fix KVMs GET_SUPPORTED_CPUID feature usage
[qemu.git] / target-i386 / kvm.c
blob70a9b45588706f06699340322f7c7c0f8e321aeb
1 /*
2 * QEMU KVM support
4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
15 #include <sys/types.h>
16 #include <sys/ioctl.h>
17 #include <sys/mman.h>
19 #include <linux/kvm.h>
21 #include "qemu-common.h"
22 #include "sysemu.h"
23 #include "kvm.h"
24 #include "cpu.h"
25 #include "gdbstub.h"
27 //#define DEBUG_KVM
29 #ifdef DEBUG_KVM
30 #define dprintf(fmt, ...) \
31 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
32 #else
33 #define dprintf(fmt, ...) \
34 do { } while (0)
35 #endif
37 #ifdef KVM_CAP_EXT_CPUID
39 static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
41 struct kvm_cpuid2 *cpuid;
42 int r, size;
44 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
45 cpuid = (struct kvm_cpuid2 *)qemu_mallocz(size);
46 cpuid->nent = max;
47 r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
48 if (r == 0 && cpuid->nent >= max) {
49 r = -E2BIG;
51 if (r < 0) {
52 if (r == -E2BIG) {
53 qemu_free(cpuid);
54 return NULL;
55 } else {
56 fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
57 strerror(-r));
58 exit(1);
61 return cpuid;
64 uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function, int reg)
66 struct kvm_cpuid2 *cpuid;
67 int i, max;
68 uint32_t ret = 0;
69 uint32_t cpuid_1_edx;
71 if (!kvm_check_extension(env->kvm_state, KVM_CAP_EXT_CPUID)) {
72 return -1U;
75 max = 1;
76 while ((cpuid = try_get_cpuid(env->kvm_state, max)) == NULL) {
77 max *= 2;
80 for (i = 0; i < cpuid->nent; ++i) {
81 if (cpuid->entries[i].function == function) {
82 switch (reg) {
83 case R_EAX:
84 ret = cpuid->entries[i].eax;
85 break;
86 case R_EBX:
87 ret = cpuid->entries[i].ebx;
88 break;
89 case R_ECX:
90 ret = cpuid->entries[i].ecx;
91 break;
92 case R_EDX:
93 ret = cpuid->entries[i].edx;
94 if (function == 0x80000001) {
95 /* On Intel, kvm returns cpuid according to the Intel spec,
96 * so add missing bits according to the AMD spec:
98 cpuid_1_edx = kvm_arch_get_supported_cpuid(env, 1, R_EDX);
99 ret |= cpuid_1_edx & 0xdfeff7ff;
101 break;
106 qemu_free(cpuid);
108 return ret;
111 #else
113 uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function, int reg)
115 return -1U;
118 #endif
120 static void kvm_trim_features(uint32_t *features, uint32_t supported)
122 int i;
123 uint32_t mask;
125 for (i = 0; i < 32; ++i) {
126 mask = 1U << i;
127 if ((*features & mask) && !(supported & mask)) {
128 *features &= ~mask;
133 int kvm_arch_init_vcpu(CPUState *env)
135 struct {
136 struct kvm_cpuid2 cpuid;
137 struct kvm_cpuid_entry2 entries[100];
138 } __attribute__((packed)) cpuid_data;
139 uint32_t limit, i, j, cpuid_i;
140 uint32_t unused;
142 env->mp_state = KVM_MP_STATE_RUNNABLE;
144 kvm_trim_features(&env->cpuid_features,
145 kvm_arch_get_supported_cpuid(env, 1, R_EDX));
146 kvm_trim_features(&env->cpuid_ext_features,
147 kvm_arch_get_supported_cpuid(env, 1, R_ECX));
148 kvm_trim_features(&env->cpuid_ext2_features,
149 kvm_arch_get_supported_cpuid(env, 0x80000001, R_EDX));
150 kvm_trim_features(&env->cpuid_ext3_features,
151 kvm_arch_get_supported_cpuid(env, 0x80000001, R_ECX));
153 cpuid_i = 0;
155 cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
157 for (i = 0; i <= limit; i++) {
158 struct kvm_cpuid_entry2 *c = &cpuid_data.entries[cpuid_i++];
160 switch (i) {
161 case 2: {
162 /* Keep reading function 2 till all the input is received */
163 int times;
165 c->function = i;
166 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
167 KVM_CPUID_FLAG_STATE_READ_NEXT;
168 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
169 times = c->eax & 0xff;
171 for (j = 1; j < times; ++j) {
172 c = &cpuid_data.entries[cpuid_i++];
173 c->function = i;
174 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
175 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
177 break;
179 case 4:
180 case 0xb:
181 case 0xd:
182 for (j = 0; ; j++) {
183 c->function = i;
184 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
185 c->index = j;
186 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
188 if (i == 4 && c->eax == 0)
189 break;
190 if (i == 0xb && !(c->ecx & 0xff00))
191 break;
192 if (i == 0xd && c->eax == 0)
193 break;
195 c = &cpuid_data.entries[cpuid_i++];
197 break;
198 default:
199 c->function = i;
200 c->flags = 0;
201 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
202 break;
205 cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
207 for (i = 0x80000000; i <= limit; i++) {
208 struct kvm_cpuid_entry2 *c = &cpuid_data.entries[cpuid_i++];
210 c->function = i;
211 c->flags = 0;
212 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
215 cpuid_data.cpuid.nent = cpuid_i;
217 return kvm_vcpu_ioctl(env, KVM_SET_CPUID2, &cpuid_data);
220 static int kvm_has_msr_star(CPUState *env)
222 static int has_msr_star;
223 int ret;
225 /* first time */
226 if (has_msr_star == 0) {
227 struct kvm_msr_list msr_list, *kvm_msr_list;
229 has_msr_star = -1;
231 /* Obtain MSR list from KVM. These are the MSRs that we must
232 * save/restore */
233 msr_list.nmsrs = 0;
234 ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, &msr_list);
235 if (ret < 0)
236 return 0;
238 kvm_msr_list = qemu_mallocz(sizeof(msr_list) +
239 msr_list.nmsrs * sizeof(msr_list.indices[0]));
241 kvm_msr_list->nmsrs = msr_list.nmsrs;
242 ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
243 if (ret >= 0) {
244 int i;
246 for (i = 0; i < kvm_msr_list->nmsrs; i++) {
247 if (kvm_msr_list->indices[i] == MSR_STAR) {
248 has_msr_star = 1;
249 break;
254 free(kvm_msr_list);
257 if (has_msr_star == 1)
258 return 1;
259 return 0;
262 int kvm_arch_init(KVMState *s, int smp_cpus)
264 int ret;
266 /* create vm86 tss. KVM uses vm86 mode to emulate 16-bit code
267 * directly. In order to use vm86 mode, a TSS is needed. Since this
268 * must be part of guest physical memory, we need to allocate it. Older
269 * versions of KVM just assumed that it would be at the end of physical
270 * memory but that doesn't work with more than 4GB of memory. We simply
271 * refuse to work with those older versions of KVM. */
272 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_SET_TSS_ADDR);
273 if (ret <= 0) {
274 fprintf(stderr, "kvm does not support KVM_CAP_SET_TSS_ADDR\n");
275 return ret;
278 /* this address is 3 pages before the bios, and the bios should present
279 * as unavaible memory. FIXME, need to ensure the e820 map deals with
280 * this?
282 return kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, 0xfffbd000);
285 static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
287 lhs->selector = rhs->selector;
288 lhs->base = rhs->base;
289 lhs->limit = rhs->limit;
290 lhs->type = 3;
291 lhs->present = 1;
292 lhs->dpl = 3;
293 lhs->db = 0;
294 lhs->s = 1;
295 lhs->l = 0;
296 lhs->g = 0;
297 lhs->avl = 0;
298 lhs->unusable = 0;
301 static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
303 unsigned flags = rhs->flags;
304 lhs->selector = rhs->selector;
305 lhs->base = rhs->base;
306 lhs->limit = rhs->limit;
307 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
308 lhs->present = (flags & DESC_P_MASK) != 0;
309 lhs->dpl = rhs->selector & 3;
310 lhs->db = (flags >> DESC_B_SHIFT) & 1;
311 lhs->s = (flags & DESC_S_MASK) != 0;
312 lhs->l = (flags >> DESC_L_SHIFT) & 1;
313 lhs->g = (flags & DESC_G_MASK) != 0;
314 lhs->avl = (flags & DESC_AVL_MASK) != 0;
315 lhs->unusable = 0;
318 static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
320 lhs->selector = rhs->selector;
321 lhs->base = rhs->base;
322 lhs->limit = rhs->limit;
323 lhs->flags =
324 (rhs->type << DESC_TYPE_SHIFT)
325 | (rhs->present * DESC_P_MASK)
326 | (rhs->dpl << DESC_DPL_SHIFT)
327 | (rhs->db << DESC_B_SHIFT)
328 | (rhs->s * DESC_S_MASK)
329 | (rhs->l << DESC_L_SHIFT)
330 | (rhs->g * DESC_G_MASK)
331 | (rhs->avl * DESC_AVL_MASK);
334 static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
336 if (set)
337 *kvm_reg = *qemu_reg;
338 else
339 *qemu_reg = *kvm_reg;
342 static int kvm_getput_regs(CPUState *env, int set)
344 struct kvm_regs regs;
345 int ret = 0;
347 if (!set) {
348 ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, &regs);
349 if (ret < 0)
350 return ret;
353 kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
354 kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
355 kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
356 kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
357 kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
358 kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
359 kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
360 kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
361 #ifdef TARGET_X86_64
362 kvm_getput_reg(&regs.r8, &env->regs[8], set);
363 kvm_getput_reg(&regs.r9, &env->regs[9], set);
364 kvm_getput_reg(&regs.r10, &env->regs[10], set);
365 kvm_getput_reg(&regs.r11, &env->regs[11], set);
366 kvm_getput_reg(&regs.r12, &env->regs[12], set);
367 kvm_getput_reg(&regs.r13, &env->regs[13], set);
368 kvm_getput_reg(&regs.r14, &env->regs[14], set);
369 kvm_getput_reg(&regs.r15, &env->regs[15], set);
370 #endif
372 kvm_getput_reg(&regs.rflags, &env->eflags, set);
373 kvm_getput_reg(&regs.rip, &env->eip, set);
375 if (set)
376 ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, &regs);
378 return ret;
381 static int kvm_put_fpu(CPUState *env)
383 struct kvm_fpu fpu;
384 int i;
386 memset(&fpu, 0, sizeof fpu);
387 fpu.fsw = env->fpus & ~(7 << 11);
388 fpu.fsw |= (env->fpstt & 7) << 11;
389 fpu.fcw = env->fpuc;
390 for (i = 0; i < 8; ++i)
391 fpu.ftwx |= (!env->fptags[i]) << i;
392 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
393 memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
394 fpu.mxcsr = env->mxcsr;
396 return kvm_vcpu_ioctl(env, KVM_SET_FPU, &fpu);
399 static int kvm_put_sregs(CPUState *env)
401 struct kvm_sregs sregs;
403 memcpy(sregs.interrupt_bitmap,
404 env->interrupt_bitmap,
405 sizeof(sregs.interrupt_bitmap));
407 if ((env->eflags & VM_MASK)) {
408 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
409 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
410 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
411 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
412 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
413 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
414 } else {
415 set_seg(&sregs.cs, &env->segs[R_CS]);
416 set_seg(&sregs.ds, &env->segs[R_DS]);
417 set_seg(&sregs.es, &env->segs[R_ES]);
418 set_seg(&sregs.fs, &env->segs[R_FS]);
419 set_seg(&sregs.gs, &env->segs[R_GS]);
420 set_seg(&sregs.ss, &env->segs[R_SS]);
422 if (env->cr[0] & CR0_PE_MASK) {
423 /* force ss cpl to cs cpl */
424 sregs.ss.selector = (sregs.ss.selector & ~3) |
425 (sregs.cs.selector & 3);
426 sregs.ss.dpl = sregs.ss.selector & 3;
430 set_seg(&sregs.tr, &env->tr);
431 set_seg(&sregs.ldt, &env->ldt);
433 sregs.idt.limit = env->idt.limit;
434 sregs.idt.base = env->idt.base;
435 sregs.gdt.limit = env->gdt.limit;
436 sregs.gdt.base = env->gdt.base;
438 sregs.cr0 = env->cr[0];
439 sregs.cr2 = env->cr[2];
440 sregs.cr3 = env->cr[3];
441 sregs.cr4 = env->cr[4];
443 sregs.cr8 = cpu_get_apic_tpr(env);
444 sregs.apic_base = cpu_get_apic_base(env);
446 sregs.efer = env->efer;
448 return kvm_vcpu_ioctl(env, KVM_SET_SREGS, &sregs);
451 static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
452 uint32_t index, uint64_t value)
454 entry->index = index;
455 entry->data = value;
458 static int kvm_put_msrs(CPUState *env)
460 struct {
461 struct kvm_msrs info;
462 struct kvm_msr_entry entries[100];
463 } msr_data;
464 struct kvm_msr_entry *msrs = msr_data.entries;
465 int n = 0;
467 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
468 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
469 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
470 if (kvm_has_msr_star(env))
471 kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
472 kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
473 #ifdef TARGET_X86_64
474 /* FIXME if lm capable */
475 kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
476 kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
477 kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
478 kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
479 #endif
480 msr_data.info.nmsrs = n;
482 return kvm_vcpu_ioctl(env, KVM_SET_MSRS, &msr_data);
487 static int kvm_get_fpu(CPUState *env)
489 struct kvm_fpu fpu;
490 int i, ret;
492 ret = kvm_vcpu_ioctl(env, KVM_GET_FPU, &fpu);
493 if (ret < 0)
494 return ret;
496 env->fpstt = (fpu.fsw >> 11) & 7;
497 env->fpus = fpu.fsw;
498 env->fpuc = fpu.fcw;
499 for (i = 0; i < 8; ++i)
500 env->fptags[i] = !((fpu.ftwx >> i) & 1);
501 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
502 memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
503 env->mxcsr = fpu.mxcsr;
505 return 0;
508 static int kvm_get_sregs(CPUState *env)
510 struct kvm_sregs sregs;
511 uint32_t hflags;
512 int ret;
514 ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
515 if (ret < 0)
516 return ret;
518 memcpy(env->interrupt_bitmap,
519 sregs.interrupt_bitmap,
520 sizeof(sregs.interrupt_bitmap));
522 get_seg(&env->segs[R_CS], &sregs.cs);
523 get_seg(&env->segs[R_DS], &sregs.ds);
524 get_seg(&env->segs[R_ES], &sregs.es);
525 get_seg(&env->segs[R_FS], &sregs.fs);
526 get_seg(&env->segs[R_GS], &sregs.gs);
527 get_seg(&env->segs[R_SS], &sregs.ss);
529 get_seg(&env->tr, &sregs.tr);
530 get_seg(&env->ldt, &sregs.ldt);
532 env->idt.limit = sregs.idt.limit;
533 env->idt.base = sregs.idt.base;
534 env->gdt.limit = sregs.gdt.limit;
535 env->gdt.base = sregs.gdt.base;
537 env->cr[0] = sregs.cr0;
538 env->cr[2] = sregs.cr2;
539 env->cr[3] = sregs.cr3;
540 env->cr[4] = sregs.cr4;
542 cpu_set_apic_base(env, sregs.apic_base);
544 env->efer = sregs.efer;
545 //cpu_set_apic_tpr(env, sregs.cr8);
547 #define HFLAG_COPY_MASK ~( \
548 HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
549 HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
550 HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
551 HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
555 hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
556 hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
557 hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
558 (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
559 hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
560 hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
561 (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
563 if (env->efer & MSR_EFER_LMA) {
564 hflags |= HF_LMA_MASK;
567 if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
568 hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
569 } else {
570 hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
571 (DESC_B_SHIFT - HF_CS32_SHIFT);
572 hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
573 (DESC_B_SHIFT - HF_SS32_SHIFT);
574 if (!(env->cr[0] & CR0_PE_MASK) ||
575 (env->eflags & VM_MASK) ||
576 !(hflags & HF_CS32_MASK)) {
577 hflags |= HF_ADDSEG_MASK;
578 } else {
579 hflags |= ((env->segs[R_DS].base |
580 env->segs[R_ES].base |
581 env->segs[R_SS].base) != 0) <<
582 HF_ADDSEG_SHIFT;
585 env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
587 return 0;
590 static int kvm_get_msrs(CPUState *env)
592 struct {
593 struct kvm_msrs info;
594 struct kvm_msr_entry entries[100];
595 } msr_data;
596 struct kvm_msr_entry *msrs = msr_data.entries;
597 int ret, i, n;
599 n = 0;
600 msrs[n++].index = MSR_IA32_SYSENTER_CS;
601 msrs[n++].index = MSR_IA32_SYSENTER_ESP;
602 msrs[n++].index = MSR_IA32_SYSENTER_EIP;
603 if (kvm_has_msr_star(env))
604 msrs[n++].index = MSR_STAR;
605 msrs[n++].index = MSR_IA32_TSC;
606 #ifdef TARGET_X86_64
607 /* FIXME lm_capable_kernel */
608 msrs[n++].index = MSR_CSTAR;
609 msrs[n++].index = MSR_KERNELGSBASE;
610 msrs[n++].index = MSR_FMASK;
611 msrs[n++].index = MSR_LSTAR;
612 #endif
613 msr_data.info.nmsrs = n;
614 ret = kvm_vcpu_ioctl(env, KVM_GET_MSRS, &msr_data);
615 if (ret < 0)
616 return ret;
618 for (i = 0; i < ret; i++) {
619 switch (msrs[i].index) {
620 case MSR_IA32_SYSENTER_CS:
621 env->sysenter_cs = msrs[i].data;
622 break;
623 case MSR_IA32_SYSENTER_ESP:
624 env->sysenter_esp = msrs[i].data;
625 break;
626 case MSR_IA32_SYSENTER_EIP:
627 env->sysenter_eip = msrs[i].data;
628 break;
629 case MSR_STAR:
630 env->star = msrs[i].data;
631 break;
632 #ifdef TARGET_X86_64
633 case MSR_CSTAR:
634 env->cstar = msrs[i].data;
635 break;
636 case MSR_KERNELGSBASE:
637 env->kernelgsbase = msrs[i].data;
638 break;
639 case MSR_FMASK:
640 env->fmask = msrs[i].data;
641 break;
642 case MSR_LSTAR:
643 env->lstar = msrs[i].data;
644 break;
645 #endif
646 case MSR_IA32_TSC:
647 env->tsc = msrs[i].data;
648 break;
652 return 0;
655 int kvm_arch_put_registers(CPUState *env)
657 int ret;
659 ret = kvm_getput_regs(env, 1);
660 if (ret < 0)
661 return ret;
663 ret = kvm_put_fpu(env);
664 if (ret < 0)
665 return ret;
667 ret = kvm_put_sregs(env);
668 if (ret < 0)
669 return ret;
671 ret = kvm_put_msrs(env);
672 if (ret < 0)
673 return ret;
675 ret = kvm_put_mp_state(env);
676 if (ret < 0)
677 return ret;
679 ret = kvm_get_mp_state(env);
680 if (ret < 0)
681 return ret;
683 return 0;
686 int kvm_arch_get_registers(CPUState *env)
688 int ret;
690 ret = kvm_getput_regs(env, 0);
691 if (ret < 0)
692 return ret;
694 ret = kvm_get_fpu(env);
695 if (ret < 0)
696 return ret;
698 ret = kvm_get_sregs(env);
699 if (ret < 0)
700 return ret;
702 ret = kvm_get_msrs(env);
703 if (ret < 0)
704 return ret;
706 return 0;
709 int kvm_arch_pre_run(CPUState *env, struct kvm_run *run)
711 /* Try to inject an interrupt if the guest can accept it */
712 if (run->ready_for_interrupt_injection &&
713 (env->interrupt_request & CPU_INTERRUPT_HARD) &&
714 (env->eflags & IF_MASK)) {
715 int irq;
717 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
718 irq = cpu_get_pic_interrupt(env);
719 if (irq >= 0) {
720 struct kvm_interrupt intr;
721 intr.irq = irq;
722 /* FIXME: errors */
723 dprintf("injected interrupt %d\n", irq);
724 kvm_vcpu_ioctl(env, KVM_INTERRUPT, &intr);
728 /* If we have an interrupt but the guest is not ready to receive an
729 * interrupt, request an interrupt window exit. This will
730 * cause a return to userspace as soon as the guest is ready to
731 * receive interrupts. */
732 if ((env->interrupt_request & CPU_INTERRUPT_HARD))
733 run->request_interrupt_window = 1;
734 else
735 run->request_interrupt_window = 0;
737 dprintf("setting tpr\n");
738 run->cr8 = cpu_get_apic_tpr(env);
740 return 0;
743 int kvm_arch_post_run(CPUState *env, struct kvm_run *run)
745 if (run->if_flag)
746 env->eflags |= IF_MASK;
747 else
748 env->eflags &= ~IF_MASK;
750 cpu_set_apic_tpr(env, run->cr8);
751 cpu_set_apic_base(env, run->apic_base);
753 return 0;
756 static int kvm_handle_halt(CPUState *env)
758 if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
759 (env->eflags & IF_MASK)) &&
760 !(env->interrupt_request & CPU_INTERRUPT_NMI)) {
761 env->halted = 1;
762 env->exception_index = EXCP_HLT;
763 return 0;
766 return 1;
769 int kvm_arch_handle_exit(CPUState *env, struct kvm_run *run)
771 int ret = 0;
773 switch (run->exit_reason) {
774 case KVM_EXIT_HLT:
775 dprintf("handle_hlt\n");
776 ret = kvm_handle_halt(env);
777 break;
780 return ret;
783 #ifdef KVM_CAP_SET_GUEST_DEBUG
784 int kvm_arch_insert_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
786 const static uint8_t int3 = 0xcc;
788 if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
789 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&int3, 1, 1))
790 return -EINVAL;
791 return 0;
794 int kvm_arch_remove_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
796 uint8_t int3;
798 if (cpu_memory_rw_debug(env, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
799 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1))
800 return -EINVAL;
801 return 0;
804 static struct {
805 target_ulong addr;
806 int len;
807 int type;
808 } hw_breakpoint[4];
810 static int nb_hw_breakpoint;
812 static int find_hw_breakpoint(target_ulong addr, int len, int type)
814 int n;
816 for (n = 0; n < nb_hw_breakpoint; n++)
817 if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
818 (hw_breakpoint[n].len == len || len == -1))
819 return n;
820 return -1;
823 int kvm_arch_insert_hw_breakpoint(target_ulong addr,
824 target_ulong len, int type)
826 switch (type) {
827 case GDB_BREAKPOINT_HW:
828 len = 1;
829 break;
830 case GDB_WATCHPOINT_WRITE:
831 case GDB_WATCHPOINT_ACCESS:
832 switch (len) {
833 case 1:
834 break;
835 case 2:
836 case 4:
837 case 8:
838 if (addr & (len - 1))
839 return -EINVAL;
840 break;
841 default:
842 return -EINVAL;
844 break;
845 default:
846 return -ENOSYS;
849 if (nb_hw_breakpoint == 4)
850 return -ENOBUFS;
852 if (find_hw_breakpoint(addr, len, type) >= 0)
853 return -EEXIST;
855 hw_breakpoint[nb_hw_breakpoint].addr = addr;
856 hw_breakpoint[nb_hw_breakpoint].len = len;
857 hw_breakpoint[nb_hw_breakpoint].type = type;
858 nb_hw_breakpoint++;
860 return 0;
863 int kvm_arch_remove_hw_breakpoint(target_ulong addr,
864 target_ulong len, int type)
866 int n;
868 n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
869 if (n < 0)
870 return -ENOENT;
872 nb_hw_breakpoint--;
873 hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
875 return 0;
878 void kvm_arch_remove_all_hw_breakpoints(void)
880 nb_hw_breakpoint = 0;
883 static CPUWatchpoint hw_watchpoint;
885 int kvm_arch_debug(struct kvm_debug_exit_arch *arch_info)
887 int handle = 0;
888 int n;
890 if (arch_info->exception == 1) {
891 if (arch_info->dr6 & (1 << 14)) {
892 if (cpu_single_env->singlestep_enabled)
893 handle = 1;
894 } else {
895 for (n = 0; n < 4; n++)
896 if (arch_info->dr6 & (1 << n))
897 switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
898 case 0x0:
899 handle = 1;
900 break;
901 case 0x1:
902 handle = 1;
903 cpu_single_env->watchpoint_hit = &hw_watchpoint;
904 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
905 hw_watchpoint.flags = BP_MEM_WRITE;
906 break;
907 case 0x3:
908 handle = 1;
909 cpu_single_env->watchpoint_hit = &hw_watchpoint;
910 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
911 hw_watchpoint.flags = BP_MEM_ACCESS;
912 break;
915 } else if (kvm_find_sw_breakpoint(cpu_single_env, arch_info->pc))
916 handle = 1;
918 if (!handle)
919 kvm_update_guest_debug(cpu_single_env,
920 (arch_info->exception == 1) ?
921 KVM_GUESTDBG_INJECT_DB : KVM_GUESTDBG_INJECT_BP);
923 return handle;
926 void kvm_arch_update_guest_debug(CPUState *env, struct kvm_guest_debug *dbg)
928 const uint8_t type_code[] = {
929 [GDB_BREAKPOINT_HW] = 0x0,
930 [GDB_WATCHPOINT_WRITE] = 0x1,
931 [GDB_WATCHPOINT_ACCESS] = 0x3
933 const uint8_t len_code[] = {
934 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
936 int n;
938 if (kvm_sw_breakpoints_active(env))
939 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
941 if (nb_hw_breakpoint > 0) {
942 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
943 dbg->arch.debugreg[7] = 0x0600;
944 for (n = 0; n < nb_hw_breakpoint; n++) {
945 dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
946 dbg->arch.debugreg[7] |= (2 << (n * 2)) |
947 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
948 (len_code[hw_breakpoint[n].len] << (18 + n*4));
952 #endif /* KVM_CAP_SET_GUEST_DEBUG */