
405 | of some kind, and is true if a has the larger significand,
406 | or if both a and b have the same significand but a is
407 | positive but b is negative. It is only needed for the x87
408 | tie-break rule.
409 *----------------------------------------------------------------------------*/
411 #if defined(TARGET_ARM)
412 static int pickNaN(flag aIsQNaN, flag aIsSNaN, flag bIsQNaN, flag bIsSNaN,
413 flag aIsLargerSignificand)
415 /* ARM mandated NaN propagation rules: take the first of:
416 * 1. A if it is signaling
417 * 2. B if it is signaling
418 * 3. A (quiet)
419 * 4. B (quiet)
420 * A signaling NaN is always quietened before returning it.
422 if (aIsSNaN) {
423 return 0;
424 } else if (bIsSNaN) {
425 return 1;
426 } else if (aIsQNaN) {
427 return 0;
428 } else {
429 return 1;
432 #elif defined(TARGET_MIPS)
433 static int pickNaN(flag aIsQNaN, flag aIsSNaN, flag bIsQNaN, flag bIsSNaN,
434 flag aIsLargerSignificand)
436 /* According to MIPS specifications, if one of the two operands is
437 * a sNaN, a new qNaN has to be generated. This is done in
438 * floatXX_maybe_silence_nan(). For qNaN inputs the specifications
439 * says: "When possible, this QNaN result is one of the operand QNaN
440 * values." In practice it seems that most implementations choose
441 * the first operand if both operands are qNaN. In short this gives
442 * the following rules:
443 * 1. A if it is signaling
444 * 2. B if it is signaling
445 * 3. A (quiet)
446 * 4. B (quiet)
447 * A signaling NaN is always silenced before returning it.
449 if (aIsSNaN) {
450 return 0;
451 } else if (bIsSNaN) {
452 return 1;
453 } else if (aIsQNaN) {
454 return 0;
455 } else {
456 return 1;
459 #elif defined(TARGET_PPC) || defined(TARGET_XTENSA)
460 static int pickNaN(flag aIsQNaN, flag aIsSNaN, flag bIsQNaN, flag bIsSNaN,
461 flag aIsLargerSignificand)
463 /* PowerPC propagation rules:
464 * 1. A if it sNaN or qNaN
465 * 2. B if it sNaN or qNaN
466 * A signaling NaN is always silenced before returning it.
468 if (aIsSNaN || aIsQNaN) {
469 return 0;
470 } else {
471 return 1;
474 #else
475 static int pickNaN(flag aIsQNaN, flag aIsSNaN, flag bIsQNaN, flag bIsSNaN,
476 flag aIsLargerSignificand)
478 /* This implements x87 NaN propagation rules:
479 * SNaN + QNaN => return the QNaN
480 * two SNaNs => return the one with the larger significand, silenced
481 * two QNaNs => return the one with the larger significand
482 * SNaN and a non-NaN => return the SNaN, silenced
483 * QNaN and a non-NaN => return the QNaN
485 * If we get down to comparing significands and they are the same,
486 * return the NaN with the positive sign bit (if any).
488 if (aIsSNaN) {
489 if (bIsSNaN) {
490 return aIsLargerSignificand ? 0 : 1;
492 return bIsQNaN ? 1 : 0;
494 else if (aIsQNaN) {
495 if (bIsSNaN || !bIsQNaN)
496 return 0;
497 else {
498 return aIsLargerSignificand ? 0 : 1;
500 } else {
501 return 1;
504 #endif
506 /*----------------------------------------------------------------------------
507 | Select which NaN to propagate for a three-input operation.
508 | For the moment we assume that no CPU needs the 'larger significand'
509 | information.
510 | Return values : 0 : a; 1 : b; 2 : c; 3 : default-NaN
511 *----------------------------------------------------------------------------*/
512 #if defined(TARGET_ARM)
513 static int pickNaNMulAdd(flag aIsQNaN, flag aIsSNaN, flag bIsQNaN, flag bIsSNaN,
514 flag cIsQNaN, flag cIsSNaN, flag infzero,
515 float_status *status)
517 /* For ARM, the (inf,zero,qnan) case sets InvalidOp and returns
518 * the default NaN
520 if (infzero && cIsQNaN) {
521 float_raise(float_flag_invalid, status);
522 return 3;
525 /* This looks different from the ARM ARM pseudocode, because the ARM ARM
526 * puts the operands to a fused mac operation (a*b)+c in the order c,a,b.
528 if (cIsSNaN) {
529 return 2;
530 } else if (aIsSNaN) {
531 return 0;
532 } else if (bIsSNaN) {
533 return 1;
534 } else if (cIsQNaN) {
535 return 2;
536 } else if (aIsQNaN) {
537 return 0;
538 } else {
539 return 1;
542 #elif defined(TARGET_MIPS)
543 static int pickNaNMulAdd(flag aIsQNaN, flag aIsSNaN, flag bIsQNaN, flag bIsSNaN,
544 flag cIsQNaN, flag cIsSNaN, flag infzero,
545 float_status *status)
547 /* For MIPS, the (inf,zero,qnan) case sets InvalidOp and returns
548 * the default NaN
550 if (infzero) {
551 float_raise(float_flag_invalid, status);
552 return 3;
555 /* Prefer sNaN over qNaN, in the a, b, c order. */
556 if (aIsSNaN) {
557 return 0;
558 } else if (bIsSNaN) {
559 return 1;
560 } else if (cIsSNaN) {
561 return 2;
562 } else if (aIsQNaN) {
563 return 0;
564 } else if (bIsQNaN) {
565 return 1;
566 } else {
567 return 2;
570 #elif defined(TARGET_PPC)
571 static int pickNaNMulAdd(flag aIsQNaN, flag aIsSNaN, flag bIsQNaN, flag bIsSNaN,
572 flag cIsQNaN, flag cIsSNaN, flag infzero,
573 float_status *status)
575 /* For PPC, the (inf,zero,qnan) case sets InvalidOp, but we prefer
576 * to return an input NaN if we have one (ie c) rather than generating
577 * a default NaN
579 if (infzero) {
580 float_raise(float_flag_invalid, status);
581 return 2;
584 /* If fRA is a NaN return it; otherwise if fRB is a NaN return it;
585 * otherwise return fRC. Note that muladd on PPC is (fRA * fRC) + frB
587 if (aIsSNaN || aIsQNaN) {
588 return 0;
589 } else if (cIsSNaN || cIsQNaN) {
590 return 2;
591 } else {
592 return 1;
595 #else
596 /* A default implementation: prefer a to b to c.
597 * This is unlikely to actually match any real implementation.
599 static int pickNaNMulAdd(flag aIsQNaN, flag aIsSNaN, flag bIsQNaN, flag bIsSNaN,
600 flag cIsQNaN, flag cIsSNaN, flag infzero,
601 float_status *status)
603 if (aIsSNaN || aIsQNaN) {
604 return 0;
605 } else if (bIsSNaN || bIsQNaN) {
606 return 1;
607 } else {
608 return 2;
611 #endif
613 /*----------------------------------------------------------------------------
614 | Takes two single-precision floating-point values `a' and `b', one of which
615 | is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a
616 | signaling NaN, the invalid exception is raised.
617 *----------------------------------------------------------------------------*/
619 static float32 propagateFloat32NaN(float32 a, float32 b, float_status *status)
621 flag aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN;
622 flag aIsLargerSignificand;
623 uint32_t av, bv;
625 aIsQuietNaN = float32_is_quiet_nan( a );
626 aIsSignalingNaN = float32_is_signaling_nan( a );
627 bIsQuietNaN = float32_is_quiet_nan( b );
628 bIsSignalingNaN = float32_is_signaling_nan( b );
629 av = float32_val(a);
630 bv = float32_val(b);
632 if (aIsSignalingNaN | bIsSignalingNaN) {
633 float_raise(float_flag_invalid, status);
636 if (status->default_nan_mode)
637 return float32_default_nan;
639 if ((uint32_t)(av<<1) < (uint32_t)(bv<<1)) {
640 aIsLargerSignificand = 0;
641 } else if ((uint32_t)(bv<<1) < (uint32_t)(av<<1)) {
642 aIsLargerSignificand = 1;
643 } else {
644 aIsLargerSignificand = (av < bv) ? 1 : 0;
647 if (pickNaN(aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN,
648 aIsLargerSignificand)) {
649 return float32_maybe_silence_nan(b);
650 } else {
651 return float32_maybe_silence_nan(a);
655 /*----------------------------------------------------------------------------
656 | Takes three single-precision floating-point values `a', `b' and `c', one of
657 | which is a NaN, and returns the appropriate NaN result. If any of `a',
658 | `b' or `c' is a signaling NaN, the invalid exception is raised.
659 | The input infzero indicates whether a*b was 0*inf or inf*0 (in which case
660 | obviously c is a NaN, and whether to propagate c or some other NaN is
661 | implementation defined).
662 *----------------------------------------------------------------------------*/
664 static float32 propagateFloat32MulAddNaN(float32 a, float32 b,
665 float32 c, flag infzero,
666 float_status *status)
668 flag aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN,
669 cIsQuietNaN, cIsSignalingNaN;
670 int which;
672 aIsQuietNaN = float32_is_quiet_nan(a);
673 aIsSignalingNaN = float32_is_signaling_nan(a);
674 bIsQuietNaN = float32_is_quiet_nan(b);
675 bIsSignalingNaN = float32_is_signaling_nan(b);
676 cIsQuietNaN = float32_is_quiet_nan(c);
677 cIsSignalingNaN = float32_is_signaling_nan(c);
679 if (aIsSignalingNaN | bIsSignalingNaN | cIsSignalingNaN) {
680 float_raise(float_flag_invalid, status);
683 which = pickNaNMulAdd(aIsQuietNaN, aIsSignalingNaN,
684 bIsQuietNaN, bIsSignalingNaN,
685 cIsQuietNaN, cIsSignalingNaN, infzero, status);
687 if (status->default_nan_mode) {
688 /* Note that this check is after pickNaNMulAdd so that function
689 * has an opportunity to set the Invalid flag.
691 return float32_default_nan;
694 switch (which) {
695 case 0:
696 return float32_maybe_silence_nan(a);
697 case 1:
698 return float32_maybe_silence_nan(b);
699 case 2:
700 return float32_maybe_silence_nan(c);
701 case 3:
702 default:
703 return float32_default_nan;
707 #ifdef NO_SIGNALING_NANS
708 int float64_is_quiet_nan(float64 a_)
710 return float64_is_any_nan(a_);
713 int float64_is_signaling_nan(float64 a_)
715 return 0;
717 #else
718 /*----------------------------------------------------------------------------
719 | Returns 1 if the double-precision floating-point value `a' is a quiet
720 | NaN; otherwise returns 0.
721 *----------------------------------------------------------------------------*/
723 int float64_is_quiet_nan( float64 a_ )
725 uint64_t a = float64_val(a_);
726 #if SNAN_BIT_IS_ONE
727 return (((a >> 51) & 0xfff) == 0xffe)
728 && (a & 0x0007ffffffffffffULL);
729 #else
730 return ((a << 1) >= 0xfff0000000000000ULL);
731 #endif
734 /*----------------------------------------------------------------------------
735 | Returns 1 if the double-precision floating-point value `a' is a signaling
736 | NaN; otherwise returns 0.
737 *----------------------------------------------------------------------------*/
739 int float64_is_signaling_nan( float64 a_ )
741 uint64_t a = float64_val(a_);
742 #if SNAN_BIT_IS_ONE
743 return ((a << 1) >= 0xfff0000000000000ULL);
744 #else
745 return
746 ( ( ( a>>51 ) & 0xFFF ) == 0xFFE )
747 && ( a & LIT64( 0x0007FFFFFFFFFFFF ) );
748 #endif
750 #endif
752 /*----------------------------------------------------------------------------
753 | Returns a quiet NaN if the double-precision floating point value `a' is a
754 | signaling NaN; otherwise returns `a'.
755 *----------------------------------------------------------------------------*/
757 float64 float64_maybe_silence_nan( float64 a_ )
759 if (float64_is_signaling_nan(a_)) {
760 #if SNAN_BIT_IS_ONE
761 # if defined(TARGET_MIPS) || defined(TARGET_SH4) || defined(TARGET_UNICORE32)
762 return float64_default_nan;
763 # else
764 # error Rules for silencing a signaling NaN are target-specific
765 # endif
766 #else
767 uint64_t a = float64_val(a_);
768 a |= LIT64( 0x0008000000000000 );
769 return make_float64(a);
770 #endif
772 return a_;
775 /*----------------------------------------------------------------------------
776 | Returns the result of converting the double-precision floating-point NaN
777 | `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
778 | exception is raised.
779 *----------------------------------------------------------------------------*/
781 static commonNaNT float64ToCommonNaN(float64 a, float_status *status)
783 commonNaNT z;
785 if (float64_is_signaling_nan(a)) {
786 float_raise(float_flag_invalid, status);
788 z.sign = float64_val(a)>>63;
789 z.low = 0;
790 z.high = float64_val(a)<<12;
791 return z;
794 /*----------------------------------------------------------------------------
795 | Returns the result of converting the canonical NaN `a' to the double-
796 | precision floating-point format.
797 *----------------------------------------------------------------------------*/
799 static float64 commonNaNToFloat64(commonNaNT a, float_status *status)
801 uint64_t mantissa = a.high>>12;
803 if (status->default_nan_mode) {
804 return float64_default_nan;
807 if ( mantissa )
808 return make_float64(
809 ( ( (uint64_t) a.sign )<<63 )
810 | LIT64( 0x7FF0000000000000 )
811 | ( a.high>>12 ));
812 else
813 return float64_default_nan;
816 /*----------------------------------------------------------------------------
817 | Takes two double-precision floating-point values `a' and `b', one of which
818 | is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a
819 | signaling NaN, the invalid exception is raised.
820 *----------------------------------------------------------------------------*/
822 static float64 propagateFloat64NaN(float64 a, float64 b, float_status *status)
824 flag aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN;
825 flag aIsLargerSignificand;
826 uint64_t av, bv;
828 aIsQuietNaN = float64_is_quiet_nan( a );
829 aIsSignalingNaN = float64_is_signaling_nan( a );
830 bIsQuietNaN = float64_is_quiet_nan( b );
831 bIsSignalingNaN = float64_is_signaling_nan( b );
832 av = float64_val(a);
833 bv = float64_val(b);
835 if (aIsSignalingNaN | bIsSignalingNaN) {
836 float_raise(float_flag_invalid, status);
839 if (status->default_nan_mode)
840 return float64_default_nan;
842 if ((uint64_t)(av<<1) < (uint64_t)(bv<<1)) {
843 aIsLargerSignificand = 0;
844 } else if ((uint64_t)(bv<<1) < (uint64_t)(av<<1)) {
845 aIsLargerSignificand = 1;
846 } else {
847 aIsLargerSignificand = (av < bv) ? 1 : 0;
850 if (pickNaN(aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN,
851 aIsLargerSignificand)) {
852 return float64_maybe_silence_nan(b);
853 } else {
854 return float64_maybe_silence_nan(a);
858 /*----------------------------------------------------------------------------
859 | Takes three double-precision floating-point values `a', `b' and `c', one of
860 | which is a NaN, and returns the appropriate NaN result. If any of `a',
861 | `b' or `c' is a signaling NaN, the invalid exception is raised.
862 | The input infzero indicates whether a*b was 0*inf or inf*0 (in which case
863 | obviously c is a NaN, and whether to propagate c or some other NaN is
864 | implementation defined).
865 *----------------------------------------------------------------------------*/
867 static float64 propagateFloat64MulAddNaN(float64 a, float64 b,
868 float64 c, flag infzero,
869 float_status *status)
871 flag aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN,
872 cIsQuietNaN, cIsSignalingNaN;
873 int which;
875 aIsQuietNaN = float64_is_quiet_nan(a);
876 aIsSignalingNaN = float64_is_signaling_nan(a);
877 bIsQuietNaN = float64_is_quiet_nan(b);
878 bIsSignalingNaN = float64_is_signaling_nan(b);
879 cIsQuietNaN = float64_is_quiet_nan(c);
880 cIsSignalingNaN = float64_is_signaling_nan(c);
882 if (aIsSignalingNaN | bIsSignalingNaN | cIsSignalingNaN) {
883 float_raise(float_flag_invalid, status);
886 which = pickNaNMulAdd(aIsQuietNaN, aIsSignalingNaN,
887 bIsQuietNaN, bIsSignalingNaN,
888 cIsQuietNaN, cIsSignalingNaN, infzero, status);
890 if (status->default_nan_mode) {
891 /* Note that this check is after pickNaNMulAdd so that function
892 * has an opportunity to set the Invalid flag.
894 return float64_default_nan;
897 switch (which) {
898 case 0:
899 return float64_maybe_silence_nan(a);
900 case 1:
901 return float64_maybe_silence_nan(b);
902 case 2:
903 return float64_maybe_silence_nan(c);
904 case 3:
905 default:
906 return float64_default_nan;
910 #ifdef NO_SIGNALING_NANS
911 int floatx80_is_quiet_nan(floatx80 a_)
913 return floatx80_is_any_nan(a_);
916 int floatx80_is_signaling_nan(floatx80 a_)
918 return 0;
920 #else
921 /*----------------------------------------------------------------------------
922 | Returns 1 if the extended double-precision floating-point value `a' is a
923 | quiet NaN; otherwise returns 0. This slightly differs from the same
924 | function for other types as floatx80 has an explicit bit.
925 *----------------------------------------------------------------------------*/
927 int floatx80_is_quiet_nan( floatx80 a )
929 #if SNAN_BIT_IS_ONE
930 uint64_t aLow;
932 aLow = a.low & ~0x4000000000000000ULL;
933 return ((a.high & 0x7fff) == 0x7fff)
934 && (aLow << 1)
935 && (a.low == aLow);
936 #else
937 return ( ( a.high & 0x7FFF ) == 0x7FFF )
938 && (LIT64( 0x8000000000000000 ) <= ((uint64_t) ( a.low<<1 )));
939 #endif
942 /*----------------------------------------------------------------------------
943 | Returns 1 if the extended double-precision floating-point value `a' is a
944 | signaling NaN; otherwise returns 0. This slightly differs from the same
945 | function for other types as floatx80 has an explicit bit.
946 *----------------------------------------------------------------------------*/
948 int floatx80_is_signaling_nan( floatx80 a )
950 #if SNAN_BIT_IS_ONE
951 return ((a.high & 0x7fff) == 0x7fff)
952 && ((a.low << 1) >= 0x8000000000000000ULL);
953 #else
954 uint64_t aLow;
956 aLow = a.low & ~ LIT64( 0x4000000000000000 );
957 return
958 ( ( a.high & 0x7FFF ) == 0x7FFF )
959 && (uint64_t) ( aLow<<1 )
960 && ( a.low == aLow );
961 #endif
963 #endif
965 /*----------------------------------------------------------------------------
966 | Returns a quiet NaN if the extended double-precision floating point value
967 | `a' is a signaling NaN; otherwise returns `a'.
968 *----------------------------------------------------------------------------*/
970 floatx80 floatx80_maybe_silence_nan( floatx80 a )
972 if (floatx80_is_signaling_nan(a)) {
973 #if SNAN_BIT_IS_ONE
974 # if defined(TARGET_MIPS) || defined(TARGET_SH4) || defined(TARGET_UNICORE32)
975 a.low = floatx80_default_nan_low;
976 a.high = floatx80_default_nan_high;
977 # else
978 # error Rules for silencing a signaling NaN are target-specific
979 # endif
980 #else
981 a.low |= LIT64( 0xC000000000000000 );
982 return a;
983 #endif
985 return a;
988 /*----------------------------------------------------------------------------
989 | Returns the result of converting the extended double-precision floating-
990 | point NaN `a' to the canonical NaN format. If `a' is a signaling NaN, the
991 | invalid exception is raised.
992 *----------------------------------------------------------------------------*/
994 static commonNaNT floatx80ToCommonNaN(floatx80 a, float_status *status)
996 commonNaNT z;
998 if (floatx80_is_signaling_nan(a)) {
999 float_raise(float_flag_invalid, status);
1001 if ( a.low >> 63 ) {
1002 z.sign = a.high >> 15;
1003 z.low = 0;
1004 z.high = a.low << 1;
1005 } else {
1006 z.sign = floatx80_default_nan_high >> 15;
1007 z.low = 0;
1008 z.high = floatx80_default_nan_low << 1;
1010 return z;
1013 /*----------------------------------------------------------------------------
1014 | Returns the result of converting the canonical NaN `a' to the extended
1015 | double-precision floating-point format.
1016 *----------------------------------------------------------------------------*/
1018 static floatx80 commonNaNToFloatx80(commonNaNT a, float_status *status)
1020 floatx80 z;
1022 if (status->default_nan_mode) {
1023 z.low = floatx80_default_nan_low;
1024 z.high = floatx80_default_nan_high;
1025 return z;
1028 if (a.high >> 1) {
1029 z.low = LIT64( 0x8000000000000000 ) | a.high >> 1;
1030 z.high = ( ( (uint16_t) a.sign )<<15 ) | 0x7FFF;
1031 } else {
1032 z.low = floatx80_default_nan_low;
1033 z.high = floatx80_default_nan_high;
1036 return z;
1039 /*----------------------------------------------------------------------------
1040 | Takes two extended double-precision floating-point values `a' and `b', one
1041 | of which is a NaN, and returns the appropriate NaN result. If either `a' or
1042 | `b' is a signaling NaN, the invalid exception is raised.
1043 *----------------------------------------------------------------------------*/
1045 static floatx80 propagateFloatx80NaN(floatx80 a, floatx80 b,
1046 float_status *status)
1048 flag aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN;
1049 flag aIsLargerSignificand;
1051 aIsQuietNaN = floatx80_is_quiet_nan( a );
1052 aIsSignalingNaN = floatx80_is_signaling_nan( a );
1053 bIsQuietNaN = floatx80_is_quiet_nan( b );
1054 bIsSignalingNaN = floatx80_is_signaling_nan( b );
1056 if (aIsSignalingNaN | bIsSignalingNaN) {
1057 float_raise(float_flag_invalid, status);
1060 if (status->default_nan_mode) {
1061 a.low = floatx80_default_nan_low;
1062 a.high = floatx80_default_nan_high;
1063 return a;
1066 if (a.low < b.low) {
1067 aIsLargerSignificand = 0;
1068 } else if (b.low < a.low) {
1069 aIsLargerSignificand = 1;
1070 } else {
1071 aIsLargerSignificand = (a.high < b.high) ? 1 : 0;
1074 if (pickNaN(aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN,
1075 aIsLargerSignificand)) {
1076 return floatx80_maybe_silence_nan(b);
1077 } else {
1078 return floatx80_maybe_silence_nan(a);
1082 #ifdef NO_SIGNALING_NANS
1083 int float128_is_quiet_nan(float128 a_)
1085 return float128_is_any_nan(a_);
1088 int float128_is_signaling_nan(float128 a_)
1090 return 0;
1092 #else
1093 /*----------------------------------------------------------------------------
1094 | Returns 1 if the quadruple-precision floating-point value `a' is a quiet
1095 | NaN; otherwise returns 0.
1096 *----------------------------------------------------------------------------*/
1098 int float128_is_quiet_nan( float128 a )
1100 #if SNAN_BIT_IS_ONE
1101 return (((a.high >> 47) & 0xffff) == 0xfffe)
1102 && (a.low || (a.high & 0x00007fffffffffffULL));
1103 #else
1104 return
1105 ((a.high << 1) >= 0xffff000000000000ULL)
1106 && (a.low || (a.high & 0x0000ffffffffffffULL));
1107 #endif
1110 /*----------------------------------------------------------------------------
1111 | Returns 1 if the quadruple-precision floating-point value `a' is a
1112 | signaling NaN; otherwise returns 0.
1113 *----------------------------------------------------------------------------*/
1115 int float128_is_signaling_nan( float128 a )
1117 #if SNAN_BIT_IS_ONE
1118 return
1119 ((a.high << 1) >= 0xffff000000000000ULL)
1120 && (a.low || (a.high & 0x0000ffffffffffffULL));
1121 #else
1122 return
1123 ( ( ( a.high>>47 ) & 0xFFFF ) == 0xFFFE )
1124 && ( a.low || ( a.high & LIT64( 0x00007FFFFFFFFFFF ) ) );
1125 #endif
1127 #endif
1129 /*----------------------------------------------------------------------------
1130 | Returns a quiet NaN if the quadruple-precision floating point value `a' is
1131 | a signaling NaN; otherwise returns `a'.
1132 *----------------------------------------------------------------------------*/
1134 float128 float128_maybe_silence_nan( float128 a )
1136 if (float128_is_signaling_nan(a)) {
1137 #if SNAN_BIT_IS_ONE
1138 # if defined(TARGET_MIPS) || defined(TARGET_SH4) || defined(TARGET_UNICORE32)
1139 a.low = float128_default_nan_low;
1140 a.high = float128_default_nan_high;
1141 # else
1142 # error Rules for silencing a signaling NaN are target-specific
1143 # endif
1144 #else
1145 a.high |= LIT64( 0x0000800000000000 );
1146 return a;
1147 #endif
1149 return a;
1152 /*----------------------------------------------------------------------------
1153 | Returns the result of converting the quadruple-precision floating-point NaN
1154 | `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
1155 | exception is raised.
1156 *----------------------------------------------------------------------------*/
1158 static commonNaNT float128ToCommonNaN(float128 a, float_status *status)
1160 commonNaNT z;
1162 if (float128_is_signaling_nan(a)) {
1163 float_raise(float_flag_invalid, status);
1165 z.sign = a.high>>63;
1166 shortShift128Left( a.high, a.low, 16, &z.high, &z.low );
1167 return z;
1170 /*----------------------------------------------------------------------------
1171 | Returns the result of converting the canonical NaN `a' to the quadruple-
1172 | precision floating-point format.
1173 *----------------------------------------------------------------------------*/
1175 static float128 commonNaNToFloat128(commonNaNT a, float_status *status)
1177 float128 z;
1179 if (status->default_nan_mode) {
1180 z.low = float128_default_nan_low;
1181 z.high = float128_default_nan_high;
1182 return z;
1185 shift128Right( a.high, a.low, 16, &z.high, &z.low );
1186 z.high |= ( ( (uint64_t) a.sign )<<63 ) | LIT64( 0x7FFF000000000000 );
1187 return z;
1190 /*----------------------------------------------------------------------------
1191 | Takes two quadruple-precision floating-point values `a' and `b', one of
1192 | which is a NaN, and returns the appropriate NaN result. If either `a' or
1193 | `b' is a signaling NaN, the invalid exception is raised.
1194 *----------------------------------------------------------------------------*/
1196 static float128 propagateFloat128NaN(float128 a, float128 b,
1197 float_status *status)
1199 flag aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN;
1200 flag aIsLargerSignificand;
1202 aIsQuietNaN = float128_is_quiet_nan( a );
1203 aIsSignalingNaN = float128_is_signaling_nan( a );
1204 bIsQuietNaN = float128_is_quiet_nan( b );
1205 bIsSignalingNaN = float128_is_signaling_nan( b );
1207 if (aIsSignalingNaN | bIsSignalingNaN) {
1208 float_raise(float_flag_invalid, status);
1211 if (status->default_nan_mode) {
1212 a.low = float128_default_nan_low;
1213 a.high = float128_default_nan_high;
1214 return a;
1217 if (lt128(a.high<<1, a.low, b.high<<1, b.low)) {
1218 aIsLargerSignificand = 0;
1219 } else if (lt128(b.high<<1, b.low, a.high<<1, a.low)) {
1220 aIsLargerSignificand = 1;
1221 } else {
1222 aIsLargerSignificand = (a.high < b.high) ? 1 : 0;
1225 if (pickNaN(aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN,
1226 aIsLargerSignificand)) {
1227 return float128_maybe_silence_nan(b);
1228 } else {
1229 return float128_maybe_silence_nan(a);