2 * Copyright (c) 2011, Max Filippov, Open Source and Linux Lab.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are met:
7 * * Redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer.
9 * * Redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution.
12 * * Neither the name of the Open Source and Linux Lab nor the
13 * names of its contributors may be used to endorse or promote products
14 * derived from this software without specific prior written permission.
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
17 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
20 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
23 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
25 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 #include "sysemu/sysemu.h"
29 #include "hw/boards.h"
30 #include "hw/loader.h"
32 #include "exec/memory.h"
33 #include "exec/address-spaces.h"
34 #include "hw/char/serial.h"
36 #include "hw/sysbus.h"
37 #include "hw/block/flash.h"
38 #include "sysemu/block-backend.h"
39 #include "sysemu/char.h"
40 #include "sysemu/device_tree.h"
41 #include "qemu/error-report.h"
42 #include "bootparam.h"
44 typedef struct LxBoardDesc
{
47 size_t flash_boot_base
;
48 size_t flash_sector_size
;
52 typedef struct Lx60FpgaState
{
58 static void lx60_fpga_reset(void *opaque
)
60 Lx60FpgaState
*s
= opaque
;
66 static uint64_t lx60_fpga_read(void *opaque
, hwaddr addr
,
69 Lx60FpgaState
*s
= opaque
;
72 case 0x0: /*build date code*/
75 case 0x4: /*processor clock frequency, Hz*/
78 case 0x8: /*LEDs (off = 0, on = 1)*/
81 case 0xc: /*DIP switches (off = 0, on = 1)*/
87 static void lx60_fpga_write(void *opaque
, hwaddr addr
,
88 uint64_t val
, unsigned size
)
90 Lx60FpgaState
*s
= opaque
;
93 case 0x8: /*LEDs (off = 0, on = 1)*/
97 case 0x10: /*board reset*/
99 qemu_system_reset_request();
105 static const MemoryRegionOps lx60_fpga_ops
= {
106 .read
= lx60_fpga_read
,
107 .write
= lx60_fpga_write
,
108 .endianness
= DEVICE_NATIVE_ENDIAN
,
111 static Lx60FpgaState
*lx60_fpga_init(MemoryRegion
*address_space
,
114 Lx60FpgaState
*s
= g_malloc(sizeof(Lx60FpgaState
));
116 memory_region_init_io(&s
->iomem
, NULL
, &lx60_fpga_ops
, s
,
117 "lx60.fpga", 0x10000);
118 memory_region_add_subregion(address_space
, base
, &s
->iomem
);
120 qemu_register_reset(lx60_fpga_reset
, s
);
124 static void lx60_net_init(MemoryRegion
*address_space
,
128 qemu_irq irq
, NICInfo
*nd
)
134 dev
= qdev_create(NULL
, "open_eth");
135 qdev_set_nic_properties(dev
, nd
);
136 qdev_init_nofail(dev
);
138 s
= SYS_BUS_DEVICE(dev
);
139 sysbus_connect_irq(s
, 0, irq
);
140 memory_region_add_subregion(address_space
, base
,
141 sysbus_mmio_get_region(s
, 0));
142 memory_region_add_subregion(address_space
, descriptors
,
143 sysbus_mmio_get_region(s
, 1));
145 ram
= g_malloc(sizeof(*ram
));
146 memory_region_init_ram(ram
, OBJECT(s
), "open_eth.ram", 16384, &error_abort
);
147 vmstate_register_ram_global(ram
);
148 memory_region_add_subregion(address_space
, buffers
, ram
);
151 static uint64_t translate_phys_addr(void *opaque
, uint64_t addr
)
153 XtensaCPU
*cpu
= opaque
;
155 return cpu_get_phys_page_debug(CPU(cpu
), addr
);
158 static void lx60_reset(void *opaque
)
160 XtensaCPU
*cpu
= opaque
;
165 static void lx_init(const LxBoardDesc
*board
, MachineState
*machine
)
167 #ifdef TARGET_WORDS_BIGENDIAN
172 MemoryRegion
*system_memory
= get_system_memory();
173 XtensaCPU
*cpu
= NULL
;
174 CPUXtensaState
*env
= NULL
;
175 MemoryRegion
*ram
, *rom
, *system_io
;
177 pflash_t
*flash
= NULL
;
178 QemuOpts
*machine_opts
= qemu_get_machine_opts();
179 const char *cpu_model
= machine
->cpu_model
;
180 const char *kernel_filename
= qemu_opt_get(machine_opts
, "kernel");
181 const char *kernel_cmdline
= qemu_opt_get(machine_opts
, "append");
182 const char *dtb_filename
= qemu_opt_get(machine_opts
, "dtb");
183 const char *initrd_filename
= qemu_opt_get(machine_opts
, "initrd");
187 cpu_model
= XTENSA_DEFAULT_CPU_MODEL
;
190 for (n
= 0; n
< smp_cpus
; n
++) {
191 cpu
= cpu_xtensa_init(cpu_model
);
193 error_report("unable to find CPU definition '%s'\n",
199 env
->sregs
[PRID
] = n
;
200 qemu_register_reset(lx60_reset
, cpu
);
201 /* Need MMU initialized prior to ELF loading,
202 * so that ELF gets loaded into virtual addresses
207 ram
= g_malloc(sizeof(*ram
));
208 memory_region_init_ram(ram
, NULL
, "lx60.dram", machine
->ram_size
,
210 vmstate_register_ram_global(ram
);
211 memory_region_add_subregion(system_memory
, 0, ram
);
213 system_io
= g_malloc(sizeof(*system_io
));
214 memory_region_init(system_io
, NULL
, "lx60.io", 224 * 1024 * 1024);
215 memory_region_add_subregion(system_memory
, 0xf0000000, system_io
);
216 lx60_fpga_init(system_io
, 0x0d020000);
217 if (nd_table
[0].used
) {
218 lx60_net_init(system_io
, 0x0d030000, 0x0d030400, 0x0d800000,
219 xtensa_get_extint(env
, 1), nd_table
);
222 if (!serial_hds
[0]) {
223 serial_hds
[0] = qemu_chr_new("serial0", "null", NULL
);
226 serial_mm_init(system_io
, 0x0d050020, 2, xtensa_get_extint(env
, 0),
227 115200, serial_hds
[0], DEVICE_NATIVE_ENDIAN
);
229 dinfo
= drive_get(IF_PFLASH
, 0, 0);
231 flash
= pflash_cfi01_register(board
->flash_base
,
232 NULL
, "lx60.io.flash", board
->flash_size
,
233 blk_by_legacy_dinfo(dinfo
),
234 board
->flash_sector_size
,
235 board
->flash_size
/ board
->flash_sector_size
,
236 4, 0x0000, 0x0000, 0x0000, 0x0000, be
);
238 error_report("unable to mount pflash\n");
243 /* Use presence of kernel file name as 'boot from SRAM' switch. */
244 if (kernel_filename
) {
245 uint32_t entry_point
= env
->pc
;
246 size_t bp_size
= 3 * get_tag_size(0); /* first/last and memory tags */
247 uint32_t tagptr
= 0xfe000000 + board
->sram_size
;
249 BpMemInfo memory_location
= {
250 .type
= tswap32(MEMORY_TYPE_CONVENTIONAL
),
252 .end
= tswap32(machine
->ram_size
),
254 uint32_t lowmem_end
= machine
->ram_size
< 0x08000000 ?
255 machine
->ram_size
: 0x08000000;
256 uint32_t cur_lowmem
= QEMU_ALIGN_UP(lowmem_end
/ 2, 4096);
258 rom
= g_malloc(sizeof(*rom
));
259 memory_region_init_ram(rom
, NULL
, "lx60.sram", board
->sram_size
,
261 vmstate_register_ram_global(rom
);
262 memory_region_add_subregion(system_memory
, 0xfe000000, rom
);
264 if (kernel_cmdline
) {
265 bp_size
+= get_tag_size(strlen(kernel_cmdline
) + 1);
268 bp_size
+= get_tag_size(sizeof(uint32_t));
270 if (initrd_filename
) {
271 bp_size
+= get_tag_size(sizeof(BpMemInfo
));
274 /* Put kernel bootparameters to the end of that SRAM */
275 tagptr
= (tagptr
- bp_size
) & ~0xff;
276 cur_tagptr
= put_tag(tagptr
, BP_TAG_FIRST
, 0, NULL
);
277 cur_tagptr
= put_tag(cur_tagptr
, BP_TAG_MEMORY
,
278 sizeof(memory_location
), &memory_location
);
280 if (kernel_cmdline
) {
281 cur_tagptr
= put_tag(cur_tagptr
, BP_TAG_COMMAND_LINE
,
282 strlen(kernel_cmdline
) + 1, kernel_cmdline
);
286 void *fdt
= load_device_tree(dtb_filename
, &fdt_size
);
287 uint32_t dtb_addr
= tswap32(cur_lowmem
);
290 error_report("could not load DTB '%s'\n", dtb_filename
);
294 cpu_physical_memory_write(cur_lowmem
, fdt
, fdt_size
);
295 cur_tagptr
= put_tag(cur_tagptr
, BP_TAG_FDT
,
296 sizeof(dtb_addr
), &dtb_addr
);
297 cur_lowmem
= QEMU_ALIGN_UP(cur_lowmem
+ fdt_size
, 4096);
299 if (initrd_filename
) {
300 BpMemInfo initrd_location
= { 0 };
301 int initrd_size
= load_ramdisk(initrd_filename
, cur_lowmem
,
302 lowmem_end
- cur_lowmem
);
304 if (initrd_size
< 0) {
305 initrd_size
= load_image_targphys(initrd_filename
,
307 lowmem_end
- cur_lowmem
);
309 if (initrd_size
< 0) {
310 error_report("could not load initrd '%s'\n", initrd_filename
);
313 initrd_location
.start
= tswap32(cur_lowmem
);
314 initrd_location
.end
= tswap32(cur_lowmem
+ initrd_size
);
315 cur_tagptr
= put_tag(cur_tagptr
, BP_TAG_INITRD
,
316 sizeof(initrd_location
), &initrd_location
);
317 cur_lowmem
= QEMU_ALIGN_UP(cur_lowmem
+ initrd_size
, 4096);
319 cur_tagptr
= put_tag(cur_tagptr
, BP_TAG_LAST
, 0, NULL
);
320 env
->regs
[2] = tagptr
;
323 uint64_t elf_lowaddr
;
324 int success
= load_elf(kernel_filename
, translate_phys_addr
, cpu
,
325 &elf_entry
, &elf_lowaddr
, NULL
, be
, ELF_MACHINE
, 0);
327 entry_point
= elf_entry
;
331 success
= load_uimage(kernel_filename
, &ep
, NULL
, &is_linux
,
332 translate_phys_addr
, cpu
);
333 if (success
> 0 && is_linux
) {
336 error_report("could not load kernel '%s'\n",
341 if (entry_point
!= env
->pc
) {
342 static const uint8_t jx_a0
[] = {
343 #ifdef TARGET_WORDS_BIGENDIAN
349 env
->regs
[0] = entry_point
;
350 cpu_physical_memory_write(env
->pc
, jx_a0
, sizeof(jx_a0
));
354 MemoryRegion
*flash_mr
= pflash_cfi01_get_memory(flash
);
355 MemoryRegion
*flash_io
= g_malloc(sizeof(*flash_io
));
357 memory_region_init_alias(flash_io
, NULL
, "lx60.flash",
358 flash_mr
, board
->flash_boot_base
,
359 board
->flash_size
- board
->flash_boot_base
< 0x02000000 ?
360 board
->flash_size
- board
->flash_boot_base
: 0x02000000);
361 memory_region_add_subregion(system_memory
, 0xfe000000,
367 static void xtensa_lx60_init(MachineState
*machine
)
369 static const LxBoardDesc lx60_board
= {
370 .flash_base
= 0xf8000000,
371 .flash_size
= 0x00400000,
372 .flash_sector_size
= 0x10000,
373 .sram_size
= 0x20000,
375 lx_init(&lx60_board
, machine
);
378 static void xtensa_lx200_init(MachineState
*machine
)
380 static const LxBoardDesc lx200_board
= {
381 .flash_base
= 0xf8000000,
382 .flash_size
= 0x01000000,
383 .flash_sector_size
= 0x20000,
384 .sram_size
= 0x2000000,
386 lx_init(&lx200_board
, machine
);
389 static void xtensa_ml605_init(MachineState
*machine
)
391 static const LxBoardDesc ml605_board
= {
392 .flash_base
= 0xf8000000,
393 .flash_size
= 0x02000000,
394 .flash_sector_size
= 0x20000,
395 .sram_size
= 0x2000000,
397 lx_init(&ml605_board
, machine
);
400 static void xtensa_kc705_init(MachineState
*machine
)
402 static const LxBoardDesc kc705_board
= {
403 .flash_base
= 0xf0000000,
404 .flash_size
= 0x08000000,
405 .flash_boot_base
= 0x06000000,
406 .flash_sector_size
= 0x20000,
407 .sram_size
= 0x2000000,
409 lx_init(&kc705_board
, machine
);
412 static QEMUMachine xtensa_lx60_machine
= {
414 .desc
= "lx60 EVB (" XTENSA_DEFAULT_CPU_MODEL
")",
415 .init
= xtensa_lx60_init
,
419 static QEMUMachine xtensa_lx200_machine
= {
421 .desc
= "lx200 EVB (" XTENSA_DEFAULT_CPU_MODEL
")",
422 .init
= xtensa_lx200_init
,
426 static QEMUMachine xtensa_ml605_machine
= {
428 .desc
= "ml605 EVB (" XTENSA_DEFAULT_CPU_MODEL
")",
429 .init
= xtensa_ml605_init
,
433 static QEMUMachine xtensa_kc705_machine
= {
435 .desc
= "kc705 EVB (" XTENSA_DEFAULT_CPU_MODEL
")",
436 .init
= xtensa_kc705_init
,
440 static void xtensa_lx_machines_init(void)
442 qemu_register_machine(&xtensa_lx60_machine
);
443 qemu_register_machine(&xtensa_lx200_machine
);
444 qemu_register_machine(&xtensa_ml605_machine
);
445 qemu_register_machine(&xtensa_kc705_machine
);
448 machine_init(xtensa_lx_machines_init
);