hw/arm/boot: load device tree to base of DRAM if no -kernel option was passed
[qemu.git] / hw / arm / boot.c
blob1bed02db6fdd74102e6cdbd5e535be26514d752a
1 /*
2 * ARM kernel loader.
4 * Copyright (c) 2006-2007 CodeSourcery.
5 * Written by Paul Brook
7 * This code is licensed under the GPL.
8 */
10 #include "config.h"
11 #include "hw/hw.h"
12 #include "hw/arm/arm.h"
13 #include "sysemu/sysemu.h"
14 #include "hw/boards.h"
15 #include "hw/loader.h"
16 #include "elf.h"
17 #include "sysemu/device_tree.h"
18 #include "qemu/config-file.h"
19 #include "exec/address-spaces.h"
21 /* Kernel boot protocol is specified in the kernel docs
22 * Documentation/arm/Booting and Documentation/arm64/booting.txt
23 * They have different preferred image load offsets from system RAM base.
25 #define KERNEL_ARGS_ADDR 0x100
26 #define KERNEL_LOAD_ADDR 0x00010000
27 #define KERNEL64_LOAD_ADDR 0x00080000
29 typedef enum {
30 FIXUP_NONE = 0, /* do nothing */
31 FIXUP_TERMINATOR, /* end of insns */
32 FIXUP_BOARDID, /* overwrite with board ID number */
33 FIXUP_ARGPTR, /* overwrite with pointer to kernel args */
34 FIXUP_ENTRYPOINT, /* overwrite with kernel entry point */
35 FIXUP_GIC_CPU_IF, /* overwrite with GIC CPU interface address */
36 FIXUP_BOOTREG, /* overwrite with boot register address */
37 FIXUP_DSB, /* overwrite with correct DSB insn for cpu */
38 FIXUP_MAX,
39 } FixupType;
41 typedef struct ARMInsnFixup {
42 uint32_t insn;
43 FixupType fixup;
44 } ARMInsnFixup;
46 static const ARMInsnFixup bootloader_aarch64[] = {
47 { 0x580000c0 }, /* ldr x0, arg ; Load the lower 32-bits of DTB */
48 { 0xaa1f03e1 }, /* mov x1, xzr */
49 { 0xaa1f03e2 }, /* mov x2, xzr */
50 { 0xaa1f03e3 }, /* mov x3, xzr */
51 { 0x58000084 }, /* ldr x4, entry ; Load the lower 32-bits of kernel entry */
52 { 0xd61f0080 }, /* br x4 ; Jump to the kernel entry point */
53 { 0, FIXUP_ARGPTR }, /* arg: .word @DTB Lower 32-bits */
54 { 0 }, /* .word @DTB Higher 32-bits */
55 { 0, FIXUP_ENTRYPOINT }, /* entry: .word @Kernel Entry Lower 32-bits */
56 { 0 }, /* .word @Kernel Entry Higher 32-bits */
57 { 0, FIXUP_TERMINATOR }
60 /* The worlds second smallest bootloader. Set r0-r2, then jump to kernel. */
61 static const ARMInsnFixup bootloader[] = {
62 { 0xe3a00000 }, /* mov r0, #0 */
63 { 0xe59f1004 }, /* ldr r1, [pc, #4] */
64 { 0xe59f2004 }, /* ldr r2, [pc, #4] */
65 { 0xe59ff004 }, /* ldr pc, [pc, #4] */
66 { 0, FIXUP_BOARDID },
67 { 0, FIXUP_ARGPTR },
68 { 0, FIXUP_ENTRYPOINT },
69 { 0, FIXUP_TERMINATOR }
72 /* Handling for secondary CPU boot in a multicore system.
73 * Unlike the uniprocessor/primary CPU boot, this is platform
74 * dependent. The default code here is based on the secondary
75 * CPU boot protocol used on realview/vexpress boards, with
76 * some parameterisation to increase its flexibility.
77 * QEMU platform models for which this code is not appropriate
78 * should override write_secondary_boot and secondary_cpu_reset_hook
79 * instead.
81 * This code enables the interrupt controllers for the secondary
82 * CPUs and then puts all the secondary CPUs into a loop waiting
83 * for an interprocessor interrupt and polling a configurable
84 * location for the kernel secondary CPU entry point.
86 #define DSB_INSN 0xf57ff04f
87 #define CP15_DSB_INSN 0xee070f9a /* mcr cp15, 0, r0, c7, c10, 4 */
89 static const ARMInsnFixup smpboot[] = {
90 { 0xe59f2028 }, /* ldr r2, gic_cpu_if */
91 { 0xe59f0028 }, /* ldr r0, bootreg_addr */
92 { 0xe3a01001 }, /* mov r1, #1 */
93 { 0xe5821000 }, /* str r1, [r2] - set GICC_CTLR.Enable */
94 { 0xe3a010ff }, /* mov r1, #0xff */
95 { 0xe5821004 }, /* str r1, [r2, 4] - set GIC_PMR.Priority to 0xff */
96 { 0, FIXUP_DSB }, /* dsb */
97 { 0xe320f003 }, /* wfi */
98 { 0xe5901000 }, /* ldr r1, [r0] */
99 { 0xe1110001 }, /* tst r1, r1 */
100 { 0x0afffffb }, /* beq <wfi> */
101 { 0xe12fff11 }, /* bx r1 */
102 { 0, FIXUP_GIC_CPU_IF }, /* gic_cpu_if: .word 0x.... */
103 { 0, FIXUP_BOOTREG }, /* bootreg_addr: .word 0x.... */
104 { 0, FIXUP_TERMINATOR }
107 static void write_bootloader(const char *name, hwaddr addr,
108 const ARMInsnFixup *insns, uint32_t *fixupcontext)
110 /* Fix up the specified bootloader fragment and write it into
111 * guest memory using rom_add_blob_fixed(). fixupcontext is
112 * an array giving the values to write in for the fixup types
113 * which write a value into the code array.
115 int i, len;
116 uint32_t *code;
118 len = 0;
119 while (insns[len].fixup != FIXUP_TERMINATOR) {
120 len++;
123 code = g_new0(uint32_t, len);
125 for (i = 0; i < len; i++) {
126 uint32_t insn = insns[i].insn;
127 FixupType fixup = insns[i].fixup;
129 switch (fixup) {
130 case FIXUP_NONE:
131 break;
132 case FIXUP_BOARDID:
133 case FIXUP_ARGPTR:
134 case FIXUP_ENTRYPOINT:
135 case FIXUP_GIC_CPU_IF:
136 case FIXUP_BOOTREG:
137 case FIXUP_DSB:
138 insn = fixupcontext[fixup];
139 break;
140 default:
141 abort();
143 code[i] = tswap32(insn);
146 rom_add_blob_fixed(name, code, len * sizeof(uint32_t), addr);
148 g_free(code);
151 static void default_write_secondary(ARMCPU *cpu,
152 const struct arm_boot_info *info)
154 uint32_t fixupcontext[FIXUP_MAX];
156 fixupcontext[FIXUP_GIC_CPU_IF] = info->gic_cpu_if_addr;
157 fixupcontext[FIXUP_BOOTREG] = info->smp_bootreg_addr;
158 if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
159 fixupcontext[FIXUP_DSB] = DSB_INSN;
160 } else {
161 fixupcontext[FIXUP_DSB] = CP15_DSB_INSN;
164 write_bootloader("smpboot", info->smp_loader_start,
165 smpboot, fixupcontext);
168 static void default_reset_secondary(ARMCPU *cpu,
169 const struct arm_boot_info *info)
171 CPUARMState *env = &cpu->env;
173 stl_phys_notdirty(&address_space_memory, info->smp_bootreg_addr, 0);
174 env->regs[15] = info->smp_loader_start;
177 static inline bool have_dtb(const struct arm_boot_info *info)
179 return info->dtb_filename || info->get_dtb;
182 #define WRITE_WORD(p, value) do { \
183 stl_phys_notdirty(&address_space_memory, p, value); \
184 p += 4; \
185 } while (0)
187 static void set_kernel_args(const struct arm_boot_info *info)
189 int initrd_size = info->initrd_size;
190 hwaddr base = info->loader_start;
191 hwaddr p;
193 p = base + KERNEL_ARGS_ADDR;
194 /* ATAG_CORE */
195 WRITE_WORD(p, 5);
196 WRITE_WORD(p, 0x54410001);
197 WRITE_WORD(p, 1);
198 WRITE_WORD(p, 0x1000);
199 WRITE_WORD(p, 0);
200 /* ATAG_MEM */
201 /* TODO: handle multiple chips on one ATAG list */
202 WRITE_WORD(p, 4);
203 WRITE_WORD(p, 0x54410002);
204 WRITE_WORD(p, info->ram_size);
205 WRITE_WORD(p, info->loader_start);
206 if (initrd_size) {
207 /* ATAG_INITRD2 */
208 WRITE_WORD(p, 4);
209 WRITE_WORD(p, 0x54420005);
210 WRITE_WORD(p, info->initrd_start);
211 WRITE_WORD(p, initrd_size);
213 if (info->kernel_cmdline && *info->kernel_cmdline) {
214 /* ATAG_CMDLINE */
215 int cmdline_size;
217 cmdline_size = strlen(info->kernel_cmdline);
218 cpu_physical_memory_write(p + 8, info->kernel_cmdline,
219 cmdline_size + 1);
220 cmdline_size = (cmdline_size >> 2) + 1;
221 WRITE_WORD(p, cmdline_size + 2);
222 WRITE_WORD(p, 0x54410009);
223 p += cmdline_size * 4;
225 if (info->atag_board) {
226 /* ATAG_BOARD */
227 int atag_board_len;
228 uint8_t atag_board_buf[0x1000];
230 atag_board_len = (info->atag_board(info, atag_board_buf) + 3) & ~3;
231 WRITE_WORD(p, (atag_board_len + 8) >> 2);
232 WRITE_WORD(p, 0x414f4d50);
233 cpu_physical_memory_write(p, atag_board_buf, atag_board_len);
234 p += atag_board_len;
236 /* ATAG_END */
237 WRITE_WORD(p, 0);
238 WRITE_WORD(p, 0);
241 static void set_kernel_args_old(const struct arm_boot_info *info)
243 hwaddr p;
244 const char *s;
245 int initrd_size = info->initrd_size;
246 hwaddr base = info->loader_start;
248 /* see linux/include/asm-arm/setup.h */
249 p = base + KERNEL_ARGS_ADDR;
250 /* page_size */
251 WRITE_WORD(p, 4096);
252 /* nr_pages */
253 WRITE_WORD(p, info->ram_size / 4096);
254 /* ramdisk_size */
255 WRITE_WORD(p, 0);
256 #define FLAG_READONLY 1
257 #define FLAG_RDLOAD 4
258 #define FLAG_RDPROMPT 8
259 /* flags */
260 WRITE_WORD(p, FLAG_READONLY | FLAG_RDLOAD | FLAG_RDPROMPT);
261 /* rootdev */
262 WRITE_WORD(p, (31 << 8) | 0); /* /dev/mtdblock0 */
263 /* video_num_cols */
264 WRITE_WORD(p, 0);
265 /* video_num_rows */
266 WRITE_WORD(p, 0);
267 /* video_x */
268 WRITE_WORD(p, 0);
269 /* video_y */
270 WRITE_WORD(p, 0);
271 /* memc_control_reg */
272 WRITE_WORD(p, 0);
273 /* unsigned char sounddefault */
274 /* unsigned char adfsdrives */
275 /* unsigned char bytes_per_char_h */
276 /* unsigned char bytes_per_char_v */
277 WRITE_WORD(p, 0);
278 /* pages_in_bank[4] */
279 WRITE_WORD(p, 0);
280 WRITE_WORD(p, 0);
281 WRITE_WORD(p, 0);
282 WRITE_WORD(p, 0);
283 /* pages_in_vram */
284 WRITE_WORD(p, 0);
285 /* initrd_start */
286 if (initrd_size) {
287 WRITE_WORD(p, info->initrd_start);
288 } else {
289 WRITE_WORD(p, 0);
291 /* initrd_size */
292 WRITE_WORD(p, initrd_size);
293 /* rd_start */
294 WRITE_WORD(p, 0);
295 /* system_rev */
296 WRITE_WORD(p, 0);
297 /* system_serial_low */
298 WRITE_WORD(p, 0);
299 /* system_serial_high */
300 WRITE_WORD(p, 0);
301 /* mem_fclk_21285 */
302 WRITE_WORD(p, 0);
303 /* zero unused fields */
304 while (p < base + KERNEL_ARGS_ADDR + 256 + 1024) {
305 WRITE_WORD(p, 0);
307 s = info->kernel_cmdline;
308 if (s) {
309 cpu_physical_memory_write(p, s, strlen(s) + 1);
310 } else {
311 WRITE_WORD(p, 0);
316 * load_dtb() - load a device tree binary image into memory
317 * @addr: the address to load the image at
318 * @binfo: struct describing the boot environment
319 * @addr_limit: upper limit of the available memory area at @addr
321 * Load a device tree supplied by the machine or by the user with the
322 * '-dtb' command line option, and put it at offset @addr in target
323 * memory.
325 * If @addr_limit contains a meaningful value (i.e., it is strictly greater
326 * than @addr), the device tree is only loaded if its size does not exceed
327 * the limit.
329 * Returns: the size of the device tree image on success,
330 * 0 if the image size exceeds the limit,
331 * -1 on errors.
333 static int load_dtb(hwaddr addr, const struct arm_boot_info *binfo,
334 hwaddr addr_limit)
336 void *fdt = NULL;
337 int size, rc;
338 uint32_t acells, scells;
340 if (binfo->dtb_filename) {
341 char *filename;
342 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, binfo->dtb_filename);
343 if (!filename) {
344 fprintf(stderr, "Couldn't open dtb file %s\n", binfo->dtb_filename);
345 goto fail;
348 fdt = load_device_tree(filename, &size);
349 if (!fdt) {
350 fprintf(stderr, "Couldn't open dtb file %s\n", filename);
351 g_free(filename);
352 goto fail;
354 g_free(filename);
355 } else if (binfo->get_dtb) {
356 fdt = binfo->get_dtb(binfo, &size);
357 if (!fdt) {
358 fprintf(stderr, "Board was unable to create a dtb blob\n");
359 goto fail;
363 if (addr_limit > addr && size > (addr_limit - addr)) {
364 /* Installing the device tree blob at addr would exceed addr_limit.
365 * Whether this constitutes failure is up to the caller to decide,
366 * so just return 0 as size, i.e., no error.
368 g_free(fdt);
369 return 0;
372 acells = qemu_fdt_getprop_cell(fdt, "/", "#address-cells");
373 scells = qemu_fdt_getprop_cell(fdt, "/", "#size-cells");
374 if (acells == 0 || scells == 0) {
375 fprintf(stderr, "dtb file invalid (#address-cells or #size-cells 0)\n");
376 goto fail;
379 if (scells < 2 && binfo->ram_size >= (1ULL << 32)) {
380 /* This is user error so deserves a friendlier error message
381 * than the failure of setprop_sized_cells would provide
383 fprintf(stderr, "qemu: dtb file not compatible with "
384 "RAM size > 4GB\n");
385 goto fail;
388 rc = qemu_fdt_setprop_sized_cells(fdt, "/memory", "reg",
389 acells, binfo->loader_start,
390 scells, binfo->ram_size);
391 if (rc < 0) {
392 fprintf(stderr, "couldn't set /memory/reg\n");
393 goto fail;
396 if (binfo->kernel_cmdline && *binfo->kernel_cmdline) {
397 rc = qemu_fdt_setprop_string(fdt, "/chosen", "bootargs",
398 binfo->kernel_cmdline);
399 if (rc < 0) {
400 fprintf(stderr, "couldn't set /chosen/bootargs\n");
401 goto fail;
405 if (binfo->initrd_size) {
406 rc = qemu_fdt_setprop_cell(fdt, "/chosen", "linux,initrd-start",
407 binfo->initrd_start);
408 if (rc < 0) {
409 fprintf(stderr, "couldn't set /chosen/linux,initrd-start\n");
410 goto fail;
413 rc = qemu_fdt_setprop_cell(fdt, "/chosen", "linux,initrd-end",
414 binfo->initrd_start + binfo->initrd_size);
415 if (rc < 0) {
416 fprintf(stderr, "couldn't set /chosen/linux,initrd-end\n");
417 goto fail;
421 if (binfo->modify_dtb) {
422 binfo->modify_dtb(binfo, fdt);
425 qemu_fdt_dumpdtb(fdt, size);
427 /* Put the DTB into the memory map as a ROM image: this will ensure
428 * the DTB is copied again upon reset, even if addr points into RAM.
430 rom_add_blob_fixed("dtb", fdt, size, addr);
432 g_free(fdt);
434 return size;
436 fail:
437 g_free(fdt);
438 return -1;
441 static void do_cpu_reset(void *opaque)
443 ARMCPU *cpu = opaque;
444 CPUARMState *env = &cpu->env;
445 const struct arm_boot_info *info = env->boot_info;
447 cpu_reset(CPU(cpu));
448 if (info) {
449 if (!info->is_linux) {
450 /* Jump to the entry point. */
451 if (env->aarch64) {
452 env->pc = info->entry;
453 } else {
454 env->regs[15] = info->entry & 0xfffffffe;
455 env->thumb = info->entry & 1;
457 } else {
458 if (CPU(cpu) == first_cpu) {
459 if (env->aarch64) {
460 env->pc = info->loader_start;
461 } else {
462 env->regs[15] = info->loader_start;
465 if (!have_dtb(info)) {
466 if (old_param) {
467 set_kernel_args_old(info);
468 } else {
469 set_kernel_args(info);
472 } else {
473 info->secondary_cpu_reset_hook(cpu, info);
479 void arm_load_kernel(ARMCPU *cpu, struct arm_boot_info *info)
481 CPUState *cs = CPU(cpu);
482 int kernel_size;
483 int initrd_size;
484 int is_linux = 0;
485 uint64_t elf_entry;
486 int elf_machine;
487 hwaddr entry, kernel_load_offset;
488 int big_endian;
489 static const ARMInsnFixup *primary_loader;
491 /* Load the kernel. */
492 if (!info->kernel_filename) {
494 if (have_dtb(info)) {
495 /* If we have a device tree blob, but no kernel to supply it to,
496 * copy it to the base of RAM for a bootloader to pick up.
498 if (load_dtb(info->loader_start, info, 0) < 0) {
499 exit(1);
503 /* If no kernel specified, do nothing; we will start from address 0
504 * (typically a boot ROM image) in the same way as hardware.
506 return;
509 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
510 primary_loader = bootloader_aarch64;
511 kernel_load_offset = KERNEL64_LOAD_ADDR;
512 elf_machine = EM_AARCH64;
513 } else {
514 primary_loader = bootloader;
515 kernel_load_offset = KERNEL_LOAD_ADDR;
516 elf_machine = EM_ARM;
519 info->dtb_filename = qemu_opt_get(qemu_get_machine_opts(), "dtb");
521 if (!info->secondary_cpu_reset_hook) {
522 info->secondary_cpu_reset_hook = default_reset_secondary;
524 if (!info->write_secondary_boot) {
525 info->write_secondary_boot = default_write_secondary;
528 if (info->nb_cpus == 0)
529 info->nb_cpus = 1;
531 #ifdef TARGET_WORDS_BIGENDIAN
532 big_endian = 1;
533 #else
534 big_endian = 0;
535 #endif
537 /* We want to put the initrd far enough into RAM that when the
538 * kernel is uncompressed it will not clobber the initrd. However
539 * on boards without much RAM we must ensure that we still leave
540 * enough room for a decent sized initrd, and on boards with large
541 * amounts of RAM we must avoid the initrd being so far up in RAM
542 * that it is outside lowmem and inaccessible to the kernel.
543 * So for boards with less than 256MB of RAM we put the initrd
544 * halfway into RAM, and for boards with 256MB of RAM or more we put
545 * the initrd at 128MB.
547 info->initrd_start = info->loader_start +
548 MIN(info->ram_size / 2, 128 * 1024 * 1024);
550 /* Assume that raw images are linux kernels, and ELF images are not. */
551 kernel_size = load_elf(info->kernel_filename, NULL, NULL, &elf_entry,
552 NULL, NULL, big_endian, elf_machine, 1);
553 entry = elf_entry;
554 if (kernel_size < 0) {
555 kernel_size = load_uimage(info->kernel_filename, &entry, NULL,
556 &is_linux);
558 /* On aarch64, it's the bootloader's job to uncompress the kernel. */
559 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) && kernel_size < 0) {
560 entry = info->loader_start + kernel_load_offset;
561 kernel_size = load_image_gzipped(info->kernel_filename, entry,
562 info->ram_size - kernel_load_offset);
563 is_linux = 1;
565 if (kernel_size < 0) {
566 entry = info->loader_start + kernel_load_offset;
567 kernel_size = load_image_targphys(info->kernel_filename, entry,
568 info->ram_size - kernel_load_offset);
569 is_linux = 1;
571 if (kernel_size < 0) {
572 fprintf(stderr, "qemu: could not load kernel '%s'\n",
573 info->kernel_filename);
574 exit(1);
576 info->entry = entry;
577 if (is_linux) {
578 uint32_t fixupcontext[FIXUP_MAX];
580 if (info->initrd_filename) {
581 initrd_size = load_ramdisk(info->initrd_filename,
582 info->initrd_start,
583 info->ram_size -
584 info->initrd_start);
585 if (initrd_size < 0) {
586 initrd_size = load_image_targphys(info->initrd_filename,
587 info->initrd_start,
588 info->ram_size -
589 info->initrd_start);
591 if (initrd_size < 0) {
592 fprintf(stderr, "qemu: could not load initrd '%s'\n",
593 info->initrd_filename);
594 exit(1);
596 } else {
597 initrd_size = 0;
599 info->initrd_size = initrd_size;
601 fixupcontext[FIXUP_BOARDID] = info->board_id;
603 /* for device tree boot, we pass the DTB directly in r2. Otherwise
604 * we point to the kernel args.
606 if (have_dtb(info)) {
607 /* Place the DTB after the initrd in memory. Note that some
608 * kernels will trash anything in the 4K page the initrd
609 * ends in, so make sure the DTB isn't caught up in that.
611 hwaddr dtb_start = QEMU_ALIGN_UP(info->initrd_start + initrd_size,
612 4096);
613 if (load_dtb(dtb_start, info, 0) < 0) {
614 exit(1);
616 fixupcontext[FIXUP_ARGPTR] = dtb_start;
617 } else {
618 fixupcontext[FIXUP_ARGPTR] = info->loader_start + KERNEL_ARGS_ADDR;
619 if (info->ram_size >= (1ULL << 32)) {
620 fprintf(stderr, "qemu: RAM size must be less than 4GB to boot"
621 " Linux kernel using ATAGS (try passing a device tree"
622 " using -dtb)\n");
623 exit(1);
626 fixupcontext[FIXUP_ENTRYPOINT] = entry;
628 write_bootloader("bootloader", info->loader_start,
629 primary_loader, fixupcontext);
631 if (info->nb_cpus > 1) {
632 info->write_secondary_boot(cpu, info);
635 info->is_linux = is_linux;
637 for (; cs; cs = CPU_NEXT(cs)) {
638 cpu = ARM_CPU(cs);
639 cpu->env.boot_info = info;
640 qemu_register_reset(do_cpu_reset, cpu);