xen nic: use XC_PAGE_SIZE instead of PAGE_SIZE.
[qemu.git] / vl.c
blobfcf853222c4cba89d751df0fa508273d1f55eae9
1 /*
2 * QEMU System Emulator
4 * Copyright (c) 2003-2008 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
24 #include <unistd.h>
25 #include <fcntl.h>
26 #include <signal.h>
27 #include <time.h>
28 #include <errno.h>
29 #include <sys/time.h>
30 #include <zlib.h>
32 /* Needed early for HOST_BSD etc. */
33 #include "config-host.h"
35 #ifndef _WIN32
36 #include <libgen.h>
37 #include <pwd.h>
38 #include <sys/times.h>
39 #include <sys/wait.h>
40 #include <termios.h>
41 #include <sys/mman.h>
42 #include <sys/ioctl.h>
43 #include <sys/resource.h>
44 #include <sys/socket.h>
45 #include <netinet/in.h>
46 #include <net/if.h>
47 #if defined(__NetBSD__)
48 #include <net/if_tap.h>
49 #endif
50 #ifdef __linux__
51 #include <linux/if_tun.h>
52 #endif
53 #include <arpa/inet.h>
54 #include <dirent.h>
55 #include <netdb.h>
56 #include <sys/select.h>
57 #ifdef HOST_BSD
58 #include <sys/stat.h>
59 #if defined(__FreeBSD__) || defined(__DragonFly__)
60 #include <libutil.h>
61 #else
62 #include <util.h>
63 #endif
64 #elif defined (__GLIBC__) && defined (__FreeBSD_kernel__)
65 #include <freebsd/stdlib.h>
66 #else
67 #ifdef __linux__
68 #include <pty.h>
69 #include <malloc.h>
70 #include <linux/rtc.h>
72 /* For the benefit of older linux systems which don't supply it,
73 we use a local copy of hpet.h. */
74 /* #include <linux/hpet.h> */
75 #include "hpet.h"
77 #include <linux/ppdev.h>
78 #include <linux/parport.h>
79 #endif
80 #ifdef __sun__
81 #include <sys/stat.h>
82 #include <sys/ethernet.h>
83 #include <sys/sockio.h>
84 #include <netinet/arp.h>
85 #include <netinet/in.h>
86 #include <netinet/in_systm.h>
87 #include <netinet/ip.h>
88 #include <netinet/ip_icmp.h> // must come after ip.h
89 #include <netinet/udp.h>
90 #include <netinet/tcp.h>
91 #include <net/if.h>
92 #include <syslog.h>
93 #include <stropts.h>
94 #endif
95 #endif
96 #endif
98 #if defined(__OpenBSD__)
99 #include <util.h>
100 #endif
102 #if defined(CONFIG_VDE)
103 #include <libvdeplug.h>
104 #endif
106 #ifdef _WIN32
107 #include <windows.h>
108 #include <malloc.h>
109 #include <sys/timeb.h>
110 #include <mmsystem.h>
111 #define getopt_long_only getopt_long
112 #define memalign(align, size) malloc(size)
113 #endif
115 #ifdef CONFIG_SDL
116 #ifdef __APPLE__
117 #include <SDL/SDL.h>
118 int qemu_main(int argc, char **argv, char **envp);
119 int main(int argc, char **argv)
121 qemu_main(argc, argv, NULL);
123 #undef main
124 #define main qemu_main
125 #endif
126 #endif /* CONFIG_SDL */
128 #ifdef CONFIG_COCOA
129 #undef main
130 #define main qemu_main
131 #endif /* CONFIG_COCOA */
133 #include "hw/hw.h"
134 #include "hw/boards.h"
135 #include "hw/usb.h"
136 #include "hw/pcmcia.h"
137 #include "hw/pc.h"
138 #include "hw/audiodev.h"
139 #include "hw/isa.h"
140 #include "hw/baum.h"
141 #include "hw/bt.h"
142 #include "hw/watchdog.h"
143 #include "hw/smbios.h"
144 #include "hw/xen.h"
145 #include "bt-host.h"
146 #include "net.h"
147 #include "monitor.h"
148 #include "console.h"
149 #include "sysemu.h"
150 #include "gdbstub.h"
151 #include "qemu-timer.h"
152 #include "qemu-char.h"
153 #include "cache-utils.h"
154 #include "block.h"
155 #include "dma.h"
156 #include "audio/audio.h"
157 #include "migration.h"
158 #include "kvm.h"
159 #include "balloon.h"
160 #include "qemu-option.h"
162 #include "disas.h"
164 #include "exec-all.h"
166 #include "qemu_socket.h"
168 #if defined(CONFIG_SLIRP)
169 #include "libslirp.h"
170 #endif
172 //#define DEBUG_UNUSED_IOPORT
173 //#define DEBUG_IOPORT
174 //#define DEBUG_NET
175 //#define DEBUG_SLIRP
178 #ifdef DEBUG_IOPORT
179 # define LOG_IOPORT(...) qemu_log_mask(CPU_LOG_IOPORT, ## __VA_ARGS__)
180 #else
181 # define LOG_IOPORT(...) do { } while (0)
182 #endif
184 #define DEFAULT_RAM_SIZE 128
186 /* Max number of USB devices that can be specified on the commandline. */
187 #define MAX_USB_CMDLINE 8
189 /* Max number of bluetooth switches on the commandline. */
190 #define MAX_BT_CMDLINE 10
192 /* XXX: use a two level table to limit memory usage */
193 #define MAX_IOPORTS 65536
195 static const char *data_dir;
196 const char *bios_name = NULL;
197 static void *ioport_opaque[MAX_IOPORTS];
198 static IOPortReadFunc *ioport_read_table[3][MAX_IOPORTS];
199 static IOPortWriteFunc *ioport_write_table[3][MAX_IOPORTS];
200 /* Note: drives_table[MAX_DRIVES] is a dummy block driver if none available
201 to store the VM snapshots */
202 DriveInfo drives_table[MAX_DRIVES+1];
203 int nb_drives;
204 enum vga_retrace_method vga_retrace_method = VGA_RETRACE_DUMB;
205 static DisplayState *display_state;
206 DisplayType display_type = DT_DEFAULT;
207 const char* keyboard_layout = NULL;
208 int64_t ticks_per_sec;
209 ram_addr_t ram_size;
210 int nb_nics;
211 NICInfo nd_table[MAX_NICS];
212 int vm_running;
213 static int autostart;
214 static int rtc_utc = 1;
215 static int rtc_date_offset = -1; /* -1 means no change */
216 int cirrus_vga_enabled = 1;
217 int std_vga_enabled = 0;
218 int vmsvga_enabled = 0;
219 int xenfb_enabled = 0;
220 #ifdef TARGET_SPARC
221 int graphic_width = 1024;
222 int graphic_height = 768;
223 int graphic_depth = 8;
224 #else
225 int graphic_width = 800;
226 int graphic_height = 600;
227 int graphic_depth = 15;
228 #endif
229 static int full_screen = 0;
230 #ifdef CONFIG_SDL
231 static int no_frame = 0;
232 #endif
233 int no_quit = 0;
234 CharDriverState *serial_hds[MAX_SERIAL_PORTS];
235 CharDriverState *parallel_hds[MAX_PARALLEL_PORTS];
236 CharDriverState *virtcon_hds[MAX_VIRTIO_CONSOLES];
237 #ifdef TARGET_I386
238 int win2k_install_hack = 0;
239 int rtc_td_hack = 0;
240 #endif
241 int usb_enabled = 0;
242 int singlestep = 0;
243 int smp_cpus = 1;
244 const char *vnc_display;
245 int acpi_enabled = 1;
246 int no_hpet = 0;
247 int fd_bootchk = 1;
248 int no_reboot = 0;
249 int no_shutdown = 0;
250 int cursor_hide = 1;
251 int graphic_rotate = 0;
252 #ifndef _WIN32
253 int daemonize = 0;
254 #endif
255 WatchdogTimerModel *watchdog = NULL;
256 int watchdog_action = WDT_RESET;
257 const char *option_rom[MAX_OPTION_ROMS];
258 int nb_option_roms;
259 int semihosting_enabled = 0;
260 #ifdef TARGET_ARM
261 int old_param = 0;
262 #endif
263 const char *qemu_name;
264 int alt_grab = 0;
265 #if defined(TARGET_SPARC) || defined(TARGET_PPC)
266 unsigned int nb_prom_envs = 0;
267 const char *prom_envs[MAX_PROM_ENVS];
268 #endif
269 int nb_drives_opt;
270 struct drive_opt drives_opt[MAX_DRIVES];
272 int nb_numa_nodes;
273 uint64_t node_mem[MAX_NODES];
274 uint64_t node_cpumask[MAX_NODES];
276 static CPUState *cur_cpu;
277 static CPUState *next_cpu;
278 static int timer_alarm_pending = 1;
279 /* Conversion factor from emulated instructions to virtual clock ticks. */
280 static int icount_time_shift;
281 /* Arbitrarily pick 1MIPS as the minimum allowable speed. */
282 #define MAX_ICOUNT_SHIFT 10
283 /* Compensate for varying guest execution speed. */
284 static int64_t qemu_icount_bias;
285 static QEMUTimer *icount_rt_timer;
286 static QEMUTimer *icount_vm_timer;
287 static QEMUTimer *nographic_timer;
289 uint8_t qemu_uuid[16];
291 /***********************************************************/
292 /* x86 ISA bus support */
294 target_phys_addr_t isa_mem_base = 0;
295 PicState2 *isa_pic;
297 static IOPortReadFunc default_ioport_readb, default_ioport_readw, default_ioport_readl;
298 static IOPortWriteFunc default_ioport_writeb, default_ioport_writew, default_ioport_writel;
300 static uint32_t ioport_read(int index, uint32_t address)
302 static IOPortReadFunc *default_func[3] = {
303 default_ioport_readb,
304 default_ioport_readw,
305 default_ioport_readl
307 IOPortReadFunc *func = ioport_read_table[index][address];
308 if (!func)
309 func = default_func[index];
310 return func(ioport_opaque[address], address);
313 static void ioport_write(int index, uint32_t address, uint32_t data)
315 static IOPortWriteFunc *default_func[3] = {
316 default_ioport_writeb,
317 default_ioport_writew,
318 default_ioport_writel
320 IOPortWriteFunc *func = ioport_write_table[index][address];
321 if (!func)
322 func = default_func[index];
323 func(ioport_opaque[address], address, data);
326 static uint32_t default_ioport_readb(void *opaque, uint32_t address)
328 #ifdef DEBUG_UNUSED_IOPORT
329 fprintf(stderr, "unused inb: port=0x%04x\n", address);
330 #endif
331 return 0xff;
334 static void default_ioport_writeb(void *opaque, uint32_t address, uint32_t data)
336 #ifdef DEBUG_UNUSED_IOPORT
337 fprintf(stderr, "unused outb: port=0x%04x data=0x%02x\n", address, data);
338 #endif
341 /* default is to make two byte accesses */
342 static uint32_t default_ioport_readw(void *opaque, uint32_t address)
344 uint32_t data;
345 data = ioport_read(0, address);
346 address = (address + 1) & (MAX_IOPORTS - 1);
347 data |= ioport_read(0, address) << 8;
348 return data;
351 static void default_ioport_writew(void *opaque, uint32_t address, uint32_t data)
353 ioport_write(0, address, data & 0xff);
354 address = (address + 1) & (MAX_IOPORTS - 1);
355 ioport_write(0, address, (data >> 8) & 0xff);
358 static uint32_t default_ioport_readl(void *opaque, uint32_t address)
360 #ifdef DEBUG_UNUSED_IOPORT
361 fprintf(stderr, "unused inl: port=0x%04x\n", address);
362 #endif
363 return 0xffffffff;
366 static void default_ioport_writel(void *opaque, uint32_t address, uint32_t data)
368 #ifdef DEBUG_UNUSED_IOPORT
369 fprintf(stderr, "unused outl: port=0x%04x data=0x%02x\n", address, data);
370 #endif
373 /* size is the word size in byte */
374 int register_ioport_read(int start, int length, int size,
375 IOPortReadFunc *func, void *opaque)
377 int i, bsize;
379 if (size == 1) {
380 bsize = 0;
381 } else if (size == 2) {
382 bsize = 1;
383 } else if (size == 4) {
384 bsize = 2;
385 } else {
386 hw_error("register_ioport_read: invalid size");
387 return -1;
389 for(i = start; i < start + length; i += size) {
390 ioport_read_table[bsize][i] = func;
391 if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
392 hw_error("register_ioport_read: invalid opaque");
393 ioport_opaque[i] = opaque;
395 return 0;
398 /* size is the word size in byte */
399 int register_ioport_write(int start, int length, int size,
400 IOPortWriteFunc *func, void *opaque)
402 int i, bsize;
404 if (size == 1) {
405 bsize = 0;
406 } else if (size == 2) {
407 bsize = 1;
408 } else if (size == 4) {
409 bsize = 2;
410 } else {
411 hw_error("register_ioport_write: invalid size");
412 return -1;
414 for(i = start; i < start + length; i += size) {
415 ioport_write_table[bsize][i] = func;
416 if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
417 hw_error("register_ioport_write: invalid opaque");
418 ioport_opaque[i] = opaque;
420 return 0;
423 void isa_unassign_ioport(int start, int length)
425 int i;
427 for(i = start; i < start + length; i++) {
428 ioport_read_table[0][i] = default_ioport_readb;
429 ioport_read_table[1][i] = default_ioport_readw;
430 ioport_read_table[2][i] = default_ioport_readl;
432 ioport_write_table[0][i] = default_ioport_writeb;
433 ioport_write_table[1][i] = default_ioport_writew;
434 ioport_write_table[2][i] = default_ioport_writel;
436 ioport_opaque[i] = NULL;
440 /***********************************************************/
442 void cpu_outb(CPUState *env, int addr, int val)
444 LOG_IOPORT("outb: %04x %02x\n", addr, val);
445 ioport_write(0, addr, val);
446 #ifdef CONFIG_KQEMU
447 if (env)
448 env->last_io_time = cpu_get_time_fast();
449 #endif
452 void cpu_outw(CPUState *env, int addr, int val)
454 LOG_IOPORT("outw: %04x %04x\n", addr, val);
455 ioport_write(1, addr, val);
456 #ifdef CONFIG_KQEMU
457 if (env)
458 env->last_io_time = cpu_get_time_fast();
459 #endif
462 void cpu_outl(CPUState *env, int addr, int val)
464 LOG_IOPORT("outl: %04x %08x\n", addr, val);
465 ioport_write(2, addr, val);
466 #ifdef CONFIG_KQEMU
467 if (env)
468 env->last_io_time = cpu_get_time_fast();
469 #endif
472 int cpu_inb(CPUState *env, int addr)
474 int val;
475 val = ioport_read(0, addr);
476 LOG_IOPORT("inb : %04x %02x\n", addr, val);
477 #ifdef CONFIG_KQEMU
478 if (env)
479 env->last_io_time = cpu_get_time_fast();
480 #endif
481 return val;
484 int cpu_inw(CPUState *env, int addr)
486 int val;
487 val = ioport_read(1, addr);
488 LOG_IOPORT("inw : %04x %04x\n", addr, val);
489 #ifdef CONFIG_KQEMU
490 if (env)
491 env->last_io_time = cpu_get_time_fast();
492 #endif
493 return val;
496 int cpu_inl(CPUState *env, int addr)
498 int val;
499 val = ioport_read(2, addr);
500 LOG_IOPORT("inl : %04x %08x\n", addr, val);
501 #ifdef CONFIG_KQEMU
502 if (env)
503 env->last_io_time = cpu_get_time_fast();
504 #endif
505 return val;
508 /***********************************************************/
509 void hw_error(const char *fmt, ...)
511 va_list ap;
512 CPUState *env;
514 va_start(ap, fmt);
515 fprintf(stderr, "qemu: hardware error: ");
516 vfprintf(stderr, fmt, ap);
517 fprintf(stderr, "\n");
518 for(env = first_cpu; env != NULL; env = env->next_cpu) {
519 fprintf(stderr, "CPU #%d:\n", env->cpu_index);
520 #ifdef TARGET_I386
521 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU);
522 #else
523 cpu_dump_state(env, stderr, fprintf, 0);
524 #endif
526 va_end(ap);
527 abort();
530 /***************/
531 /* ballooning */
533 static QEMUBalloonEvent *qemu_balloon_event;
534 void *qemu_balloon_event_opaque;
536 void qemu_add_balloon_handler(QEMUBalloonEvent *func, void *opaque)
538 qemu_balloon_event = func;
539 qemu_balloon_event_opaque = opaque;
542 void qemu_balloon(ram_addr_t target)
544 if (qemu_balloon_event)
545 qemu_balloon_event(qemu_balloon_event_opaque, target);
548 ram_addr_t qemu_balloon_status(void)
550 if (qemu_balloon_event)
551 return qemu_balloon_event(qemu_balloon_event_opaque, 0);
552 return 0;
555 /***********************************************************/
556 /* keyboard/mouse */
558 static QEMUPutKBDEvent *qemu_put_kbd_event;
559 static void *qemu_put_kbd_event_opaque;
560 static QEMUPutMouseEntry *qemu_put_mouse_event_head;
561 static QEMUPutMouseEntry *qemu_put_mouse_event_current;
563 void qemu_add_kbd_event_handler(QEMUPutKBDEvent *func, void *opaque)
565 qemu_put_kbd_event_opaque = opaque;
566 qemu_put_kbd_event = func;
569 QEMUPutMouseEntry *qemu_add_mouse_event_handler(QEMUPutMouseEvent *func,
570 void *opaque, int absolute,
571 const char *name)
573 QEMUPutMouseEntry *s, *cursor;
575 s = qemu_mallocz(sizeof(QEMUPutMouseEntry));
577 s->qemu_put_mouse_event = func;
578 s->qemu_put_mouse_event_opaque = opaque;
579 s->qemu_put_mouse_event_absolute = absolute;
580 s->qemu_put_mouse_event_name = qemu_strdup(name);
581 s->next = NULL;
583 if (!qemu_put_mouse_event_head) {
584 qemu_put_mouse_event_head = qemu_put_mouse_event_current = s;
585 return s;
588 cursor = qemu_put_mouse_event_head;
589 while (cursor->next != NULL)
590 cursor = cursor->next;
592 cursor->next = s;
593 qemu_put_mouse_event_current = s;
595 return s;
598 void qemu_remove_mouse_event_handler(QEMUPutMouseEntry *entry)
600 QEMUPutMouseEntry *prev = NULL, *cursor;
602 if (!qemu_put_mouse_event_head || entry == NULL)
603 return;
605 cursor = qemu_put_mouse_event_head;
606 while (cursor != NULL && cursor != entry) {
607 prev = cursor;
608 cursor = cursor->next;
611 if (cursor == NULL) // does not exist or list empty
612 return;
613 else if (prev == NULL) { // entry is head
614 qemu_put_mouse_event_head = cursor->next;
615 if (qemu_put_mouse_event_current == entry)
616 qemu_put_mouse_event_current = cursor->next;
617 qemu_free(entry->qemu_put_mouse_event_name);
618 qemu_free(entry);
619 return;
622 prev->next = entry->next;
624 if (qemu_put_mouse_event_current == entry)
625 qemu_put_mouse_event_current = prev;
627 qemu_free(entry->qemu_put_mouse_event_name);
628 qemu_free(entry);
631 void kbd_put_keycode(int keycode)
633 if (qemu_put_kbd_event) {
634 qemu_put_kbd_event(qemu_put_kbd_event_opaque, keycode);
638 void kbd_mouse_event(int dx, int dy, int dz, int buttons_state)
640 QEMUPutMouseEvent *mouse_event;
641 void *mouse_event_opaque;
642 int width;
644 if (!qemu_put_mouse_event_current) {
645 return;
648 mouse_event =
649 qemu_put_mouse_event_current->qemu_put_mouse_event;
650 mouse_event_opaque =
651 qemu_put_mouse_event_current->qemu_put_mouse_event_opaque;
653 if (mouse_event) {
654 if (graphic_rotate) {
655 if (qemu_put_mouse_event_current->qemu_put_mouse_event_absolute)
656 width = 0x7fff;
657 else
658 width = graphic_width - 1;
659 mouse_event(mouse_event_opaque,
660 width - dy, dx, dz, buttons_state);
661 } else
662 mouse_event(mouse_event_opaque,
663 dx, dy, dz, buttons_state);
667 int kbd_mouse_is_absolute(void)
669 if (!qemu_put_mouse_event_current)
670 return 0;
672 return qemu_put_mouse_event_current->qemu_put_mouse_event_absolute;
675 void do_info_mice(Monitor *mon)
677 QEMUPutMouseEntry *cursor;
678 int index = 0;
680 if (!qemu_put_mouse_event_head) {
681 monitor_printf(mon, "No mouse devices connected\n");
682 return;
685 monitor_printf(mon, "Mouse devices available:\n");
686 cursor = qemu_put_mouse_event_head;
687 while (cursor != NULL) {
688 monitor_printf(mon, "%c Mouse #%d: %s\n",
689 (cursor == qemu_put_mouse_event_current ? '*' : ' '),
690 index, cursor->qemu_put_mouse_event_name);
691 index++;
692 cursor = cursor->next;
696 void do_mouse_set(Monitor *mon, int index)
698 QEMUPutMouseEntry *cursor;
699 int i = 0;
701 if (!qemu_put_mouse_event_head) {
702 monitor_printf(mon, "No mouse devices connected\n");
703 return;
706 cursor = qemu_put_mouse_event_head;
707 while (cursor != NULL && index != i) {
708 i++;
709 cursor = cursor->next;
712 if (cursor != NULL)
713 qemu_put_mouse_event_current = cursor;
714 else
715 monitor_printf(mon, "Mouse at given index not found\n");
718 /* compute with 96 bit intermediate result: (a*b)/c */
719 uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c)
721 union {
722 uint64_t ll;
723 struct {
724 #ifdef WORDS_BIGENDIAN
725 uint32_t high, low;
726 #else
727 uint32_t low, high;
728 #endif
729 } l;
730 } u, res;
731 uint64_t rl, rh;
733 u.ll = a;
734 rl = (uint64_t)u.l.low * (uint64_t)b;
735 rh = (uint64_t)u.l.high * (uint64_t)b;
736 rh += (rl >> 32);
737 res.l.high = rh / c;
738 res.l.low = (((rh % c) << 32) + (rl & 0xffffffff)) / c;
739 return res.ll;
742 /***********************************************************/
743 /* real time host monotonic timer */
745 #define QEMU_TIMER_BASE 1000000000LL
747 #ifdef WIN32
749 static int64_t clock_freq;
751 static void init_get_clock(void)
753 LARGE_INTEGER freq;
754 int ret;
755 ret = QueryPerformanceFrequency(&freq);
756 if (ret == 0) {
757 fprintf(stderr, "Could not calibrate ticks\n");
758 exit(1);
760 clock_freq = freq.QuadPart;
763 static int64_t get_clock(void)
765 LARGE_INTEGER ti;
766 QueryPerformanceCounter(&ti);
767 return muldiv64(ti.QuadPart, QEMU_TIMER_BASE, clock_freq);
770 #else
772 static int use_rt_clock;
774 static void init_get_clock(void)
776 use_rt_clock = 0;
777 #if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000) \
778 || defined(__DragonFly__)
780 struct timespec ts;
781 if (clock_gettime(CLOCK_MONOTONIC, &ts) == 0) {
782 use_rt_clock = 1;
785 #endif
788 static int64_t get_clock(void)
790 #if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000) \
791 || defined(__DragonFly__)
792 if (use_rt_clock) {
793 struct timespec ts;
794 clock_gettime(CLOCK_MONOTONIC, &ts);
795 return ts.tv_sec * 1000000000LL + ts.tv_nsec;
796 } else
797 #endif
799 /* XXX: using gettimeofday leads to problems if the date
800 changes, so it should be avoided. */
801 struct timeval tv;
802 gettimeofday(&tv, NULL);
803 return tv.tv_sec * 1000000000LL + (tv.tv_usec * 1000);
806 #endif
808 /* Return the virtual CPU time, based on the instruction counter. */
809 static int64_t cpu_get_icount(void)
811 int64_t icount;
812 CPUState *env = cpu_single_env;;
813 icount = qemu_icount;
814 if (env) {
815 if (!can_do_io(env))
816 fprintf(stderr, "Bad clock read\n");
817 icount -= (env->icount_decr.u16.low + env->icount_extra);
819 return qemu_icount_bias + (icount << icount_time_shift);
822 /***********************************************************/
823 /* guest cycle counter */
825 static int64_t cpu_ticks_prev;
826 static int64_t cpu_ticks_offset;
827 static int64_t cpu_clock_offset;
828 static int cpu_ticks_enabled;
830 /* return the host CPU cycle counter and handle stop/restart */
831 int64_t cpu_get_ticks(void)
833 if (use_icount) {
834 return cpu_get_icount();
836 if (!cpu_ticks_enabled) {
837 return cpu_ticks_offset;
838 } else {
839 int64_t ticks;
840 ticks = cpu_get_real_ticks();
841 if (cpu_ticks_prev > ticks) {
842 /* Note: non increasing ticks may happen if the host uses
843 software suspend */
844 cpu_ticks_offset += cpu_ticks_prev - ticks;
846 cpu_ticks_prev = ticks;
847 return ticks + cpu_ticks_offset;
851 /* return the host CPU monotonic timer and handle stop/restart */
852 static int64_t cpu_get_clock(void)
854 int64_t ti;
855 if (!cpu_ticks_enabled) {
856 return cpu_clock_offset;
857 } else {
858 ti = get_clock();
859 return ti + cpu_clock_offset;
863 /* enable cpu_get_ticks() */
864 void cpu_enable_ticks(void)
866 if (!cpu_ticks_enabled) {
867 cpu_ticks_offset -= cpu_get_real_ticks();
868 cpu_clock_offset -= get_clock();
869 cpu_ticks_enabled = 1;
873 /* disable cpu_get_ticks() : the clock is stopped. You must not call
874 cpu_get_ticks() after that. */
875 void cpu_disable_ticks(void)
877 if (cpu_ticks_enabled) {
878 cpu_ticks_offset = cpu_get_ticks();
879 cpu_clock_offset = cpu_get_clock();
880 cpu_ticks_enabled = 0;
884 /***********************************************************/
885 /* timers */
887 #define QEMU_TIMER_REALTIME 0
888 #define QEMU_TIMER_VIRTUAL 1
890 struct QEMUClock {
891 int type;
892 /* XXX: add frequency */
895 struct QEMUTimer {
896 QEMUClock *clock;
897 int64_t expire_time;
898 QEMUTimerCB *cb;
899 void *opaque;
900 struct QEMUTimer *next;
903 struct qemu_alarm_timer {
904 char const *name;
905 unsigned int flags;
907 int (*start)(struct qemu_alarm_timer *t);
908 void (*stop)(struct qemu_alarm_timer *t);
909 void (*rearm)(struct qemu_alarm_timer *t);
910 void *priv;
913 #define ALARM_FLAG_DYNTICKS 0x1
914 #define ALARM_FLAG_EXPIRED 0x2
916 static inline int alarm_has_dynticks(struct qemu_alarm_timer *t)
918 return t && (t->flags & ALARM_FLAG_DYNTICKS);
921 static void qemu_rearm_alarm_timer(struct qemu_alarm_timer *t)
923 if (!alarm_has_dynticks(t))
924 return;
926 t->rearm(t);
929 /* TODO: MIN_TIMER_REARM_US should be optimized */
930 #define MIN_TIMER_REARM_US 250
932 static struct qemu_alarm_timer *alarm_timer;
934 #ifdef _WIN32
936 struct qemu_alarm_win32 {
937 MMRESULT timerId;
938 unsigned int period;
939 } alarm_win32_data = {0, -1};
941 static int win32_start_timer(struct qemu_alarm_timer *t);
942 static void win32_stop_timer(struct qemu_alarm_timer *t);
943 static void win32_rearm_timer(struct qemu_alarm_timer *t);
945 #else
947 static int unix_start_timer(struct qemu_alarm_timer *t);
948 static void unix_stop_timer(struct qemu_alarm_timer *t);
950 #ifdef __linux__
952 static int dynticks_start_timer(struct qemu_alarm_timer *t);
953 static void dynticks_stop_timer(struct qemu_alarm_timer *t);
954 static void dynticks_rearm_timer(struct qemu_alarm_timer *t);
956 static int hpet_start_timer(struct qemu_alarm_timer *t);
957 static void hpet_stop_timer(struct qemu_alarm_timer *t);
959 static int rtc_start_timer(struct qemu_alarm_timer *t);
960 static void rtc_stop_timer(struct qemu_alarm_timer *t);
962 #endif /* __linux__ */
964 #endif /* _WIN32 */
966 /* Correlation between real and virtual time is always going to be
967 fairly approximate, so ignore small variation.
968 When the guest is idle real and virtual time will be aligned in
969 the IO wait loop. */
970 #define ICOUNT_WOBBLE (QEMU_TIMER_BASE / 10)
972 static void icount_adjust(void)
974 int64_t cur_time;
975 int64_t cur_icount;
976 int64_t delta;
977 static int64_t last_delta;
978 /* If the VM is not running, then do nothing. */
979 if (!vm_running)
980 return;
982 cur_time = cpu_get_clock();
983 cur_icount = qemu_get_clock(vm_clock);
984 delta = cur_icount - cur_time;
985 /* FIXME: This is a very crude algorithm, somewhat prone to oscillation. */
986 if (delta > 0
987 && last_delta + ICOUNT_WOBBLE < delta * 2
988 && icount_time_shift > 0) {
989 /* The guest is getting too far ahead. Slow time down. */
990 icount_time_shift--;
992 if (delta < 0
993 && last_delta - ICOUNT_WOBBLE > delta * 2
994 && icount_time_shift < MAX_ICOUNT_SHIFT) {
995 /* The guest is getting too far behind. Speed time up. */
996 icount_time_shift++;
998 last_delta = delta;
999 qemu_icount_bias = cur_icount - (qemu_icount << icount_time_shift);
1002 static void icount_adjust_rt(void * opaque)
1004 qemu_mod_timer(icount_rt_timer,
1005 qemu_get_clock(rt_clock) + 1000);
1006 icount_adjust();
1009 static void icount_adjust_vm(void * opaque)
1011 qemu_mod_timer(icount_vm_timer,
1012 qemu_get_clock(vm_clock) + QEMU_TIMER_BASE / 10);
1013 icount_adjust();
1016 static void init_icount_adjust(void)
1018 /* Have both realtime and virtual time triggers for speed adjustment.
1019 The realtime trigger catches emulated time passing too slowly,
1020 the virtual time trigger catches emulated time passing too fast.
1021 Realtime triggers occur even when idle, so use them less frequently
1022 than VM triggers. */
1023 icount_rt_timer = qemu_new_timer(rt_clock, icount_adjust_rt, NULL);
1024 qemu_mod_timer(icount_rt_timer,
1025 qemu_get_clock(rt_clock) + 1000);
1026 icount_vm_timer = qemu_new_timer(vm_clock, icount_adjust_vm, NULL);
1027 qemu_mod_timer(icount_vm_timer,
1028 qemu_get_clock(vm_clock) + QEMU_TIMER_BASE / 10);
1031 static struct qemu_alarm_timer alarm_timers[] = {
1032 #ifndef _WIN32
1033 #ifdef __linux__
1034 {"dynticks", ALARM_FLAG_DYNTICKS, dynticks_start_timer,
1035 dynticks_stop_timer, dynticks_rearm_timer, NULL},
1036 /* HPET - if available - is preferred */
1037 {"hpet", 0, hpet_start_timer, hpet_stop_timer, NULL, NULL},
1038 /* ...otherwise try RTC */
1039 {"rtc", 0, rtc_start_timer, rtc_stop_timer, NULL, NULL},
1040 #endif
1041 {"unix", 0, unix_start_timer, unix_stop_timer, NULL, NULL},
1042 #else
1043 {"dynticks", ALARM_FLAG_DYNTICKS, win32_start_timer,
1044 win32_stop_timer, win32_rearm_timer, &alarm_win32_data},
1045 {"win32", 0, win32_start_timer,
1046 win32_stop_timer, NULL, &alarm_win32_data},
1047 #endif
1048 {NULL, }
1051 static void show_available_alarms(void)
1053 int i;
1055 printf("Available alarm timers, in order of precedence:\n");
1056 for (i = 0; alarm_timers[i].name; i++)
1057 printf("%s\n", alarm_timers[i].name);
1060 static void configure_alarms(char const *opt)
1062 int i;
1063 int cur = 0;
1064 int count = ARRAY_SIZE(alarm_timers) - 1;
1065 char *arg;
1066 char *name;
1067 struct qemu_alarm_timer tmp;
1069 if (!strcmp(opt, "?")) {
1070 show_available_alarms();
1071 exit(0);
1074 arg = strdup(opt);
1076 /* Reorder the array */
1077 name = strtok(arg, ",");
1078 while (name) {
1079 for (i = 0; i < count && alarm_timers[i].name; i++) {
1080 if (!strcmp(alarm_timers[i].name, name))
1081 break;
1084 if (i == count) {
1085 fprintf(stderr, "Unknown clock %s\n", name);
1086 goto next;
1089 if (i < cur)
1090 /* Ignore */
1091 goto next;
1093 /* Swap */
1094 tmp = alarm_timers[i];
1095 alarm_timers[i] = alarm_timers[cur];
1096 alarm_timers[cur] = tmp;
1098 cur++;
1099 next:
1100 name = strtok(NULL, ",");
1103 free(arg);
1105 if (cur) {
1106 /* Disable remaining timers */
1107 for (i = cur; i < count; i++)
1108 alarm_timers[i].name = NULL;
1109 } else {
1110 show_available_alarms();
1111 exit(1);
1115 QEMUClock *rt_clock;
1116 QEMUClock *vm_clock;
1118 static QEMUTimer *active_timers[2];
1120 static QEMUClock *qemu_new_clock(int type)
1122 QEMUClock *clock;
1123 clock = qemu_mallocz(sizeof(QEMUClock));
1124 clock->type = type;
1125 return clock;
1128 QEMUTimer *qemu_new_timer(QEMUClock *clock, QEMUTimerCB *cb, void *opaque)
1130 QEMUTimer *ts;
1132 ts = qemu_mallocz(sizeof(QEMUTimer));
1133 ts->clock = clock;
1134 ts->cb = cb;
1135 ts->opaque = opaque;
1136 return ts;
1139 void qemu_free_timer(QEMUTimer *ts)
1141 qemu_free(ts);
1144 /* stop a timer, but do not dealloc it */
1145 void qemu_del_timer(QEMUTimer *ts)
1147 QEMUTimer **pt, *t;
1149 /* NOTE: this code must be signal safe because
1150 qemu_timer_expired() can be called from a signal. */
1151 pt = &active_timers[ts->clock->type];
1152 for(;;) {
1153 t = *pt;
1154 if (!t)
1155 break;
1156 if (t == ts) {
1157 *pt = t->next;
1158 break;
1160 pt = &t->next;
1164 /* modify the current timer so that it will be fired when current_time
1165 >= expire_time. The corresponding callback will be called. */
1166 void qemu_mod_timer(QEMUTimer *ts, int64_t expire_time)
1168 QEMUTimer **pt, *t;
1170 qemu_del_timer(ts);
1172 /* add the timer in the sorted list */
1173 /* NOTE: this code must be signal safe because
1174 qemu_timer_expired() can be called from a signal. */
1175 pt = &active_timers[ts->clock->type];
1176 for(;;) {
1177 t = *pt;
1178 if (!t)
1179 break;
1180 if (t->expire_time > expire_time)
1181 break;
1182 pt = &t->next;
1184 ts->expire_time = expire_time;
1185 ts->next = *pt;
1186 *pt = ts;
1188 /* Rearm if necessary */
1189 if (pt == &active_timers[ts->clock->type]) {
1190 if ((alarm_timer->flags & ALARM_FLAG_EXPIRED) == 0) {
1191 qemu_rearm_alarm_timer(alarm_timer);
1193 /* Interrupt execution to force deadline recalculation. */
1194 if (use_icount)
1195 qemu_notify_event();
1199 int qemu_timer_pending(QEMUTimer *ts)
1201 QEMUTimer *t;
1202 for(t = active_timers[ts->clock->type]; t != NULL; t = t->next) {
1203 if (t == ts)
1204 return 1;
1206 return 0;
1209 static inline int qemu_timer_expired(QEMUTimer *timer_head, int64_t current_time)
1211 if (!timer_head)
1212 return 0;
1213 return (timer_head->expire_time <= current_time);
1216 static void qemu_run_timers(QEMUTimer **ptimer_head, int64_t current_time)
1218 QEMUTimer *ts;
1220 for(;;) {
1221 ts = *ptimer_head;
1222 if (!ts || ts->expire_time > current_time)
1223 break;
1224 /* remove timer from the list before calling the callback */
1225 *ptimer_head = ts->next;
1226 ts->next = NULL;
1228 /* run the callback (the timer list can be modified) */
1229 ts->cb(ts->opaque);
1233 int64_t qemu_get_clock(QEMUClock *clock)
1235 switch(clock->type) {
1236 case QEMU_TIMER_REALTIME:
1237 return get_clock() / 1000000;
1238 default:
1239 case QEMU_TIMER_VIRTUAL:
1240 if (use_icount) {
1241 return cpu_get_icount();
1242 } else {
1243 return cpu_get_clock();
1248 static void init_timers(void)
1250 init_get_clock();
1251 ticks_per_sec = QEMU_TIMER_BASE;
1252 rt_clock = qemu_new_clock(QEMU_TIMER_REALTIME);
1253 vm_clock = qemu_new_clock(QEMU_TIMER_VIRTUAL);
1256 /* save a timer */
1257 void qemu_put_timer(QEMUFile *f, QEMUTimer *ts)
1259 uint64_t expire_time;
1261 if (qemu_timer_pending(ts)) {
1262 expire_time = ts->expire_time;
1263 } else {
1264 expire_time = -1;
1266 qemu_put_be64(f, expire_time);
1269 void qemu_get_timer(QEMUFile *f, QEMUTimer *ts)
1271 uint64_t expire_time;
1273 expire_time = qemu_get_be64(f);
1274 if (expire_time != -1) {
1275 qemu_mod_timer(ts, expire_time);
1276 } else {
1277 qemu_del_timer(ts);
1281 static void timer_save(QEMUFile *f, void *opaque)
1283 if (cpu_ticks_enabled) {
1284 hw_error("cannot save state if virtual timers are running");
1286 qemu_put_be64(f, cpu_ticks_offset);
1287 qemu_put_be64(f, ticks_per_sec);
1288 qemu_put_be64(f, cpu_clock_offset);
1291 static int timer_load(QEMUFile *f, void *opaque, int version_id)
1293 if (version_id != 1 && version_id != 2)
1294 return -EINVAL;
1295 if (cpu_ticks_enabled) {
1296 return -EINVAL;
1298 cpu_ticks_offset=qemu_get_be64(f);
1299 ticks_per_sec=qemu_get_be64(f);
1300 if (version_id == 2) {
1301 cpu_clock_offset=qemu_get_be64(f);
1303 return 0;
1306 static void qemu_event_increment(void);
1308 #ifdef _WIN32
1309 static void CALLBACK host_alarm_handler(UINT uTimerID, UINT uMsg,
1310 DWORD_PTR dwUser, DWORD_PTR dw1,
1311 DWORD_PTR dw2)
1312 #else
1313 static void host_alarm_handler(int host_signum)
1314 #endif
1316 #if 0
1317 #define DISP_FREQ 1000
1319 static int64_t delta_min = INT64_MAX;
1320 static int64_t delta_max, delta_cum, last_clock, delta, ti;
1321 static int count;
1322 ti = qemu_get_clock(vm_clock);
1323 if (last_clock != 0) {
1324 delta = ti - last_clock;
1325 if (delta < delta_min)
1326 delta_min = delta;
1327 if (delta > delta_max)
1328 delta_max = delta;
1329 delta_cum += delta;
1330 if (++count == DISP_FREQ) {
1331 printf("timer: min=%" PRId64 " us max=%" PRId64 " us avg=%" PRId64 " us avg_freq=%0.3f Hz\n",
1332 muldiv64(delta_min, 1000000, ticks_per_sec),
1333 muldiv64(delta_max, 1000000, ticks_per_sec),
1334 muldiv64(delta_cum, 1000000 / DISP_FREQ, ticks_per_sec),
1335 (double)ticks_per_sec / ((double)delta_cum / DISP_FREQ));
1336 count = 0;
1337 delta_min = INT64_MAX;
1338 delta_max = 0;
1339 delta_cum = 0;
1342 last_clock = ti;
1344 #endif
1345 if (alarm_has_dynticks(alarm_timer) ||
1346 (!use_icount &&
1347 qemu_timer_expired(active_timers[QEMU_TIMER_VIRTUAL],
1348 qemu_get_clock(vm_clock))) ||
1349 qemu_timer_expired(active_timers[QEMU_TIMER_REALTIME],
1350 qemu_get_clock(rt_clock))) {
1351 qemu_event_increment();
1352 if (alarm_timer) alarm_timer->flags |= ALARM_FLAG_EXPIRED;
1354 #ifndef CONFIG_IOTHREAD
1355 if (next_cpu) {
1356 /* stop the currently executing cpu because a timer occured */
1357 cpu_exit(next_cpu);
1358 #ifdef CONFIG_KQEMU
1359 if (next_cpu->kqemu_enabled) {
1360 kqemu_cpu_interrupt(next_cpu);
1362 #endif
1364 #endif
1365 timer_alarm_pending = 1;
1366 qemu_notify_event();
1370 static int64_t qemu_next_deadline(void)
1372 int64_t delta;
1374 if (active_timers[QEMU_TIMER_VIRTUAL]) {
1375 delta = active_timers[QEMU_TIMER_VIRTUAL]->expire_time -
1376 qemu_get_clock(vm_clock);
1377 } else {
1378 /* To avoid problems with overflow limit this to 2^32. */
1379 delta = INT32_MAX;
1382 if (delta < 0)
1383 delta = 0;
1385 return delta;
1388 #if defined(__linux__) || defined(_WIN32)
1389 static uint64_t qemu_next_deadline_dyntick(void)
1391 int64_t delta;
1392 int64_t rtdelta;
1394 if (use_icount)
1395 delta = INT32_MAX;
1396 else
1397 delta = (qemu_next_deadline() + 999) / 1000;
1399 if (active_timers[QEMU_TIMER_REALTIME]) {
1400 rtdelta = (active_timers[QEMU_TIMER_REALTIME]->expire_time -
1401 qemu_get_clock(rt_clock))*1000;
1402 if (rtdelta < delta)
1403 delta = rtdelta;
1406 if (delta < MIN_TIMER_REARM_US)
1407 delta = MIN_TIMER_REARM_US;
1409 return delta;
1411 #endif
1413 #ifndef _WIN32
1415 /* Sets a specific flag */
1416 static int fcntl_setfl(int fd, int flag)
1418 int flags;
1420 flags = fcntl(fd, F_GETFL);
1421 if (flags == -1)
1422 return -errno;
1424 if (fcntl(fd, F_SETFL, flags | flag) == -1)
1425 return -errno;
1427 return 0;
1430 #if defined(__linux__)
1432 #define RTC_FREQ 1024
1434 static void enable_sigio_timer(int fd)
1436 struct sigaction act;
1438 /* timer signal */
1439 sigfillset(&act.sa_mask);
1440 act.sa_flags = 0;
1441 act.sa_handler = host_alarm_handler;
1443 sigaction(SIGIO, &act, NULL);
1444 fcntl_setfl(fd, O_ASYNC);
1445 fcntl(fd, F_SETOWN, getpid());
1448 static int hpet_start_timer(struct qemu_alarm_timer *t)
1450 struct hpet_info info;
1451 int r, fd;
1453 fd = open("/dev/hpet", O_RDONLY);
1454 if (fd < 0)
1455 return -1;
1457 /* Set frequency */
1458 r = ioctl(fd, HPET_IRQFREQ, RTC_FREQ);
1459 if (r < 0) {
1460 fprintf(stderr, "Could not configure '/dev/hpet' to have a 1024Hz timer. This is not a fatal\n"
1461 "error, but for better emulation accuracy type:\n"
1462 "'echo 1024 > /proc/sys/dev/hpet/max-user-freq' as root.\n");
1463 goto fail;
1466 /* Check capabilities */
1467 r = ioctl(fd, HPET_INFO, &info);
1468 if (r < 0)
1469 goto fail;
1471 /* Enable periodic mode */
1472 r = ioctl(fd, HPET_EPI, 0);
1473 if (info.hi_flags && (r < 0))
1474 goto fail;
1476 /* Enable interrupt */
1477 r = ioctl(fd, HPET_IE_ON, 0);
1478 if (r < 0)
1479 goto fail;
1481 enable_sigio_timer(fd);
1482 t->priv = (void *)(long)fd;
1484 return 0;
1485 fail:
1486 close(fd);
1487 return -1;
1490 static void hpet_stop_timer(struct qemu_alarm_timer *t)
1492 int fd = (long)t->priv;
1494 close(fd);
1497 static int rtc_start_timer(struct qemu_alarm_timer *t)
1499 int rtc_fd;
1500 unsigned long current_rtc_freq = 0;
1502 TFR(rtc_fd = open("/dev/rtc", O_RDONLY));
1503 if (rtc_fd < 0)
1504 return -1;
1505 ioctl(rtc_fd, RTC_IRQP_READ, &current_rtc_freq);
1506 if (current_rtc_freq != RTC_FREQ &&
1507 ioctl(rtc_fd, RTC_IRQP_SET, RTC_FREQ) < 0) {
1508 fprintf(stderr, "Could not configure '/dev/rtc' to have a 1024 Hz timer. This is not a fatal\n"
1509 "error, but for better emulation accuracy either use a 2.6 host Linux kernel or\n"
1510 "type 'echo 1024 > /proc/sys/dev/rtc/max-user-freq' as root.\n");
1511 goto fail;
1513 if (ioctl(rtc_fd, RTC_PIE_ON, 0) < 0) {
1514 fail:
1515 close(rtc_fd);
1516 return -1;
1519 enable_sigio_timer(rtc_fd);
1521 t->priv = (void *)(long)rtc_fd;
1523 return 0;
1526 static void rtc_stop_timer(struct qemu_alarm_timer *t)
1528 int rtc_fd = (long)t->priv;
1530 close(rtc_fd);
1533 static int dynticks_start_timer(struct qemu_alarm_timer *t)
1535 struct sigevent ev;
1536 timer_t host_timer;
1537 struct sigaction act;
1539 sigfillset(&act.sa_mask);
1540 act.sa_flags = 0;
1541 act.sa_handler = host_alarm_handler;
1543 sigaction(SIGALRM, &act, NULL);
1546 * Initialize ev struct to 0 to avoid valgrind complaining
1547 * about uninitialized data in timer_create call
1549 memset(&ev, 0, sizeof(ev));
1550 ev.sigev_value.sival_int = 0;
1551 ev.sigev_notify = SIGEV_SIGNAL;
1552 ev.sigev_signo = SIGALRM;
1554 if (timer_create(CLOCK_REALTIME, &ev, &host_timer)) {
1555 perror("timer_create");
1557 /* disable dynticks */
1558 fprintf(stderr, "Dynamic Ticks disabled\n");
1560 return -1;
1563 t->priv = (void *)(long)host_timer;
1565 return 0;
1568 static void dynticks_stop_timer(struct qemu_alarm_timer *t)
1570 timer_t host_timer = (timer_t)(long)t->priv;
1572 timer_delete(host_timer);
1575 static void dynticks_rearm_timer(struct qemu_alarm_timer *t)
1577 timer_t host_timer = (timer_t)(long)t->priv;
1578 struct itimerspec timeout;
1579 int64_t nearest_delta_us = INT64_MAX;
1580 int64_t current_us;
1582 if (!active_timers[QEMU_TIMER_REALTIME] &&
1583 !active_timers[QEMU_TIMER_VIRTUAL])
1584 return;
1586 nearest_delta_us = qemu_next_deadline_dyntick();
1588 /* check whether a timer is already running */
1589 if (timer_gettime(host_timer, &timeout)) {
1590 perror("gettime");
1591 fprintf(stderr, "Internal timer error: aborting\n");
1592 exit(1);
1594 current_us = timeout.it_value.tv_sec * 1000000 + timeout.it_value.tv_nsec/1000;
1595 if (current_us && current_us <= nearest_delta_us)
1596 return;
1598 timeout.it_interval.tv_sec = 0;
1599 timeout.it_interval.tv_nsec = 0; /* 0 for one-shot timer */
1600 timeout.it_value.tv_sec = nearest_delta_us / 1000000;
1601 timeout.it_value.tv_nsec = (nearest_delta_us % 1000000) * 1000;
1602 if (timer_settime(host_timer, 0 /* RELATIVE */, &timeout, NULL)) {
1603 perror("settime");
1604 fprintf(stderr, "Internal timer error: aborting\n");
1605 exit(1);
1609 #endif /* defined(__linux__) */
1611 static int unix_start_timer(struct qemu_alarm_timer *t)
1613 struct sigaction act;
1614 struct itimerval itv;
1615 int err;
1617 /* timer signal */
1618 sigfillset(&act.sa_mask);
1619 act.sa_flags = 0;
1620 act.sa_handler = host_alarm_handler;
1622 sigaction(SIGALRM, &act, NULL);
1624 itv.it_interval.tv_sec = 0;
1625 /* for i386 kernel 2.6 to get 1 ms */
1626 itv.it_interval.tv_usec = 999;
1627 itv.it_value.tv_sec = 0;
1628 itv.it_value.tv_usec = 10 * 1000;
1630 err = setitimer(ITIMER_REAL, &itv, NULL);
1631 if (err)
1632 return -1;
1634 return 0;
1637 static void unix_stop_timer(struct qemu_alarm_timer *t)
1639 struct itimerval itv;
1641 memset(&itv, 0, sizeof(itv));
1642 setitimer(ITIMER_REAL, &itv, NULL);
1645 #endif /* !defined(_WIN32) */
1648 #ifdef _WIN32
1650 static int win32_start_timer(struct qemu_alarm_timer *t)
1652 TIMECAPS tc;
1653 struct qemu_alarm_win32 *data = t->priv;
1654 UINT flags;
1656 memset(&tc, 0, sizeof(tc));
1657 timeGetDevCaps(&tc, sizeof(tc));
1659 if (data->period < tc.wPeriodMin)
1660 data->period = tc.wPeriodMin;
1662 timeBeginPeriod(data->period);
1664 flags = TIME_CALLBACK_FUNCTION;
1665 if (alarm_has_dynticks(t))
1666 flags |= TIME_ONESHOT;
1667 else
1668 flags |= TIME_PERIODIC;
1670 data->timerId = timeSetEvent(1, // interval (ms)
1671 data->period, // resolution
1672 host_alarm_handler, // function
1673 (DWORD)t, // parameter
1674 flags);
1676 if (!data->timerId) {
1677 perror("Failed to initialize win32 alarm timer");
1678 timeEndPeriod(data->period);
1679 return -1;
1682 return 0;
1685 static void win32_stop_timer(struct qemu_alarm_timer *t)
1687 struct qemu_alarm_win32 *data = t->priv;
1689 timeKillEvent(data->timerId);
1690 timeEndPeriod(data->period);
1693 static void win32_rearm_timer(struct qemu_alarm_timer *t)
1695 struct qemu_alarm_win32 *data = t->priv;
1696 uint64_t nearest_delta_us;
1698 if (!active_timers[QEMU_TIMER_REALTIME] &&
1699 !active_timers[QEMU_TIMER_VIRTUAL])
1700 return;
1702 nearest_delta_us = qemu_next_deadline_dyntick();
1703 nearest_delta_us /= 1000;
1705 timeKillEvent(data->timerId);
1707 data->timerId = timeSetEvent(1,
1708 data->period,
1709 host_alarm_handler,
1710 (DWORD)t,
1711 TIME_ONESHOT | TIME_PERIODIC);
1713 if (!data->timerId) {
1714 perror("Failed to re-arm win32 alarm timer");
1716 timeEndPeriod(data->period);
1717 exit(1);
1721 #endif /* _WIN32 */
1723 static int init_timer_alarm(void)
1725 struct qemu_alarm_timer *t = NULL;
1726 int i, err = -1;
1728 for (i = 0; alarm_timers[i].name; i++) {
1729 t = &alarm_timers[i];
1731 err = t->start(t);
1732 if (!err)
1733 break;
1736 if (err) {
1737 err = -ENOENT;
1738 goto fail;
1741 alarm_timer = t;
1743 return 0;
1745 fail:
1746 return err;
1749 static void quit_timers(void)
1751 alarm_timer->stop(alarm_timer);
1752 alarm_timer = NULL;
1755 /***********************************************************/
1756 /* host time/date access */
1757 void qemu_get_timedate(struct tm *tm, int offset)
1759 time_t ti;
1760 struct tm *ret;
1762 time(&ti);
1763 ti += offset;
1764 if (rtc_date_offset == -1) {
1765 if (rtc_utc)
1766 ret = gmtime(&ti);
1767 else
1768 ret = localtime(&ti);
1769 } else {
1770 ti -= rtc_date_offset;
1771 ret = gmtime(&ti);
1774 memcpy(tm, ret, sizeof(struct tm));
1777 int qemu_timedate_diff(struct tm *tm)
1779 time_t seconds;
1781 if (rtc_date_offset == -1)
1782 if (rtc_utc)
1783 seconds = mktimegm(tm);
1784 else
1785 seconds = mktime(tm);
1786 else
1787 seconds = mktimegm(tm) + rtc_date_offset;
1789 return seconds - time(NULL);
1792 #ifdef _WIN32
1793 static void socket_cleanup(void)
1795 WSACleanup();
1798 static int socket_init(void)
1800 WSADATA Data;
1801 int ret, err;
1803 ret = WSAStartup(MAKEWORD(2,2), &Data);
1804 if (ret != 0) {
1805 err = WSAGetLastError();
1806 fprintf(stderr, "WSAStartup: %d\n", err);
1807 return -1;
1809 atexit(socket_cleanup);
1810 return 0;
1812 #endif
1814 int get_param_value(char *buf, int buf_size,
1815 const char *tag, const char *str)
1817 const char *p;
1818 char option[128];
1820 p = str;
1821 for(;;) {
1822 p = get_opt_name(option, sizeof(option), p, '=');
1823 if (*p != '=')
1824 break;
1825 p++;
1826 if (!strcmp(tag, option)) {
1827 (void)get_opt_value(buf, buf_size, p);
1828 return strlen(buf);
1829 } else {
1830 p = get_opt_value(NULL, 0, p);
1832 if (*p != ',')
1833 break;
1834 p++;
1836 return 0;
1839 int check_params(const char * const *params, const char *str)
1841 int name_buf_size = 1;
1842 const char *p;
1843 char *name_buf;
1844 int i, len;
1845 int ret = 0;
1847 for (i = 0; params[i] != NULL; i++) {
1848 len = strlen(params[i]) + 1;
1849 if (len > name_buf_size) {
1850 name_buf_size = len;
1853 name_buf = qemu_malloc(name_buf_size);
1855 p = str;
1856 while (*p != '\0') {
1857 p = get_opt_name(name_buf, name_buf_size, p, '=');
1858 if (*p != '=') {
1859 ret = -1;
1860 break;
1862 p++;
1863 for(i = 0; params[i] != NULL; i++)
1864 if (!strcmp(params[i], name_buf))
1865 break;
1866 if (params[i] == NULL) {
1867 ret = -1;
1868 break;
1870 p = get_opt_value(NULL, 0, p);
1871 if (*p != ',')
1872 break;
1873 p++;
1876 qemu_free(name_buf);
1877 return ret;
1880 /***********************************************************/
1881 /* Bluetooth support */
1882 static int nb_hcis;
1883 static int cur_hci;
1884 static struct HCIInfo *hci_table[MAX_NICS];
1886 static struct bt_vlan_s {
1887 struct bt_scatternet_s net;
1888 int id;
1889 struct bt_vlan_s *next;
1890 } *first_bt_vlan;
1892 /* find or alloc a new bluetooth "VLAN" */
1893 static struct bt_scatternet_s *qemu_find_bt_vlan(int id)
1895 struct bt_vlan_s **pvlan, *vlan;
1896 for (vlan = first_bt_vlan; vlan != NULL; vlan = vlan->next) {
1897 if (vlan->id == id)
1898 return &vlan->net;
1900 vlan = qemu_mallocz(sizeof(struct bt_vlan_s));
1901 vlan->id = id;
1902 pvlan = &first_bt_vlan;
1903 while (*pvlan != NULL)
1904 pvlan = &(*pvlan)->next;
1905 *pvlan = vlan;
1906 return &vlan->net;
1909 static void null_hci_send(struct HCIInfo *hci, const uint8_t *data, int len)
1913 static int null_hci_addr_set(struct HCIInfo *hci, const uint8_t *bd_addr)
1915 return -ENOTSUP;
1918 static struct HCIInfo null_hci = {
1919 .cmd_send = null_hci_send,
1920 .sco_send = null_hci_send,
1921 .acl_send = null_hci_send,
1922 .bdaddr_set = null_hci_addr_set,
1925 struct HCIInfo *qemu_next_hci(void)
1927 if (cur_hci == nb_hcis)
1928 return &null_hci;
1930 return hci_table[cur_hci++];
1933 static struct HCIInfo *hci_init(const char *str)
1935 char *endp;
1936 struct bt_scatternet_s *vlan = 0;
1938 if (!strcmp(str, "null"))
1939 /* null */
1940 return &null_hci;
1941 else if (!strncmp(str, "host", 4) && (str[4] == '\0' || str[4] == ':'))
1942 /* host[:hciN] */
1943 return bt_host_hci(str[4] ? str + 5 : "hci0");
1944 else if (!strncmp(str, "hci", 3)) {
1945 /* hci[,vlan=n] */
1946 if (str[3]) {
1947 if (!strncmp(str + 3, ",vlan=", 6)) {
1948 vlan = qemu_find_bt_vlan(strtol(str + 9, &endp, 0));
1949 if (*endp)
1950 vlan = 0;
1952 } else
1953 vlan = qemu_find_bt_vlan(0);
1954 if (vlan)
1955 return bt_new_hci(vlan);
1958 fprintf(stderr, "qemu: Unknown bluetooth HCI `%s'.\n", str);
1960 return 0;
1963 static int bt_hci_parse(const char *str)
1965 struct HCIInfo *hci;
1966 bdaddr_t bdaddr;
1968 if (nb_hcis >= MAX_NICS) {
1969 fprintf(stderr, "qemu: Too many bluetooth HCIs (max %i).\n", MAX_NICS);
1970 return -1;
1973 hci = hci_init(str);
1974 if (!hci)
1975 return -1;
1977 bdaddr.b[0] = 0x52;
1978 bdaddr.b[1] = 0x54;
1979 bdaddr.b[2] = 0x00;
1980 bdaddr.b[3] = 0x12;
1981 bdaddr.b[4] = 0x34;
1982 bdaddr.b[5] = 0x56 + nb_hcis;
1983 hci->bdaddr_set(hci, bdaddr.b);
1985 hci_table[nb_hcis++] = hci;
1987 return 0;
1990 static void bt_vhci_add(int vlan_id)
1992 struct bt_scatternet_s *vlan = qemu_find_bt_vlan(vlan_id);
1994 if (!vlan->slave)
1995 fprintf(stderr, "qemu: warning: adding a VHCI to "
1996 "an empty scatternet %i\n", vlan_id);
1998 bt_vhci_init(bt_new_hci(vlan));
2001 static struct bt_device_s *bt_device_add(const char *opt)
2003 struct bt_scatternet_s *vlan;
2004 int vlan_id = 0;
2005 char *endp = strstr(opt, ",vlan=");
2006 int len = (endp ? endp - opt : strlen(opt)) + 1;
2007 char devname[10];
2009 pstrcpy(devname, MIN(sizeof(devname), len), opt);
2011 if (endp) {
2012 vlan_id = strtol(endp + 6, &endp, 0);
2013 if (*endp) {
2014 fprintf(stderr, "qemu: unrecognised bluetooth vlan Id\n");
2015 return 0;
2019 vlan = qemu_find_bt_vlan(vlan_id);
2021 if (!vlan->slave)
2022 fprintf(stderr, "qemu: warning: adding a slave device to "
2023 "an empty scatternet %i\n", vlan_id);
2025 if (!strcmp(devname, "keyboard"))
2026 return bt_keyboard_init(vlan);
2028 fprintf(stderr, "qemu: unsupported bluetooth device `%s'\n", devname);
2029 return 0;
2032 static int bt_parse(const char *opt)
2034 const char *endp, *p;
2035 int vlan;
2037 if (strstart(opt, "hci", &endp)) {
2038 if (!*endp || *endp == ',') {
2039 if (*endp)
2040 if (!strstart(endp, ",vlan=", 0))
2041 opt = endp + 1;
2043 return bt_hci_parse(opt);
2045 } else if (strstart(opt, "vhci", &endp)) {
2046 if (!*endp || *endp == ',') {
2047 if (*endp) {
2048 if (strstart(endp, ",vlan=", &p)) {
2049 vlan = strtol(p, (char **) &endp, 0);
2050 if (*endp) {
2051 fprintf(stderr, "qemu: bad scatternet '%s'\n", p);
2052 return 1;
2054 } else {
2055 fprintf(stderr, "qemu: bad parameter '%s'\n", endp + 1);
2056 return 1;
2058 } else
2059 vlan = 0;
2061 bt_vhci_add(vlan);
2062 return 0;
2064 } else if (strstart(opt, "device:", &endp))
2065 return !bt_device_add(endp);
2067 fprintf(stderr, "qemu: bad bluetooth parameter '%s'\n", opt);
2068 return 1;
2071 /***********************************************************/
2072 /* QEMU Block devices */
2074 #define HD_ALIAS "index=%d,media=disk"
2075 #define CDROM_ALIAS "index=2,media=cdrom"
2076 #define FD_ALIAS "index=%d,if=floppy"
2077 #define PFLASH_ALIAS "if=pflash"
2078 #define MTD_ALIAS "if=mtd"
2079 #define SD_ALIAS "index=0,if=sd"
2081 static int drive_opt_get_free_idx(void)
2083 int index;
2085 for (index = 0; index < MAX_DRIVES; index++)
2086 if (!drives_opt[index].used) {
2087 drives_opt[index].used = 1;
2088 return index;
2091 return -1;
2094 static int drive_get_free_idx(void)
2096 int index;
2098 for (index = 0; index < MAX_DRIVES; index++)
2099 if (!drives_table[index].used) {
2100 drives_table[index].used = 1;
2101 return index;
2104 return -1;
2107 int drive_add(const char *file, const char *fmt, ...)
2109 va_list ap;
2110 int index = drive_opt_get_free_idx();
2112 if (nb_drives_opt >= MAX_DRIVES || index == -1) {
2113 fprintf(stderr, "qemu: too many drives\n");
2114 return -1;
2117 drives_opt[index].file = file;
2118 va_start(ap, fmt);
2119 vsnprintf(drives_opt[index].opt,
2120 sizeof(drives_opt[0].opt), fmt, ap);
2121 va_end(ap);
2123 nb_drives_opt++;
2124 return index;
2127 void drive_remove(int index)
2129 drives_opt[index].used = 0;
2130 nb_drives_opt--;
2133 int drive_get_index(BlockInterfaceType type, int bus, int unit)
2135 int index;
2137 /* seek interface, bus and unit */
2139 for (index = 0; index < MAX_DRIVES; index++)
2140 if (drives_table[index].type == type &&
2141 drives_table[index].bus == bus &&
2142 drives_table[index].unit == unit &&
2143 drives_table[index].used)
2144 return index;
2146 return -1;
2149 int drive_get_max_bus(BlockInterfaceType type)
2151 int max_bus;
2152 int index;
2154 max_bus = -1;
2155 for (index = 0; index < nb_drives; index++) {
2156 if(drives_table[index].type == type &&
2157 drives_table[index].bus > max_bus)
2158 max_bus = drives_table[index].bus;
2160 return max_bus;
2163 const char *drive_get_serial(BlockDriverState *bdrv)
2165 int index;
2167 for (index = 0; index < nb_drives; index++)
2168 if (drives_table[index].bdrv == bdrv)
2169 return drives_table[index].serial;
2171 return "\0";
2174 BlockInterfaceErrorAction drive_get_onerror(BlockDriverState *bdrv)
2176 int index;
2178 for (index = 0; index < nb_drives; index++)
2179 if (drives_table[index].bdrv == bdrv)
2180 return drives_table[index].onerror;
2182 return BLOCK_ERR_STOP_ENOSPC;
2185 static void bdrv_format_print(void *opaque, const char *name)
2187 fprintf(stderr, " %s", name);
2190 void drive_uninit(BlockDriverState *bdrv)
2192 int i;
2194 for (i = 0; i < MAX_DRIVES; i++)
2195 if (drives_table[i].bdrv == bdrv) {
2196 drives_table[i].bdrv = NULL;
2197 drives_table[i].used = 0;
2198 drive_remove(drives_table[i].drive_opt_idx);
2199 nb_drives--;
2200 break;
2204 int drive_init(struct drive_opt *arg, int snapshot, void *opaque)
2206 char buf[128];
2207 char file[1024];
2208 char devname[128];
2209 char serial[21];
2210 const char *mediastr = "";
2211 BlockInterfaceType type;
2212 enum { MEDIA_DISK, MEDIA_CDROM } media;
2213 int bus_id, unit_id;
2214 int cyls, heads, secs, translation;
2215 BlockDriverState *bdrv;
2216 BlockDriver *drv = NULL;
2217 QEMUMachine *machine = opaque;
2218 int max_devs;
2219 int index;
2220 int cache;
2221 int bdrv_flags, onerror;
2222 int drives_table_idx;
2223 char *str = arg->opt;
2224 static const char * const params[] = { "bus", "unit", "if", "index",
2225 "cyls", "heads", "secs", "trans",
2226 "media", "snapshot", "file",
2227 "cache", "format", "serial", "werror",
2228 NULL };
2230 if (check_params(params, str) < 0) {
2231 fprintf(stderr, "qemu: unknown parameter in '%s'\n", str);
2232 return -1;
2235 file[0] = 0;
2236 cyls = heads = secs = 0;
2237 bus_id = 0;
2238 unit_id = -1;
2239 translation = BIOS_ATA_TRANSLATION_AUTO;
2240 index = -1;
2241 cache = 3;
2243 if (machine->use_scsi) {
2244 type = IF_SCSI;
2245 max_devs = MAX_SCSI_DEVS;
2246 pstrcpy(devname, sizeof(devname), "scsi");
2247 } else {
2248 type = IF_IDE;
2249 max_devs = MAX_IDE_DEVS;
2250 pstrcpy(devname, sizeof(devname), "ide");
2252 media = MEDIA_DISK;
2254 /* extract parameters */
2256 if (get_param_value(buf, sizeof(buf), "bus", str)) {
2257 bus_id = strtol(buf, NULL, 0);
2258 if (bus_id < 0) {
2259 fprintf(stderr, "qemu: '%s' invalid bus id\n", str);
2260 return -1;
2264 if (get_param_value(buf, sizeof(buf), "unit", str)) {
2265 unit_id = strtol(buf, NULL, 0);
2266 if (unit_id < 0) {
2267 fprintf(stderr, "qemu: '%s' invalid unit id\n", str);
2268 return -1;
2272 if (get_param_value(buf, sizeof(buf), "if", str)) {
2273 pstrcpy(devname, sizeof(devname), buf);
2274 if (!strcmp(buf, "ide")) {
2275 type = IF_IDE;
2276 max_devs = MAX_IDE_DEVS;
2277 } else if (!strcmp(buf, "scsi")) {
2278 type = IF_SCSI;
2279 max_devs = MAX_SCSI_DEVS;
2280 } else if (!strcmp(buf, "floppy")) {
2281 type = IF_FLOPPY;
2282 max_devs = 0;
2283 } else if (!strcmp(buf, "pflash")) {
2284 type = IF_PFLASH;
2285 max_devs = 0;
2286 } else if (!strcmp(buf, "mtd")) {
2287 type = IF_MTD;
2288 max_devs = 0;
2289 } else if (!strcmp(buf, "sd")) {
2290 type = IF_SD;
2291 max_devs = 0;
2292 } else if (!strcmp(buf, "virtio")) {
2293 type = IF_VIRTIO;
2294 max_devs = 0;
2295 } else if (!strcmp(buf, "xen")) {
2296 type = IF_XEN;
2297 max_devs = 0;
2298 } else {
2299 fprintf(stderr, "qemu: '%s' unsupported bus type '%s'\n", str, buf);
2300 return -1;
2304 if (get_param_value(buf, sizeof(buf), "index", str)) {
2305 index = strtol(buf, NULL, 0);
2306 if (index < 0) {
2307 fprintf(stderr, "qemu: '%s' invalid index\n", str);
2308 return -1;
2312 if (get_param_value(buf, sizeof(buf), "cyls", str)) {
2313 cyls = strtol(buf, NULL, 0);
2316 if (get_param_value(buf, sizeof(buf), "heads", str)) {
2317 heads = strtol(buf, NULL, 0);
2320 if (get_param_value(buf, sizeof(buf), "secs", str)) {
2321 secs = strtol(buf, NULL, 0);
2324 if (cyls || heads || secs) {
2325 if (cyls < 1 || cyls > 16383) {
2326 fprintf(stderr, "qemu: '%s' invalid physical cyls number\n", str);
2327 return -1;
2329 if (heads < 1 || heads > 16) {
2330 fprintf(stderr, "qemu: '%s' invalid physical heads number\n", str);
2331 return -1;
2333 if (secs < 1 || secs > 63) {
2334 fprintf(stderr, "qemu: '%s' invalid physical secs number\n", str);
2335 return -1;
2339 if (get_param_value(buf, sizeof(buf), "trans", str)) {
2340 if (!cyls) {
2341 fprintf(stderr,
2342 "qemu: '%s' trans must be used with cyls,heads and secs\n",
2343 str);
2344 return -1;
2346 if (!strcmp(buf, "none"))
2347 translation = BIOS_ATA_TRANSLATION_NONE;
2348 else if (!strcmp(buf, "lba"))
2349 translation = BIOS_ATA_TRANSLATION_LBA;
2350 else if (!strcmp(buf, "auto"))
2351 translation = BIOS_ATA_TRANSLATION_AUTO;
2352 else {
2353 fprintf(stderr, "qemu: '%s' invalid translation type\n", str);
2354 return -1;
2358 if (get_param_value(buf, sizeof(buf), "media", str)) {
2359 if (!strcmp(buf, "disk")) {
2360 media = MEDIA_DISK;
2361 } else if (!strcmp(buf, "cdrom")) {
2362 if (cyls || secs || heads) {
2363 fprintf(stderr,
2364 "qemu: '%s' invalid physical CHS format\n", str);
2365 return -1;
2367 media = MEDIA_CDROM;
2368 } else {
2369 fprintf(stderr, "qemu: '%s' invalid media\n", str);
2370 return -1;
2374 if (get_param_value(buf, sizeof(buf), "snapshot", str)) {
2375 if (!strcmp(buf, "on"))
2376 snapshot = 1;
2377 else if (!strcmp(buf, "off"))
2378 snapshot = 0;
2379 else {
2380 fprintf(stderr, "qemu: '%s' invalid snapshot option\n", str);
2381 return -1;
2385 if (get_param_value(buf, sizeof(buf), "cache", str)) {
2386 if (!strcmp(buf, "off") || !strcmp(buf, "none"))
2387 cache = 0;
2388 else if (!strcmp(buf, "writethrough"))
2389 cache = 1;
2390 else if (!strcmp(buf, "writeback"))
2391 cache = 2;
2392 else {
2393 fprintf(stderr, "qemu: invalid cache option\n");
2394 return -1;
2398 if (get_param_value(buf, sizeof(buf), "format", str)) {
2399 if (strcmp(buf, "?") == 0) {
2400 fprintf(stderr, "qemu: Supported formats:");
2401 bdrv_iterate_format(bdrv_format_print, NULL);
2402 fprintf(stderr, "\n");
2403 return -1;
2405 drv = bdrv_find_format(buf);
2406 if (!drv) {
2407 fprintf(stderr, "qemu: '%s' invalid format\n", buf);
2408 return -1;
2412 if (arg->file == NULL)
2413 get_param_value(file, sizeof(file), "file", str);
2414 else
2415 pstrcpy(file, sizeof(file), arg->file);
2417 if (!get_param_value(serial, sizeof(serial), "serial", str))
2418 memset(serial, 0, sizeof(serial));
2420 onerror = BLOCK_ERR_STOP_ENOSPC;
2421 if (get_param_value(buf, sizeof(serial), "werror", str)) {
2422 if (type != IF_IDE && type != IF_SCSI && type != IF_VIRTIO) {
2423 fprintf(stderr, "werror is no supported by this format\n");
2424 return -1;
2426 if (!strcmp(buf, "ignore"))
2427 onerror = BLOCK_ERR_IGNORE;
2428 else if (!strcmp(buf, "enospc"))
2429 onerror = BLOCK_ERR_STOP_ENOSPC;
2430 else if (!strcmp(buf, "stop"))
2431 onerror = BLOCK_ERR_STOP_ANY;
2432 else if (!strcmp(buf, "report"))
2433 onerror = BLOCK_ERR_REPORT;
2434 else {
2435 fprintf(stderr, "qemu: '%s' invalid write error action\n", buf);
2436 return -1;
2440 /* compute bus and unit according index */
2442 if (index != -1) {
2443 if (bus_id != 0 || unit_id != -1) {
2444 fprintf(stderr,
2445 "qemu: '%s' index cannot be used with bus and unit\n", str);
2446 return -1;
2448 if (max_devs == 0)
2450 unit_id = index;
2451 bus_id = 0;
2452 } else {
2453 unit_id = index % max_devs;
2454 bus_id = index / max_devs;
2458 /* if user doesn't specify a unit_id,
2459 * try to find the first free
2462 if (unit_id == -1) {
2463 unit_id = 0;
2464 while (drive_get_index(type, bus_id, unit_id) != -1) {
2465 unit_id++;
2466 if (max_devs && unit_id >= max_devs) {
2467 unit_id -= max_devs;
2468 bus_id++;
2473 /* check unit id */
2475 if (max_devs && unit_id >= max_devs) {
2476 fprintf(stderr, "qemu: '%s' unit %d too big (max is %d)\n",
2477 str, unit_id, max_devs - 1);
2478 return -1;
2482 * ignore multiple definitions
2485 if (drive_get_index(type, bus_id, unit_id) != -1)
2486 return -2;
2488 /* init */
2490 if (type == IF_IDE || type == IF_SCSI)
2491 mediastr = (media == MEDIA_CDROM) ? "-cd" : "-hd";
2492 if (max_devs)
2493 snprintf(buf, sizeof(buf), "%s%i%s%i",
2494 devname, bus_id, mediastr, unit_id);
2495 else
2496 snprintf(buf, sizeof(buf), "%s%s%i",
2497 devname, mediastr, unit_id);
2498 bdrv = bdrv_new(buf);
2499 drives_table_idx = drive_get_free_idx();
2500 drives_table[drives_table_idx].bdrv = bdrv;
2501 drives_table[drives_table_idx].type = type;
2502 drives_table[drives_table_idx].bus = bus_id;
2503 drives_table[drives_table_idx].unit = unit_id;
2504 drives_table[drives_table_idx].onerror = onerror;
2505 drives_table[drives_table_idx].drive_opt_idx = arg - drives_opt;
2506 strncpy(drives_table[drives_table_idx].serial, serial, sizeof(serial));
2507 nb_drives++;
2509 switch(type) {
2510 case IF_IDE:
2511 case IF_SCSI:
2512 case IF_XEN:
2513 switch(media) {
2514 case MEDIA_DISK:
2515 if (cyls != 0) {
2516 bdrv_set_geometry_hint(bdrv, cyls, heads, secs);
2517 bdrv_set_translation_hint(bdrv, translation);
2519 break;
2520 case MEDIA_CDROM:
2521 bdrv_set_type_hint(bdrv, BDRV_TYPE_CDROM);
2522 break;
2524 break;
2525 case IF_SD:
2526 /* FIXME: This isn't really a floppy, but it's a reasonable
2527 approximation. */
2528 case IF_FLOPPY:
2529 bdrv_set_type_hint(bdrv, BDRV_TYPE_FLOPPY);
2530 break;
2531 case IF_PFLASH:
2532 case IF_MTD:
2533 case IF_VIRTIO:
2534 break;
2535 case IF_COUNT:
2536 abort();
2538 if (!file[0])
2539 return -2;
2540 bdrv_flags = 0;
2541 if (snapshot) {
2542 bdrv_flags |= BDRV_O_SNAPSHOT;
2543 cache = 2; /* always use write-back with snapshot */
2545 if (cache == 0) /* no caching */
2546 bdrv_flags |= BDRV_O_NOCACHE;
2547 else if (cache == 2) /* write-back */
2548 bdrv_flags |= BDRV_O_CACHE_WB;
2549 else if (cache == 3) /* not specified */
2550 bdrv_flags |= BDRV_O_CACHE_DEF;
2551 if (bdrv_open2(bdrv, file, bdrv_flags, drv) < 0) {
2552 fprintf(stderr, "qemu: could not open disk image %s\n",
2553 file);
2554 return -1;
2556 if (bdrv_key_required(bdrv))
2557 autostart = 0;
2558 return drives_table_idx;
2561 static void numa_add(const char *optarg)
2563 char option[128];
2564 char *endptr;
2565 unsigned long long value, endvalue;
2566 int nodenr;
2568 optarg = get_opt_name(option, 128, optarg, ',') + 1;
2569 if (!strcmp(option, "node")) {
2570 if (get_param_value(option, 128, "nodeid", optarg) == 0) {
2571 nodenr = nb_numa_nodes;
2572 } else {
2573 nodenr = strtoull(option, NULL, 10);
2576 if (get_param_value(option, 128, "mem", optarg) == 0) {
2577 node_mem[nodenr] = 0;
2578 } else {
2579 value = strtoull(option, &endptr, 0);
2580 switch (*endptr) {
2581 case 0: case 'M': case 'm':
2582 value <<= 20;
2583 break;
2584 case 'G': case 'g':
2585 value <<= 30;
2586 break;
2588 node_mem[nodenr] = value;
2590 if (get_param_value(option, 128, "cpus", optarg) == 0) {
2591 node_cpumask[nodenr] = 0;
2592 } else {
2593 value = strtoull(option, &endptr, 10);
2594 if (value >= 64) {
2595 value = 63;
2596 fprintf(stderr, "only 64 CPUs in NUMA mode supported.\n");
2597 } else {
2598 if (*endptr == '-') {
2599 endvalue = strtoull(endptr+1, &endptr, 10);
2600 if (endvalue >= 63) {
2601 endvalue = 62;
2602 fprintf(stderr,
2603 "only 63 CPUs in NUMA mode supported.\n");
2605 value = (1 << (endvalue + 1)) - (1 << value);
2606 } else {
2607 value = 1 << value;
2610 node_cpumask[nodenr] = value;
2612 nb_numa_nodes++;
2614 return;
2617 /***********************************************************/
2618 /* USB devices */
2620 static USBPort *used_usb_ports;
2621 static USBPort *free_usb_ports;
2623 /* ??? Maybe change this to register a hub to keep track of the topology. */
2624 void qemu_register_usb_port(USBPort *port, void *opaque, int index,
2625 usb_attachfn attach)
2627 port->opaque = opaque;
2628 port->index = index;
2629 port->attach = attach;
2630 port->next = free_usb_ports;
2631 free_usb_ports = port;
2634 int usb_device_add_dev(USBDevice *dev)
2636 USBPort *port;
2638 /* Find a USB port to add the device to. */
2639 port = free_usb_ports;
2640 if (!port->next) {
2641 USBDevice *hub;
2643 /* Create a new hub and chain it on. */
2644 free_usb_ports = NULL;
2645 port->next = used_usb_ports;
2646 used_usb_ports = port;
2648 hub = usb_hub_init(VM_USB_HUB_SIZE);
2649 usb_attach(port, hub);
2650 port = free_usb_ports;
2653 free_usb_ports = port->next;
2654 port->next = used_usb_ports;
2655 used_usb_ports = port;
2656 usb_attach(port, dev);
2657 return 0;
2660 static void usb_msd_password_cb(void *opaque, int err)
2662 USBDevice *dev = opaque;
2664 if (!err)
2665 usb_device_add_dev(dev);
2666 else
2667 dev->handle_destroy(dev);
2670 static int usb_device_add(const char *devname, int is_hotplug)
2672 const char *p;
2673 USBDevice *dev;
2675 if (!free_usb_ports)
2676 return -1;
2678 if (strstart(devname, "host:", &p)) {
2679 dev = usb_host_device_open(p);
2680 } else if (!strcmp(devname, "mouse")) {
2681 dev = usb_mouse_init();
2682 } else if (!strcmp(devname, "tablet")) {
2683 dev = usb_tablet_init();
2684 } else if (!strcmp(devname, "keyboard")) {
2685 dev = usb_keyboard_init();
2686 } else if (strstart(devname, "disk:", &p)) {
2687 BlockDriverState *bs;
2689 dev = usb_msd_init(p);
2690 if (!dev)
2691 return -1;
2692 bs = usb_msd_get_bdrv(dev);
2693 if (bdrv_key_required(bs)) {
2694 autostart = 0;
2695 if (is_hotplug) {
2696 monitor_read_bdrv_key_start(cur_mon, bs, usb_msd_password_cb,
2697 dev);
2698 return 0;
2701 } else if (!strcmp(devname, "wacom-tablet")) {
2702 dev = usb_wacom_init();
2703 } else if (strstart(devname, "serial:", &p)) {
2704 dev = usb_serial_init(p);
2705 #ifdef CONFIG_BRLAPI
2706 } else if (!strcmp(devname, "braille")) {
2707 dev = usb_baum_init();
2708 #endif
2709 } else if (strstart(devname, "net:", &p)) {
2710 int nic = nb_nics;
2712 if (net_client_init("nic", p) < 0)
2713 return -1;
2714 nd_table[nic].model = "usb";
2715 dev = usb_net_init(&nd_table[nic]);
2716 } else if (!strcmp(devname, "bt") || strstart(devname, "bt:", &p)) {
2717 dev = usb_bt_init(devname[2] ? hci_init(p) :
2718 bt_new_hci(qemu_find_bt_vlan(0)));
2719 } else {
2720 return -1;
2722 if (!dev)
2723 return -1;
2725 return usb_device_add_dev(dev);
2728 int usb_device_del_addr(int bus_num, int addr)
2730 USBPort *port;
2731 USBPort **lastp;
2732 USBDevice *dev;
2734 if (!used_usb_ports)
2735 return -1;
2737 if (bus_num != 0)
2738 return -1;
2740 lastp = &used_usb_ports;
2741 port = used_usb_ports;
2742 while (port && port->dev->addr != addr) {
2743 lastp = &port->next;
2744 port = port->next;
2747 if (!port)
2748 return -1;
2750 dev = port->dev;
2751 *lastp = port->next;
2752 usb_attach(port, NULL);
2753 dev->handle_destroy(dev);
2754 port->next = free_usb_ports;
2755 free_usb_ports = port;
2756 return 0;
2759 static int usb_device_del(const char *devname)
2761 int bus_num, addr;
2762 const char *p;
2764 if (strstart(devname, "host:", &p))
2765 return usb_host_device_close(p);
2767 if (!used_usb_ports)
2768 return -1;
2770 p = strchr(devname, '.');
2771 if (!p)
2772 return -1;
2773 bus_num = strtoul(devname, NULL, 0);
2774 addr = strtoul(p + 1, NULL, 0);
2776 return usb_device_del_addr(bus_num, addr);
2779 void do_usb_add(Monitor *mon, const char *devname)
2781 usb_device_add(devname, 1);
2784 void do_usb_del(Monitor *mon, const char *devname)
2786 usb_device_del(devname);
2789 void usb_info(Monitor *mon)
2791 USBDevice *dev;
2792 USBPort *port;
2793 const char *speed_str;
2795 if (!usb_enabled) {
2796 monitor_printf(mon, "USB support not enabled\n");
2797 return;
2800 for (port = used_usb_ports; port; port = port->next) {
2801 dev = port->dev;
2802 if (!dev)
2803 continue;
2804 switch(dev->speed) {
2805 case USB_SPEED_LOW:
2806 speed_str = "1.5";
2807 break;
2808 case USB_SPEED_FULL:
2809 speed_str = "12";
2810 break;
2811 case USB_SPEED_HIGH:
2812 speed_str = "480";
2813 break;
2814 default:
2815 speed_str = "?";
2816 break;
2818 monitor_printf(mon, " Device %d.%d, Speed %s Mb/s, Product %s\n",
2819 0, dev->addr, speed_str, dev->devname);
2823 /***********************************************************/
2824 /* PCMCIA/Cardbus */
2826 static struct pcmcia_socket_entry_s {
2827 PCMCIASocket *socket;
2828 struct pcmcia_socket_entry_s *next;
2829 } *pcmcia_sockets = 0;
2831 void pcmcia_socket_register(PCMCIASocket *socket)
2833 struct pcmcia_socket_entry_s *entry;
2835 entry = qemu_malloc(sizeof(struct pcmcia_socket_entry_s));
2836 entry->socket = socket;
2837 entry->next = pcmcia_sockets;
2838 pcmcia_sockets = entry;
2841 void pcmcia_socket_unregister(PCMCIASocket *socket)
2843 struct pcmcia_socket_entry_s *entry, **ptr;
2845 ptr = &pcmcia_sockets;
2846 for (entry = *ptr; entry; ptr = &entry->next, entry = *ptr)
2847 if (entry->socket == socket) {
2848 *ptr = entry->next;
2849 qemu_free(entry);
2853 void pcmcia_info(Monitor *mon)
2855 struct pcmcia_socket_entry_s *iter;
2857 if (!pcmcia_sockets)
2858 monitor_printf(mon, "No PCMCIA sockets\n");
2860 for (iter = pcmcia_sockets; iter; iter = iter->next)
2861 monitor_printf(mon, "%s: %s\n", iter->socket->slot_string,
2862 iter->socket->attached ? iter->socket->card_string :
2863 "Empty");
2866 /***********************************************************/
2867 /* register display */
2869 struct DisplayAllocator default_allocator = {
2870 defaultallocator_create_displaysurface,
2871 defaultallocator_resize_displaysurface,
2872 defaultallocator_free_displaysurface
2875 void register_displaystate(DisplayState *ds)
2877 DisplayState **s;
2878 s = &display_state;
2879 while (*s != NULL)
2880 s = &(*s)->next;
2881 ds->next = NULL;
2882 *s = ds;
2885 DisplayState *get_displaystate(void)
2887 return display_state;
2890 DisplayAllocator *register_displayallocator(DisplayState *ds, DisplayAllocator *da)
2892 if(ds->allocator == &default_allocator) ds->allocator = da;
2893 return ds->allocator;
2896 /* dumb display */
2898 static void dumb_display_init(void)
2900 DisplayState *ds = qemu_mallocz(sizeof(DisplayState));
2901 ds->allocator = &default_allocator;
2902 ds->surface = qemu_create_displaysurface(ds, 640, 480);
2903 register_displaystate(ds);
2906 /***********************************************************/
2907 /* I/O handling */
2909 typedef struct IOHandlerRecord {
2910 int fd;
2911 IOCanRWHandler *fd_read_poll;
2912 IOHandler *fd_read;
2913 IOHandler *fd_write;
2914 int deleted;
2915 void *opaque;
2916 /* temporary data */
2917 struct pollfd *ufd;
2918 struct IOHandlerRecord *next;
2919 } IOHandlerRecord;
2921 static IOHandlerRecord *first_io_handler;
2923 /* XXX: fd_read_poll should be suppressed, but an API change is
2924 necessary in the character devices to suppress fd_can_read(). */
2925 int qemu_set_fd_handler2(int fd,
2926 IOCanRWHandler *fd_read_poll,
2927 IOHandler *fd_read,
2928 IOHandler *fd_write,
2929 void *opaque)
2931 IOHandlerRecord **pioh, *ioh;
2933 if (!fd_read && !fd_write) {
2934 pioh = &first_io_handler;
2935 for(;;) {
2936 ioh = *pioh;
2937 if (ioh == NULL)
2938 break;
2939 if (ioh->fd == fd) {
2940 ioh->deleted = 1;
2941 break;
2943 pioh = &ioh->next;
2945 } else {
2946 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
2947 if (ioh->fd == fd)
2948 goto found;
2950 ioh = qemu_mallocz(sizeof(IOHandlerRecord));
2951 ioh->next = first_io_handler;
2952 first_io_handler = ioh;
2953 found:
2954 ioh->fd = fd;
2955 ioh->fd_read_poll = fd_read_poll;
2956 ioh->fd_read = fd_read;
2957 ioh->fd_write = fd_write;
2958 ioh->opaque = opaque;
2959 ioh->deleted = 0;
2961 return 0;
2964 int qemu_set_fd_handler(int fd,
2965 IOHandler *fd_read,
2966 IOHandler *fd_write,
2967 void *opaque)
2969 return qemu_set_fd_handler2(fd, NULL, fd_read, fd_write, opaque);
2972 #ifdef _WIN32
2973 /***********************************************************/
2974 /* Polling handling */
2976 typedef struct PollingEntry {
2977 PollingFunc *func;
2978 void *opaque;
2979 struct PollingEntry *next;
2980 } PollingEntry;
2982 static PollingEntry *first_polling_entry;
2984 int qemu_add_polling_cb(PollingFunc *func, void *opaque)
2986 PollingEntry **ppe, *pe;
2987 pe = qemu_mallocz(sizeof(PollingEntry));
2988 pe->func = func;
2989 pe->opaque = opaque;
2990 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next);
2991 *ppe = pe;
2992 return 0;
2995 void qemu_del_polling_cb(PollingFunc *func, void *opaque)
2997 PollingEntry **ppe, *pe;
2998 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next) {
2999 pe = *ppe;
3000 if (pe->func == func && pe->opaque == opaque) {
3001 *ppe = pe->next;
3002 qemu_free(pe);
3003 break;
3008 /***********************************************************/
3009 /* Wait objects support */
3010 typedef struct WaitObjects {
3011 int num;
3012 HANDLE events[MAXIMUM_WAIT_OBJECTS + 1];
3013 WaitObjectFunc *func[MAXIMUM_WAIT_OBJECTS + 1];
3014 void *opaque[MAXIMUM_WAIT_OBJECTS + 1];
3015 } WaitObjects;
3017 static WaitObjects wait_objects = {0};
3019 int qemu_add_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
3021 WaitObjects *w = &wait_objects;
3023 if (w->num >= MAXIMUM_WAIT_OBJECTS)
3024 return -1;
3025 w->events[w->num] = handle;
3026 w->func[w->num] = func;
3027 w->opaque[w->num] = opaque;
3028 w->num++;
3029 return 0;
3032 void qemu_del_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
3034 int i, found;
3035 WaitObjects *w = &wait_objects;
3037 found = 0;
3038 for (i = 0; i < w->num; i++) {
3039 if (w->events[i] == handle)
3040 found = 1;
3041 if (found) {
3042 w->events[i] = w->events[i + 1];
3043 w->func[i] = w->func[i + 1];
3044 w->opaque[i] = w->opaque[i + 1];
3047 if (found)
3048 w->num--;
3050 #endif
3052 /***********************************************************/
3053 /* ram save/restore */
3055 static int ram_get_page(QEMUFile *f, uint8_t *buf, int len)
3057 int v;
3059 v = qemu_get_byte(f);
3060 switch(v) {
3061 case 0:
3062 if (qemu_get_buffer(f, buf, len) != len)
3063 return -EIO;
3064 break;
3065 case 1:
3066 v = qemu_get_byte(f);
3067 memset(buf, v, len);
3068 break;
3069 default:
3070 return -EINVAL;
3073 if (qemu_file_has_error(f))
3074 return -EIO;
3076 return 0;
3079 static int ram_load_v1(QEMUFile *f, void *opaque)
3081 int ret;
3082 ram_addr_t i;
3084 if (qemu_get_be32(f) != last_ram_offset)
3085 return -EINVAL;
3086 for(i = 0; i < last_ram_offset; i+= TARGET_PAGE_SIZE) {
3087 ret = ram_get_page(f, qemu_get_ram_ptr(i), TARGET_PAGE_SIZE);
3088 if (ret)
3089 return ret;
3091 return 0;
3094 #define BDRV_HASH_BLOCK_SIZE 1024
3095 #define IOBUF_SIZE 4096
3096 #define RAM_CBLOCK_MAGIC 0xfabe
3098 typedef struct RamDecompressState {
3099 z_stream zstream;
3100 QEMUFile *f;
3101 uint8_t buf[IOBUF_SIZE];
3102 } RamDecompressState;
3104 static int ram_decompress_open(RamDecompressState *s, QEMUFile *f)
3106 int ret;
3107 memset(s, 0, sizeof(*s));
3108 s->f = f;
3109 ret = inflateInit(&s->zstream);
3110 if (ret != Z_OK)
3111 return -1;
3112 return 0;
3115 static int ram_decompress_buf(RamDecompressState *s, uint8_t *buf, int len)
3117 int ret, clen;
3119 s->zstream.avail_out = len;
3120 s->zstream.next_out = buf;
3121 while (s->zstream.avail_out > 0) {
3122 if (s->zstream.avail_in == 0) {
3123 if (qemu_get_be16(s->f) != RAM_CBLOCK_MAGIC)
3124 return -1;
3125 clen = qemu_get_be16(s->f);
3126 if (clen > IOBUF_SIZE)
3127 return -1;
3128 qemu_get_buffer(s->f, s->buf, clen);
3129 s->zstream.avail_in = clen;
3130 s->zstream.next_in = s->buf;
3132 ret = inflate(&s->zstream, Z_PARTIAL_FLUSH);
3133 if (ret != Z_OK && ret != Z_STREAM_END) {
3134 return -1;
3137 return 0;
3140 static void ram_decompress_close(RamDecompressState *s)
3142 inflateEnd(&s->zstream);
3145 #define RAM_SAVE_FLAG_FULL 0x01
3146 #define RAM_SAVE_FLAG_COMPRESS 0x02
3147 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
3148 #define RAM_SAVE_FLAG_PAGE 0x08
3149 #define RAM_SAVE_FLAG_EOS 0x10
3151 static int is_dup_page(uint8_t *page, uint8_t ch)
3153 uint32_t val = ch << 24 | ch << 16 | ch << 8 | ch;
3154 uint32_t *array = (uint32_t *)page;
3155 int i;
3157 for (i = 0; i < (TARGET_PAGE_SIZE / 4); i++) {
3158 if (array[i] != val)
3159 return 0;
3162 return 1;
3165 static int ram_save_block(QEMUFile *f)
3167 static ram_addr_t current_addr = 0;
3168 ram_addr_t saved_addr = current_addr;
3169 ram_addr_t addr = 0;
3170 int found = 0;
3172 while (addr < last_ram_offset) {
3173 if (cpu_physical_memory_get_dirty(current_addr, MIGRATION_DIRTY_FLAG)) {
3174 uint8_t *p;
3176 cpu_physical_memory_reset_dirty(current_addr,
3177 current_addr + TARGET_PAGE_SIZE,
3178 MIGRATION_DIRTY_FLAG);
3180 p = qemu_get_ram_ptr(current_addr);
3182 if (is_dup_page(p, *p)) {
3183 qemu_put_be64(f, current_addr | RAM_SAVE_FLAG_COMPRESS);
3184 qemu_put_byte(f, *p);
3185 } else {
3186 qemu_put_be64(f, current_addr | RAM_SAVE_FLAG_PAGE);
3187 qemu_put_buffer(f, p, TARGET_PAGE_SIZE);
3190 found = 1;
3191 break;
3193 addr += TARGET_PAGE_SIZE;
3194 current_addr = (saved_addr + addr) % last_ram_offset;
3197 return found;
3200 static ram_addr_t ram_save_threshold = 10;
3201 static uint64_t bytes_transferred = 0;
3203 static ram_addr_t ram_save_remaining(void)
3205 ram_addr_t addr;
3206 ram_addr_t count = 0;
3208 for (addr = 0; addr < last_ram_offset; addr += TARGET_PAGE_SIZE) {
3209 if (cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG))
3210 count++;
3213 return count;
3216 uint64_t ram_bytes_remaining(void)
3218 return ram_save_remaining() * TARGET_PAGE_SIZE;
3221 uint64_t ram_bytes_transferred(void)
3223 return bytes_transferred;
3226 uint64_t ram_bytes_total(void)
3228 return last_ram_offset;
3231 static int ram_save_live(QEMUFile *f, int stage, void *opaque)
3233 ram_addr_t addr;
3235 if (cpu_physical_sync_dirty_bitmap(0, TARGET_PHYS_ADDR_MAX) != 0) {
3236 qemu_file_set_error(f);
3237 return 0;
3240 if (stage == 1) {
3241 /* Make sure all dirty bits are set */
3242 for (addr = 0; addr < last_ram_offset; addr += TARGET_PAGE_SIZE) {
3243 if (!cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG))
3244 cpu_physical_memory_set_dirty(addr);
3247 /* Enable dirty memory tracking */
3248 cpu_physical_memory_set_dirty_tracking(1);
3250 qemu_put_be64(f, last_ram_offset | RAM_SAVE_FLAG_MEM_SIZE);
3253 while (!qemu_file_rate_limit(f)) {
3254 int ret;
3256 ret = ram_save_block(f);
3257 bytes_transferred += ret * TARGET_PAGE_SIZE;
3258 if (ret == 0) /* no more blocks */
3259 break;
3262 /* try transferring iterative blocks of memory */
3264 if (stage == 3) {
3266 /* flush all remaining blocks regardless of rate limiting */
3267 while (ram_save_block(f) != 0) {
3268 bytes_transferred += TARGET_PAGE_SIZE;
3270 cpu_physical_memory_set_dirty_tracking(0);
3273 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3275 return (stage == 2) && (ram_save_remaining() < ram_save_threshold);
3278 static int ram_load_dead(QEMUFile *f, void *opaque)
3280 RamDecompressState s1, *s = &s1;
3281 uint8_t buf[10];
3282 ram_addr_t i;
3284 if (ram_decompress_open(s, f) < 0)
3285 return -EINVAL;
3286 for(i = 0; i < last_ram_offset; i+= BDRV_HASH_BLOCK_SIZE) {
3287 if (ram_decompress_buf(s, buf, 1) < 0) {
3288 fprintf(stderr, "Error while reading ram block header\n");
3289 goto error;
3291 if (buf[0] == 0) {
3292 if (ram_decompress_buf(s, qemu_get_ram_ptr(i),
3293 BDRV_HASH_BLOCK_SIZE) < 0) {
3294 fprintf(stderr, "Error while reading ram block address=0x%08" PRIx64, (uint64_t)i);
3295 goto error;
3297 } else {
3298 error:
3299 printf("Error block header\n");
3300 return -EINVAL;
3303 ram_decompress_close(s);
3305 return 0;
3308 static int ram_load(QEMUFile *f, void *opaque, int version_id)
3310 ram_addr_t addr;
3311 int flags;
3313 if (version_id == 1)
3314 return ram_load_v1(f, opaque);
3316 if (version_id == 2) {
3317 if (qemu_get_be32(f) != last_ram_offset)
3318 return -EINVAL;
3319 return ram_load_dead(f, opaque);
3322 if (version_id != 3)
3323 return -EINVAL;
3325 do {
3326 addr = qemu_get_be64(f);
3328 flags = addr & ~TARGET_PAGE_MASK;
3329 addr &= TARGET_PAGE_MASK;
3331 if (flags & RAM_SAVE_FLAG_MEM_SIZE) {
3332 if (addr != last_ram_offset)
3333 return -EINVAL;
3336 if (flags & RAM_SAVE_FLAG_FULL) {
3337 if (ram_load_dead(f, opaque) < 0)
3338 return -EINVAL;
3341 if (flags & RAM_SAVE_FLAG_COMPRESS) {
3342 uint8_t ch = qemu_get_byte(f);
3343 memset(qemu_get_ram_ptr(addr), ch, TARGET_PAGE_SIZE);
3344 } else if (flags & RAM_SAVE_FLAG_PAGE)
3345 qemu_get_buffer(f, qemu_get_ram_ptr(addr), TARGET_PAGE_SIZE);
3346 } while (!(flags & RAM_SAVE_FLAG_EOS));
3348 return 0;
3351 void qemu_service_io(void)
3353 qemu_notify_event();
3356 /***********************************************************/
3357 /* bottom halves (can be seen as timers which expire ASAP) */
3359 struct QEMUBH {
3360 QEMUBHFunc *cb;
3361 void *opaque;
3362 int scheduled;
3363 int idle;
3364 int deleted;
3365 QEMUBH *next;
3368 static QEMUBH *first_bh = NULL;
3370 QEMUBH *qemu_bh_new(QEMUBHFunc *cb, void *opaque)
3372 QEMUBH *bh;
3373 bh = qemu_mallocz(sizeof(QEMUBH));
3374 bh->cb = cb;
3375 bh->opaque = opaque;
3376 bh->next = first_bh;
3377 first_bh = bh;
3378 return bh;
3381 int qemu_bh_poll(void)
3383 QEMUBH *bh, **bhp;
3384 int ret;
3386 ret = 0;
3387 for (bh = first_bh; bh; bh = bh->next) {
3388 if (!bh->deleted && bh->scheduled) {
3389 bh->scheduled = 0;
3390 if (!bh->idle)
3391 ret = 1;
3392 bh->idle = 0;
3393 bh->cb(bh->opaque);
3397 /* remove deleted bhs */
3398 bhp = &first_bh;
3399 while (*bhp) {
3400 bh = *bhp;
3401 if (bh->deleted) {
3402 *bhp = bh->next;
3403 qemu_free(bh);
3404 } else
3405 bhp = &bh->next;
3408 return ret;
3411 void qemu_bh_schedule_idle(QEMUBH *bh)
3413 if (bh->scheduled)
3414 return;
3415 bh->scheduled = 1;
3416 bh->idle = 1;
3419 void qemu_bh_schedule(QEMUBH *bh)
3421 if (bh->scheduled)
3422 return;
3423 bh->scheduled = 1;
3424 bh->idle = 0;
3425 /* stop the currently executing CPU to execute the BH ASAP */
3426 qemu_notify_event();
3429 void qemu_bh_cancel(QEMUBH *bh)
3431 bh->scheduled = 0;
3434 void qemu_bh_delete(QEMUBH *bh)
3436 bh->scheduled = 0;
3437 bh->deleted = 1;
3440 static void qemu_bh_update_timeout(int *timeout)
3442 QEMUBH *bh;
3444 for (bh = first_bh; bh; bh = bh->next) {
3445 if (!bh->deleted && bh->scheduled) {
3446 if (bh->idle) {
3447 /* idle bottom halves will be polled at least
3448 * every 10ms */
3449 *timeout = MIN(10, *timeout);
3450 } else {
3451 /* non-idle bottom halves will be executed
3452 * immediately */
3453 *timeout = 0;
3454 break;
3460 /***********************************************************/
3461 /* machine registration */
3463 static QEMUMachine *first_machine = NULL;
3464 QEMUMachine *current_machine = NULL;
3466 int qemu_register_machine(QEMUMachine *m)
3468 QEMUMachine **pm;
3469 pm = &first_machine;
3470 while (*pm != NULL)
3471 pm = &(*pm)->next;
3472 m->next = NULL;
3473 *pm = m;
3474 return 0;
3477 static QEMUMachine *find_machine(const char *name)
3479 QEMUMachine *m;
3481 for(m = first_machine; m != NULL; m = m->next) {
3482 if (!strcmp(m->name, name))
3483 return m;
3485 return NULL;
3488 static QEMUMachine *find_default_machine(void)
3490 QEMUMachine *m;
3492 for(m = first_machine; m != NULL; m = m->next) {
3493 if (m->is_default) {
3494 return m;
3497 return NULL;
3500 /***********************************************************/
3501 /* main execution loop */
3503 static void gui_update(void *opaque)
3505 uint64_t interval = GUI_REFRESH_INTERVAL;
3506 DisplayState *ds = opaque;
3507 DisplayChangeListener *dcl = ds->listeners;
3509 dpy_refresh(ds);
3511 while (dcl != NULL) {
3512 if (dcl->gui_timer_interval &&
3513 dcl->gui_timer_interval < interval)
3514 interval = dcl->gui_timer_interval;
3515 dcl = dcl->next;
3517 qemu_mod_timer(ds->gui_timer, interval + qemu_get_clock(rt_clock));
3520 static void nographic_update(void *opaque)
3522 uint64_t interval = GUI_REFRESH_INTERVAL;
3524 qemu_mod_timer(nographic_timer, interval + qemu_get_clock(rt_clock));
3527 struct vm_change_state_entry {
3528 VMChangeStateHandler *cb;
3529 void *opaque;
3530 LIST_ENTRY (vm_change_state_entry) entries;
3533 static LIST_HEAD(vm_change_state_head, vm_change_state_entry) vm_change_state_head;
3535 VMChangeStateEntry *qemu_add_vm_change_state_handler(VMChangeStateHandler *cb,
3536 void *opaque)
3538 VMChangeStateEntry *e;
3540 e = qemu_mallocz(sizeof (*e));
3542 e->cb = cb;
3543 e->opaque = opaque;
3544 LIST_INSERT_HEAD(&vm_change_state_head, e, entries);
3545 return e;
3548 void qemu_del_vm_change_state_handler(VMChangeStateEntry *e)
3550 LIST_REMOVE (e, entries);
3551 qemu_free (e);
3554 static void vm_state_notify(int running, int reason)
3556 VMChangeStateEntry *e;
3558 for (e = vm_change_state_head.lh_first; e; e = e->entries.le_next) {
3559 e->cb(e->opaque, running, reason);
3563 static void resume_all_vcpus(void);
3564 static void pause_all_vcpus(void);
3566 void vm_start(void)
3568 if (!vm_running) {
3569 cpu_enable_ticks();
3570 vm_running = 1;
3571 vm_state_notify(1, 0);
3572 qemu_rearm_alarm_timer(alarm_timer);
3573 resume_all_vcpus();
3577 /* reset/shutdown handler */
3579 typedef struct QEMUResetEntry {
3580 QEMUResetHandler *func;
3581 void *opaque;
3582 int order;
3583 struct QEMUResetEntry *next;
3584 } QEMUResetEntry;
3586 static QEMUResetEntry *first_reset_entry;
3587 static int reset_requested;
3588 static int shutdown_requested;
3589 static int powerdown_requested;
3590 static int debug_requested;
3591 static int vmstop_requested;
3593 int qemu_shutdown_requested(void)
3595 int r = shutdown_requested;
3596 shutdown_requested = 0;
3597 return r;
3600 int qemu_reset_requested(void)
3602 int r = reset_requested;
3603 reset_requested = 0;
3604 return r;
3607 int qemu_powerdown_requested(void)
3609 int r = powerdown_requested;
3610 powerdown_requested = 0;
3611 return r;
3614 static int qemu_debug_requested(void)
3616 int r = debug_requested;
3617 debug_requested = 0;
3618 return r;
3621 static int qemu_vmstop_requested(void)
3623 int r = vmstop_requested;
3624 vmstop_requested = 0;
3625 return r;
3628 static void do_vm_stop(int reason)
3630 if (vm_running) {
3631 cpu_disable_ticks();
3632 vm_running = 0;
3633 pause_all_vcpus();
3634 vm_state_notify(0, reason);
3638 void qemu_register_reset(QEMUResetHandler *func, int order, void *opaque)
3640 QEMUResetEntry **pre, *re;
3642 pre = &first_reset_entry;
3643 while (*pre != NULL && (*pre)->order >= order) {
3644 pre = &(*pre)->next;
3646 re = qemu_mallocz(sizeof(QEMUResetEntry));
3647 re->func = func;
3648 re->opaque = opaque;
3649 re->order = order;
3650 re->next = NULL;
3651 *pre = re;
3654 void qemu_system_reset(void)
3656 QEMUResetEntry *re;
3658 /* reset all devices */
3659 for(re = first_reset_entry; re != NULL; re = re->next) {
3660 re->func(re->opaque);
3664 void qemu_system_reset_request(void)
3666 if (no_reboot) {
3667 shutdown_requested = 1;
3668 } else {
3669 reset_requested = 1;
3671 qemu_notify_event();
3674 void qemu_system_shutdown_request(void)
3676 shutdown_requested = 1;
3677 qemu_notify_event();
3680 void qemu_system_powerdown_request(void)
3682 powerdown_requested = 1;
3683 qemu_notify_event();
3686 #ifdef CONFIG_IOTHREAD
3687 static void qemu_system_vmstop_request(int reason)
3689 vmstop_requested = reason;
3690 qemu_notify_event();
3692 #endif
3694 #ifndef _WIN32
3695 static int io_thread_fd = -1;
3697 static void qemu_event_increment(void)
3699 static const char byte = 0;
3701 if (io_thread_fd == -1)
3702 return;
3704 write(io_thread_fd, &byte, sizeof(byte));
3707 static void qemu_event_read(void *opaque)
3709 int fd = (unsigned long)opaque;
3710 ssize_t len;
3712 /* Drain the notify pipe */
3713 do {
3714 char buffer[512];
3715 len = read(fd, buffer, sizeof(buffer));
3716 } while ((len == -1 && errno == EINTR) || len > 0);
3719 static int qemu_event_init(void)
3721 int err;
3722 int fds[2];
3724 err = pipe(fds);
3725 if (err == -1)
3726 return -errno;
3728 err = fcntl_setfl(fds[0], O_NONBLOCK);
3729 if (err < 0)
3730 goto fail;
3732 err = fcntl_setfl(fds[1], O_NONBLOCK);
3733 if (err < 0)
3734 goto fail;
3736 qemu_set_fd_handler2(fds[0], NULL, qemu_event_read, NULL,
3737 (void *)(unsigned long)fds[0]);
3739 io_thread_fd = fds[1];
3740 return 0;
3742 fail:
3743 close(fds[0]);
3744 close(fds[1]);
3745 return err;
3747 #else
3748 HANDLE qemu_event_handle;
3750 static void dummy_event_handler(void *opaque)
3754 static int qemu_event_init(void)
3756 qemu_event_handle = CreateEvent(NULL, FALSE, FALSE, NULL);
3757 if (!qemu_event_handle) {
3758 perror("Failed CreateEvent");
3759 return -1;
3761 qemu_add_wait_object(qemu_event_handle, dummy_event_handler, NULL);
3762 return 0;
3765 static void qemu_event_increment(void)
3767 SetEvent(qemu_event_handle);
3769 #endif
3771 static int cpu_can_run(CPUState *env)
3773 if (env->stop)
3774 return 0;
3775 if (env->stopped)
3776 return 0;
3777 return 1;
3780 #ifndef CONFIG_IOTHREAD
3781 static int qemu_init_main_loop(void)
3783 return qemu_event_init();
3786 void qemu_init_vcpu(void *_env)
3788 CPUState *env = _env;
3790 if (kvm_enabled())
3791 kvm_init_vcpu(env);
3792 return;
3795 int qemu_cpu_self(void *env)
3797 return 1;
3800 static void resume_all_vcpus(void)
3804 static void pause_all_vcpus(void)
3808 void qemu_cpu_kick(void *env)
3810 return;
3813 void qemu_notify_event(void)
3815 CPUState *env = cpu_single_env;
3817 if (env) {
3818 cpu_exit(env);
3819 #ifdef USE_KQEMU
3820 if (env->kqemu_enabled)
3821 kqemu_cpu_interrupt(env);
3822 #endif
3826 #define qemu_mutex_lock_iothread() do { } while (0)
3827 #define qemu_mutex_unlock_iothread() do { } while (0)
3829 void vm_stop(int reason)
3831 do_vm_stop(reason);
3834 #else /* CONFIG_IOTHREAD */
3836 #include "qemu-thread.h"
3838 QemuMutex qemu_global_mutex;
3839 static QemuMutex qemu_fair_mutex;
3841 static QemuThread io_thread;
3843 static QemuThread *tcg_cpu_thread;
3844 static QemuCond *tcg_halt_cond;
3846 static int qemu_system_ready;
3847 /* cpu creation */
3848 static QemuCond qemu_cpu_cond;
3849 /* system init */
3850 static QemuCond qemu_system_cond;
3851 static QemuCond qemu_pause_cond;
3853 static void block_io_signals(void);
3854 static void unblock_io_signals(void);
3855 static int tcg_has_work(void);
3857 static int qemu_init_main_loop(void)
3859 int ret;
3861 ret = qemu_event_init();
3862 if (ret)
3863 return ret;
3865 qemu_cond_init(&qemu_pause_cond);
3866 qemu_mutex_init(&qemu_fair_mutex);
3867 qemu_mutex_init(&qemu_global_mutex);
3868 qemu_mutex_lock(&qemu_global_mutex);
3870 unblock_io_signals();
3871 qemu_thread_self(&io_thread);
3873 return 0;
3876 static void qemu_wait_io_event(CPUState *env)
3878 while (!tcg_has_work())
3879 qemu_cond_timedwait(env->halt_cond, &qemu_global_mutex, 1000);
3881 qemu_mutex_unlock(&qemu_global_mutex);
3884 * Users of qemu_global_mutex can be starved, having no chance
3885 * to acquire it since this path will get to it first.
3886 * So use another lock to provide fairness.
3888 qemu_mutex_lock(&qemu_fair_mutex);
3889 qemu_mutex_unlock(&qemu_fair_mutex);
3891 qemu_mutex_lock(&qemu_global_mutex);
3892 if (env->stop) {
3893 env->stop = 0;
3894 env->stopped = 1;
3895 qemu_cond_signal(&qemu_pause_cond);
3899 static int qemu_cpu_exec(CPUState *env);
3901 static void *kvm_cpu_thread_fn(void *arg)
3903 CPUState *env = arg;
3905 block_io_signals();
3906 qemu_thread_self(env->thread);
3908 /* signal CPU creation */
3909 qemu_mutex_lock(&qemu_global_mutex);
3910 env->created = 1;
3911 qemu_cond_signal(&qemu_cpu_cond);
3913 /* and wait for machine initialization */
3914 while (!qemu_system_ready)
3915 qemu_cond_timedwait(&qemu_system_cond, &qemu_global_mutex, 100);
3917 while (1) {
3918 if (cpu_can_run(env))
3919 qemu_cpu_exec(env);
3920 qemu_wait_io_event(env);
3923 return NULL;
3926 static void tcg_cpu_exec(void);
3928 static void *tcg_cpu_thread_fn(void *arg)
3930 CPUState *env = arg;
3932 block_io_signals();
3933 qemu_thread_self(env->thread);
3935 /* signal CPU creation */
3936 qemu_mutex_lock(&qemu_global_mutex);
3937 for (env = first_cpu; env != NULL; env = env->next_cpu)
3938 env->created = 1;
3939 qemu_cond_signal(&qemu_cpu_cond);
3941 /* and wait for machine initialization */
3942 while (!qemu_system_ready)
3943 qemu_cond_timedwait(&qemu_system_cond, &qemu_global_mutex, 100);
3945 while (1) {
3946 tcg_cpu_exec();
3947 qemu_wait_io_event(cur_cpu);
3950 return NULL;
3953 void qemu_cpu_kick(void *_env)
3955 CPUState *env = _env;
3956 qemu_cond_broadcast(env->halt_cond);
3957 if (kvm_enabled())
3958 qemu_thread_signal(env->thread, SIGUSR1);
3961 int qemu_cpu_self(void *env)
3963 return (cpu_single_env != NULL);
3966 static void cpu_signal(int sig)
3968 if (cpu_single_env)
3969 cpu_exit(cpu_single_env);
3972 static void block_io_signals(void)
3974 sigset_t set;
3975 struct sigaction sigact;
3977 sigemptyset(&set);
3978 sigaddset(&set, SIGUSR2);
3979 sigaddset(&set, SIGIO);
3980 sigaddset(&set, SIGALRM);
3981 pthread_sigmask(SIG_BLOCK, &set, NULL);
3983 sigemptyset(&set);
3984 sigaddset(&set, SIGUSR1);
3985 pthread_sigmask(SIG_UNBLOCK, &set, NULL);
3987 memset(&sigact, 0, sizeof(sigact));
3988 sigact.sa_handler = cpu_signal;
3989 sigaction(SIGUSR1, &sigact, NULL);
3992 static void unblock_io_signals(void)
3994 sigset_t set;
3996 sigemptyset(&set);
3997 sigaddset(&set, SIGUSR2);
3998 sigaddset(&set, SIGIO);
3999 sigaddset(&set, SIGALRM);
4000 pthread_sigmask(SIG_UNBLOCK, &set, NULL);
4002 sigemptyset(&set);
4003 sigaddset(&set, SIGUSR1);
4004 pthread_sigmask(SIG_BLOCK, &set, NULL);
4007 static void qemu_signal_lock(unsigned int msecs)
4009 qemu_mutex_lock(&qemu_fair_mutex);
4011 while (qemu_mutex_trylock(&qemu_global_mutex)) {
4012 qemu_thread_signal(tcg_cpu_thread, SIGUSR1);
4013 if (!qemu_mutex_timedlock(&qemu_global_mutex, msecs))
4014 break;
4016 qemu_mutex_unlock(&qemu_fair_mutex);
4019 static void qemu_mutex_lock_iothread(void)
4021 if (kvm_enabled()) {
4022 qemu_mutex_lock(&qemu_fair_mutex);
4023 qemu_mutex_lock(&qemu_global_mutex);
4024 qemu_mutex_unlock(&qemu_fair_mutex);
4025 } else
4026 qemu_signal_lock(100);
4029 static void qemu_mutex_unlock_iothread(void)
4031 qemu_mutex_unlock(&qemu_global_mutex);
4034 static int all_vcpus_paused(void)
4036 CPUState *penv = first_cpu;
4038 while (penv) {
4039 if (!penv->stopped)
4040 return 0;
4041 penv = (CPUState *)penv->next_cpu;
4044 return 1;
4047 static void pause_all_vcpus(void)
4049 CPUState *penv = first_cpu;
4051 while (penv) {
4052 penv->stop = 1;
4053 qemu_thread_signal(penv->thread, SIGUSR1);
4054 qemu_cpu_kick(penv);
4055 penv = (CPUState *)penv->next_cpu;
4058 while (!all_vcpus_paused()) {
4059 qemu_cond_timedwait(&qemu_pause_cond, &qemu_global_mutex, 100);
4060 penv = first_cpu;
4061 while (penv) {
4062 qemu_thread_signal(penv->thread, SIGUSR1);
4063 penv = (CPUState *)penv->next_cpu;
4068 static void resume_all_vcpus(void)
4070 CPUState *penv = first_cpu;
4072 while (penv) {
4073 penv->stop = 0;
4074 penv->stopped = 0;
4075 qemu_thread_signal(penv->thread, SIGUSR1);
4076 qemu_cpu_kick(penv);
4077 penv = (CPUState *)penv->next_cpu;
4081 static void tcg_init_vcpu(void *_env)
4083 CPUState *env = _env;
4084 /* share a single thread for all cpus with TCG */
4085 if (!tcg_cpu_thread) {
4086 env->thread = qemu_mallocz(sizeof(QemuThread));
4087 env->halt_cond = qemu_mallocz(sizeof(QemuCond));
4088 qemu_cond_init(env->halt_cond);
4089 qemu_thread_create(env->thread, tcg_cpu_thread_fn, env);
4090 while (env->created == 0)
4091 qemu_cond_timedwait(&qemu_cpu_cond, &qemu_global_mutex, 100);
4092 tcg_cpu_thread = env->thread;
4093 tcg_halt_cond = env->halt_cond;
4094 } else {
4095 env->thread = tcg_cpu_thread;
4096 env->halt_cond = tcg_halt_cond;
4100 static void kvm_start_vcpu(CPUState *env)
4102 kvm_init_vcpu(env);
4103 env->thread = qemu_mallocz(sizeof(QemuThread));
4104 env->halt_cond = qemu_mallocz(sizeof(QemuCond));
4105 qemu_cond_init(env->halt_cond);
4106 qemu_thread_create(env->thread, kvm_cpu_thread_fn, env);
4107 while (env->created == 0)
4108 qemu_cond_timedwait(&qemu_cpu_cond, &qemu_global_mutex, 100);
4111 void qemu_init_vcpu(void *_env)
4113 CPUState *env = _env;
4115 if (kvm_enabled())
4116 kvm_start_vcpu(env);
4117 else
4118 tcg_init_vcpu(env);
4121 void qemu_notify_event(void)
4123 qemu_event_increment();
4126 void vm_stop(int reason)
4128 QemuThread me;
4129 qemu_thread_self(&me);
4131 if (!qemu_thread_equal(&me, &io_thread)) {
4132 qemu_system_vmstop_request(reason);
4134 * FIXME: should not return to device code in case
4135 * vm_stop() has been requested.
4137 if (cpu_single_env) {
4138 cpu_exit(cpu_single_env);
4139 cpu_single_env->stop = 1;
4141 return;
4143 do_vm_stop(reason);
4146 #endif
4149 #ifdef _WIN32
4150 static void host_main_loop_wait(int *timeout)
4152 int ret, ret2, i;
4153 PollingEntry *pe;
4156 /* XXX: need to suppress polling by better using win32 events */
4157 ret = 0;
4158 for(pe = first_polling_entry; pe != NULL; pe = pe->next) {
4159 ret |= pe->func(pe->opaque);
4161 if (ret == 0) {
4162 int err;
4163 WaitObjects *w = &wait_objects;
4165 ret = WaitForMultipleObjects(w->num, w->events, FALSE, *timeout);
4166 if (WAIT_OBJECT_0 + 0 <= ret && ret <= WAIT_OBJECT_0 + w->num - 1) {
4167 if (w->func[ret - WAIT_OBJECT_0])
4168 w->func[ret - WAIT_OBJECT_0](w->opaque[ret - WAIT_OBJECT_0]);
4170 /* Check for additional signaled events */
4171 for(i = (ret - WAIT_OBJECT_0 + 1); i < w->num; i++) {
4173 /* Check if event is signaled */
4174 ret2 = WaitForSingleObject(w->events[i], 0);
4175 if(ret2 == WAIT_OBJECT_0) {
4176 if (w->func[i])
4177 w->func[i](w->opaque[i]);
4178 } else if (ret2 == WAIT_TIMEOUT) {
4179 } else {
4180 err = GetLastError();
4181 fprintf(stderr, "WaitForSingleObject error %d %d\n", i, err);
4184 } else if (ret == WAIT_TIMEOUT) {
4185 } else {
4186 err = GetLastError();
4187 fprintf(stderr, "WaitForMultipleObjects error %d %d\n", ret, err);
4191 *timeout = 0;
4193 #else
4194 static void host_main_loop_wait(int *timeout)
4197 #endif
4199 void main_loop_wait(int timeout)
4201 IOHandlerRecord *ioh;
4202 fd_set rfds, wfds, xfds;
4203 int ret, nfds;
4204 struct timeval tv;
4206 qemu_bh_update_timeout(&timeout);
4208 host_main_loop_wait(&timeout);
4210 /* poll any events */
4211 /* XXX: separate device handlers from system ones */
4212 nfds = -1;
4213 FD_ZERO(&rfds);
4214 FD_ZERO(&wfds);
4215 FD_ZERO(&xfds);
4216 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
4217 if (ioh->deleted)
4218 continue;
4219 if (ioh->fd_read &&
4220 (!ioh->fd_read_poll ||
4221 ioh->fd_read_poll(ioh->opaque) != 0)) {
4222 FD_SET(ioh->fd, &rfds);
4223 if (ioh->fd > nfds)
4224 nfds = ioh->fd;
4226 if (ioh->fd_write) {
4227 FD_SET(ioh->fd, &wfds);
4228 if (ioh->fd > nfds)
4229 nfds = ioh->fd;
4233 tv.tv_sec = timeout / 1000;
4234 tv.tv_usec = (timeout % 1000) * 1000;
4236 #if defined(CONFIG_SLIRP)
4237 if (slirp_is_inited()) {
4238 slirp_select_fill(&nfds, &rfds, &wfds, &xfds);
4240 #endif
4241 qemu_mutex_unlock_iothread();
4242 ret = select(nfds + 1, &rfds, &wfds, &xfds, &tv);
4243 qemu_mutex_lock_iothread();
4244 if (ret > 0) {
4245 IOHandlerRecord **pioh;
4247 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
4248 if (!ioh->deleted && ioh->fd_read && FD_ISSET(ioh->fd, &rfds)) {
4249 ioh->fd_read(ioh->opaque);
4251 if (!ioh->deleted && ioh->fd_write && FD_ISSET(ioh->fd, &wfds)) {
4252 ioh->fd_write(ioh->opaque);
4256 /* remove deleted IO handlers */
4257 pioh = &first_io_handler;
4258 while (*pioh) {
4259 ioh = *pioh;
4260 if (ioh->deleted) {
4261 *pioh = ioh->next;
4262 qemu_free(ioh);
4263 } else
4264 pioh = &ioh->next;
4267 #if defined(CONFIG_SLIRP)
4268 if (slirp_is_inited()) {
4269 if (ret < 0) {
4270 FD_ZERO(&rfds);
4271 FD_ZERO(&wfds);
4272 FD_ZERO(&xfds);
4274 slirp_select_poll(&rfds, &wfds, &xfds);
4276 #endif
4278 /* rearm timer, if not periodic */
4279 if (alarm_timer->flags & ALARM_FLAG_EXPIRED) {
4280 alarm_timer->flags &= ~ALARM_FLAG_EXPIRED;
4281 qemu_rearm_alarm_timer(alarm_timer);
4284 /* vm time timers */
4285 if (vm_running) {
4286 if (!cur_cpu || likely(!(cur_cpu->singlestep_enabled & SSTEP_NOTIMER)))
4287 qemu_run_timers(&active_timers[QEMU_TIMER_VIRTUAL],
4288 qemu_get_clock(vm_clock));
4291 /* real time timers */
4292 qemu_run_timers(&active_timers[QEMU_TIMER_REALTIME],
4293 qemu_get_clock(rt_clock));
4295 /* Check bottom-halves last in case any of the earlier events triggered
4296 them. */
4297 qemu_bh_poll();
4301 static int qemu_cpu_exec(CPUState *env)
4303 int ret;
4304 #ifdef CONFIG_PROFILER
4305 int64_t ti;
4306 #endif
4308 #ifdef CONFIG_PROFILER
4309 ti = profile_getclock();
4310 #endif
4311 if (use_icount) {
4312 int64_t count;
4313 int decr;
4314 qemu_icount -= (env->icount_decr.u16.low + env->icount_extra);
4315 env->icount_decr.u16.low = 0;
4316 env->icount_extra = 0;
4317 count = qemu_next_deadline();
4318 count = (count + (1 << icount_time_shift) - 1)
4319 >> icount_time_shift;
4320 qemu_icount += count;
4321 decr = (count > 0xffff) ? 0xffff : count;
4322 count -= decr;
4323 env->icount_decr.u16.low = decr;
4324 env->icount_extra = count;
4326 ret = cpu_exec(env);
4327 #ifdef CONFIG_PROFILER
4328 qemu_time += profile_getclock() - ti;
4329 #endif
4330 if (use_icount) {
4331 /* Fold pending instructions back into the
4332 instruction counter, and clear the interrupt flag. */
4333 qemu_icount -= (env->icount_decr.u16.low
4334 + env->icount_extra);
4335 env->icount_decr.u32 = 0;
4336 env->icount_extra = 0;
4338 return ret;
4341 static void tcg_cpu_exec(void)
4343 int ret = 0;
4345 if (next_cpu == NULL)
4346 next_cpu = first_cpu;
4347 for (; next_cpu != NULL; next_cpu = next_cpu->next_cpu) {
4348 CPUState *env = cur_cpu = next_cpu;
4350 if (!vm_running)
4351 break;
4352 if (timer_alarm_pending) {
4353 timer_alarm_pending = 0;
4354 break;
4356 if (cpu_can_run(env))
4357 ret = qemu_cpu_exec(env);
4358 if (ret == EXCP_DEBUG) {
4359 gdb_set_stop_cpu(env);
4360 debug_requested = 1;
4361 break;
4366 static int cpu_has_work(CPUState *env)
4368 if (env->stop)
4369 return 1;
4370 if (env->stopped)
4371 return 0;
4372 if (!env->halted)
4373 return 1;
4374 if (qemu_cpu_has_work(env))
4375 return 1;
4376 return 0;
4379 static int tcg_has_work(void)
4381 CPUState *env;
4383 for (env = first_cpu; env != NULL; env = env->next_cpu)
4384 if (cpu_has_work(env))
4385 return 1;
4386 return 0;
4389 static int qemu_calculate_timeout(void)
4391 int timeout;
4393 if (!vm_running)
4394 timeout = 5000;
4395 else if (tcg_has_work())
4396 timeout = 0;
4397 else if (!use_icount)
4398 timeout = 5000;
4399 else {
4400 /* XXX: use timeout computed from timers */
4401 int64_t add;
4402 int64_t delta;
4403 /* Advance virtual time to the next event. */
4404 if (use_icount == 1) {
4405 /* When not using an adaptive execution frequency
4406 we tend to get badly out of sync with real time,
4407 so just delay for a reasonable amount of time. */
4408 delta = 0;
4409 } else {
4410 delta = cpu_get_icount() - cpu_get_clock();
4412 if (delta > 0) {
4413 /* If virtual time is ahead of real time then just
4414 wait for IO. */
4415 timeout = (delta / 1000000) + 1;
4416 } else {
4417 /* Wait for either IO to occur or the next
4418 timer event. */
4419 add = qemu_next_deadline();
4420 /* We advance the timer before checking for IO.
4421 Limit the amount we advance so that early IO
4422 activity won't get the guest too far ahead. */
4423 if (add > 10000000)
4424 add = 10000000;
4425 delta += add;
4426 add = (add + (1 << icount_time_shift) - 1)
4427 >> icount_time_shift;
4428 qemu_icount += add;
4429 timeout = delta / 1000000;
4430 if (timeout < 0)
4431 timeout = 0;
4435 return timeout;
4438 static int vm_can_run(void)
4440 if (powerdown_requested)
4441 return 0;
4442 if (reset_requested)
4443 return 0;
4444 if (shutdown_requested)
4445 return 0;
4446 if (debug_requested)
4447 return 0;
4448 return 1;
4451 static void main_loop(void)
4453 int r;
4455 #ifdef CONFIG_IOTHREAD
4456 qemu_system_ready = 1;
4457 qemu_cond_broadcast(&qemu_system_cond);
4458 #endif
4460 for (;;) {
4461 do {
4462 #ifdef CONFIG_PROFILER
4463 int64_t ti;
4464 #endif
4465 #ifndef CONFIG_IOTHREAD
4466 tcg_cpu_exec();
4467 #endif
4468 #ifdef CONFIG_PROFILER
4469 ti = profile_getclock();
4470 #endif
4471 #ifdef CONFIG_IOTHREAD
4472 main_loop_wait(1000);
4473 #else
4474 main_loop_wait(qemu_calculate_timeout());
4475 #endif
4476 #ifdef CONFIG_PROFILER
4477 dev_time += profile_getclock() - ti;
4478 #endif
4479 } while (vm_can_run());
4481 if (qemu_debug_requested())
4482 vm_stop(EXCP_DEBUG);
4483 if (qemu_shutdown_requested()) {
4484 if (no_shutdown) {
4485 vm_stop(0);
4486 no_shutdown = 0;
4487 } else
4488 break;
4490 if (qemu_reset_requested()) {
4491 pause_all_vcpus();
4492 qemu_system_reset();
4493 resume_all_vcpus();
4495 if (qemu_powerdown_requested())
4496 qemu_system_powerdown();
4497 if ((r = qemu_vmstop_requested()))
4498 vm_stop(r);
4500 pause_all_vcpus();
4503 static void version(void)
4505 printf("QEMU PC emulator version " QEMU_VERSION QEMU_PKGVERSION ", Copyright (c) 2003-2008 Fabrice Bellard\n");
4508 static void help(int exitcode)
4510 version();
4511 printf("usage: %s [options] [disk_image]\n"
4512 "\n"
4513 "'disk_image' is a raw hard image image for IDE hard disk 0\n"
4514 "\n"
4515 #define DEF(option, opt_arg, opt_enum, opt_help) \
4516 opt_help
4517 #define DEFHEADING(text) stringify(text) "\n"
4518 #include "qemu-options.h"
4519 #undef DEF
4520 #undef DEFHEADING
4521 #undef GEN_DOCS
4522 "\n"
4523 "During emulation, the following keys are useful:\n"
4524 "ctrl-alt-f toggle full screen\n"
4525 "ctrl-alt-n switch to virtual console 'n'\n"
4526 "ctrl-alt toggle mouse and keyboard grab\n"
4527 "\n"
4528 "When using -nographic, press 'ctrl-a h' to get some help.\n"
4530 "qemu",
4531 DEFAULT_RAM_SIZE,
4532 #ifndef _WIN32
4533 DEFAULT_NETWORK_SCRIPT,
4534 DEFAULT_NETWORK_DOWN_SCRIPT,
4535 #endif
4536 DEFAULT_GDBSTUB_PORT,
4537 "/tmp/qemu.log");
4538 exit(exitcode);
4541 #define HAS_ARG 0x0001
4543 enum {
4544 #define DEF(option, opt_arg, opt_enum, opt_help) \
4545 opt_enum,
4546 #define DEFHEADING(text)
4547 #include "qemu-options.h"
4548 #undef DEF
4549 #undef DEFHEADING
4550 #undef GEN_DOCS
4553 typedef struct QEMUOption {
4554 const char *name;
4555 int flags;
4556 int index;
4557 } QEMUOption;
4559 static const QEMUOption qemu_options[] = {
4560 { "h", 0, QEMU_OPTION_h },
4561 #define DEF(option, opt_arg, opt_enum, opt_help) \
4562 { option, opt_arg, opt_enum },
4563 #define DEFHEADING(text)
4564 #include "qemu-options.h"
4565 #undef DEF
4566 #undef DEFHEADING
4567 #undef GEN_DOCS
4568 { NULL },
4571 #ifdef HAS_AUDIO
4572 struct soundhw soundhw[] = {
4573 #ifdef HAS_AUDIO_CHOICE
4574 #if defined(TARGET_I386) || defined(TARGET_MIPS)
4576 "pcspk",
4577 "PC speaker",
4580 { .init_isa = pcspk_audio_init }
4582 #endif
4584 #ifdef CONFIG_SB16
4586 "sb16",
4587 "Creative Sound Blaster 16",
4590 { .init_isa = SB16_init }
4592 #endif
4594 #ifdef CONFIG_CS4231A
4596 "cs4231a",
4597 "CS4231A",
4600 { .init_isa = cs4231a_init }
4602 #endif
4604 #ifdef CONFIG_ADLIB
4606 "adlib",
4607 #ifdef HAS_YMF262
4608 "Yamaha YMF262 (OPL3)",
4609 #else
4610 "Yamaha YM3812 (OPL2)",
4611 #endif
4614 { .init_isa = Adlib_init }
4616 #endif
4618 #ifdef CONFIG_GUS
4620 "gus",
4621 "Gravis Ultrasound GF1",
4624 { .init_isa = GUS_init }
4626 #endif
4628 #ifdef CONFIG_AC97
4630 "ac97",
4631 "Intel 82801AA AC97 Audio",
4634 { .init_pci = ac97_init }
4636 #endif
4638 #ifdef CONFIG_ES1370
4640 "es1370",
4641 "ENSONIQ AudioPCI ES1370",
4644 { .init_pci = es1370_init }
4646 #endif
4648 #endif /* HAS_AUDIO_CHOICE */
4650 { NULL, NULL, 0, 0, { NULL } }
4653 static void select_soundhw (const char *optarg)
4655 struct soundhw *c;
4657 if (*optarg == '?') {
4658 show_valid_cards:
4660 printf ("Valid sound card names (comma separated):\n");
4661 for (c = soundhw; c->name; ++c) {
4662 printf ("%-11s %s\n", c->name, c->descr);
4664 printf ("\n-soundhw all will enable all of the above\n");
4665 exit (*optarg != '?');
4667 else {
4668 size_t l;
4669 const char *p;
4670 char *e;
4671 int bad_card = 0;
4673 if (!strcmp (optarg, "all")) {
4674 for (c = soundhw; c->name; ++c) {
4675 c->enabled = 1;
4677 return;
4680 p = optarg;
4681 while (*p) {
4682 e = strchr (p, ',');
4683 l = !e ? strlen (p) : (size_t) (e - p);
4685 for (c = soundhw; c->name; ++c) {
4686 if (!strncmp (c->name, p, l)) {
4687 c->enabled = 1;
4688 break;
4692 if (!c->name) {
4693 if (l > 80) {
4694 fprintf (stderr,
4695 "Unknown sound card name (too big to show)\n");
4697 else {
4698 fprintf (stderr, "Unknown sound card name `%.*s'\n",
4699 (int) l, p);
4701 bad_card = 1;
4703 p += l + (e != NULL);
4706 if (bad_card)
4707 goto show_valid_cards;
4710 #endif
4712 static void select_vgahw (const char *p)
4714 const char *opts;
4716 cirrus_vga_enabled = 0;
4717 std_vga_enabled = 0;
4718 vmsvga_enabled = 0;
4719 xenfb_enabled = 0;
4720 if (strstart(p, "std", &opts)) {
4721 std_vga_enabled = 1;
4722 } else if (strstart(p, "cirrus", &opts)) {
4723 cirrus_vga_enabled = 1;
4724 } else if (strstart(p, "vmware", &opts)) {
4725 vmsvga_enabled = 1;
4726 } else if (strstart(p, "xenfb", &opts)) {
4727 xenfb_enabled = 1;
4728 } else if (!strstart(p, "none", &opts)) {
4729 invalid_vga:
4730 fprintf(stderr, "Unknown vga type: %s\n", p);
4731 exit(1);
4733 while (*opts) {
4734 const char *nextopt;
4736 if (strstart(opts, ",retrace=", &nextopt)) {
4737 opts = nextopt;
4738 if (strstart(opts, "dumb", &nextopt))
4739 vga_retrace_method = VGA_RETRACE_DUMB;
4740 else if (strstart(opts, "precise", &nextopt))
4741 vga_retrace_method = VGA_RETRACE_PRECISE;
4742 else goto invalid_vga;
4743 } else goto invalid_vga;
4744 opts = nextopt;
4748 #ifdef _WIN32
4749 static BOOL WINAPI qemu_ctrl_handler(DWORD type)
4751 exit(STATUS_CONTROL_C_EXIT);
4752 return TRUE;
4754 #endif
4756 int qemu_uuid_parse(const char *str, uint8_t *uuid)
4758 int ret;
4760 if(strlen(str) != 36)
4761 return -1;
4763 ret = sscanf(str, UUID_FMT, &uuid[0], &uuid[1], &uuid[2], &uuid[3],
4764 &uuid[4], &uuid[5], &uuid[6], &uuid[7], &uuid[8], &uuid[9],
4765 &uuid[10], &uuid[11], &uuid[12], &uuid[13], &uuid[14], &uuid[15]);
4767 if(ret != 16)
4768 return -1;
4770 #ifdef TARGET_I386
4771 smbios_add_field(1, offsetof(struct smbios_type_1, uuid), 16, uuid);
4772 #endif
4774 return 0;
4777 #define MAX_NET_CLIENTS 32
4779 #ifndef _WIN32
4781 static void termsig_handler(int signal)
4783 qemu_system_shutdown_request();
4786 static void termsig_setup(void)
4788 struct sigaction act;
4790 memset(&act, 0, sizeof(act));
4791 act.sa_handler = termsig_handler;
4792 sigaction(SIGINT, &act, NULL);
4793 sigaction(SIGHUP, &act, NULL);
4794 sigaction(SIGTERM, &act, NULL);
4797 #endif
4799 #ifdef _WIN32
4800 /* Look for support files in the same directory as the executable. */
4801 static char *find_datadir(const char *argv0)
4803 char *p;
4804 char buf[MAX_PATH];
4805 DWORD len;
4807 len = GetModuleFileName(NULL, buf, sizeof(buf) - 1);
4808 if (len == 0) {
4809 return len;
4812 buf[len] = 0;
4813 p = buf + len - 1;
4814 while (p != buf && *p != '\\')
4815 p--;
4816 *p = 0;
4817 if (access(buf, R_OK) == 0) {
4818 return qemu_strdup(buf);
4820 return NULL;
4822 #else /* !_WIN32 */
4824 /* Find a likely location for support files using the location of the binary.
4825 For installed binaries this will be "$bindir/../share/qemu". When
4826 running from the build tree this will be "$bindir/../pc-bios". */
4827 #define SHARE_SUFFIX "/share/qemu"
4828 #define BUILD_SUFFIX "/pc-bios"
4829 static char *find_datadir(const char *argv0)
4831 char *dir;
4832 char *p = NULL;
4833 char *res;
4834 #ifdef PATH_MAX
4835 char buf[PATH_MAX];
4836 #endif
4838 #if defined(__linux__)
4840 int len;
4841 len = readlink("/proc/self/exe", buf, sizeof(buf) - 1);
4842 if (len > 0) {
4843 buf[len] = 0;
4844 p = buf;
4847 #elif defined(__FreeBSD__)
4849 int len;
4850 len = readlink("/proc/curproc/file", buf, sizeof(buf) - 1);
4851 if (len > 0) {
4852 buf[len] = 0;
4853 p = buf;
4856 #endif
4857 /* If we don't have any way of figuring out the actual executable
4858 location then try argv[0]. */
4859 if (!p) {
4860 #ifdef PATH_MAX
4861 p = buf;
4862 #endif
4863 p = realpath(argv0, p);
4864 if (!p) {
4865 return NULL;
4868 dir = dirname(p);
4869 dir = dirname(dir);
4871 res = qemu_mallocz(strlen(dir) +
4872 MAX(strlen(SHARE_SUFFIX), strlen(BUILD_SUFFIX)) + 1);
4873 sprintf(res, "%s%s", dir, SHARE_SUFFIX);
4874 if (access(res, R_OK)) {
4875 sprintf(res, "%s%s", dir, BUILD_SUFFIX);
4876 if (access(res, R_OK)) {
4877 qemu_free(res);
4878 res = NULL;
4881 #ifndef PATH_MAX
4882 free(p);
4883 #endif
4884 return res;
4886 #undef SHARE_SUFFIX
4887 #undef BUILD_SUFFIX
4888 #endif
4890 char *qemu_find_file(int type, const char *name)
4892 int len;
4893 const char *subdir;
4894 char *buf;
4896 /* If name contains path separators then try it as a straight path. */
4897 if ((strchr(name, '/') || strchr(name, '\\'))
4898 && access(name, R_OK) == 0) {
4899 return strdup(name);
4901 switch (type) {
4902 case QEMU_FILE_TYPE_BIOS:
4903 subdir = "";
4904 break;
4905 case QEMU_FILE_TYPE_KEYMAP:
4906 subdir = "keymaps/";
4907 break;
4908 default:
4909 abort();
4911 len = strlen(data_dir) + strlen(name) + strlen(subdir) + 2;
4912 buf = qemu_mallocz(len);
4913 sprintf(buf, "%s/%s%s", data_dir, subdir, name);
4914 if (access(buf, R_OK)) {
4915 qemu_free(buf);
4916 return NULL;
4918 return buf;
4921 int main(int argc, char **argv, char **envp)
4923 const char *gdbstub_dev = NULL;
4924 uint32_t boot_devices_bitmap = 0;
4925 int i;
4926 int snapshot, linux_boot, net_boot;
4927 const char *initrd_filename;
4928 const char *kernel_filename, *kernel_cmdline;
4929 const char *boot_devices = "";
4930 DisplayState *ds;
4931 DisplayChangeListener *dcl;
4932 int cyls, heads, secs, translation;
4933 const char *net_clients[MAX_NET_CLIENTS];
4934 int nb_net_clients;
4935 const char *bt_opts[MAX_BT_CMDLINE];
4936 int nb_bt_opts;
4937 int hda_index;
4938 int optind;
4939 const char *r, *optarg;
4940 CharDriverState *monitor_hd = NULL;
4941 const char *monitor_device;
4942 const char *serial_devices[MAX_SERIAL_PORTS];
4943 int serial_device_index;
4944 const char *parallel_devices[MAX_PARALLEL_PORTS];
4945 int parallel_device_index;
4946 const char *virtio_consoles[MAX_VIRTIO_CONSOLES];
4947 int virtio_console_index;
4948 const char *loadvm = NULL;
4949 QEMUMachine *machine;
4950 const char *cpu_model;
4951 const char *usb_devices[MAX_USB_CMDLINE];
4952 int usb_devices_index;
4953 #ifndef _WIN32
4954 int fds[2];
4955 #endif
4956 int tb_size;
4957 const char *pid_file = NULL;
4958 const char *incoming = NULL;
4959 #ifndef _WIN32
4960 int fd = 0;
4961 struct passwd *pwd = NULL;
4962 const char *chroot_dir = NULL;
4963 const char *run_as = NULL;
4964 #endif
4965 CPUState *env;
4966 int show_vnc_port = 0;
4968 qemu_cache_utils_init(envp);
4970 LIST_INIT (&vm_change_state_head);
4971 #ifndef _WIN32
4973 struct sigaction act;
4974 sigfillset(&act.sa_mask);
4975 act.sa_flags = 0;
4976 act.sa_handler = SIG_IGN;
4977 sigaction(SIGPIPE, &act, NULL);
4979 #else
4980 SetConsoleCtrlHandler(qemu_ctrl_handler, TRUE);
4981 /* Note: cpu_interrupt() is currently not SMP safe, so we force
4982 QEMU to run on a single CPU */
4984 HANDLE h;
4985 DWORD mask, smask;
4986 int i;
4987 h = GetCurrentProcess();
4988 if (GetProcessAffinityMask(h, &mask, &smask)) {
4989 for(i = 0; i < 32; i++) {
4990 if (mask & (1 << i))
4991 break;
4993 if (i != 32) {
4994 mask = 1 << i;
4995 SetProcessAffinityMask(h, mask);
4999 #endif
5001 module_call_init(MODULE_INIT_MACHINE);
5002 machine = find_default_machine();
5003 cpu_model = NULL;
5004 initrd_filename = NULL;
5005 ram_size = 0;
5006 snapshot = 0;
5007 kernel_filename = NULL;
5008 kernel_cmdline = "";
5009 cyls = heads = secs = 0;
5010 translation = BIOS_ATA_TRANSLATION_AUTO;
5011 monitor_device = "vc:80Cx24C";
5013 serial_devices[0] = "vc:80Cx24C";
5014 for(i = 1; i < MAX_SERIAL_PORTS; i++)
5015 serial_devices[i] = NULL;
5016 serial_device_index = 0;
5018 parallel_devices[0] = "vc:80Cx24C";
5019 for(i = 1; i < MAX_PARALLEL_PORTS; i++)
5020 parallel_devices[i] = NULL;
5021 parallel_device_index = 0;
5023 for(i = 0; i < MAX_VIRTIO_CONSOLES; i++)
5024 virtio_consoles[i] = NULL;
5025 virtio_console_index = 0;
5027 for (i = 0; i < MAX_NODES; i++) {
5028 node_mem[i] = 0;
5029 node_cpumask[i] = 0;
5032 usb_devices_index = 0;
5034 nb_net_clients = 0;
5035 nb_bt_opts = 0;
5036 nb_drives = 0;
5037 nb_drives_opt = 0;
5038 nb_numa_nodes = 0;
5039 hda_index = -1;
5041 nb_nics = 0;
5043 tb_size = 0;
5044 autostart= 1;
5046 register_watchdogs();
5048 optind = 1;
5049 for(;;) {
5050 if (optind >= argc)
5051 break;
5052 r = argv[optind];
5053 if (r[0] != '-') {
5054 hda_index = drive_add(argv[optind++], HD_ALIAS, 0);
5055 } else {
5056 const QEMUOption *popt;
5058 optind++;
5059 /* Treat --foo the same as -foo. */
5060 if (r[1] == '-')
5061 r++;
5062 popt = qemu_options;
5063 for(;;) {
5064 if (!popt->name) {
5065 fprintf(stderr, "%s: invalid option -- '%s'\n",
5066 argv[0], r);
5067 exit(1);
5069 if (!strcmp(popt->name, r + 1))
5070 break;
5071 popt++;
5073 if (popt->flags & HAS_ARG) {
5074 if (optind >= argc) {
5075 fprintf(stderr, "%s: option '%s' requires an argument\n",
5076 argv[0], r);
5077 exit(1);
5079 optarg = argv[optind++];
5080 } else {
5081 optarg = NULL;
5084 switch(popt->index) {
5085 case QEMU_OPTION_M:
5086 machine = find_machine(optarg);
5087 if (!machine) {
5088 QEMUMachine *m;
5089 printf("Supported machines are:\n");
5090 for(m = first_machine; m != NULL; m = m->next) {
5091 printf("%-10s %s%s\n",
5092 m->name, m->desc,
5093 m->is_default ? " (default)" : "");
5095 exit(*optarg != '?');
5097 break;
5098 case QEMU_OPTION_cpu:
5099 /* hw initialization will check this */
5100 if (*optarg == '?') {
5101 /* XXX: implement xxx_cpu_list for targets that still miss it */
5102 #if defined(cpu_list)
5103 cpu_list(stdout, &fprintf);
5104 #endif
5105 exit(0);
5106 } else {
5107 cpu_model = optarg;
5109 break;
5110 case QEMU_OPTION_initrd:
5111 initrd_filename = optarg;
5112 break;
5113 case QEMU_OPTION_hda:
5114 if (cyls == 0)
5115 hda_index = drive_add(optarg, HD_ALIAS, 0);
5116 else
5117 hda_index = drive_add(optarg, HD_ALIAS
5118 ",cyls=%d,heads=%d,secs=%d%s",
5119 0, cyls, heads, secs,
5120 translation == BIOS_ATA_TRANSLATION_LBA ?
5121 ",trans=lba" :
5122 translation == BIOS_ATA_TRANSLATION_NONE ?
5123 ",trans=none" : "");
5124 break;
5125 case QEMU_OPTION_hdb:
5126 case QEMU_OPTION_hdc:
5127 case QEMU_OPTION_hdd:
5128 drive_add(optarg, HD_ALIAS, popt->index - QEMU_OPTION_hda);
5129 break;
5130 case QEMU_OPTION_drive:
5131 drive_add(NULL, "%s", optarg);
5132 break;
5133 case QEMU_OPTION_mtdblock:
5134 drive_add(optarg, MTD_ALIAS);
5135 break;
5136 case QEMU_OPTION_sd:
5137 drive_add(optarg, SD_ALIAS);
5138 break;
5139 case QEMU_OPTION_pflash:
5140 drive_add(optarg, PFLASH_ALIAS);
5141 break;
5142 case QEMU_OPTION_snapshot:
5143 snapshot = 1;
5144 break;
5145 case QEMU_OPTION_hdachs:
5147 const char *p;
5148 p = optarg;
5149 cyls = strtol(p, (char **)&p, 0);
5150 if (cyls < 1 || cyls > 16383)
5151 goto chs_fail;
5152 if (*p != ',')
5153 goto chs_fail;
5154 p++;
5155 heads = strtol(p, (char **)&p, 0);
5156 if (heads < 1 || heads > 16)
5157 goto chs_fail;
5158 if (*p != ',')
5159 goto chs_fail;
5160 p++;
5161 secs = strtol(p, (char **)&p, 0);
5162 if (secs < 1 || secs > 63)
5163 goto chs_fail;
5164 if (*p == ',') {
5165 p++;
5166 if (!strcmp(p, "none"))
5167 translation = BIOS_ATA_TRANSLATION_NONE;
5168 else if (!strcmp(p, "lba"))
5169 translation = BIOS_ATA_TRANSLATION_LBA;
5170 else if (!strcmp(p, "auto"))
5171 translation = BIOS_ATA_TRANSLATION_AUTO;
5172 else
5173 goto chs_fail;
5174 } else if (*p != '\0') {
5175 chs_fail:
5176 fprintf(stderr, "qemu: invalid physical CHS format\n");
5177 exit(1);
5179 if (hda_index != -1)
5180 snprintf(drives_opt[hda_index].opt,
5181 sizeof(drives_opt[hda_index].opt),
5182 HD_ALIAS ",cyls=%d,heads=%d,secs=%d%s",
5183 0, cyls, heads, secs,
5184 translation == BIOS_ATA_TRANSLATION_LBA ?
5185 ",trans=lba" :
5186 translation == BIOS_ATA_TRANSLATION_NONE ?
5187 ",trans=none" : "");
5189 break;
5190 case QEMU_OPTION_numa:
5191 if (nb_numa_nodes >= MAX_NODES) {
5192 fprintf(stderr, "qemu: too many NUMA nodes\n");
5193 exit(1);
5195 numa_add(optarg);
5196 break;
5197 case QEMU_OPTION_nographic:
5198 display_type = DT_NOGRAPHIC;
5199 break;
5200 #ifdef CONFIG_CURSES
5201 case QEMU_OPTION_curses:
5202 display_type = DT_CURSES;
5203 break;
5204 #endif
5205 case QEMU_OPTION_portrait:
5206 graphic_rotate = 1;
5207 break;
5208 case QEMU_OPTION_kernel:
5209 kernel_filename = optarg;
5210 break;
5211 case QEMU_OPTION_append:
5212 kernel_cmdline = optarg;
5213 break;
5214 case QEMU_OPTION_cdrom:
5215 drive_add(optarg, CDROM_ALIAS);
5216 break;
5217 case QEMU_OPTION_boot:
5218 boot_devices = optarg;
5219 /* We just do some generic consistency checks */
5221 /* Could easily be extended to 64 devices if needed */
5222 const char *p;
5224 boot_devices_bitmap = 0;
5225 for (p = boot_devices; *p != '\0'; p++) {
5226 /* Allowed boot devices are:
5227 * a b : floppy disk drives
5228 * c ... f : IDE disk drives
5229 * g ... m : machine implementation dependant drives
5230 * n ... p : network devices
5231 * It's up to each machine implementation to check
5232 * if the given boot devices match the actual hardware
5233 * implementation and firmware features.
5235 if (*p < 'a' || *p > 'q') {
5236 fprintf(stderr, "Invalid boot device '%c'\n", *p);
5237 exit(1);
5239 if (boot_devices_bitmap & (1 << (*p - 'a'))) {
5240 fprintf(stderr,
5241 "Boot device '%c' was given twice\n",*p);
5242 exit(1);
5244 boot_devices_bitmap |= 1 << (*p - 'a');
5247 break;
5248 case QEMU_OPTION_fda:
5249 case QEMU_OPTION_fdb:
5250 drive_add(optarg, FD_ALIAS, popt->index - QEMU_OPTION_fda);
5251 break;
5252 #ifdef TARGET_I386
5253 case QEMU_OPTION_no_fd_bootchk:
5254 fd_bootchk = 0;
5255 break;
5256 #endif
5257 case QEMU_OPTION_net:
5258 if (nb_net_clients >= MAX_NET_CLIENTS) {
5259 fprintf(stderr, "qemu: too many network clients\n");
5260 exit(1);
5262 net_clients[nb_net_clients] = optarg;
5263 nb_net_clients++;
5264 break;
5265 #ifdef CONFIG_SLIRP
5266 case QEMU_OPTION_tftp:
5267 tftp_prefix = optarg;
5268 break;
5269 case QEMU_OPTION_bootp:
5270 bootp_filename = optarg;
5271 break;
5272 #ifndef _WIN32
5273 case QEMU_OPTION_smb:
5274 net_slirp_smb(optarg);
5275 break;
5276 #endif
5277 case QEMU_OPTION_redir:
5278 net_slirp_redir(NULL, optarg, NULL);
5279 break;
5280 #endif
5281 case QEMU_OPTION_bt:
5282 if (nb_bt_opts >= MAX_BT_CMDLINE) {
5283 fprintf(stderr, "qemu: too many bluetooth options\n");
5284 exit(1);
5286 bt_opts[nb_bt_opts++] = optarg;
5287 break;
5288 #ifdef HAS_AUDIO
5289 case QEMU_OPTION_audio_help:
5290 AUD_help ();
5291 exit (0);
5292 break;
5293 case QEMU_OPTION_soundhw:
5294 select_soundhw (optarg);
5295 break;
5296 #endif
5297 case QEMU_OPTION_h:
5298 help(0);
5299 break;
5300 case QEMU_OPTION_version:
5301 version();
5302 exit(0);
5303 break;
5304 case QEMU_OPTION_m: {
5305 uint64_t value;
5306 char *ptr;
5308 value = strtoul(optarg, &ptr, 10);
5309 switch (*ptr) {
5310 case 0: case 'M': case 'm':
5311 value <<= 20;
5312 break;
5313 case 'G': case 'g':
5314 value <<= 30;
5315 break;
5316 default:
5317 fprintf(stderr, "qemu: invalid ram size: %s\n", optarg);
5318 exit(1);
5321 /* On 32-bit hosts, QEMU is limited by virtual address space */
5322 if (value > (2047 << 20)
5323 #ifndef CONFIG_KQEMU
5324 && HOST_LONG_BITS == 32
5325 #endif
5327 fprintf(stderr, "qemu: at most 2047 MB RAM can be simulated\n");
5328 exit(1);
5330 if (value != (uint64_t)(ram_addr_t)value) {
5331 fprintf(stderr, "qemu: ram size too large\n");
5332 exit(1);
5334 ram_size = value;
5335 break;
5337 case QEMU_OPTION_d:
5339 int mask;
5340 const CPULogItem *item;
5342 mask = cpu_str_to_log_mask(optarg);
5343 if (!mask) {
5344 printf("Log items (comma separated):\n");
5345 for(item = cpu_log_items; item->mask != 0; item++) {
5346 printf("%-10s %s\n", item->name, item->help);
5348 exit(1);
5350 cpu_set_log(mask);
5352 break;
5353 case QEMU_OPTION_s:
5354 gdbstub_dev = "tcp::" DEFAULT_GDBSTUB_PORT;
5355 break;
5356 case QEMU_OPTION_gdb:
5357 gdbstub_dev = optarg;
5358 break;
5359 case QEMU_OPTION_L:
5360 data_dir = optarg;
5361 break;
5362 case QEMU_OPTION_bios:
5363 bios_name = optarg;
5364 break;
5365 case QEMU_OPTION_singlestep:
5366 singlestep = 1;
5367 break;
5368 case QEMU_OPTION_S:
5369 autostart = 0;
5370 break;
5371 #ifndef _WIN32
5372 case QEMU_OPTION_k:
5373 keyboard_layout = optarg;
5374 break;
5375 #endif
5376 case QEMU_OPTION_localtime:
5377 rtc_utc = 0;
5378 break;
5379 case QEMU_OPTION_vga:
5380 select_vgahw (optarg);
5381 break;
5382 #if defined(TARGET_PPC) || defined(TARGET_SPARC)
5383 case QEMU_OPTION_g:
5385 const char *p;
5386 int w, h, depth;
5387 p = optarg;
5388 w = strtol(p, (char **)&p, 10);
5389 if (w <= 0) {
5390 graphic_error:
5391 fprintf(stderr, "qemu: invalid resolution or depth\n");
5392 exit(1);
5394 if (*p != 'x')
5395 goto graphic_error;
5396 p++;
5397 h = strtol(p, (char **)&p, 10);
5398 if (h <= 0)
5399 goto graphic_error;
5400 if (*p == 'x') {
5401 p++;
5402 depth = strtol(p, (char **)&p, 10);
5403 if (depth != 8 && depth != 15 && depth != 16 &&
5404 depth != 24 && depth != 32)
5405 goto graphic_error;
5406 } else if (*p == '\0') {
5407 depth = graphic_depth;
5408 } else {
5409 goto graphic_error;
5412 graphic_width = w;
5413 graphic_height = h;
5414 graphic_depth = depth;
5416 break;
5417 #endif
5418 case QEMU_OPTION_echr:
5420 char *r;
5421 term_escape_char = strtol(optarg, &r, 0);
5422 if (r == optarg)
5423 printf("Bad argument to echr\n");
5424 break;
5426 case QEMU_OPTION_monitor:
5427 monitor_device = optarg;
5428 break;
5429 case QEMU_OPTION_serial:
5430 if (serial_device_index >= MAX_SERIAL_PORTS) {
5431 fprintf(stderr, "qemu: too many serial ports\n");
5432 exit(1);
5434 serial_devices[serial_device_index] = optarg;
5435 serial_device_index++;
5436 break;
5437 case QEMU_OPTION_watchdog:
5438 i = select_watchdog(optarg);
5439 if (i > 0)
5440 exit (i == 1 ? 1 : 0);
5441 break;
5442 case QEMU_OPTION_watchdog_action:
5443 if (select_watchdog_action(optarg) == -1) {
5444 fprintf(stderr, "Unknown -watchdog-action parameter\n");
5445 exit(1);
5447 break;
5448 case QEMU_OPTION_virtiocon:
5449 if (virtio_console_index >= MAX_VIRTIO_CONSOLES) {
5450 fprintf(stderr, "qemu: too many virtio consoles\n");
5451 exit(1);
5453 virtio_consoles[virtio_console_index] = optarg;
5454 virtio_console_index++;
5455 break;
5456 case QEMU_OPTION_parallel:
5457 if (parallel_device_index >= MAX_PARALLEL_PORTS) {
5458 fprintf(stderr, "qemu: too many parallel ports\n");
5459 exit(1);
5461 parallel_devices[parallel_device_index] = optarg;
5462 parallel_device_index++;
5463 break;
5464 case QEMU_OPTION_loadvm:
5465 loadvm = optarg;
5466 break;
5467 case QEMU_OPTION_full_screen:
5468 full_screen = 1;
5469 break;
5470 #ifdef CONFIG_SDL
5471 case QEMU_OPTION_no_frame:
5472 no_frame = 1;
5473 break;
5474 case QEMU_OPTION_alt_grab:
5475 alt_grab = 1;
5476 break;
5477 case QEMU_OPTION_no_quit:
5478 no_quit = 1;
5479 break;
5480 case QEMU_OPTION_sdl:
5481 display_type = DT_SDL;
5482 break;
5483 #endif
5484 case QEMU_OPTION_pidfile:
5485 pid_file = optarg;
5486 break;
5487 #ifdef TARGET_I386
5488 case QEMU_OPTION_win2k_hack:
5489 win2k_install_hack = 1;
5490 break;
5491 case QEMU_OPTION_rtc_td_hack:
5492 rtc_td_hack = 1;
5493 break;
5494 case QEMU_OPTION_acpitable:
5495 if(acpi_table_add(optarg) < 0) {
5496 fprintf(stderr, "Wrong acpi table provided\n");
5497 exit(1);
5499 break;
5500 case QEMU_OPTION_smbios:
5501 if(smbios_entry_add(optarg) < 0) {
5502 fprintf(stderr, "Wrong smbios provided\n");
5503 exit(1);
5505 break;
5506 #endif
5507 #ifdef CONFIG_KQEMU
5508 case QEMU_OPTION_no_kqemu:
5509 kqemu_allowed = 0;
5510 break;
5511 case QEMU_OPTION_kernel_kqemu:
5512 kqemu_allowed = 2;
5513 break;
5514 #endif
5515 #ifdef CONFIG_KVM
5516 case QEMU_OPTION_enable_kvm:
5517 kvm_allowed = 1;
5518 #ifdef CONFIG_KQEMU
5519 kqemu_allowed = 0;
5520 #endif
5521 break;
5522 #endif
5523 case QEMU_OPTION_usb:
5524 usb_enabled = 1;
5525 break;
5526 case QEMU_OPTION_usbdevice:
5527 usb_enabled = 1;
5528 if (usb_devices_index >= MAX_USB_CMDLINE) {
5529 fprintf(stderr, "Too many USB devices\n");
5530 exit(1);
5532 usb_devices[usb_devices_index] = optarg;
5533 usb_devices_index++;
5534 break;
5535 case QEMU_OPTION_smp:
5536 smp_cpus = atoi(optarg);
5537 if (smp_cpus < 1) {
5538 fprintf(stderr, "Invalid number of CPUs\n");
5539 exit(1);
5541 break;
5542 case QEMU_OPTION_vnc:
5543 display_type = DT_VNC;
5544 vnc_display = optarg;
5545 break;
5546 #ifdef TARGET_I386
5547 case QEMU_OPTION_no_acpi:
5548 acpi_enabled = 0;
5549 break;
5550 case QEMU_OPTION_no_hpet:
5551 no_hpet = 1;
5552 break;
5553 #endif
5554 case QEMU_OPTION_no_reboot:
5555 no_reboot = 1;
5556 break;
5557 case QEMU_OPTION_no_shutdown:
5558 no_shutdown = 1;
5559 break;
5560 case QEMU_OPTION_show_cursor:
5561 cursor_hide = 0;
5562 break;
5563 case QEMU_OPTION_uuid:
5564 if(qemu_uuid_parse(optarg, qemu_uuid) < 0) {
5565 fprintf(stderr, "Fail to parse UUID string."
5566 " Wrong format.\n");
5567 exit(1);
5569 break;
5570 #ifndef _WIN32
5571 case QEMU_OPTION_daemonize:
5572 daemonize = 1;
5573 break;
5574 #endif
5575 case QEMU_OPTION_option_rom:
5576 if (nb_option_roms >= MAX_OPTION_ROMS) {
5577 fprintf(stderr, "Too many option ROMs\n");
5578 exit(1);
5580 option_rom[nb_option_roms] = optarg;
5581 nb_option_roms++;
5582 break;
5583 #if defined(TARGET_ARM) || defined(TARGET_M68K)
5584 case QEMU_OPTION_semihosting:
5585 semihosting_enabled = 1;
5586 break;
5587 #endif
5588 case QEMU_OPTION_name:
5589 qemu_name = optarg;
5590 break;
5591 #if defined(TARGET_SPARC) || defined(TARGET_PPC)
5592 case QEMU_OPTION_prom_env:
5593 if (nb_prom_envs >= MAX_PROM_ENVS) {
5594 fprintf(stderr, "Too many prom variables\n");
5595 exit(1);
5597 prom_envs[nb_prom_envs] = optarg;
5598 nb_prom_envs++;
5599 break;
5600 #endif
5601 #ifdef TARGET_ARM
5602 case QEMU_OPTION_old_param:
5603 old_param = 1;
5604 break;
5605 #endif
5606 case QEMU_OPTION_clock:
5607 configure_alarms(optarg);
5608 break;
5609 case QEMU_OPTION_startdate:
5611 struct tm tm;
5612 time_t rtc_start_date;
5613 if (!strcmp(optarg, "now")) {
5614 rtc_date_offset = -1;
5615 } else {
5616 if (sscanf(optarg, "%d-%d-%dT%d:%d:%d",
5617 &tm.tm_year,
5618 &tm.tm_mon,
5619 &tm.tm_mday,
5620 &tm.tm_hour,
5621 &tm.tm_min,
5622 &tm.tm_sec) == 6) {
5623 /* OK */
5624 } else if (sscanf(optarg, "%d-%d-%d",
5625 &tm.tm_year,
5626 &tm.tm_mon,
5627 &tm.tm_mday) == 3) {
5628 tm.tm_hour = 0;
5629 tm.tm_min = 0;
5630 tm.tm_sec = 0;
5631 } else {
5632 goto date_fail;
5634 tm.tm_year -= 1900;
5635 tm.tm_mon--;
5636 rtc_start_date = mktimegm(&tm);
5637 if (rtc_start_date == -1) {
5638 date_fail:
5639 fprintf(stderr, "Invalid date format. Valid format are:\n"
5640 "'now' or '2006-06-17T16:01:21' or '2006-06-17'\n");
5641 exit(1);
5643 rtc_date_offset = time(NULL) - rtc_start_date;
5646 break;
5647 case QEMU_OPTION_tb_size:
5648 tb_size = strtol(optarg, NULL, 0);
5649 if (tb_size < 0)
5650 tb_size = 0;
5651 break;
5652 case QEMU_OPTION_icount:
5653 use_icount = 1;
5654 if (strcmp(optarg, "auto") == 0) {
5655 icount_time_shift = -1;
5656 } else {
5657 icount_time_shift = strtol(optarg, NULL, 0);
5659 break;
5660 case QEMU_OPTION_incoming:
5661 incoming = optarg;
5662 break;
5663 #ifndef _WIN32
5664 case QEMU_OPTION_chroot:
5665 chroot_dir = optarg;
5666 break;
5667 case QEMU_OPTION_runas:
5668 run_as = optarg;
5669 break;
5670 #endif
5671 #ifdef CONFIG_XEN
5672 case QEMU_OPTION_xen_domid:
5673 xen_domid = atoi(optarg);
5674 break;
5675 case QEMU_OPTION_xen_create:
5676 xen_mode = XEN_CREATE;
5677 break;
5678 case QEMU_OPTION_xen_attach:
5679 xen_mode = XEN_ATTACH;
5680 break;
5681 #endif
5686 /* If no data_dir is specified then try to find it relative to the
5687 executable path. */
5688 if (!data_dir) {
5689 data_dir = find_datadir(argv[0]);
5691 /* If all else fails use the install patch specified when building. */
5692 if (!data_dir) {
5693 data_dir = CONFIG_QEMU_SHAREDIR;
5696 #if defined(CONFIG_KVM) && defined(CONFIG_KQEMU)
5697 if (kvm_allowed && kqemu_allowed) {
5698 fprintf(stderr,
5699 "You can not enable both KVM and kqemu at the same time\n");
5700 exit(1);
5702 #endif
5704 machine->max_cpus = machine->max_cpus ?: 1; /* Default to UP */
5705 if (smp_cpus > machine->max_cpus) {
5706 fprintf(stderr, "Number of SMP cpus requested (%d), exceeds max cpus "
5707 "supported by machine `%s' (%d)\n", smp_cpus, machine->name,
5708 machine->max_cpus);
5709 exit(1);
5712 if (display_type == DT_NOGRAPHIC) {
5713 if (serial_device_index == 0)
5714 serial_devices[0] = "stdio";
5715 if (parallel_device_index == 0)
5716 parallel_devices[0] = "null";
5717 if (strncmp(monitor_device, "vc", 2) == 0)
5718 monitor_device = "stdio";
5721 #ifndef _WIN32
5722 if (daemonize) {
5723 pid_t pid;
5725 if (pipe(fds) == -1)
5726 exit(1);
5728 pid = fork();
5729 if (pid > 0) {
5730 uint8_t status;
5731 ssize_t len;
5733 close(fds[1]);
5735 again:
5736 len = read(fds[0], &status, 1);
5737 if (len == -1 && (errno == EINTR))
5738 goto again;
5740 if (len != 1)
5741 exit(1);
5742 else if (status == 1) {
5743 fprintf(stderr, "Could not acquire pidfile\n");
5744 exit(1);
5745 } else
5746 exit(0);
5747 } else if (pid < 0)
5748 exit(1);
5750 setsid();
5752 pid = fork();
5753 if (pid > 0)
5754 exit(0);
5755 else if (pid < 0)
5756 exit(1);
5758 umask(027);
5760 signal(SIGTSTP, SIG_IGN);
5761 signal(SIGTTOU, SIG_IGN);
5762 signal(SIGTTIN, SIG_IGN);
5765 if (pid_file && qemu_create_pidfile(pid_file) != 0) {
5766 if (daemonize) {
5767 uint8_t status = 1;
5768 write(fds[1], &status, 1);
5769 } else
5770 fprintf(stderr, "Could not acquire pid file\n");
5771 exit(1);
5773 #endif
5775 #ifdef CONFIG_KQEMU
5776 if (smp_cpus > 1)
5777 kqemu_allowed = 0;
5778 #endif
5779 if (qemu_init_main_loop()) {
5780 fprintf(stderr, "qemu_init_main_loop failed\n");
5781 exit(1);
5783 linux_boot = (kernel_filename != NULL);
5784 net_boot = (boot_devices_bitmap >> ('n' - 'a')) & 0xF;
5786 if (!linux_boot && *kernel_cmdline != '\0') {
5787 fprintf(stderr, "-append only allowed with -kernel option\n");
5788 exit(1);
5791 if (!linux_boot && initrd_filename != NULL) {
5792 fprintf(stderr, "-initrd only allowed with -kernel option\n");
5793 exit(1);
5796 /* boot to floppy or the default cd if no hard disk defined yet */
5797 if (!boot_devices[0]) {
5798 boot_devices = "cad";
5800 setvbuf(stdout, NULL, _IOLBF, 0);
5802 init_timers();
5803 if (init_timer_alarm() < 0) {
5804 fprintf(stderr, "could not initialize alarm timer\n");
5805 exit(1);
5807 if (use_icount && icount_time_shift < 0) {
5808 use_icount = 2;
5809 /* 125MIPS seems a reasonable initial guess at the guest speed.
5810 It will be corrected fairly quickly anyway. */
5811 icount_time_shift = 3;
5812 init_icount_adjust();
5815 #ifdef _WIN32
5816 socket_init();
5817 #endif
5819 /* init network clients */
5820 if (nb_net_clients == 0) {
5821 /* if no clients, we use a default config */
5822 net_clients[nb_net_clients++] = "nic";
5823 #ifdef CONFIG_SLIRP
5824 net_clients[nb_net_clients++] = "user";
5825 #endif
5828 for(i = 0;i < nb_net_clients; i++) {
5829 if (net_client_parse(net_clients[i]) < 0)
5830 exit(1);
5832 net_client_check();
5834 #ifdef TARGET_I386
5835 /* XXX: this should be moved in the PC machine instantiation code */
5836 if (net_boot != 0) {
5837 int netroms = 0;
5838 for (i = 0; i < nb_nics && i < 4; i++) {
5839 const char *model = nd_table[i].model;
5840 char buf[1024];
5841 char *filename;
5842 if (net_boot & (1 << i)) {
5843 if (model == NULL)
5844 model = "ne2k_pci";
5845 snprintf(buf, sizeof(buf), "pxe-%s.bin", model);
5846 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, buf);
5847 if (filename && get_image_size(filename) > 0) {
5848 if (nb_option_roms >= MAX_OPTION_ROMS) {
5849 fprintf(stderr, "Too many option ROMs\n");
5850 exit(1);
5852 option_rom[nb_option_roms] = qemu_strdup(buf);
5853 nb_option_roms++;
5854 netroms++;
5856 if (filename) {
5857 qemu_free(filename);
5861 if (netroms == 0) {
5862 fprintf(stderr, "No valid PXE rom found for network device\n");
5863 exit(1);
5866 #endif
5868 /* init the bluetooth world */
5869 for (i = 0; i < nb_bt_opts; i++)
5870 if (bt_parse(bt_opts[i]))
5871 exit(1);
5873 /* init the memory */
5874 if (ram_size == 0)
5875 ram_size = DEFAULT_RAM_SIZE * 1024 * 1024;
5877 #ifdef CONFIG_KQEMU
5878 /* FIXME: This is a nasty hack because kqemu can't cope with dynamic
5879 guest ram allocation. It needs to go away. */
5880 if (kqemu_allowed) {
5881 kqemu_phys_ram_size = ram_size + 8 * 1024 * 1024 + 4 * 1024 * 1024;
5882 kqemu_phys_ram_base = qemu_vmalloc(kqemu_phys_ram_size);
5883 if (!kqemu_phys_ram_base) {
5884 fprintf(stderr, "Could not allocate physical memory\n");
5885 exit(1);
5888 #endif
5890 /* init the dynamic translator */
5891 cpu_exec_init_all(tb_size * 1024 * 1024);
5893 bdrv_init();
5895 /* we always create the cdrom drive, even if no disk is there */
5897 if (nb_drives_opt < MAX_DRIVES)
5898 drive_add(NULL, CDROM_ALIAS);
5900 /* we always create at least one floppy */
5902 if (nb_drives_opt < MAX_DRIVES)
5903 drive_add(NULL, FD_ALIAS, 0);
5905 /* we always create one sd slot, even if no card is in it */
5907 if (nb_drives_opt < MAX_DRIVES)
5908 drive_add(NULL, SD_ALIAS);
5910 /* open the virtual block devices */
5912 for(i = 0; i < nb_drives_opt; i++)
5913 if (drive_init(&drives_opt[i], snapshot, machine) == -1)
5914 exit(1);
5916 register_savevm("timer", 0, 2, timer_save, timer_load, NULL);
5917 register_savevm_live("ram", 0, 3, ram_save_live, NULL, ram_load, NULL);
5919 #ifndef _WIN32
5920 /* must be after terminal init, SDL library changes signal handlers */
5921 termsig_setup();
5922 #endif
5924 /* Maintain compatibility with multiple stdio monitors */
5925 if (!strcmp(monitor_device,"stdio")) {
5926 for (i = 0; i < MAX_SERIAL_PORTS; i++) {
5927 const char *devname = serial_devices[i];
5928 if (devname && !strcmp(devname,"mon:stdio")) {
5929 monitor_device = NULL;
5930 break;
5931 } else if (devname && !strcmp(devname,"stdio")) {
5932 monitor_device = NULL;
5933 serial_devices[i] = "mon:stdio";
5934 break;
5939 if (nb_numa_nodes > 0) {
5940 int i;
5942 if (nb_numa_nodes > smp_cpus) {
5943 nb_numa_nodes = smp_cpus;
5946 /* If no memory size if given for any node, assume the default case
5947 * and distribute the available memory equally across all nodes
5949 for (i = 0; i < nb_numa_nodes; i++) {
5950 if (node_mem[i] != 0)
5951 break;
5953 if (i == nb_numa_nodes) {
5954 uint64_t usedmem = 0;
5956 /* On Linux, the each node's border has to be 8MB aligned,
5957 * the final node gets the rest.
5959 for (i = 0; i < nb_numa_nodes - 1; i++) {
5960 node_mem[i] = (ram_size / nb_numa_nodes) & ~((1 << 23UL) - 1);
5961 usedmem += node_mem[i];
5963 node_mem[i] = ram_size - usedmem;
5966 for (i = 0; i < nb_numa_nodes; i++) {
5967 if (node_cpumask[i] != 0)
5968 break;
5970 /* assigning the VCPUs round-robin is easier to implement, guest OSes
5971 * must cope with this anyway, because there are BIOSes out there in
5972 * real machines which also use this scheme.
5974 if (i == nb_numa_nodes) {
5975 for (i = 0; i < smp_cpus; i++) {
5976 node_cpumask[i % nb_numa_nodes] |= 1 << i;
5981 if (kvm_enabled()) {
5982 int ret;
5984 ret = kvm_init(smp_cpus);
5985 if (ret < 0) {
5986 fprintf(stderr, "failed to initialize KVM\n");
5987 exit(1);
5991 if (monitor_device) {
5992 monitor_hd = qemu_chr_open("monitor", monitor_device, NULL);
5993 if (!monitor_hd) {
5994 fprintf(stderr, "qemu: could not open monitor device '%s'\n", monitor_device);
5995 exit(1);
5999 for(i = 0; i < MAX_SERIAL_PORTS; i++) {
6000 const char *devname = serial_devices[i];
6001 if (devname && strcmp(devname, "none")) {
6002 char label[32];
6003 snprintf(label, sizeof(label), "serial%d", i);
6004 serial_hds[i] = qemu_chr_open(label, devname, NULL);
6005 if (!serial_hds[i]) {
6006 fprintf(stderr, "qemu: could not open serial device '%s'\n",
6007 devname);
6008 exit(1);
6013 for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
6014 const char *devname = parallel_devices[i];
6015 if (devname && strcmp(devname, "none")) {
6016 char label[32];
6017 snprintf(label, sizeof(label), "parallel%d", i);
6018 parallel_hds[i] = qemu_chr_open(label, devname, NULL);
6019 if (!parallel_hds[i]) {
6020 fprintf(stderr, "qemu: could not open parallel device '%s'\n",
6021 devname);
6022 exit(1);
6027 for(i = 0; i < MAX_VIRTIO_CONSOLES; i++) {
6028 const char *devname = virtio_consoles[i];
6029 if (devname && strcmp(devname, "none")) {
6030 char label[32];
6031 snprintf(label, sizeof(label), "virtcon%d", i);
6032 virtcon_hds[i] = qemu_chr_open(label, devname, NULL);
6033 if (!virtcon_hds[i]) {
6034 fprintf(stderr, "qemu: could not open virtio console '%s'\n",
6035 devname);
6036 exit(1);
6041 module_call_init(MODULE_INIT_DEVICE);
6043 machine->init(ram_size, boot_devices,
6044 kernel_filename, kernel_cmdline, initrd_filename, cpu_model);
6047 for (env = first_cpu; env != NULL; env = env->next_cpu) {
6048 for (i = 0; i < nb_numa_nodes; i++) {
6049 if (node_cpumask[i] & (1 << env->cpu_index)) {
6050 env->numa_node = i;
6055 current_machine = machine;
6057 /* Set KVM's vcpu state to qemu's initial CPUState. */
6058 if (kvm_enabled()) {
6059 int ret;
6061 ret = kvm_sync_vcpus();
6062 if (ret < 0) {
6063 fprintf(stderr, "failed to initialize vcpus\n");
6064 exit(1);
6068 /* init USB devices */
6069 if (usb_enabled) {
6070 for(i = 0; i < usb_devices_index; i++) {
6071 if (usb_device_add(usb_devices[i], 0) < 0) {
6072 fprintf(stderr, "Warning: could not add USB device %s\n",
6073 usb_devices[i]);
6078 if (!display_state)
6079 dumb_display_init();
6080 /* just use the first displaystate for the moment */
6081 ds = display_state;
6083 if (display_type == DT_DEFAULT) {
6084 #if defined(CONFIG_SDL) || defined(CONFIG_COCOA)
6085 display_type = DT_SDL;
6086 #else
6087 display_type = DT_VNC;
6088 vnc_display = "localhost:0,to=99";
6089 show_vnc_port = 1;
6090 #endif
6094 switch (display_type) {
6095 case DT_NOGRAPHIC:
6096 break;
6097 #if defined(CONFIG_CURSES)
6098 case DT_CURSES:
6099 curses_display_init(ds, full_screen);
6100 break;
6101 #endif
6102 #if defined(CONFIG_SDL)
6103 case DT_SDL:
6104 sdl_display_init(ds, full_screen, no_frame);
6105 break;
6106 #elif defined(CONFIG_COCOA)
6107 case DT_SDL:
6108 cocoa_display_init(ds, full_screen);
6109 break;
6110 #endif
6111 case DT_VNC:
6112 vnc_display_init(ds);
6113 if (vnc_display_open(ds, vnc_display) < 0)
6114 exit(1);
6116 if (show_vnc_port) {
6117 printf("VNC server running on `%s'\n", vnc_display_local_addr(ds));
6119 break;
6120 default:
6121 break;
6123 dpy_resize(ds);
6125 dcl = ds->listeners;
6126 while (dcl != NULL) {
6127 if (dcl->dpy_refresh != NULL) {
6128 ds->gui_timer = qemu_new_timer(rt_clock, gui_update, ds);
6129 qemu_mod_timer(ds->gui_timer, qemu_get_clock(rt_clock));
6131 dcl = dcl->next;
6134 if (display_type == DT_NOGRAPHIC || display_type == DT_VNC) {
6135 nographic_timer = qemu_new_timer(rt_clock, nographic_update, NULL);
6136 qemu_mod_timer(nographic_timer, qemu_get_clock(rt_clock));
6139 text_consoles_set_display(display_state);
6140 qemu_chr_initial_reset();
6142 if (monitor_device && monitor_hd)
6143 monitor_init(monitor_hd, MONITOR_USE_READLINE | MONITOR_IS_DEFAULT);
6145 for(i = 0; i < MAX_SERIAL_PORTS; i++) {
6146 const char *devname = serial_devices[i];
6147 if (devname && strcmp(devname, "none")) {
6148 char label[32];
6149 snprintf(label, sizeof(label), "serial%d", i);
6150 if (strstart(devname, "vc", 0))
6151 qemu_chr_printf(serial_hds[i], "serial%d console\r\n", i);
6155 for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
6156 const char *devname = parallel_devices[i];
6157 if (devname && strcmp(devname, "none")) {
6158 char label[32];
6159 snprintf(label, sizeof(label), "parallel%d", i);
6160 if (strstart(devname, "vc", 0))
6161 qemu_chr_printf(parallel_hds[i], "parallel%d console\r\n", i);
6165 for(i = 0; i < MAX_VIRTIO_CONSOLES; i++) {
6166 const char *devname = virtio_consoles[i];
6167 if (virtcon_hds[i] && devname) {
6168 char label[32];
6169 snprintf(label, sizeof(label), "virtcon%d", i);
6170 if (strstart(devname, "vc", 0))
6171 qemu_chr_printf(virtcon_hds[i], "virtio console%d\r\n", i);
6175 if (gdbstub_dev && gdbserver_start(gdbstub_dev) < 0) {
6176 fprintf(stderr, "qemu: could not open gdbserver on device '%s'\n",
6177 gdbstub_dev);
6178 exit(1);
6181 if (loadvm)
6182 do_loadvm(cur_mon, loadvm);
6184 if (incoming) {
6185 autostart = 0; /* fixme how to deal with -daemonize */
6186 qemu_start_incoming_migration(incoming);
6189 if (autostart)
6190 vm_start();
6192 #ifndef _WIN32
6193 if (daemonize) {
6194 uint8_t status = 0;
6195 ssize_t len;
6197 again1:
6198 len = write(fds[1], &status, 1);
6199 if (len == -1 && (errno == EINTR))
6200 goto again1;
6202 if (len != 1)
6203 exit(1);
6205 chdir("/");
6206 TFR(fd = open("/dev/null", O_RDWR));
6207 if (fd == -1)
6208 exit(1);
6211 if (run_as) {
6212 pwd = getpwnam(run_as);
6213 if (!pwd) {
6214 fprintf(stderr, "User \"%s\" doesn't exist\n", run_as);
6215 exit(1);
6219 if (chroot_dir) {
6220 if (chroot(chroot_dir) < 0) {
6221 fprintf(stderr, "chroot failed\n");
6222 exit(1);
6224 chdir("/");
6227 if (run_as) {
6228 if (setgid(pwd->pw_gid) < 0) {
6229 fprintf(stderr, "Failed to setgid(%d)\n", pwd->pw_gid);
6230 exit(1);
6232 if (setuid(pwd->pw_uid) < 0) {
6233 fprintf(stderr, "Failed to setuid(%d)\n", pwd->pw_uid);
6234 exit(1);
6236 if (setuid(0) != -1) {
6237 fprintf(stderr, "Dropping privileges failed\n");
6238 exit(1);
6242 if (daemonize) {
6243 dup2(fd, 0);
6244 dup2(fd, 1);
6245 dup2(fd, 2);
6247 close(fd);
6249 #endif
6251 main_loop();
6252 quit_timers();
6253 net_cleanup();
6255 return 0;