pc: acpi: cpuhp: move \_GPE._E02() into SSDT
[qemu.git] / cpus.c
blobea295843971c85ad7ee4b76e7da27f3de7c19a3e
1 /*
2 * QEMU System Emulator
4 * Copyright (c) 2003-2008 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
25 /* Needed early for CONFIG_BSD etc. */
26 #include "config-host.h"
28 #include "monitor/monitor.h"
29 #include "qapi/qmp/qerror.h"
30 #include "qemu/error-report.h"
31 #include "sysemu/sysemu.h"
32 #include "exec/gdbstub.h"
33 #include "sysemu/dma.h"
34 #include "sysemu/kvm.h"
35 #include "qmp-commands.h"
37 #include "qemu/thread.h"
38 #include "sysemu/cpus.h"
39 #include "sysemu/qtest.h"
40 #include "qemu/main-loop.h"
41 #include "qemu/bitmap.h"
42 #include "qemu/seqlock.h"
43 #include "qapi-event.h"
44 #include "hw/nmi.h"
45 #include "sysemu/replay.h"
47 #ifndef _WIN32
48 #include "qemu/compatfd.h"
49 #endif
51 #ifdef CONFIG_LINUX
53 #include <sys/prctl.h>
55 #ifndef PR_MCE_KILL
56 #define PR_MCE_KILL 33
57 #endif
59 #ifndef PR_MCE_KILL_SET
60 #define PR_MCE_KILL_SET 1
61 #endif
63 #ifndef PR_MCE_KILL_EARLY
64 #define PR_MCE_KILL_EARLY 1
65 #endif
67 #endif /* CONFIG_LINUX */
69 static CPUState *next_cpu;
70 int64_t max_delay;
71 int64_t max_advance;
73 /* vcpu throttling controls */
74 static QEMUTimer *throttle_timer;
75 static unsigned int throttle_percentage;
77 #define CPU_THROTTLE_PCT_MIN 1
78 #define CPU_THROTTLE_PCT_MAX 99
79 #define CPU_THROTTLE_TIMESLICE_NS 10000000
81 bool cpu_is_stopped(CPUState *cpu)
83 return cpu->stopped || !runstate_is_running();
86 static bool cpu_thread_is_idle(CPUState *cpu)
88 if (cpu->stop || cpu->queued_work_first) {
89 return false;
91 if (cpu_is_stopped(cpu)) {
92 return true;
94 if (!cpu->halted || cpu_has_work(cpu) ||
95 kvm_halt_in_kernel()) {
96 return false;
98 return true;
101 static bool all_cpu_threads_idle(void)
103 CPUState *cpu;
105 CPU_FOREACH(cpu) {
106 if (!cpu_thread_is_idle(cpu)) {
107 return false;
110 return true;
113 /***********************************************************/
114 /* guest cycle counter */
116 /* Protected by TimersState seqlock */
118 static bool icount_sleep = true;
119 static int64_t vm_clock_warp_start = -1;
120 /* Conversion factor from emulated instructions to virtual clock ticks. */
121 static int icount_time_shift;
122 /* Arbitrarily pick 1MIPS as the minimum allowable speed. */
123 #define MAX_ICOUNT_SHIFT 10
125 static QEMUTimer *icount_rt_timer;
126 static QEMUTimer *icount_vm_timer;
127 static QEMUTimer *icount_warp_timer;
129 typedef struct TimersState {
130 /* Protected by BQL. */
131 int64_t cpu_ticks_prev;
132 int64_t cpu_ticks_offset;
134 /* cpu_clock_offset can be read out of BQL, so protect it with
135 * this lock.
137 QemuSeqLock vm_clock_seqlock;
138 int64_t cpu_clock_offset;
139 int32_t cpu_ticks_enabled;
140 int64_t dummy;
142 /* Compensate for varying guest execution speed. */
143 int64_t qemu_icount_bias;
144 /* Only written by TCG thread */
145 int64_t qemu_icount;
146 } TimersState;
148 static TimersState timers_state;
150 int64_t cpu_get_icount_raw(void)
152 int64_t icount;
153 CPUState *cpu = current_cpu;
155 icount = timers_state.qemu_icount;
156 if (cpu) {
157 if (!cpu->can_do_io) {
158 fprintf(stderr, "Bad icount read\n");
159 exit(1);
161 icount -= (cpu->icount_decr.u16.low + cpu->icount_extra);
163 return icount;
166 /* Return the virtual CPU time, based on the instruction counter. */
167 static int64_t cpu_get_icount_locked(void)
169 int64_t icount = cpu_get_icount_raw();
170 return timers_state.qemu_icount_bias + cpu_icount_to_ns(icount);
173 int64_t cpu_get_icount(void)
175 int64_t icount;
176 unsigned start;
178 do {
179 start = seqlock_read_begin(&timers_state.vm_clock_seqlock);
180 icount = cpu_get_icount_locked();
181 } while (seqlock_read_retry(&timers_state.vm_clock_seqlock, start));
183 return icount;
186 int64_t cpu_icount_to_ns(int64_t icount)
188 return icount << icount_time_shift;
191 /* return the host CPU cycle counter and handle stop/restart */
192 /* Caller must hold the BQL */
193 int64_t cpu_get_ticks(void)
195 int64_t ticks;
197 if (use_icount) {
198 return cpu_get_icount();
201 ticks = timers_state.cpu_ticks_offset;
202 if (timers_state.cpu_ticks_enabled) {
203 ticks += cpu_get_host_ticks();
206 if (timers_state.cpu_ticks_prev > ticks) {
207 /* Note: non increasing ticks may happen if the host uses
208 software suspend */
209 timers_state.cpu_ticks_offset += timers_state.cpu_ticks_prev - ticks;
210 ticks = timers_state.cpu_ticks_prev;
213 timers_state.cpu_ticks_prev = ticks;
214 return ticks;
217 static int64_t cpu_get_clock_locked(void)
219 int64_t ticks;
221 ticks = timers_state.cpu_clock_offset;
222 if (timers_state.cpu_ticks_enabled) {
223 ticks += get_clock();
226 return ticks;
229 /* return the host CPU monotonic timer and handle stop/restart */
230 int64_t cpu_get_clock(void)
232 int64_t ti;
233 unsigned start;
235 do {
236 start = seqlock_read_begin(&timers_state.vm_clock_seqlock);
237 ti = cpu_get_clock_locked();
238 } while (seqlock_read_retry(&timers_state.vm_clock_seqlock, start));
240 return ti;
243 /* enable cpu_get_ticks()
244 * Caller must hold BQL which server as mutex for vm_clock_seqlock.
246 void cpu_enable_ticks(void)
248 /* Here, the really thing protected by seqlock is cpu_clock_offset. */
249 seqlock_write_lock(&timers_state.vm_clock_seqlock);
250 if (!timers_state.cpu_ticks_enabled) {
251 timers_state.cpu_ticks_offset -= cpu_get_host_ticks();
252 timers_state.cpu_clock_offset -= get_clock();
253 timers_state.cpu_ticks_enabled = 1;
255 seqlock_write_unlock(&timers_state.vm_clock_seqlock);
258 /* disable cpu_get_ticks() : the clock is stopped. You must not call
259 * cpu_get_ticks() after that.
260 * Caller must hold BQL which server as mutex for vm_clock_seqlock.
262 void cpu_disable_ticks(void)
264 /* Here, the really thing protected by seqlock is cpu_clock_offset. */
265 seqlock_write_lock(&timers_state.vm_clock_seqlock);
266 if (timers_state.cpu_ticks_enabled) {
267 timers_state.cpu_ticks_offset += cpu_get_host_ticks();
268 timers_state.cpu_clock_offset = cpu_get_clock_locked();
269 timers_state.cpu_ticks_enabled = 0;
271 seqlock_write_unlock(&timers_state.vm_clock_seqlock);
274 /* Correlation between real and virtual time is always going to be
275 fairly approximate, so ignore small variation.
276 When the guest is idle real and virtual time will be aligned in
277 the IO wait loop. */
278 #define ICOUNT_WOBBLE (get_ticks_per_sec() / 10)
280 static void icount_adjust(void)
282 int64_t cur_time;
283 int64_t cur_icount;
284 int64_t delta;
286 /* Protected by TimersState mutex. */
287 static int64_t last_delta;
289 /* If the VM is not running, then do nothing. */
290 if (!runstate_is_running()) {
291 return;
294 seqlock_write_lock(&timers_state.vm_clock_seqlock);
295 cur_time = cpu_get_clock_locked();
296 cur_icount = cpu_get_icount_locked();
298 delta = cur_icount - cur_time;
299 /* FIXME: This is a very crude algorithm, somewhat prone to oscillation. */
300 if (delta > 0
301 && last_delta + ICOUNT_WOBBLE < delta * 2
302 && icount_time_shift > 0) {
303 /* The guest is getting too far ahead. Slow time down. */
304 icount_time_shift--;
306 if (delta < 0
307 && last_delta - ICOUNT_WOBBLE > delta * 2
308 && icount_time_shift < MAX_ICOUNT_SHIFT) {
309 /* The guest is getting too far behind. Speed time up. */
310 icount_time_shift++;
312 last_delta = delta;
313 timers_state.qemu_icount_bias = cur_icount
314 - (timers_state.qemu_icount << icount_time_shift);
315 seqlock_write_unlock(&timers_state.vm_clock_seqlock);
318 static void icount_adjust_rt(void *opaque)
320 timer_mod(icount_rt_timer,
321 qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL_RT) + 1000);
322 icount_adjust();
325 static void icount_adjust_vm(void *opaque)
327 timer_mod(icount_vm_timer,
328 qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
329 get_ticks_per_sec() / 10);
330 icount_adjust();
333 static int64_t qemu_icount_round(int64_t count)
335 return (count + (1 << icount_time_shift) - 1) >> icount_time_shift;
338 static void icount_warp_rt(void)
340 /* The icount_warp_timer is rescheduled soon after vm_clock_warp_start
341 * changes from -1 to another value, so the race here is okay.
343 if (atomic_read(&vm_clock_warp_start) == -1) {
344 return;
347 seqlock_write_lock(&timers_state.vm_clock_seqlock);
348 if (runstate_is_running()) {
349 int64_t clock = REPLAY_CLOCK(REPLAY_CLOCK_VIRTUAL_RT,
350 cpu_get_clock_locked());
351 int64_t warp_delta;
353 warp_delta = clock - vm_clock_warp_start;
354 if (use_icount == 2) {
356 * In adaptive mode, do not let QEMU_CLOCK_VIRTUAL run too
357 * far ahead of real time.
359 int64_t cur_icount = cpu_get_icount_locked();
360 int64_t delta = clock - cur_icount;
361 warp_delta = MIN(warp_delta, delta);
363 timers_state.qemu_icount_bias += warp_delta;
365 vm_clock_warp_start = -1;
366 seqlock_write_unlock(&timers_state.vm_clock_seqlock);
368 if (qemu_clock_expired(QEMU_CLOCK_VIRTUAL)) {
369 qemu_clock_notify(QEMU_CLOCK_VIRTUAL);
373 static void icount_dummy_timer(void *opaque)
375 (void)opaque;
378 void qtest_clock_warp(int64_t dest)
380 int64_t clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
381 AioContext *aio_context;
382 assert(qtest_enabled());
383 aio_context = qemu_get_aio_context();
384 while (clock < dest) {
385 int64_t deadline = qemu_clock_deadline_ns_all(QEMU_CLOCK_VIRTUAL);
386 int64_t warp = qemu_soonest_timeout(dest - clock, deadline);
388 seqlock_write_lock(&timers_state.vm_clock_seqlock);
389 timers_state.qemu_icount_bias += warp;
390 seqlock_write_unlock(&timers_state.vm_clock_seqlock);
392 qemu_clock_run_timers(QEMU_CLOCK_VIRTUAL);
393 timerlist_run_timers(aio_context->tlg.tl[QEMU_CLOCK_VIRTUAL]);
394 clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
396 qemu_clock_notify(QEMU_CLOCK_VIRTUAL);
399 void qemu_clock_warp(QEMUClockType type)
401 int64_t clock;
402 int64_t deadline;
405 * There are too many global variables to make the "warp" behavior
406 * applicable to other clocks. But a clock argument removes the
407 * need for if statements all over the place.
409 if (type != QEMU_CLOCK_VIRTUAL || !use_icount) {
410 return;
413 /* Nothing to do if the VM is stopped: QEMU_CLOCK_VIRTUAL timers
414 * do not fire, so computing the deadline does not make sense.
416 if (!runstate_is_running()) {
417 return;
420 /* warp clock deterministically in record/replay mode */
421 if (!replay_checkpoint(CHECKPOINT_CLOCK_WARP)) {
422 return;
425 if (icount_sleep) {
427 * If the CPUs have been sleeping, advance QEMU_CLOCK_VIRTUAL timer now.
428 * This ensures that the deadline for the timer is computed correctly
429 * below.
430 * This also makes sure that the insn counter is synchronized before
431 * the CPU starts running, in case the CPU is woken by an event other
432 * than the earliest QEMU_CLOCK_VIRTUAL timer.
434 icount_warp_rt();
435 timer_del(icount_warp_timer);
437 if (!all_cpu_threads_idle()) {
438 return;
441 if (qtest_enabled()) {
442 /* When testing, qtest commands advance icount. */
443 return;
446 /* We want to use the earliest deadline from ALL vm_clocks */
447 clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT);
448 deadline = qemu_clock_deadline_ns_all(QEMU_CLOCK_VIRTUAL);
449 if (deadline < 0) {
450 static bool notified;
451 if (!icount_sleep && !notified) {
452 error_report("WARNING: icount sleep disabled and no active timers");
453 notified = true;
455 return;
458 if (deadline > 0) {
460 * Ensure QEMU_CLOCK_VIRTUAL proceeds even when the virtual CPU goes to
461 * sleep. Otherwise, the CPU might be waiting for a future timer
462 * interrupt to wake it up, but the interrupt never comes because
463 * the vCPU isn't running any insns and thus doesn't advance the
464 * QEMU_CLOCK_VIRTUAL.
466 if (!icount_sleep) {
468 * We never let VCPUs sleep in no sleep icount mode.
469 * If there is a pending QEMU_CLOCK_VIRTUAL timer we just advance
470 * to the next QEMU_CLOCK_VIRTUAL event and notify it.
471 * It is useful when we want a deterministic execution time,
472 * isolated from host latencies.
474 seqlock_write_lock(&timers_state.vm_clock_seqlock);
475 timers_state.qemu_icount_bias += deadline;
476 seqlock_write_unlock(&timers_state.vm_clock_seqlock);
477 qemu_clock_notify(QEMU_CLOCK_VIRTUAL);
478 } else {
480 * We do stop VCPUs and only advance QEMU_CLOCK_VIRTUAL after some
481 * "real" time, (related to the time left until the next event) has
482 * passed. The QEMU_CLOCK_VIRTUAL_RT clock will do this.
483 * This avoids that the warps are visible externally; for example,
484 * you will not be sending network packets continuously instead of
485 * every 100ms.
487 seqlock_write_lock(&timers_state.vm_clock_seqlock);
488 if (vm_clock_warp_start == -1 || vm_clock_warp_start > clock) {
489 vm_clock_warp_start = clock;
491 seqlock_write_unlock(&timers_state.vm_clock_seqlock);
492 timer_mod_anticipate(icount_warp_timer, clock + deadline);
494 } else if (deadline == 0) {
495 qemu_clock_notify(QEMU_CLOCK_VIRTUAL);
499 static bool icount_state_needed(void *opaque)
501 return use_icount;
505 * This is a subsection for icount migration.
507 static const VMStateDescription icount_vmstate_timers = {
508 .name = "timer/icount",
509 .version_id = 1,
510 .minimum_version_id = 1,
511 .needed = icount_state_needed,
512 .fields = (VMStateField[]) {
513 VMSTATE_INT64(qemu_icount_bias, TimersState),
514 VMSTATE_INT64(qemu_icount, TimersState),
515 VMSTATE_END_OF_LIST()
519 static const VMStateDescription vmstate_timers = {
520 .name = "timer",
521 .version_id = 2,
522 .minimum_version_id = 1,
523 .fields = (VMStateField[]) {
524 VMSTATE_INT64(cpu_ticks_offset, TimersState),
525 VMSTATE_INT64(dummy, TimersState),
526 VMSTATE_INT64_V(cpu_clock_offset, TimersState, 2),
527 VMSTATE_END_OF_LIST()
529 .subsections = (const VMStateDescription*[]) {
530 &icount_vmstate_timers,
531 NULL
535 static void cpu_throttle_thread(void *opaque)
537 CPUState *cpu = opaque;
538 double pct;
539 double throttle_ratio;
540 long sleeptime_ns;
542 if (!cpu_throttle_get_percentage()) {
543 return;
546 pct = (double)cpu_throttle_get_percentage()/100;
547 throttle_ratio = pct / (1 - pct);
548 sleeptime_ns = (long)(throttle_ratio * CPU_THROTTLE_TIMESLICE_NS);
550 qemu_mutex_unlock_iothread();
551 atomic_set(&cpu->throttle_thread_scheduled, 0);
552 g_usleep(sleeptime_ns / 1000); /* Convert ns to us for usleep call */
553 qemu_mutex_lock_iothread();
556 static void cpu_throttle_timer_tick(void *opaque)
558 CPUState *cpu;
559 double pct;
561 /* Stop the timer if needed */
562 if (!cpu_throttle_get_percentage()) {
563 return;
565 CPU_FOREACH(cpu) {
566 if (!atomic_xchg(&cpu->throttle_thread_scheduled, 1)) {
567 async_run_on_cpu(cpu, cpu_throttle_thread, cpu);
571 pct = (double)cpu_throttle_get_percentage()/100;
572 timer_mod(throttle_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT) +
573 CPU_THROTTLE_TIMESLICE_NS / (1-pct));
576 void cpu_throttle_set(int new_throttle_pct)
578 /* Ensure throttle percentage is within valid range */
579 new_throttle_pct = MIN(new_throttle_pct, CPU_THROTTLE_PCT_MAX);
580 new_throttle_pct = MAX(new_throttle_pct, CPU_THROTTLE_PCT_MIN);
582 atomic_set(&throttle_percentage, new_throttle_pct);
584 timer_mod(throttle_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT) +
585 CPU_THROTTLE_TIMESLICE_NS);
588 void cpu_throttle_stop(void)
590 atomic_set(&throttle_percentage, 0);
593 bool cpu_throttle_active(void)
595 return (cpu_throttle_get_percentage() != 0);
598 int cpu_throttle_get_percentage(void)
600 return atomic_read(&throttle_percentage);
603 void cpu_ticks_init(void)
605 seqlock_init(&timers_state.vm_clock_seqlock, NULL);
606 vmstate_register(NULL, 0, &vmstate_timers, &timers_state);
607 throttle_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL_RT,
608 cpu_throttle_timer_tick, NULL);
611 void configure_icount(QemuOpts *opts, Error **errp)
613 const char *option;
614 char *rem_str = NULL;
616 option = qemu_opt_get(opts, "shift");
617 if (!option) {
618 if (qemu_opt_get(opts, "align") != NULL) {
619 error_setg(errp, "Please specify shift option when using align");
621 return;
624 icount_sleep = qemu_opt_get_bool(opts, "sleep", true);
625 if (icount_sleep) {
626 icount_warp_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL_RT,
627 icount_dummy_timer, NULL);
630 icount_align_option = qemu_opt_get_bool(opts, "align", false);
632 if (icount_align_option && !icount_sleep) {
633 error_setg(errp, "align=on and sleep=no are incompatible");
635 if (strcmp(option, "auto") != 0) {
636 errno = 0;
637 icount_time_shift = strtol(option, &rem_str, 0);
638 if (errno != 0 || *rem_str != '\0' || !strlen(option)) {
639 error_setg(errp, "icount: Invalid shift value");
641 use_icount = 1;
642 return;
643 } else if (icount_align_option) {
644 error_setg(errp, "shift=auto and align=on are incompatible");
645 } else if (!icount_sleep) {
646 error_setg(errp, "shift=auto and sleep=no are incompatible");
649 use_icount = 2;
651 /* 125MIPS seems a reasonable initial guess at the guest speed.
652 It will be corrected fairly quickly anyway. */
653 icount_time_shift = 3;
655 /* Have both realtime and virtual time triggers for speed adjustment.
656 The realtime trigger catches emulated time passing too slowly,
657 the virtual time trigger catches emulated time passing too fast.
658 Realtime triggers occur even when idle, so use them less frequently
659 than VM triggers. */
660 icount_rt_timer = timer_new_ms(QEMU_CLOCK_VIRTUAL_RT,
661 icount_adjust_rt, NULL);
662 timer_mod(icount_rt_timer,
663 qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL_RT) + 1000);
664 icount_vm_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
665 icount_adjust_vm, NULL);
666 timer_mod(icount_vm_timer,
667 qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
668 get_ticks_per_sec() / 10);
671 /***********************************************************/
672 void hw_error(const char *fmt, ...)
674 va_list ap;
675 CPUState *cpu;
677 va_start(ap, fmt);
678 fprintf(stderr, "qemu: hardware error: ");
679 vfprintf(stderr, fmt, ap);
680 fprintf(stderr, "\n");
681 CPU_FOREACH(cpu) {
682 fprintf(stderr, "CPU #%d:\n", cpu->cpu_index);
683 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU);
685 va_end(ap);
686 abort();
689 void cpu_synchronize_all_states(void)
691 CPUState *cpu;
693 CPU_FOREACH(cpu) {
694 cpu_synchronize_state(cpu);
698 void cpu_synchronize_all_post_reset(void)
700 CPUState *cpu;
702 CPU_FOREACH(cpu) {
703 cpu_synchronize_post_reset(cpu);
707 void cpu_synchronize_all_post_init(void)
709 CPUState *cpu;
711 CPU_FOREACH(cpu) {
712 cpu_synchronize_post_init(cpu);
716 static int do_vm_stop(RunState state)
718 int ret = 0;
720 if (runstate_is_running()) {
721 cpu_disable_ticks();
722 pause_all_vcpus();
723 runstate_set(state);
724 vm_state_notify(0, state);
725 qapi_event_send_stop(&error_abort);
728 bdrv_drain_all();
729 ret = bdrv_flush_all();
731 return ret;
734 static bool cpu_can_run(CPUState *cpu)
736 if (cpu->stop) {
737 return false;
739 if (cpu_is_stopped(cpu)) {
740 return false;
742 return true;
745 static void cpu_handle_guest_debug(CPUState *cpu)
747 gdb_set_stop_cpu(cpu);
748 qemu_system_debug_request();
749 cpu->stopped = true;
752 #ifdef CONFIG_LINUX
753 static void sigbus_reraise(void)
755 sigset_t set;
756 struct sigaction action;
758 memset(&action, 0, sizeof(action));
759 action.sa_handler = SIG_DFL;
760 if (!sigaction(SIGBUS, &action, NULL)) {
761 raise(SIGBUS);
762 sigemptyset(&set);
763 sigaddset(&set, SIGBUS);
764 sigprocmask(SIG_UNBLOCK, &set, NULL);
766 perror("Failed to re-raise SIGBUS!\n");
767 abort();
770 static void sigbus_handler(int n, struct qemu_signalfd_siginfo *siginfo,
771 void *ctx)
773 if (kvm_on_sigbus(siginfo->ssi_code,
774 (void *)(intptr_t)siginfo->ssi_addr)) {
775 sigbus_reraise();
779 static void qemu_init_sigbus(void)
781 struct sigaction action;
783 memset(&action, 0, sizeof(action));
784 action.sa_flags = SA_SIGINFO;
785 action.sa_sigaction = (void (*)(int, siginfo_t*, void*))sigbus_handler;
786 sigaction(SIGBUS, &action, NULL);
788 prctl(PR_MCE_KILL, PR_MCE_KILL_SET, PR_MCE_KILL_EARLY, 0, 0);
791 static void qemu_kvm_eat_signals(CPUState *cpu)
793 struct timespec ts = { 0, 0 };
794 siginfo_t siginfo;
795 sigset_t waitset;
796 sigset_t chkset;
797 int r;
799 sigemptyset(&waitset);
800 sigaddset(&waitset, SIG_IPI);
801 sigaddset(&waitset, SIGBUS);
803 do {
804 r = sigtimedwait(&waitset, &siginfo, &ts);
805 if (r == -1 && !(errno == EAGAIN || errno == EINTR)) {
806 perror("sigtimedwait");
807 exit(1);
810 switch (r) {
811 case SIGBUS:
812 if (kvm_on_sigbus_vcpu(cpu, siginfo.si_code, siginfo.si_addr)) {
813 sigbus_reraise();
815 break;
816 default:
817 break;
820 r = sigpending(&chkset);
821 if (r == -1) {
822 perror("sigpending");
823 exit(1);
825 } while (sigismember(&chkset, SIG_IPI) || sigismember(&chkset, SIGBUS));
828 #else /* !CONFIG_LINUX */
830 static void qemu_init_sigbus(void)
834 static void qemu_kvm_eat_signals(CPUState *cpu)
837 #endif /* !CONFIG_LINUX */
839 #ifndef _WIN32
840 static void dummy_signal(int sig)
844 static void qemu_kvm_init_cpu_signals(CPUState *cpu)
846 int r;
847 sigset_t set;
848 struct sigaction sigact;
850 memset(&sigact, 0, sizeof(sigact));
851 sigact.sa_handler = dummy_signal;
852 sigaction(SIG_IPI, &sigact, NULL);
854 pthread_sigmask(SIG_BLOCK, NULL, &set);
855 sigdelset(&set, SIG_IPI);
856 sigdelset(&set, SIGBUS);
857 r = kvm_set_signal_mask(cpu, &set);
858 if (r) {
859 fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r));
860 exit(1);
864 #else /* _WIN32 */
865 static void qemu_kvm_init_cpu_signals(CPUState *cpu)
867 abort();
869 #endif /* _WIN32 */
871 static QemuMutex qemu_global_mutex;
872 static QemuCond qemu_io_proceeded_cond;
873 static unsigned iothread_requesting_mutex;
875 static QemuThread io_thread;
877 /* cpu creation */
878 static QemuCond qemu_cpu_cond;
879 /* system init */
880 static QemuCond qemu_pause_cond;
881 static QemuCond qemu_work_cond;
883 void qemu_init_cpu_loop(void)
885 qemu_init_sigbus();
886 qemu_cond_init(&qemu_cpu_cond);
887 qemu_cond_init(&qemu_pause_cond);
888 qemu_cond_init(&qemu_work_cond);
889 qemu_cond_init(&qemu_io_proceeded_cond);
890 qemu_mutex_init(&qemu_global_mutex);
892 qemu_thread_get_self(&io_thread);
895 void run_on_cpu(CPUState *cpu, void (*func)(void *data), void *data)
897 struct qemu_work_item wi;
899 if (qemu_cpu_is_self(cpu)) {
900 func(data);
901 return;
904 wi.func = func;
905 wi.data = data;
906 wi.free = false;
908 qemu_mutex_lock(&cpu->work_mutex);
909 if (cpu->queued_work_first == NULL) {
910 cpu->queued_work_first = &wi;
911 } else {
912 cpu->queued_work_last->next = &wi;
914 cpu->queued_work_last = &wi;
915 wi.next = NULL;
916 wi.done = false;
917 qemu_mutex_unlock(&cpu->work_mutex);
919 qemu_cpu_kick(cpu);
920 while (!atomic_mb_read(&wi.done)) {
921 CPUState *self_cpu = current_cpu;
923 qemu_cond_wait(&qemu_work_cond, &qemu_global_mutex);
924 current_cpu = self_cpu;
928 void async_run_on_cpu(CPUState *cpu, void (*func)(void *data), void *data)
930 struct qemu_work_item *wi;
932 if (qemu_cpu_is_self(cpu)) {
933 func(data);
934 return;
937 wi = g_malloc0(sizeof(struct qemu_work_item));
938 wi->func = func;
939 wi->data = data;
940 wi->free = true;
942 qemu_mutex_lock(&cpu->work_mutex);
943 if (cpu->queued_work_first == NULL) {
944 cpu->queued_work_first = wi;
945 } else {
946 cpu->queued_work_last->next = wi;
948 cpu->queued_work_last = wi;
949 wi->next = NULL;
950 wi->done = false;
951 qemu_mutex_unlock(&cpu->work_mutex);
953 qemu_cpu_kick(cpu);
956 static void flush_queued_work(CPUState *cpu)
958 struct qemu_work_item *wi;
960 if (cpu->queued_work_first == NULL) {
961 return;
964 qemu_mutex_lock(&cpu->work_mutex);
965 while (cpu->queued_work_first != NULL) {
966 wi = cpu->queued_work_first;
967 cpu->queued_work_first = wi->next;
968 if (!cpu->queued_work_first) {
969 cpu->queued_work_last = NULL;
971 qemu_mutex_unlock(&cpu->work_mutex);
972 wi->func(wi->data);
973 qemu_mutex_lock(&cpu->work_mutex);
974 if (wi->free) {
975 g_free(wi);
976 } else {
977 atomic_mb_set(&wi->done, true);
980 qemu_mutex_unlock(&cpu->work_mutex);
981 qemu_cond_broadcast(&qemu_work_cond);
984 static void qemu_wait_io_event_common(CPUState *cpu)
986 if (cpu->stop) {
987 cpu->stop = false;
988 cpu->stopped = true;
989 qemu_cond_signal(&qemu_pause_cond);
991 flush_queued_work(cpu);
992 cpu->thread_kicked = false;
995 static void qemu_tcg_wait_io_event(CPUState *cpu)
997 while (all_cpu_threads_idle()) {
998 /* Start accounting real time to the virtual clock if the CPUs
999 are idle. */
1000 qemu_clock_warp(QEMU_CLOCK_VIRTUAL);
1001 qemu_cond_wait(cpu->halt_cond, &qemu_global_mutex);
1004 while (iothread_requesting_mutex) {
1005 qemu_cond_wait(&qemu_io_proceeded_cond, &qemu_global_mutex);
1008 CPU_FOREACH(cpu) {
1009 qemu_wait_io_event_common(cpu);
1013 static void qemu_kvm_wait_io_event(CPUState *cpu)
1015 while (cpu_thread_is_idle(cpu)) {
1016 qemu_cond_wait(cpu->halt_cond, &qemu_global_mutex);
1019 qemu_kvm_eat_signals(cpu);
1020 qemu_wait_io_event_common(cpu);
1023 static void *qemu_kvm_cpu_thread_fn(void *arg)
1025 CPUState *cpu = arg;
1026 int r;
1028 rcu_register_thread();
1030 qemu_mutex_lock_iothread();
1031 qemu_thread_get_self(cpu->thread);
1032 cpu->thread_id = qemu_get_thread_id();
1033 cpu->can_do_io = 1;
1034 current_cpu = cpu;
1036 r = kvm_init_vcpu(cpu);
1037 if (r < 0) {
1038 fprintf(stderr, "kvm_init_vcpu failed: %s\n", strerror(-r));
1039 exit(1);
1042 qemu_kvm_init_cpu_signals(cpu);
1044 /* signal CPU creation */
1045 cpu->created = true;
1046 qemu_cond_signal(&qemu_cpu_cond);
1048 while (1) {
1049 if (cpu_can_run(cpu)) {
1050 r = kvm_cpu_exec(cpu);
1051 if (r == EXCP_DEBUG) {
1052 cpu_handle_guest_debug(cpu);
1055 qemu_kvm_wait_io_event(cpu);
1058 return NULL;
1061 static void *qemu_dummy_cpu_thread_fn(void *arg)
1063 #ifdef _WIN32
1064 fprintf(stderr, "qtest is not supported under Windows\n");
1065 exit(1);
1066 #else
1067 CPUState *cpu = arg;
1068 sigset_t waitset;
1069 int r;
1071 rcu_register_thread();
1073 qemu_mutex_lock_iothread();
1074 qemu_thread_get_self(cpu->thread);
1075 cpu->thread_id = qemu_get_thread_id();
1076 cpu->can_do_io = 1;
1078 sigemptyset(&waitset);
1079 sigaddset(&waitset, SIG_IPI);
1081 /* signal CPU creation */
1082 cpu->created = true;
1083 qemu_cond_signal(&qemu_cpu_cond);
1085 current_cpu = cpu;
1086 while (1) {
1087 current_cpu = NULL;
1088 qemu_mutex_unlock_iothread();
1089 do {
1090 int sig;
1091 r = sigwait(&waitset, &sig);
1092 } while (r == -1 && (errno == EAGAIN || errno == EINTR));
1093 if (r == -1) {
1094 perror("sigwait");
1095 exit(1);
1097 qemu_mutex_lock_iothread();
1098 current_cpu = cpu;
1099 qemu_wait_io_event_common(cpu);
1102 return NULL;
1103 #endif
1106 static void tcg_exec_all(void);
1108 static void *qemu_tcg_cpu_thread_fn(void *arg)
1110 CPUState *cpu = arg;
1112 rcu_register_thread();
1114 qemu_mutex_lock_iothread();
1115 qemu_thread_get_self(cpu->thread);
1117 CPU_FOREACH(cpu) {
1118 cpu->thread_id = qemu_get_thread_id();
1119 cpu->created = true;
1120 cpu->can_do_io = 1;
1122 qemu_cond_signal(&qemu_cpu_cond);
1124 /* wait for initial kick-off after machine start */
1125 while (first_cpu->stopped) {
1126 qemu_cond_wait(first_cpu->halt_cond, &qemu_global_mutex);
1128 /* process any pending work */
1129 CPU_FOREACH(cpu) {
1130 qemu_wait_io_event_common(cpu);
1134 /* process any pending work */
1135 atomic_mb_set(&exit_request, 1);
1137 while (1) {
1138 tcg_exec_all();
1140 if (use_icount) {
1141 int64_t deadline = qemu_clock_deadline_ns_all(QEMU_CLOCK_VIRTUAL);
1143 if (deadline == 0) {
1144 qemu_clock_notify(QEMU_CLOCK_VIRTUAL);
1147 qemu_tcg_wait_io_event(QTAILQ_FIRST(&cpus));
1150 return NULL;
1153 static void qemu_cpu_kick_thread(CPUState *cpu)
1155 #ifndef _WIN32
1156 int err;
1158 if (cpu->thread_kicked) {
1159 return;
1161 cpu->thread_kicked = true;
1162 err = pthread_kill(cpu->thread->thread, SIG_IPI);
1163 if (err) {
1164 fprintf(stderr, "qemu:%s: %s", __func__, strerror(err));
1165 exit(1);
1167 #else /* _WIN32 */
1168 abort();
1169 #endif
1172 static void qemu_cpu_kick_no_halt(void)
1174 CPUState *cpu;
1175 /* Ensure whatever caused the exit has reached the CPU threads before
1176 * writing exit_request.
1178 atomic_mb_set(&exit_request, 1);
1179 cpu = atomic_mb_read(&tcg_current_cpu);
1180 if (cpu) {
1181 cpu_exit(cpu);
1185 void qemu_cpu_kick(CPUState *cpu)
1187 qemu_cond_broadcast(cpu->halt_cond);
1188 if (tcg_enabled()) {
1189 qemu_cpu_kick_no_halt();
1190 } else {
1191 qemu_cpu_kick_thread(cpu);
1195 void qemu_cpu_kick_self(void)
1197 assert(current_cpu);
1198 qemu_cpu_kick_thread(current_cpu);
1201 bool qemu_cpu_is_self(CPUState *cpu)
1203 return qemu_thread_is_self(cpu->thread);
1206 bool qemu_in_vcpu_thread(void)
1208 return current_cpu && qemu_cpu_is_self(current_cpu);
1211 static __thread bool iothread_locked = false;
1213 bool qemu_mutex_iothread_locked(void)
1215 return iothread_locked;
1218 void qemu_mutex_lock_iothread(void)
1220 atomic_inc(&iothread_requesting_mutex);
1221 /* In the simple case there is no need to bump the VCPU thread out of
1222 * TCG code execution.
1224 if (!tcg_enabled() || qemu_in_vcpu_thread() ||
1225 !first_cpu || !first_cpu->created) {
1226 qemu_mutex_lock(&qemu_global_mutex);
1227 atomic_dec(&iothread_requesting_mutex);
1228 } else {
1229 if (qemu_mutex_trylock(&qemu_global_mutex)) {
1230 qemu_cpu_kick_no_halt();
1231 qemu_mutex_lock(&qemu_global_mutex);
1233 atomic_dec(&iothread_requesting_mutex);
1234 qemu_cond_broadcast(&qemu_io_proceeded_cond);
1236 iothread_locked = true;
1239 void qemu_mutex_unlock_iothread(void)
1241 iothread_locked = false;
1242 qemu_mutex_unlock(&qemu_global_mutex);
1245 static int all_vcpus_paused(void)
1247 CPUState *cpu;
1249 CPU_FOREACH(cpu) {
1250 if (!cpu->stopped) {
1251 return 0;
1255 return 1;
1258 void pause_all_vcpus(void)
1260 CPUState *cpu;
1262 qemu_clock_enable(QEMU_CLOCK_VIRTUAL, false);
1263 CPU_FOREACH(cpu) {
1264 cpu->stop = true;
1265 qemu_cpu_kick(cpu);
1268 if (qemu_in_vcpu_thread()) {
1269 cpu_stop_current();
1270 if (!kvm_enabled()) {
1271 CPU_FOREACH(cpu) {
1272 cpu->stop = false;
1273 cpu->stopped = true;
1275 return;
1279 while (!all_vcpus_paused()) {
1280 qemu_cond_wait(&qemu_pause_cond, &qemu_global_mutex);
1281 CPU_FOREACH(cpu) {
1282 qemu_cpu_kick(cpu);
1287 void cpu_resume(CPUState *cpu)
1289 cpu->stop = false;
1290 cpu->stopped = false;
1291 qemu_cpu_kick(cpu);
1294 void resume_all_vcpus(void)
1296 CPUState *cpu;
1298 qemu_clock_enable(QEMU_CLOCK_VIRTUAL, true);
1299 CPU_FOREACH(cpu) {
1300 cpu_resume(cpu);
1304 /* For temporary buffers for forming a name */
1305 #define VCPU_THREAD_NAME_SIZE 16
1307 static void qemu_tcg_init_vcpu(CPUState *cpu)
1309 char thread_name[VCPU_THREAD_NAME_SIZE];
1310 static QemuCond *tcg_halt_cond;
1311 static QemuThread *tcg_cpu_thread;
1313 tcg_cpu_address_space_init(cpu, cpu->as);
1315 /* share a single thread for all cpus with TCG */
1316 if (!tcg_cpu_thread) {
1317 cpu->thread = g_malloc0(sizeof(QemuThread));
1318 cpu->halt_cond = g_malloc0(sizeof(QemuCond));
1319 qemu_cond_init(cpu->halt_cond);
1320 tcg_halt_cond = cpu->halt_cond;
1321 snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "CPU %d/TCG",
1322 cpu->cpu_index);
1323 qemu_thread_create(cpu->thread, thread_name, qemu_tcg_cpu_thread_fn,
1324 cpu, QEMU_THREAD_JOINABLE);
1325 #ifdef _WIN32
1326 cpu->hThread = qemu_thread_get_handle(cpu->thread);
1327 #endif
1328 while (!cpu->created) {
1329 qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex);
1331 tcg_cpu_thread = cpu->thread;
1332 } else {
1333 cpu->thread = tcg_cpu_thread;
1334 cpu->halt_cond = tcg_halt_cond;
1338 static void qemu_kvm_start_vcpu(CPUState *cpu)
1340 char thread_name[VCPU_THREAD_NAME_SIZE];
1342 cpu->thread = g_malloc0(sizeof(QemuThread));
1343 cpu->halt_cond = g_malloc0(sizeof(QemuCond));
1344 qemu_cond_init(cpu->halt_cond);
1345 snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "CPU %d/KVM",
1346 cpu->cpu_index);
1347 qemu_thread_create(cpu->thread, thread_name, qemu_kvm_cpu_thread_fn,
1348 cpu, QEMU_THREAD_JOINABLE);
1349 while (!cpu->created) {
1350 qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex);
1354 static void qemu_dummy_start_vcpu(CPUState *cpu)
1356 char thread_name[VCPU_THREAD_NAME_SIZE];
1358 cpu->thread = g_malloc0(sizeof(QemuThread));
1359 cpu->halt_cond = g_malloc0(sizeof(QemuCond));
1360 qemu_cond_init(cpu->halt_cond);
1361 snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "CPU %d/DUMMY",
1362 cpu->cpu_index);
1363 qemu_thread_create(cpu->thread, thread_name, qemu_dummy_cpu_thread_fn, cpu,
1364 QEMU_THREAD_JOINABLE);
1365 while (!cpu->created) {
1366 qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex);
1370 void qemu_init_vcpu(CPUState *cpu)
1372 cpu->nr_cores = smp_cores;
1373 cpu->nr_threads = smp_threads;
1374 cpu->stopped = true;
1375 if (kvm_enabled()) {
1376 qemu_kvm_start_vcpu(cpu);
1377 } else if (tcg_enabled()) {
1378 qemu_tcg_init_vcpu(cpu);
1379 } else {
1380 qemu_dummy_start_vcpu(cpu);
1384 void cpu_stop_current(void)
1386 if (current_cpu) {
1387 current_cpu->stop = false;
1388 current_cpu->stopped = true;
1389 cpu_exit(current_cpu);
1390 qemu_cond_signal(&qemu_pause_cond);
1394 int vm_stop(RunState state)
1396 if (qemu_in_vcpu_thread()) {
1397 qemu_system_vmstop_request_prepare();
1398 qemu_system_vmstop_request(state);
1400 * FIXME: should not return to device code in case
1401 * vm_stop() has been requested.
1403 cpu_stop_current();
1404 return 0;
1407 return do_vm_stop(state);
1410 /* does a state transition even if the VM is already stopped,
1411 current state is forgotten forever */
1412 int vm_stop_force_state(RunState state)
1414 if (runstate_is_running()) {
1415 return vm_stop(state);
1416 } else {
1417 runstate_set(state);
1419 bdrv_drain_all();
1420 /* Make sure to return an error if the flush in a previous vm_stop()
1421 * failed. */
1422 return bdrv_flush_all();
1426 static int64_t tcg_get_icount_limit(void)
1428 int64_t deadline;
1430 if (replay_mode != REPLAY_MODE_PLAY) {
1431 deadline = qemu_clock_deadline_ns_all(QEMU_CLOCK_VIRTUAL);
1433 /* Maintain prior (possibly buggy) behaviour where if no deadline
1434 * was set (as there is no QEMU_CLOCK_VIRTUAL timer) or it is more than
1435 * INT32_MAX nanoseconds ahead, we still use INT32_MAX
1436 * nanoseconds.
1438 if ((deadline < 0) || (deadline > INT32_MAX)) {
1439 deadline = INT32_MAX;
1442 return qemu_icount_round(deadline);
1443 } else {
1444 return replay_get_instructions();
1448 static int tcg_cpu_exec(CPUState *cpu)
1450 int ret;
1451 #ifdef CONFIG_PROFILER
1452 int64_t ti;
1453 #endif
1455 #ifdef CONFIG_PROFILER
1456 ti = profile_getclock();
1457 #endif
1458 if (use_icount) {
1459 int64_t count;
1460 int decr;
1461 timers_state.qemu_icount -= (cpu->icount_decr.u16.low
1462 + cpu->icount_extra);
1463 cpu->icount_decr.u16.low = 0;
1464 cpu->icount_extra = 0;
1465 count = tcg_get_icount_limit();
1466 timers_state.qemu_icount += count;
1467 decr = (count > 0xffff) ? 0xffff : count;
1468 count -= decr;
1469 cpu->icount_decr.u16.low = decr;
1470 cpu->icount_extra = count;
1472 ret = cpu_exec(cpu);
1473 #ifdef CONFIG_PROFILER
1474 tcg_time += profile_getclock() - ti;
1475 #endif
1476 if (use_icount) {
1477 /* Fold pending instructions back into the
1478 instruction counter, and clear the interrupt flag. */
1479 timers_state.qemu_icount -= (cpu->icount_decr.u16.low
1480 + cpu->icount_extra);
1481 cpu->icount_decr.u32 = 0;
1482 cpu->icount_extra = 0;
1483 replay_account_executed_instructions();
1485 return ret;
1488 static void tcg_exec_all(void)
1490 int r;
1492 /* Account partial waits to QEMU_CLOCK_VIRTUAL. */
1493 qemu_clock_warp(QEMU_CLOCK_VIRTUAL);
1495 if (next_cpu == NULL) {
1496 next_cpu = first_cpu;
1498 for (; next_cpu != NULL && !exit_request; next_cpu = CPU_NEXT(next_cpu)) {
1499 CPUState *cpu = next_cpu;
1501 qemu_clock_enable(QEMU_CLOCK_VIRTUAL,
1502 (cpu->singlestep_enabled & SSTEP_NOTIMER) == 0);
1504 if (cpu_can_run(cpu)) {
1505 r = tcg_cpu_exec(cpu);
1506 if (r == EXCP_DEBUG) {
1507 cpu_handle_guest_debug(cpu);
1508 break;
1510 } else if (cpu->stop || cpu->stopped) {
1511 break;
1515 /* Pairs with smp_wmb in qemu_cpu_kick. */
1516 atomic_mb_set(&exit_request, 0);
1519 void list_cpus(FILE *f, fprintf_function cpu_fprintf, const char *optarg)
1521 /* XXX: implement xxx_cpu_list for targets that still miss it */
1522 #if defined(cpu_list)
1523 cpu_list(f, cpu_fprintf);
1524 #endif
1527 CpuInfoList *qmp_query_cpus(Error **errp)
1529 CpuInfoList *head = NULL, *cur_item = NULL;
1530 CPUState *cpu;
1532 CPU_FOREACH(cpu) {
1533 CpuInfoList *info;
1534 #if defined(TARGET_I386)
1535 X86CPU *x86_cpu = X86_CPU(cpu);
1536 CPUX86State *env = &x86_cpu->env;
1537 #elif defined(TARGET_PPC)
1538 PowerPCCPU *ppc_cpu = POWERPC_CPU(cpu);
1539 CPUPPCState *env = &ppc_cpu->env;
1540 #elif defined(TARGET_SPARC)
1541 SPARCCPU *sparc_cpu = SPARC_CPU(cpu);
1542 CPUSPARCState *env = &sparc_cpu->env;
1543 #elif defined(TARGET_MIPS)
1544 MIPSCPU *mips_cpu = MIPS_CPU(cpu);
1545 CPUMIPSState *env = &mips_cpu->env;
1546 #elif defined(TARGET_TRICORE)
1547 TriCoreCPU *tricore_cpu = TRICORE_CPU(cpu);
1548 CPUTriCoreState *env = &tricore_cpu->env;
1549 #endif
1551 cpu_synchronize_state(cpu);
1553 info = g_malloc0(sizeof(*info));
1554 info->value = g_malloc0(sizeof(*info->value));
1555 info->value->CPU = cpu->cpu_index;
1556 info->value->current = (cpu == first_cpu);
1557 info->value->halted = cpu->halted;
1558 info->value->qom_path = object_get_canonical_path(OBJECT(cpu));
1559 info->value->thread_id = cpu->thread_id;
1560 #if defined(TARGET_I386)
1561 info->value->arch = CPU_INFO_ARCH_X86;
1562 info->value->u.x86 = g_new0(CpuInfoX86, 1);
1563 info->value->u.x86->pc = env->eip + env->segs[R_CS].base;
1564 #elif defined(TARGET_PPC)
1565 info->value->arch = CPU_INFO_ARCH_PPC;
1566 info->value->u.ppc = g_new0(CpuInfoPPC, 1);
1567 info->value->u.ppc->nip = env->nip;
1568 #elif defined(TARGET_SPARC)
1569 info->value->arch = CPU_INFO_ARCH_SPARC;
1570 info->value->u.sparc = g_new0(CpuInfoSPARC, 1);
1571 info->value->u.sparc->pc = env->pc;
1572 info->value->u.sparc->npc = env->npc;
1573 #elif defined(TARGET_MIPS)
1574 info->value->arch = CPU_INFO_ARCH_MIPS;
1575 info->value->u.mips = g_new0(CpuInfoMIPS, 1);
1576 info->value->u.mips->PC = env->active_tc.PC;
1577 #elif defined(TARGET_TRICORE)
1578 info->value->arch = CPU_INFO_ARCH_TRICORE;
1579 info->value->u.tricore = g_new0(CpuInfoTricore, 1);
1580 info->value->u.tricore->PC = env->PC;
1581 #else
1582 info->value->arch = CPU_INFO_ARCH_OTHER;
1583 info->value->u.other = g_new0(CpuInfoOther, 1);
1584 #endif
1586 /* XXX: waiting for the qapi to support GSList */
1587 if (!cur_item) {
1588 head = cur_item = info;
1589 } else {
1590 cur_item->next = info;
1591 cur_item = info;
1595 return head;
1598 void qmp_memsave(int64_t addr, int64_t size, const char *filename,
1599 bool has_cpu, int64_t cpu_index, Error **errp)
1601 FILE *f;
1602 uint32_t l;
1603 CPUState *cpu;
1604 uint8_t buf[1024];
1605 int64_t orig_addr = addr, orig_size = size;
1607 if (!has_cpu) {
1608 cpu_index = 0;
1611 cpu = qemu_get_cpu(cpu_index);
1612 if (cpu == NULL) {
1613 error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "cpu-index",
1614 "a CPU number");
1615 return;
1618 f = fopen(filename, "wb");
1619 if (!f) {
1620 error_setg_file_open(errp, errno, filename);
1621 return;
1624 while (size != 0) {
1625 l = sizeof(buf);
1626 if (l > size)
1627 l = size;
1628 if (cpu_memory_rw_debug(cpu, addr, buf, l, 0) != 0) {
1629 error_setg(errp, "Invalid addr 0x%016" PRIx64 "/size %" PRId64
1630 " specified", orig_addr, orig_size);
1631 goto exit;
1633 if (fwrite(buf, 1, l, f) != l) {
1634 error_setg(errp, QERR_IO_ERROR);
1635 goto exit;
1637 addr += l;
1638 size -= l;
1641 exit:
1642 fclose(f);
1645 void qmp_pmemsave(int64_t addr, int64_t size, const char *filename,
1646 Error **errp)
1648 FILE *f;
1649 uint32_t l;
1650 uint8_t buf[1024];
1652 f = fopen(filename, "wb");
1653 if (!f) {
1654 error_setg_file_open(errp, errno, filename);
1655 return;
1658 while (size != 0) {
1659 l = sizeof(buf);
1660 if (l > size)
1661 l = size;
1662 cpu_physical_memory_read(addr, buf, l);
1663 if (fwrite(buf, 1, l, f) != l) {
1664 error_setg(errp, QERR_IO_ERROR);
1665 goto exit;
1667 addr += l;
1668 size -= l;
1671 exit:
1672 fclose(f);
1675 void qmp_inject_nmi(Error **errp)
1677 #if defined(TARGET_I386)
1678 CPUState *cs;
1680 CPU_FOREACH(cs) {
1681 X86CPU *cpu = X86_CPU(cs);
1683 if (!cpu->apic_state) {
1684 cpu_interrupt(cs, CPU_INTERRUPT_NMI);
1685 } else {
1686 apic_deliver_nmi(cpu->apic_state);
1689 #else
1690 nmi_monitor_handle(monitor_get_cpu_index(), errp);
1691 #endif
1694 void dump_drift_info(FILE *f, fprintf_function cpu_fprintf)
1696 if (!use_icount) {
1697 return;
1700 cpu_fprintf(f, "Host - Guest clock %"PRIi64" ms\n",
1701 (cpu_get_clock() - cpu_get_icount())/SCALE_MS);
1702 if (icount_align_option) {
1703 cpu_fprintf(f, "Max guest delay %"PRIi64" ms\n", -max_delay/SCALE_MS);
1704 cpu_fprintf(f, "Max guest advance %"PRIi64" ms\n", max_advance/SCALE_MS);
1705 } else {
1706 cpu_fprintf(f, "Max guest delay NA\n");
1707 cpu_fprintf(f, "Max guest advance NA\n");