Refactor translation block CPU state handling (Jan Kiszka)
[qemu.git] / gdbstub.c
blob15d38f0f4fa8d576bd460cbaa3e67abc97e1f2bd
1 /*
2 * gdb server stub
4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 #include "config.h"
21 #include "qemu-common.h"
22 #ifdef CONFIG_USER_ONLY
23 #include <stdlib.h>
24 #include <stdio.h>
25 #include <stdarg.h>
26 #include <string.h>
27 #include <errno.h>
28 #include <unistd.h>
29 #include <fcntl.h>
31 #include "qemu.h"
32 #else
33 #include "qemu-char.h"
34 #include "sysemu.h"
35 #include "gdbstub.h"
36 #endif
38 #define MAX_PACKET_LENGTH 4096
40 #include "qemu_socket.h"
41 #ifdef _WIN32
42 /* XXX: these constants may be independent of the host ones even for Unix */
43 #ifndef SIGTRAP
44 #define SIGTRAP 5
45 #endif
46 #ifndef SIGINT
47 #define SIGINT 2
48 #endif
49 #else
50 #include <signal.h>
51 #endif
53 //#define DEBUG_GDB
55 typedef struct GDBRegisterState {
56 int base_reg;
57 int num_regs;
58 gdb_reg_cb get_reg;
59 gdb_reg_cb set_reg;
60 const char *xml;
61 struct GDBRegisterState *next;
62 } GDBRegisterState;
64 enum RSState {
65 RS_IDLE,
66 RS_GETLINE,
67 RS_CHKSUM1,
68 RS_CHKSUM2,
69 RS_SYSCALL,
71 typedef struct GDBState {
72 CPUState *env; /* current CPU */
73 enum RSState state; /* parsing state */
74 char line_buf[MAX_PACKET_LENGTH];
75 int line_buf_index;
76 int line_csum;
77 uint8_t last_packet[MAX_PACKET_LENGTH + 4];
78 int last_packet_len;
79 int signal;
80 #ifdef CONFIG_USER_ONLY
81 int fd;
82 int running_state;
83 #else
84 CharDriverState *chr;
85 #endif
86 } GDBState;
88 /* By default use no IRQs and no timers while single stepping so as to
89 * make single stepping like an ICE HW step.
91 static int sstep_flags = SSTEP_ENABLE|SSTEP_NOIRQ|SSTEP_NOTIMER;
93 /* This is an ugly hack to cope with both new and old gdb.
94 If gdb sends qXfer:features:read then assume we're talking to a newish
95 gdb that understands target descriptions. */
96 static int gdb_has_xml;
98 #ifdef CONFIG_USER_ONLY
99 /* XXX: This is not thread safe. Do we care? */
100 static int gdbserver_fd = -1;
102 /* XXX: remove this hack. */
103 static GDBState gdbserver_state;
105 static int get_char(GDBState *s)
107 uint8_t ch;
108 int ret;
110 for(;;) {
111 ret = recv(s->fd, &ch, 1, 0);
112 if (ret < 0) {
113 if (errno == ECONNRESET)
114 s->fd = -1;
115 if (errno != EINTR && errno != EAGAIN)
116 return -1;
117 } else if (ret == 0) {
118 close(s->fd);
119 s->fd = -1;
120 return -1;
121 } else {
122 break;
125 return ch;
127 #endif
129 /* GDB stub state for use by semihosting syscalls. */
130 static GDBState *gdb_syscall_state;
131 static gdb_syscall_complete_cb gdb_current_syscall_cb;
133 enum {
134 GDB_SYS_UNKNOWN,
135 GDB_SYS_ENABLED,
136 GDB_SYS_DISABLED,
137 } gdb_syscall_mode;
139 /* If gdb is connected when the first semihosting syscall occurs then use
140 remote gdb syscalls. Otherwise use native file IO. */
141 int use_gdb_syscalls(void)
143 if (gdb_syscall_mode == GDB_SYS_UNKNOWN) {
144 gdb_syscall_mode = (gdb_syscall_state ? GDB_SYS_ENABLED
145 : GDB_SYS_DISABLED);
147 return gdb_syscall_mode == GDB_SYS_ENABLED;
150 /* Resume execution. */
151 static inline void gdb_continue(GDBState *s)
153 #ifdef CONFIG_USER_ONLY
154 s->running_state = 1;
155 #else
156 vm_start();
157 #endif
160 static void put_buffer(GDBState *s, const uint8_t *buf, int len)
162 #ifdef CONFIG_USER_ONLY
163 int ret;
165 while (len > 0) {
166 ret = send(s->fd, buf, len, 0);
167 if (ret < 0) {
168 if (errno != EINTR && errno != EAGAIN)
169 return;
170 } else {
171 buf += ret;
172 len -= ret;
175 #else
176 qemu_chr_write(s->chr, buf, len);
177 #endif
180 static inline int fromhex(int v)
182 if (v >= '0' && v <= '9')
183 return v - '0';
184 else if (v >= 'A' && v <= 'F')
185 return v - 'A' + 10;
186 else if (v >= 'a' && v <= 'f')
187 return v - 'a' + 10;
188 else
189 return 0;
192 static inline int tohex(int v)
194 if (v < 10)
195 return v + '0';
196 else
197 return v - 10 + 'a';
200 static void memtohex(char *buf, const uint8_t *mem, int len)
202 int i, c;
203 char *q;
204 q = buf;
205 for(i = 0; i < len; i++) {
206 c = mem[i];
207 *q++ = tohex(c >> 4);
208 *q++ = tohex(c & 0xf);
210 *q = '\0';
213 static void hextomem(uint8_t *mem, const char *buf, int len)
215 int i;
217 for(i = 0; i < len; i++) {
218 mem[i] = (fromhex(buf[0]) << 4) | fromhex(buf[1]);
219 buf += 2;
223 /* return -1 if error, 0 if OK */
224 static int put_packet_binary(GDBState *s, const char *buf, int len)
226 int csum, i;
227 uint8_t *p;
229 for(;;) {
230 p = s->last_packet;
231 *(p++) = '$';
232 memcpy(p, buf, len);
233 p += len;
234 csum = 0;
235 for(i = 0; i < len; i++) {
236 csum += buf[i];
238 *(p++) = '#';
239 *(p++) = tohex((csum >> 4) & 0xf);
240 *(p++) = tohex((csum) & 0xf);
242 s->last_packet_len = p - s->last_packet;
243 put_buffer(s, (uint8_t *)s->last_packet, s->last_packet_len);
245 #ifdef CONFIG_USER_ONLY
246 i = get_char(s);
247 if (i < 0)
248 return -1;
249 if (i == '+')
250 break;
251 #else
252 break;
253 #endif
255 return 0;
258 /* return -1 if error, 0 if OK */
259 static int put_packet(GDBState *s, const char *buf)
261 #ifdef DEBUG_GDB
262 printf("reply='%s'\n", buf);
263 #endif
265 return put_packet_binary(s, buf, strlen(buf));
268 /* The GDB remote protocol transfers values in target byte order. This means
269 we can use the raw memory access routines to access the value buffer.
270 Conveniently, these also handle the case where the buffer is mis-aligned.
272 #define GET_REG8(val) do { \
273 stb_p(mem_buf, val); \
274 return 1; \
275 } while(0)
276 #define GET_REG16(val) do { \
277 stw_p(mem_buf, val); \
278 return 2; \
279 } while(0)
280 #define GET_REG32(val) do { \
281 stl_p(mem_buf, val); \
282 return 4; \
283 } while(0)
284 #define GET_REG64(val) do { \
285 stq_p(mem_buf, val); \
286 return 8; \
287 } while(0)
289 #if TARGET_LONG_BITS == 64
290 #define GET_REGL(val) GET_REG64(val)
291 #define ldtul_p(addr) ldq_p(addr)
292 #else
293 #define GET_REGL(val) GET_REG32(val)
294 #define ldtul_p(addr) ldl_p(addr)
295 #endif
297 #if defined(TARGET_I386)
299 #ifdef TARGET_X86_64
300 static const int gpr_map[16] = {
301 R_EAX, R_EBX, R_ECX, R_EDX, R_ESI, R_EDI, R_EBP, R_ESP,
302 8, 9, 10, 11, 12, 13, 14, 15
304 #else
305 static const int gpr_map[8] = {0, 1, 2, 3, 4, 5, 6, 7};
306 #endif
308 #define NUM_CORE_REGS (CPU_NB_REGS * 2 + 25)
310 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
312 if (n < CPU_NB_REGS) {
313 GET_REGL(env->regs[gpr_map[n]]);
314 } else if (n >= CPU_NB_REGS + 8 && n < CPU_NB_REGS + 16) {
315 /* FIXME: byteswap float values. */
316 #ifdef USE_X86LDOUBLE
317 memcpy(mem_buf, &env->fpregs[n - (CPU_NB_REGS + 8)], 10);
318 #else
319 memset(mem_buf, 0, 10);
320 #endif
321 return 10;
322 } else if (n >= CPU_NB_REGS + 24) {
323 n -= CPU_NB_REGS + 24;
324 if (n < CPU_NB_REGS) {
325 stq_p(mem_buf, env->xmm_regs[n].XMM_Q(0));
326 stq_p(mem_buf + 8, env->xmm_regs[n].XMM_Q(1));
327 return 16;
328 } else if (n == CPU_NB_REGS) {
329 GET_REG32(env->mxcsr);
331 } else {
332 n -= CPU_NB_REGS;
333 switch (n) {
334 case 0: GET_REGL(env->eip);
335 case 1: GET_REG32(env->eflags);
336 case 2: GET_REG32(env->segs[R_CS].selector);
337 case 3: GET_REG32(env->segs[R_SS].selector);
338 case 4: GET_REG32(env->segs[R_DS].selector);
339 case 5: GET_REG32(env->segs[R_ES].selector);
340 case 6: GET_REG32(env->segs[R_FS].selector);
341 case 7: GET_REG32(env->segs[R_GS].selector);
342 /* 8...15 x87 regs. */
343 case 16: GET_REG32(env->fpuc);
344 case 17: GET_REG32((env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11);
345 case 18: GET_REG32(0); /* ftag */
346 case 19: GET_REG32(0); /* fiseg */
347 case 20: GET_REG32(0); /* fioff */
348 case 21: GET_REG32(0); /* foseg */
349 case 22: GET_REG32(0); /* fooff */
350 case 23: GET_REG32(0); /* fop */
351 /* 24+ xmm regs. */
354 return 0;
357 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int i)
359 uint32_t tmp;
361 if (i < CPU_NB_REGS) {
362 env->regs[gpr_map[i]] = ldtul_p(mem_buf);
363 return sizeof(target_ulong);
364 } else if (i >= CPU_NB_REGS + 8 && i < CPU_NB_REGS + 16) {
365 i -= CPU_NB_REGS + 8;
366 #ifdef USE_X86LDOUBLE
367 memcpy(&env->fpregs[i], mem_buf, 10);
368 #endif
369 return 10;
370 } else if (i >= CPU_NB_REGS + 24) {
371 i -= CPU_NB_REGS + 24;
372 if (i < CPU_NB_REGS) {
373 env->xmm_regs[i].XMM_Q(0) = ldq_p(mem_buf);
374 env->xmm_regs[i].XMM_Q(1) = ldq_p(mem_buf + 8);
375 return 16;
376 } else if (i == CPU_NB_REGS) {
377 env->mxcsr = ldl_p(mem_buf);
378 return 4;
380 } else {
381 i -= CPU_NB_REGS;
382 switch (i) {
383 case 0: env->eip = ldtul_p(mem_buf); return sizeof(target_ulong);
384 case 1: env->eflags = ldl_p(mem_buf); return 4;
385 #if defined(CONFIG_USER_ONLY)
386 #define LOAD_SEG(index, sreg)\
387 tmp = ldl_p(mem_buf);\
388 if (tmp != env->segs[sreg].selector)\
389 cpu_x86_load_seg(env, sreg, tmp);
390 #else
391 /* FIXME: Honor segment registers. Needs to avoid raising an exception
392 when the selector is invalid. */
393 #define LOAD_SEG(index, sreg) do {} while(0)
394 #endif
395 case 2: LOAD_SEG(10, R_CS); return 4;
396 case 3: LOAD_SEG(11, R_SS); return 4;
397 case 4: LOAD_SEG(12, R_DS); return 4;
398 case 5: LOAD_SEG(13, R_ES); return 4;
399 case 6: LOAD_SEG(14, R_FS); return 4;
400 case 7: LOAD_SEG(15, R_GS); return 4;
401 /* 8...15 x87 regs. */
402 case 16: env->fpuc = ldl_p(mem_buf); return 4;
403 case 17:
404 tmp = ldl_p(mem_buf);
405 env->fpstt = (tmp >> 11) & 7;
406 env->fpus = tmp & ~0x3800;
407 return 4;
408 case 18: /* ftag */ return 4;
409 case 19: /* fiseg */ return 4;
410 case 20: /* fioff */ return 4;
411 case 21: /* foseg */ return 4;
412 case 22: /* fooff */ return 4;
413 case 23: /* fop */ return 4;
414 /* 24+ xmm regs. */
417 /* Unrecognised register. */
418 return 0;
421 #elif defined (TARGET_PPC)
423 #define NUM_CORE_REGS 71
425 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
427 if (n < 32) {
428 /* gprs */
429 GET_REGL(env->gpr[n]);
430 } else if (n < 64) {
431 /* fprs */
432 stfq_p(mem_buf, env->fpr[n]);
433 return 8;
434 } else {
435 switch (n) {
436 case 64: GET_REGL(env->nip);
437 case 65: GET_REGL(env->msr);
438 case 66:
440 uint32_t cr = 0;
441 int i;
442 for (i = 0; i < 8; i++)
443 cr |= env->crf[i] << (32 - ((i + 1) * 4));
444 GET_REG32(cr);
446 case 67: GET_REGL(env->lr);
447 case 68: GET_REGL(env->ctr);
448 case 69: GET_REGL(env->xer);
449 case 70: GET_REG32(0); /* fpscr */
452 return 0;
455 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
457 if (n < 32) {
458 /* gprs */
459 env->gpr[n] = ldtul_p(mem_buf);
460 return sizeof(target_ulong);
461 } else if (n < 64) {
462 /* fprs */
463 env->fpr[n] = ldfq_p(mem_buf);
464 return 8;
465 } else {
466 switch (n) {
467 case 64:
468 env->nip = ldtul_p(mem_buf);
469 return sizeof(target_ulong);
470 case 65:
471 ppc_store_msr(env, ldtul_p(mem_buf));
472 return sizeof(target_ulong);
473 case 66:
475 uint32_t cr = ldl_p(mem_buf);
476 int i;
477 for (i = 0; i < 8; i++)
478 env->crf[i] = (cr >> (32 - ((i + 1) * 4))) & 0xF;
479 return 4;
481 case 67:
482 env->lr = ldtul_p(mem_buf);
483 return sizeof(target_ulong);
484 case 68:
485 env->ctr = ldtul_p(mem_buf);
486 return sizeof(target_ulong);
487 case 69:
488 env->xer = ldtul_p(mem_buf);
489 return sizeof(target_ulong);
490 case 70:
491 /* fpscr */
492 return 4;
495 return 0;
498 #elif defined (TARGET_SPARC)
500 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
501 #define NUM_CORE_REGS 86
502 #else
503 #define NUM_CORE_REGS 73
504 #endif
506 #ifdef TARGET_ABI32
507 #define GET_REGA(val) GET_REG32(val)
508 #else
509 #define GET_REGA(val) GET_REGL(val)
510 #endif
512 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
514 if (n < 8) {
515 /* g0..g7 */
516 GET_REGA(env->gregs[n]);
518 if (n < 32) {
519 /* register window */
520 GET_REGA(env->regwptr[n - 8]);
522 #if defined(TARGET_ABI32) || !defined(TARGET_SPARC64)
523 if (n < 64) {
524 /* fprs */
525 GET_REG32(*((uint32_t *)&env->fpr[n - 32]));
527 /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
528 switch (n) {
529 case 64: GET_REGA(env->y);
530 case 65: GET_REGA(GET_PSR(env));
531 case 66: GET_REGA(env->wim);
532 case 67: GET_REGA(env->tbr);
533 case 68: GET_REGA(env->pc);
534 case 69: GET_REGA(env->npc);
535 case 70: GET_REGA(env->fsr);
536 case 71: GET_REGA(0); /* csr */
537 case 72: GET_REGA(0);
539 #else
540 if (n < 64) {
541 /* f0-f31 */
542 GET_REG32(*((uint32_t *)&env->fpr[n - 32]));
544 if (n < 80) {
545 /* f32-f62 (double width, even numbers only) */
546 uint64_t val;
548 val = (uint64_t)*((uint32_t *)&env->fpr[(n - 64) * 2 + 32]) << 32;
549 val |= *((uint32_t *)&env->fpr[(n - 64) * 2 + 33]);
550 GET_REG64(val);
552 switch (n) {
553 case 80: GET_REGL(env->pc);
554 case 81: GET_REGL(env->npc);
555 case 82: GET_REGL(((uint64_t)GET_CCR(env) << 32) |
556 ((env->asi & 0xff) << 24) |
557 ((env->pstate & 0xfff) << 8) |
558 GET_CWP64(env));
559 case 83: GET_REGL(env->fsr);
560 case 84: GET_REGL(env->fprs);
561 case 85: GET_REGL(env->y);
563 #endif
564 return 0;
567 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
569 #if defined(TARGET_ABI32)
570 abi_ulong tmp;
572 tmp = ldl_p(mem_buf);
573 #else
574 target_ulong tmp;
576 tmp = ldtul_p(mem_buf);
577 #endif
579 if (n < 8) {
580 /* g0..g7 */
581 env->gregs[n] = tmp;
582 } else if (n < 32) {
583 /* register window */
584 env->regwptr[n - 8] = tmp;
586 #if defined(TARGET_ABI32) || !defined(TARGET_SPARC64)
587 else if (n < 64) {
588 /* fprs */
589 *((uint32_t *)&env->fpr[n - 32]) = tmp;
590 } else {
591 /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
592 switch (n) {
593 case 64: env->y = tmp; break;
594 case 65: PUT_PSR(env, tmp); break;
595 case 66: env->wim = tmp; break;
596 case 67: env->tbr = tmp; break;
597 case 68: env->pc = tmp; break;
598 case 69: env->npc = tmp; break;
599 case 70: env->fsr = tmp; break;
600 default: return 0;
603 return 4;
604 #else
605 else if (n < 64) {
606 /* f0-f31 */
607 env->fpr[n] = ldfl_p(mem_buf);
608 return 4;
609 } else if (n < 80) {
610 /* f32-f62 (double width, even numbers only) */
611 *((uint32_t *)&env->fpr[(n - 64) * 2 + 32]) = tmp >> 32;
612 *((uint32_t *)&env->fpr[(n - 64) * 2 + 33]) = tmp;
613 } else {
614 switch (n) {
615 case 80: env->pc = tmp; break;
616 case 81: env->npc = tmp; break;
617 case 82:
618 PUT_CCR(env, tmp >> 32);
619 env->asi = (tmp >> 24) & 0xff;
620 env->pstate = (tmp >> 8) & 0xfff;
621 PUT_CWP64(env, tmp & 0xff);
622 break;
623 case 83: env->fsr = tmp; break;
624 case 84: env->fprs = tmp; break;
625 case 85: env->y = tmp; break;
626 default: return 0;
629 return 8;
630 #endif
632 #elif defined (TARGET_ARM)
634 /* Old gdb always expect FPA registers. Newer (xml-aware) gdb only expect
635 whatever the target description contains. Due to a historical mishap
636 the FPA registers appear in between core integer regs and the CPSR.
637 We hack round this by giving the FPA regs zero size when talking to a
638 newer gdb. */
639 #define NUM_CORE_REGS 26
640 #define GDB_CORE_XML "arm-core.xml"
642 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
644 if (n < 16) {
645 /* Core integer register. */
646 GET_REG32(env->regs[n]);
648 if (n < 24) {
649 /* FPA registers. */
650 if (gdb_has_xml)
651 return 0;
652 memset(mem_buf, 0, 12);
653 return 12;
655 switch (n) {
656 case 24:
657 /* FPA status register. */
658 if (gdb_has_xml)
659 return 0;
660 GET_REG32(0);
661 case 25:
662 /* CPSR */
663 GET_REG32(cpsr_read(env));
665 /* Unknown register. */
666 return 0;
669 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
671 uint32_t tmp;
673 tmp = ldl_p(mem_buf);
675 /* Mask out low bit of PC to workaround gdb bugs. This will probably
676 cause problems if we ever implement the Jazelle DBX extensions. */
677 if (n == 15)
678 tmp &= ~1;
680 if (n < 16) {
681 /* Core integer register. */
682 env->regs[n] = tmp;
683 return 4;
685 if (n < 24) { /* 16-23 */
686 /* FPA registers (ignored). */
687 if (gdb_has_xml)
688 return 0;
689 return 12;
691 switch (n) {
692 case 24:
693 /* FPA status register (ignored). */
694 if (gdb_has_xml)
695 return 0;
696 return 4;
697 case 25:
698 /* CPSR */
699 cpsr_write (env, tmp, 0xffffffff);
700 return 4;
702 /* Unknown register. */
703 return 0;
706 #elif defined (TARGET_M68K)
708 #define NUM_CORE_REGS 18
710 #define GDB_CORE_XML "cf-core.xml"
712 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
714 if (n < 8) {
715 /* D0-D7 */
716 GET_REG32(env->dregs[n]);
717 } else if (n < 16) {
718 /* A0-A7 */
719 GET_REG32(env->aregs[n - 8]);
720 } else {
721 switch (n) {
722 case 16: GET_REG32(env->sr);
723 case 17: GET_REG32(env->pc);
726 /* FP registers not included here because they vary between
727 ColdFire and m68k. Use XML bits for these. */
728 return 0;
731 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
733 uint32_t tmp;
735 tmp = ldl_p(mem_buf);
737 if (n < 8) {
738 /* D0-D7 */
739 env->dregs[n] = tmp;
740 } else if (n < 8) {
741 /* A0-A7 */
742 env->aregs[n - 8] = tmp;
743 } else {
744 switch (n) {
745 case 16: env->sr = tmp; break;
746 case 17: env->pc = tmp; break;
747 default: return 0;
750 return 4;
752 #elif defined (TARGET_MIPS)
754 #define NUM_CORE_REGS 73
756 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
758 if (n < 32) {
759 GET_REGL(env->active_tc.gpr[n]);
761 if (env->CP0_Config1 & (1 << CP0C1_FP)) {
762 if (n >= 38 && n < 70) {
763 if (env->CP0_Status & (1 << CP0St_FR))
764 GET_REGL(env->active_fpu.fpr[n - 38].d);
765 else
766 GET_REGL(env->active_fpu.fpr[n - 38].w[FP_ENDIAN_IDX]);
768 switch (n) {
769 case 70: GET_REGL((int32_t)env->active_fpu.fcr31);
770 case 71: GET_REGL((int32_t)env->active_fpu.fcr0);
773 switch (n) {
774 case 32: GET_REGL((int32_t)env->CP0_Status);
775 case 33: GET_REGL(env->active_tc.LO[0]);
776 case 34: GET_REGL(env->active_tc.HI[0]);
777 case 35: GET_REGL(env->CP0_BadVAddr);
778 case 36: GET_REGL((int32_t)env->CP0_Cause);
779 case 37: GET_REGL(env->active_tc.PC);
780 case 72: GET_REGL(0); /* fp */
781 case 89: GET_REGL((int32_t)env->CP0_PRid);
783 if (n >= 73 && n <= 88) {
784 /* 16 embedded regs. */
785 GET_REGL(0);
788 return 0;
791 /* convert MIPS rounding mode in FCR31 to IEEE library */
792 static unsigned int ieee_rm[] =
794 float_round_nearest_even,
795 float_round_to_zero,
796 float_round_up,
797 float_round_down
799 #define RESTORE_ROUNDING_MODE \
800 set_float_rounding_mode(ieee_rm[env->active_fpu.fcr31 & 3], &env->active_fpu.fp_status)
802 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
804 target_ulong tmp;
806 tmp = ldtul_p(mem_buf);
808 if (n < 32) {
809 env->active_tc.gpr[n] = tmp;
810 return sizeof(target_ulong);
812 if (env->CP0_Config1 & (1 << CP0C1_FP)
813 && n >= 38 && n < 73) {
814 if (n < 70) {
815 if (env->CP0_Status & (1 << CP0St_FR))
816 env->active_fpu.fpr[n - 38].d = tmp;
817 else
818 env->active_fpu.fpr[n - 38].w[FP_ENDIAN_IDX] = tmp;
820 switch (n) {
821 case 70:
822 env->active_fpu.fcr31 = tmp & 0xFF83FFFF;
823 /* set rounding mode */
824 RESTORE_ROUNDING_MODE;
825 #ifndef CONFIG_SOFTFLOAT
826 /* no floating point exception for native float */
827 SET_FP_ENABLE(env->active_fpu.fcr31, 0);
828 #endif
829 break;
830 case 71: env->active_fpu.fcr0 = tmp; break;
832 return sizeof(target_ulong);
834 switch (n) {
835 case 32: env->CP0_Status = tmp; break;
836 case 33: env->active_tc.LO[0] = tmp; break;
837 case 34: env->active_tc.HI[0] = tmp; break;
838 case 35: env->CP0_BadVAddr = tmp; break;
839 case 36: env->CP0_Cause = tmp; break;
840 case 37: env->active_tc.PC = tmp; break;
841 case 72: /* fp, ignored */ break;
842 default:
843 if (n > 89)
844 return 0;
845 /* Other registers are readonly. Ignore writes. */
846 break;
849 return sizeof(target_ulong);
851 #elif defined (TARGET_SH4)
853 /* Hint: Use "set architecture sh4" in GDB to see fpu registers */
854 /* FIXME: We should use XML for this. */
856 #define NUM_CORE_REGS 59
858 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
860 if (n < 8) {
861 if ((env->sr & (SR_MD | SR_RB)) == (SR_MD | SR_RB)) {
862 GET_REGL(env->gregs[n + 16]);
863 } else {
864 GET_REGL(env->gregs[n]);
866 } else if (n < 16) {
867 GET_REGL(env->gregs[n - 8]);
868 } else if (n >= 25 && n < 41) {
869 GET_REGL(env->fregs[(n - 25) + ((env->fpscr & FPSCR_FR) ? 16 : 0)]);
870 } else if (n >= 43 && n < 51) {
871 GET_REGL(env->gregs[n - 43]);
872 } else if (n >= 51 && n < 59) {
873 GET_REGL(env->gregs[n - (51 - 16)]);
875 switch (n) {
876 case 16: GET_REGL(env->pc);
877 case 17: GET_REGL(env->pr);
878 case 18: GET_REGL(env->gbr);
879 case 19: GET_REGL(env->vbr);
880 case 20: GET_REGL(env->mach);
881 case 21: GET_REGL(env->macl);
882 case 22: GET_REGL(env->sr);
883 case 23: GET_REGL(env->fpul);
884 case 24: GET_REGL(env->fpscr);
885 case 41: GET_REGL(env->ssr);
886 case 42: GET_REGL(env->spc);
889 return 0;
892 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
894 uint32_t tmp;
896 tmp = ldl_p(mem_buf);
898 if (n < 8) {
899 if ((env->sr & (SR_MD | SR_RB)) == (SR_MD | SR_RB)) {
900 env->gregs[n + 16] = tmp;
901 } else {
902 env->gregs[n] = tmp;
904 return 4;
905 } else if (n < 16) {
906 env->gregs[n - 8] = tmp;
907 return 4;
908 } else if (n >= 25 && n < 41) {
909 env->fregs[(n - 25) + ((env->fpscr & FPSCR_FR) ? 16 : 0)] = tmp;
910 } else if (n >= 43 && n < 51) {
911 env->gregs[n - 43] = tmp;
912 return 4;
913 } else if (n >= 51 && n < 59) {
914 env->gregs[n - (51 - 16)] = tmp;
915 return 4;
917 switch (n) {
918 case 16: env->pc = tmp;
919 case 17: env->pr = tmp;
920 case 18: env->gbr = tmp;
921 case 19: env->vbr = tmp;
922 case 20: env->mach = tmp;
923 case 21: env->macl = tmp;
924 case 22: env->sr = tmp;
925 case 23: env->fpul = tmp;
926 case 24: env->fpscr = tmp;
927 case 41: env->ssr = tmp;
928 case 42: env->spc = tmp;
929 default: return 0;
932 return 4;
934 #elif defined (TARGET_CRIS)
936 #define NUM_CORE_REGS 49
938 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
940 uint8_t srs;
942 srs = env->pregs[PR_SRS];
943 if (n < 16) {
944 GET_REG32(env->regs[n]);
947 if (n >= 21 && n < 32) {
948 GET_REG32(env->pregs[n - 16]);
950 if (n >= 33 && n < 49) {
951 GET_REG32(env->sregs[srs][n - 33]);
953 switch (n) {
954 case 16: GET_REG8(env->pregs[0]);
955 case 17: GET_REG8(env->pregs[1]);
956 case 18: GET_REG32(env->pregs[2]);
957 case 19: GET_REG8(srs);
958 case 20: GET_REG16(env->pregs[4]);
959 case 32: GET_REG32(env->pc);
962 return 0;
965 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
967 uint32_t tmp;
969 if (n > 49)
970 return 0;
972 tmp = ldl_p(mem_buf);
974 if (n < 16) {
975 env->regs[n] = tmp;
978 if (n >= 21 && n < 32) {
979 env->pregs[n - 16] = tmp;
982 /* FIXME: Should support function regs be writable? */
983 switch (n) {
984 case 16: return 1;
985 case 17: return 1;
986 case 18: env->pregs[PR_PID] = tmp; break;
987 case 19: return 1;
988 case 20: return 2;
989 case 32: env->pc = tmp; break;
992 return 4;
994 #else
996 #define NUM_CORE_REGS 0
998 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
1000 return 0;
1003 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
1005 return 0;
1008 #endif
1010 static int num_g_regs = NUM_CORE_REGS;
1012 #ifdef GDB_CORE_XML
1013 /* Encode data using the encoding for 'x' packets. */
1014 static int memtox(char *buf, const char *mem, int len)
1016 char *p = buf;
1017 char c;
1019 while (len--) {
1020 c = *(mem++);
1021 switch (c) {
1022 case '#': case '$': case '*': case '}':
1023 *(p++) = '}';
1024 *(p++) = c ^ 0x20;
1025 break;
1026 default:
1027 *(p++) = c;
1028 break;
1031 return p - buf;
1034 const char *get_feature_xml(CPUState *env, const char *p, const char **newp)
1036 extern const char *const xml_builtin[][2];
1037 size_t len;
1038 int i;
1039 const char *name;
1040 static char target_xml[1024];
1042 len = 0;
1043 while (p[len] && p[len] != ':')
1044 len++;
1045 *newp = p + len;
1047 name = NULL;
1048 if (strncmp(p, "target.xml", len) == 0) {
1049 /* Generate the XML description for this CPU. */
1050 if (!target_xml[0]) {
1051 GDBRegisterState *r;
1053 snprintf(target_xml, sizeof(target_xml),
1054 "<?xml version=\"1.0\"?>"
1055 "<!DOCTYPE target SYSTEM \"gdb-target.dtd\">"
1056 "<target>"
1057 "<xi:include href=\"%s\"/>",
1058 GDB_CORE_XML);
1060 for (r = env->gdb_regs; r; r = r->next) {
1061 strcat(target_xml, "<xi:include href=\"");
1062 strcat(target_xml, r->xml);
1063 strcat(target_xml, "\"/>");
1065 strcat(target_xml, "</target>");
1067 return target_xml;
1069 for (i = 0; ; i++) {
1070 name = xml_builtin[i][0];
1071 if (!name || (strncmp(name, p, len) == 0 && strlen(name) == len))
1072 break;
1074 return name ? xml_builtin[i][1] : NULL;
1076 #endif
1078 static int gdb_read_register(CPUState *env, uint8_t *mem_buf, int reg)
1080 GDBRegisterState *r;
1082 if (reg < NUM_CORE_REGS)
1083 return cpu_gdb_read_register(env, mem_buf, reg);
1085 for (r = env->gdb_regs; r; r = r->next) {
1086 if (r->base_reg <= reg && reg < r->base_reg + r->num_regs) {
1087 return r->get_reg(env, mem_buf, reg - r->base_reg);
1090 return 0;
1093 static int gdb_write_register(CPUState *env, uint8_t *mem_buf, int reg)
1095 GDBRegisterState *r;
1097 if (reg < NUM_CORE_REGS)
1098 return cpu_gdb_write_register(env, mem_buf, reg);
1100 for (r = env->gdb_regs; r; r = r->next) {
1101 if (r->base_reg <= reg && reg < r->base_reg + r->num_regs) {
1102 return r->set_reg(env, mem_buf, reg - r->base_reg);
1105 return 0;
1108 /* Register a supplemental set of CPU registers. If g_pos is nonzero it
1109 specifies the first register number and these registers are included in
1110 a standard "g" packet. Direction is relative to gdb, i.e. get_reg is
1111 gdb reading a CPU register, and set_reg is gdb modifying a CPU register.
1114 void gdb_register_coprocessor(CPUState * env,
1115 gdb_reg_cb get_reg, gdb_reg_cb set_reg,
1116 int num_regs, const char *xml, int g_pos)
1118 GDBRegisterState *s;
1119 GDBRegisterState **p;
1120 static int last_reg = NUM_CORE_REGS;
1122 s = (GDBRegisterState *)qemu_mallocz(sizeof(GDBRegisterState));
1123 s->base_reg = last_reg;
1124 s->num_regs = num_regs;
1125 s->get_reg = get_reg;
1126 s->set_reg = set_reg;
1127 s->xml = xml;
1128 p = &env->gdb_regs;
1129 while (*p) {
1130 /* Check for duplicates. */
1131 if (strcmp((*p)->xml, xml) == 0)
1132 return;
1133 p = &(*p)->next;
1135 /* Add to end of list. */
1136 last_reg += num_regs;
1137 *p = s;
1138 if (g_pos) {
1139 if (g_pos != s->base_reg) {
1140 fprintf(stderr, "Error: Bad gdb register numbering for '%s'\n"
1141 "Expected %d got %d\n", xml, g_pos, s->base_reg);
1142 } else {
1143 num_g_regs = last_reg;
1148 static int gdb_handle_packet(GDBState *s, CPUState *env, const char *line_buf)
1150 const char *p;
1151 int ch, reg_size, type;
1152 char buf[MAX_PACKET_LENGTH];
1153 uint8_t mem_buf[MAX_PACKET_LENGTH];
1154 uint8_t *registers;
1155 target_ulong addr, len;
1157 #ifdef DEBUG_GDB
1158 printf("command='%s'\n", line_buf);
1159 #endif
1160 p = line_buf;
1161 ch = *p++;
1162 switch(ch) {
1163 case '?':
1164 /* TODO: Make this return the correct value for user-mode. */
1165 snprintf(buf, sizeof(buf), "S%02x", SIGTRAP);
1166 put_packet(s, buf);
1167 /* Remove all the breakpoints when this query is issued,
1168 * because gdb is doing and initial connect and the state
1169 * should be cleaned up.
1171 cpu_breakpoint_remove_all(env);
1172 cpu_watchpoint_remove_all(env);
1173 break;
1174 case 'c':
1175 if (*p != '\0') {
1176 addr = strtoull(p, (char **)&p, 16);
1177 #if defined(TARGET_I386)
1178 env->eip = addr;
1179 #elif defined (TARGET_PPC)
1180 env->nip = addr;
1181 #elif defined (TARGET_SPARC)
1182 env->pc = addr;
1183 env->npc = addr + 4;
1184 #elif defined (TARGET_ARM)
1185 env->regs[15] = addr;
1186 #elif defined (TARGET_SH4)
1187 env->pc = addr;
1188 #elif defined (TARGET_MIPS)
1189 env->active_tc.PC = addr;
1190 #elif defined (TARGET_CRIS)
1191 env->pc = addr;
1192 #endif
1194 gdb_continue(s);
1195 return RS_IDLE;
1196 case 'C':
1197 s->signal = strtoul(p, (char **)&p, 16);
1198 gdb_continue(s);
1199 return RS_IDLE;
1200 case 'k':
1201 /* Kill the target */
1202 fprintf(stderr, "\nQEMU: Terminated via GDBstub\n");
1203 exit(0);
1204 case 'D':
1205 /* Detach packet */
1206 cpu_breakpoint_remove_all(env);
1207 cpu_watchpoint_remove_all(env);
1208 gdb_continue(s);
1209 put_packet(s, "OK");
1210 break;
1211 case 's':
1212 if (*p != '\0') {
1213 addr = strtoull(p, (char **)&p, 16);
1214 #if defined(TARGET_I386)
1215 env->eip = addr;
1216 #elif defined (TARGET_PPC)
1217 env->nip = addr;
1218 #elif defined (TARGET_SPARC)
1219 env->pc = addr;
1220 env->npc = addr + 4;
1221 #elif defined (TARGET_ARM)
1222 env->regs[15] = addr;
1223 #elif defined (TARGET_SH4)
1224 env->pc = addr;
1225 #elif defined (TARGET_MIPS)
1226 env->active_tc.PC = addr;
1227 #elif defined (TARGET_CRIS)
1228 env->pc = addr;
1229 #endif
1231 cpu_single_step(env, sstep_flags);
1232 gdb_continue(s);
1233 return RS_IDLE;
1234 case 'F':
1236 target_ulong ret;
1237 target_ulong err;
1239 ret = strtoull(p, (char **)&p, 16);
1240 if (*p == ',') {
1241 p++;
1242 err = strtoull(p, (char **)&p, 16);
1243 } else {
1244 err = 0;
1246 if (*p == ',')
1247 p++;
1248 type = *p;
1249 if (gdb_current_syscall_cb)
1250 gdb_current_syscall_cb(s->env, ret, err);
1251 if (type == 'C') {
1252 put_packet(s, "T02");
1253 } else {
1254 gdb_continue(s);
1257 break;
1258 case 'g':
1259 len = 0;
1260 for (addr = 0; addr < num_g_regs; addr++) {
1261 reg_size = gdb_read_register(env, mem_buf + len, addr);
1262 len += reg_size;
1264 memtohex(buf, mem_buf, len);
1265 put_packet(s, buf);
1266 break;
1267 case 'G':
1268 registers = mem_buf;
1269 len = strlen(p) / 2;
1270 hextomem((uint8_t *)registers, p, len);
1271 for (addr = 0; addr < num_g_regs && len > 0; addr++) {
1272 reg_size = gdb_write_register(env, registers, addr);
1273 len -= reg_size;
1274 registers += reg_size;
1276 put_packet(s, "OK");
1277 break;
1278 case 'm':
1279 addr = strtoull(p, (char **)&p, 16);
1280 if (*p == ',')
1281 p++;
1282 len = strtoull(p, NULL, 16);
1283 if (cpu_memory_rw_debug(env, addr, mem_buf, len, 0) != 0) {
1284 put_packet (s, "E14");
1285 } else {
1286 memtohex(buf, mem_buf, len);
1287 put_packet(s, buf);
1289 break;
1290 case 'M':
1291 addr = strtoull(p, (char **)&p, 16);
1292 if (*p == ',')
1293 p++;
1294 len = strtoull(p, (char **)&p, 16);
1295 if (*p == ':')
1296 p++;
1297 hextomem(mem_buf, p, len);
1298 if (cpu_memory_rw_debug(env, addr, mem_buf, len, 1) != 0)
1299 put_packet(s, "E14");
1300 else
1301 put_packet(s, "OK");
1302 break;
1303 case 'p':
1304 /* Older gdb are really dumb, and don't use 'g' if 'p' is avaialable.
1305 This works, but can be very slow. Anything new enough to
1306 understand XML also knows how to use this properly. */
1307 if (!gdb_has_xml)
1308 goto unknown_command;
1309 addr = strtoull(p, (char **)&p, 16);
1310 reg_size = gdb_read_register(env, mem_buf, addr);
1311 if (reg_size) {
1312 memtohex(buf, mem_buf, reg_size);
1313 put_packet(s, buf);
1314 } else {
1315 put_packet(s, "E14");
1317 break;
1318 case 'P':
1319 if (!gdb_has_xml)
1320 goto unknown_command;
1321 addr = strtoull(p, (char **)&p, 16);
1322 if (*p == '=')
1323 p++;
1324 reg_size = strlen(p) / 2;
1325 hextomem(mem_buf, p, reg_size);
1326 gdb_write_register(env, mem_buf, addr);
1327 put_packet(s, "OK");
1328 break;
1329 case 'Z':
1330 type = strtoul(p, (char **)&p, 16);
1331 if (*p == ',')
1332 p++;
1333 addr = strtoull(p, (char **)&p, 16);
1334 if (*p == ',')
1335 p++;
1336 len = strtoull(p, (char **)&p, 16);
1337 switch (type) {
1338 case 0:
1339 case 1:
1340 if (cpu_breakpoint_insert(env, addr) < 0)
1341 goto breakpoint_error;
1342 put_packet(s, "OK");
1343 break;
1344 #ifndef CONFIG_USER_ONLY
1345 case 2:
1346 type = PAGE_WRITE;
1347 goto insert_watchpoint;
1348 case 3:
1349 type = PAGE_READ;
1350 goto insert_watchpoint;
1351 case 4:
1352 type = PAGE_READ | PAGE_WRITE;
1353 insert_watchpoint:
1354 if (cpu_watchpoint_insert(env, addr, type) < 0)
1355 goto breakpoint_error;
1356 put_packet(s, "OK");
1357 break;
1358 #endif
1359 default:
1360 put_packet(s, "");
1361 break;
1363 break;
1364 breakpoint_error:
1365 put_packet(s, "E22");
1366 break;
1368 case 'z':
1369 type = strtoul(p, (char **)&p, 16);
1370 if (*p == ',')
1371 p++;
1372 addr = strtoull(p, (char **)&p, 16);
1373 if (*p == ',')
1374 p++;
1375 len = strtoull(p, (char **)&p, 16);
1376 if (type == 0 || type == 1) {
1377 cpu_breakpoint_remove(env, addr);
1378 put_packet(s, "OK");
1379 #ifndef CONFIG_USER_ONLY
1380 } else if (type >= 2 || type <= 4) {
1381 cpu_watchpoint_remove(env, addr);
1382 put_packet(s, "OK");
1383 #endif
1384 } else {
1385 put_packet(s, "");
1387 break;
1388 case 'q':
1389 case 'Q':
1390 /* parse any 'q' packets here */
1391 if (!strcmp(p,"qemu.sstepbits")) {
1392 /* Query Breakpoint bit definitions */
1393 snprintf(buf, sizeof(buf), "ENABLE=%x,NOIRQ=%x,NOTIMER=%x",
1394 SSTEP_ENABLE,
1395 SSTEP_NOIRQ,
1396 SSTEP_NOTIMER);
1397 put_packet(s, buf);
1398 break;
1399 } else if (strncmp(p,"qemu.sstep",10) == 0) {
1400 /* Display or change the sstep_flags */
1401 p += 10;
1402 if (*p != '=') {
1403 /* Display current setting */
1404 snprintf(buf, sizeof(buf), "0x%x", sstep_flags);
1405 put_packet(s, buf);
1406 break;
1408 p++;
1409 type = strtoul(p, (char **)&p, 16);
1410 sstep_flags = type;
1411 put_packet(s, "OK");
1412 break;
1414 #ifdef CONFIG_LINUX_USER
1415 else if (strncmp(p, "Offsets", 7) == 0) {
1416 TaskState *ts = env->opaque;
1418 snprintf(buf, sizeof(buf),
1419 "Text=" TARGET_ABI_FMT_lx ";Data=" TARGET_ABI_FMT_lx
1420 ";Bss=" TARGET_ABI_FMT_lx,
1421 ts->info->code_offset,
1422 ts->info->data_offset,
1423 ts->info->data_offset);
1424 put_packet(s, buf);
1425 break;
1427 #endif
1428 if (strncmp(p, "Supported", 9) == 0) {
1429 snprintf(buf, sizeof(buf), "PacketSize=%x", MAX_PACKET_LENGTH);
1430 #ifdef GDB_CORE_XML
1431 strcat(buf, ";qXfer:features:read+");
1432 #endif
1433 put_packet(s, buf);
1434 break;
1436 #ifdef GDB_CORE_XML
1437 if (strncmp(p, "Xfer:features:read:", 19) == 0) {
1438 const char *xml;
1439 target_ulong total_len;
1441 gdb_has_xml = 1;
1442 p += 19;
1443 xml = get_feature_xml(env, p, &p);
1444 if (!xml) {
1445 snprintf(buf, sizeof(buf), "E00");
1446 put_packet(s, buf);
1447 break;
1450 if (*p == ':')
1451 p++;
1452 addr = strtoul(p, (char **)&p, 16);
1453 if (*p == ',')
1454 p++;
1455 len = strtoul(p, (char **)&p, 16);
1457 total_len = strlen(xml);
1458 if (addr > total_len) {
1459 snprintf(buf, sizeof(buf), "E00");
1460 put_packet(s, buf);
1461 break;
1463 if (len > (MAX_PACKET_LENGTH - 5) / 2)
1464 len = (MAX_PACKET_LENGTH - 5) / 2;
1465 if (len < total_len - addr) {
1466 buf[0] = 'm';
1467 len = memtox(buf + 1, xml + addr, len);
1468 } else {
1469 buf[0] = 'l';
1470 len = memtox(buf + 1, xml + addr, total_len - addr);
1472 put_packet_binary(s, buf, len + 1);
1473 break;
1475 #endif
1476 /* Unrecognised 'q' command. */
1477 goto unknown_command;
1479 default:
1480 unknown_command:
1481 /* put empty packet */
1482 buf[0] = '\0';
1483 put_packet(s, buf);
1484 break;
1486 return RS_IDLE;
1489 extern void tb_flush(CPUState *env);
1491 #ifndef CONFIG_USER_ONLY
1492 static void gdb_vm_stopped(void *opaque, int reason)
1494 GDBState *s = opaque;
1495 char buf[256];
1496 int ret;
1498 if (s->state == RS_SYSCALL)
1499 return;
1501 /* disable single step if it was enable */
1502 cpu_single_step(s->env, 0);
1504 if (reason == EXCP_DEBUG) {
1505 if (s->env->watchpoint_hit) {
1506 snprintf(buf, sizeof(buf), "T%02xwatch:" TARGET_FMT_lx ";",
1507 SIGTRAP,
1508 s->env->watchpoint[s->env->watchpoint_hit - 1].vaddr);
1509 put_packet(s, buf);
1510 s->env->watchpoint_hit = 0;
1511 return;
1513 tb_flush(s->env);
1514 ret = SIGTRAP;
1515 } else if (reason == EXCP_INTERRUPT) {
1516 ret = SIGINT;
1517 } else {
1518 ret = 0;
1520 snprintf(buf, sizeof(buf), "S%02x", ret);
1521 put_packet(s, buf);
1523 #endif
1525 /* Send a gdb syscall request.
1526 This accepts limited printf-style format specifiers, specifically:
1527 %x - target_ulong argument printed in hex.
1528 %lx - 64-bit argument printed in hex.
1529 %s - string pointer (target_ulong) and length (int) pair. */
1530 void gdb_do_syscall(gdb_syscall_complete_cb cb, const char *fmt, ...)
1532 va_list va;
1533 char buf[256];
1534 char *p;
1535 target_ulong addr;
1536 uint64_t i64;
1537 GDBState *s;
1539 s = gdb_syscall_state;
1540 if (!s)
1541 return;
1542 gdb_current_syscall_cb = cb;
1543 s->state = RS_SYSCALL;
1544 #ifndef CONFIG_USER_ONLY
1545 vm_stop(EXCP_DEBUG);
1546 #endif
1547 s->state = RS_IDLE;
1548 va_start(va, fmt);
1549 p = buf;
1550 *(p++) = 'F';
1551 while (*fmt) {
1552 if (*fmt == '%') {
1553 fmt++;
1554 switch (*fmt++) {
1555 case 'x':
1556 addr = va_arg(va, target_ulong);
1557 p += snprintf(p, &buf[sizeof(buf)] - p, TARGET_FMT_lx, addr);
1558 break;
1559 case 'l':
1560 if (*(fmt++) != 'x')
1561 goto bad_format;
1562 i64 = va_arg(va, uint64_t);
1563 p += snprintf(p, &buf[sizeof(buf)] - p, "%" PRIx64, i64);
1564 break;
1565 case 's':
1566 addr = va_arg(va, target_ulong);
1567 p += snprintf(p, &buf[sizeof(buf)] - p, TARGET_FMT_lx "/%x",
1568 addr, va_arg(va, int));
1569 break;
1570 default:
1571 bad_format:
1572 fprintf(stderr, "gdbstub: Bad syscall format string '%s'\n",
1573 fmt - 1);
1574 break;
1576 } else {
1577 *(p++) = *(fmt++);
1580 *p = 0;
1581 va_end(va);
1582 put_packet(s, buf);
1583 #ifdef CONFIG_USER_ONLY
1584 gdb_handlesig(s->env, 0);
1585 #else
1586 cpu_interrupt(s->env, CPU_INTERRUPT_EXIT);
1587 #endif
1590 static void gdb_read_byte(GDBState *s, int ch)
1592 CPUState *env = s->env;
1593 int i, csum;
1594 uint8_t reply;
1596 #ifndef CONFIG_USER_ONLY
1597 if (s->last_packet_len) {
1598 /* Waiting for a response to the last packet. If we see the start
1599 of a new command then abandon the previous response. */
1600 if (ch == '-') {
1601 #ifdef DEBUG_GDB
1602 printf("Got NACK, retransmitting\n");
1603 #endif
1604 put_buffer(s, (uint8_t *)s->last_packet, s->last_packet_len);
1606 #ifdef DEBUG_GDB
1607 else if (ch == '+')
1608 printf("Got ACK\n");
1609 else
1610 printf("Got '%c' when expecting ACK/NACK\n", ch);
1611 #endif
1612 if (ch == '+' || ch == '$')
1613 s->last_packet_len = 0;
1614 if (ch != '$')
1615 return;
1617 if (vm_running) {
1618 /* when the CPU is running, we cannot do anything except stop
1619 it when receiving a char */
1620 vm_stop(EXCP_INTERRUPT);
1621 } else
1622 #endif
1624 switch(s->state) {
1625 case RS_IDLE:
1626 if (ch == '$') {
1627 s->line_buf_index = 0;
1628 s->state = RS_GETLINE;
1630 break;
1631 case RS_GETLINE:
1632 if (ch == '#') {
1633 s->state = RS_CHKSUM1;
1634 } else if (s->line_buf_index >= sizeof(s->line_buf) - 1) {
1635 s->state = RS_IDLE;
1636 } else {
1637 s->line_buf[s->line_buf_index++] = ch;
1639 break;
1640 case RS_CHKSUM1:
1641 s->line_buf[s->line_buf_index] = '\0';
1642 s->line_csum = fromhex(ch) << 4;
1643 s->state = RS_CHKSUM2;
1644 break;
1645 case RS_CHKSUM2:
1646 s->line_csum |= fromhex(ch);
1647 csum = 0;
1648 for(i = 0; i < s->line_buf_index; i++) {
1649 csum += s->line_buf[i];
1651 if (s->line_csum != (csum & 0xff)) {
1652 reply = '-';
1653 put_buffer(s, &reply, 1);
1654 s->state = RS_IDLE;
1655 } else {
1656 reply = '+';
1657 put_buffer(s, &reply, 1);
1658 s->state = gdb_handle_packet(s, env, s->line_buf);
1660 break;
1661 default:
1662 abort();
1667 #ifdef CONFIG_USER_ONLY
1669 gdb_handlesig (CPUState *env, int sig)
1671 GDBState *s;
1672 char buf[256];
1673 int n;
1675 s = &gdbserver_state;
1676 if (gdbserver_fd < 0 || s->fd < 0)
1677 return sig;
1679 /* disable single step if it was enabled */
1680 cpu_single_step(env, 0);
1681 tb_flush(env);
1683 if (sig != 0)
1685 snprintf(buf, sizeof(buf), "S%02x", sig);
1686 put_packet(s, buf);
1688 /* put_packet() might have detected that the peer terminated the
1689 connection. */
1690 if (s->fd < 0)
1691 return sig;
1693 sig = 0;
1694 s->state = RS_IDLE;
1695 s->running_state = 0;
1696 while (s->running_state == 0) {
1697 n = read (s->fd, buf, 256);
1698 if (n > 0)
1700 int i;
1702 for (i = 0; i < n; i++)
1703 gdb_read_byte (s, buf[i]);
1705 else if (n == 0 || errno != EAGAIN)
1707 /* XXX: Connection closed. Should probably wait for annother
1708 connection before continuing. */
1709 return sig;
1712 sig = s->signal;
1713 s->signal = 0;
1714 return sig;
1717 /* Tell the remote gdb that the process has exited. */
1718 void gdb_exit(CPUState *env, int code)
1720 GDBState *s;
1721 char buf[4];
1723 s = &gdbserver_state;
1724 if (gdbserver_fd < 0 || s->fd < 0)
1725 return;
1727 snprintf(buf, sizeof(buf), "W%02x", code);
1728 put_packet(s, buf);
1732 static void gdb_accept(void *opaque)
1734 GDBState *s;
1735 struct sockaddr_in sockaddr;
1736 socklen_t len;
1737 int val, fd;
1739 for(;;) {
1740 len = sizeof(sockaddr);
1741 fd = accept(gdbserver_fd, (struct sockaddr *)&sockaddr, &len);
1742 if (fd < 0 && errno != EINTR) {
1743 perror("accept");
1744 return;
1745 } else if (fd >= 0) {
1746 break;
1750 /* set short latency */
1751 val = 1;
1752 setsockopt(fd, IPPROTO_TCP, TCP_NODELAY, (char *)&val, sizeof(val));
1754 s = &gdbserver_state;
1755 memset (s, 0, sizeof (GDBState));
1756 s->env = first_cpu; /* XXX: allow to change CPU */
1757 s->fd = fd;
1758 gdb_has_xml = 0;
1760 gdb_syscall_state = s;
1762 fcntl(fd, F_SETFL, O_NONBLOCK);
1765 static int gdbserver_open(int port)
1767 struct sockaddr_in sockaddr;
1768 int fd, val, ret;
1770 fd = socket(PF_INET, SOCK_STREAM, 0);
1771 if (fd < 0) {
1772 perror("socket");
1773 return -1;
1776 /* allow fast reuse */
1777 val = 1;
1778 setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (char *)&val, sizeof(val));
1780 sockaddr.sin_family = AF_INET;
1781 sockaddr.sin_port = htons(port);
1782 sockaddr.sin_addr.s_addr = 0;
1783 ret = bind(fd, (struct sockaddr *)&sockaddr, sizeof(sockaddr));
1784 if (ret < 0) {
1785 perror("bind");
1786 return -1;
1788 ret = listen(fd, 0);
1789 if (ret < 0) {
1790 perror("listen");
1791 return -1;
1793 return fd;
1796 int gdbserver_start(int port)
1798 gdbserver_fd = gdbserver_open(port);
1799 if (gdbserver_fd < 0)
1800 return -1;
1801 /* accept connections */
1802 gdb_accept (NULL);
1803 return 0;
1805 #else
1806 static int gdb_chr_can_receive(void *opaque)
1808 /* We can handle an arbitrarily large amount of data.
1809 Pick the maximum packet size, which is as good as anything. */
1810 return MAX_PACKET_LENGTH;
1813 static void gdb_chr_receive(void *opaque, const uint8_t *buf, int size)
1815 GDBState *s = opaque;
1816 int i;
1818 for (i = 0; i < size; i++) {
1819 gdb_read_byte(s, buf[i]);
1823 static void gdb_chr_event(void *opaque, int event)
1825 switch (event) {
1826 case CHR_EVENT_RESET:
1827 vm_stop(EXCP_INTERRUPT);
1828 gdb_syscall_state = opaque;
1829 gdb_has_xml = 0;
1830 break;
1831 default:
1832 break;
1836 int gdbserver_start(const char *port)
1838 GDBState *s;
1839 char gdbstub_port_name[128];
1840 int port_num;
1841 char *p;
1842 CharDriverState *chr;
1844 if (!port || !*port)
1845 return -1;
1847 port_num = strtol(port, &p, 10);
1848 if (*p == 0) {
1849 /* A numeric value is interpreted as a port number. */
1850 snprintf(gdbstub_port_name, sizeof(gdbstub_port_name),
1851 "tcp::%d,nowait,nodelay,server", port_num);
1852 port = gdbstub_port_name;
1855 chr = qemu_chr_open("gdb", port);
1856 if (!chr)
1857 return -1;
1859 s = qemu_mallocz(sizeof(GDBState));
1860 if (!s) {
1861 return -1;
1863 s->env = first_cpu; /* XXX: allow to change CPU */
1864 s->chr = chr;
1865 qemu_chr_add_handlers(chr, gdb_chr_can_receive, gdb_chr_receive,
1866 gdb_chr_event, s);
1867 qemu_add_vm_stop_handler(gdb_vm_stopped, s);
1868 return 0;
1870 #endif