4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
8 * Anthony Liguori <aliguori@us.ibm.com>
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
15 #include <sys/types.h>
16 #include <sys/ioctl.h>
18 #include <sys/utsname.h>
20 #include <linux/kvm.h>
22 #include "qemu-common.h"
27 #include "host-utils.h"
33 #ifdef CONFIG_KVM_PARA
34 #include <linux/kvm_para.h>
40 #define DPRINTF(fmt, ...) \
41 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
43 #define DPRINTF(fmt, ...) \
47 #define MSR_KVM_WALL_CLOCK 0x11
48 #define MSR_KVM_SYSTEM_TIME 0x12
51 #define BUS_MCEERR_AR 4
54 #define BUS_MCEERR_AO 5
57 const KVMCapabilityInfo kvm_arch_required_capabilities
[] = {
58 KVM_CAP_INFO(SET_TSS_ADDR
),
59 KVM_CAP_INFO(EXT_CPUID
),
60 KVM_CAP_INFO(MP_STATE
),
64 static bool has_msr_star
;
65 static bool has_msr_hsave_pa
;
66 #if defined(CONFIG_KVM_PARA) && defined(KVM_CAP_ASYNC_PF)
67 static bool has_msr_async_pf_en
;
69 static int lm_capable_kernel
;
71 static struct kvm_cpuid2
*try_get_cpuid(KVMState
*s
, int max
)
73 struct kvm_cpuid2
*cpuid
;
76 size
= sizeof(*cpuid
) + max
* sizeof(*cpuid
->entries
);
77 cpuid
= (struct kvm_cpuid2
*)qemu_mallocz(size
);
79 r
= kvm_ioctl(s
, KVM_GET_SUPPORTED_CPUID
, cpuid
);
80 if (r
== 0 && cpuid
->nent
>= max
) {
88 fprintf(stderr
, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
96 uint32_t kvm_arch_get_supported_cpuid(CPUState
*env
, uint32_t function
,
97 uint32_t index
, int reg
)
99 struct kvm_cpuid2
*cpuid
;
102 uint32_t cpuid_1_edx
;
105 while ((cpuid
= try_get_cpuid(env
->kvm_state
, max
)) == NULL
) {
109 for (i
= 0; i
< cpuid
->nent
; ++i
) {
110 if (cpuid
->entries
[i
].function
== function
&&
111 cpuid
->entries
[i
].index
== index
) {
114 ret
= cpuid
->entries
[i
].eax
;
117 ret
= cpuid
->entries
[i
].ebx
;
120 ret
= cpuid
->entries
[i
].ecx
;
123 ret
= cpuid
->entries
[i
].edx
;
126 /* KVM before 2.6.30 misreports the following features */
127 ret
|= CPUID_MTRR
| CPUID_PAT
| CPUID_MCE
| CPUID_MCA
;
130 /* On Intel, kvm returns cpuid according to the Intel spec,
131 * so add missing bits according to the AMD spec:
133 cpuid_1_edx
= kvm_arch_get_supported_cpuid(env
, 1, 0, R_EDX
);
134 ret
|= cpuid_1_edx
& 0x183f7ff;
147 #ifdef CONFIG_KVM_PARA
148 struct kvm_para_features
{
151 } para_features
[] = {
152 { KVM_CAP_CLOCKSOURCE
, KVM_FEATURE_CLOCKSOURCE
},
153 { KVM_CAP_NOP_IO_DELAY
, KVM_FEATURE_NOP_IO_DELAY
},
154 { KVM_CAP_PV_MMU
, KVM_FEATURE_MMU_OP
},
155 #ifdef KVM_CAP_ASYNC_PF
156 { KVM_CAP_ASYNC_PF
, KVM_FEATURE_ASYNC_PF
},
161 static int get_para_features(CPUState
*env
)
165 for (i
= 0; i
< ARRAY_SIZE(para_features
) - 1; i
++) {
166 if (kvm_check_extension(env
->kvm_state
, para_features
[i
].cap
)) {
167 features
|= (1 << para_features
[i
].feature
);
170 #ifdef KVM_CAP_ASYNC_PF
171 has_msr_async_pf_en
= features
& (1 << KVM_FEATURE_ASYNC_PF
);
178 static int kvm_get_mce_cap_supported(KVMState
*s
, uint64_t *mce_cap
,
183 r
= kvm_check_extension(s
, KVM_CAP_MCE
);
186 return kvm_ioctl(s
, KVM_X86_GET_MCE_CAP_SUPPORTED
, mce_cap
);
191 static int kvm_setup_mce(CPUState
*env
, uint64_t *mcg_cap
)
193 return kvm_vcpu_ioctl(env
, KVM_X86_SETUP_MCE
, mcg_cap
);
196 static int kvm_set_mce(CPUState
*env
, struct kvm_x86_mce
*m
)
198 return kvm_vcpu_ioctl(env
, KVM_X86_SET_MCE
, m
);
201 static int kvm_get_msr(CPUState
*env
, struct kvm_msr_entry
*msrs
, int n
)
203 struct kvm_msrs
*kmsrs
= qemu_malloc(sizeof *kmsrs
+ n
* sizeof *msrs
);
207 memcpy(kmsrs
->entries
, msrs
, n
* sizeof *msrs
);
208 r
= kvm_vcpu_ioctl(env
, KVM_GET_MSRS
, kmsrs
);
209 memcpy(msrs
, kmsrs
->entries
, n
* sizeof *msrs
);
214 /* FIXME: kill this and kvm_get_msr, use env->mcg_status instead */
215 static int kvm_mce_in_progress(CPUState
*env
)
217 struct kvm_msr_entry msr_mcg_status
= {
218 .index
= MSR_MCG_STATUS
,
222 r
= kvm_get_msr(env
, &msr_mcg_status
, 1);
223 if (r
== -1 || r
== 0) {
224 fprintf(stderr
, "Failed to get MCE status\n");
227 return !!(msr_mcg_status
.data
& MCG_STATUS_MCIP
);
230 struct kvm_x86_mce_data
233 struct kvm_x86_mce
*mce
;
237 static void kvm_do_inject_x86_mce(void *_data
)
239 struct kvm_x86_mce_data
*data
= _data
;
242 /* If there is an MCE exception being processed, ignore this SRAO MCE */
243 if ((data
->env
->mcg_cap
& MCG_SER_P
) &&
244 !(data
->mce
->status
& MCI_STATUS_AR
)) {
245 if (kvm_mce_in_progress(data
->env
)) {
250 r
= kvm_set_mce(data
->env
, data
->mce
);
252 perror("kvm_set_mce FAILED");
253 if (data
->abort_on_error
) {
259 static void kvm_inject_x86_mce_on(CPUState
*env
, struct kvm_x86_mce
*mce
,
262 struct kvm_x86_mce_data data
= {
265 .abort_on_error
= (flag
& ABORT_ON_ERROR
),
269 fprintf(stderr
, "MCE support is not enabled!\n");
273 run_on_cpu(env
, kvm_do_inject_x86_mce
, &data
);
276 static void kvm_mce_broadcast_rest(CPUState
*env
);
279 void kvm_inject_x86_mce(CPUState
*cenv
, int bank
, uint64_t status
,
280 uint64_t mcg_status
, uint64_t addr
, uint64_t misc
,
284 struct kvm_x86_mce mce
= {
287 .mcg_status
= mcg_status
,
292 if (flag
& MCE_BROADCAST
) {
293 kvm_mce_broadcast_rest(cenv
);
296 kvm_inject_x86_mce_on(cenv
, &mce
, flag
);
298 if (flag
& ABORT_ON_ERROR
) {
304 static void cpu_update_state(void *opaque
, int running
, int reason
)
306 CPUState
*env
= opaque
;
309 env
->tsc_valid
= false;
313 int kvm_arch_init_vcpu(CPUState
*env
)
316 struct kvm_cpuid2 cpuid
;
317 struct kvm_cpuid_entry2 entries
[100];
318 } __attribute__((packed
)) cpuid_data
;
319 uint32_t limit
, i
, j
, cpuid_i
;
321 struct kvm_cpuid_entry2
*c
;
322 #ifdef CONFIG_KVM_PARA
323 uint32_t signature
[3];
326 env
->cpuid_features
&= kvm_arch_get_supported_cpuid(env
, 1, 0, R_EDX
);
328 i
= env
->cpuid_ext_features
& CPUID_EXT_HYPERVISOR
;
329 env
->cpuid_ext_features
&= kvm_arch_get_supported_cpuid(env
, 1, 0, R_ECX
);
330 env
->cpuid_ext_features
|= i
;
332 env
->cpuid_ext2_features
&= kvm_arch_get_supported_cpuid(env
, 0x80000001,
334 env
->cpuid_ext3_features
&= kvm_arch_get_supported_cpuid(env
, 0x80000001,
336 env
->cpuid_svm_features
&= kvm_arch_get_supported_cpuid(env
, 0x8000000A,
342 #ifdef CONFIG_KVM_PARA
343 /* Paravirtualization CPUIDs */
344 memcpy(signature
, "KVMKVMKVM\0\0\0", 12);
345 c
= &cpuid_data
.entries
[cpuid_i
++];
346 memset(c
, 0, sizeof(*c
));
347 c
->function
= KVM_CPUID_SIGNATURE
;
349 c
->ebx
= signature
[0];
350 c
->ecx
= signature
[1];
351 c
->edx
= signature
[2];
353 c
= &cpuid_data
.entries
[cpuid_i
++];
354 memset(c
, 0, sizeof(*c
));
355 c
->function
= KVM_CPUID_FEATURES
;
356 c
->eax
= env
->cpuid_kvm_features
& get_para_features(env
);
359 cpu_x86_cpuid(env
, 0, 0, &limit
, &unused
, &unused
, &unused
);
361 for (i
= 0; i
<= limit
; i
++) {
362 c
= &cpuid_data
.entries
[cpuid_i
++];
366 /* Keep reading function 2 till all the input is received */
370 c
->flags
= KVM_CPUID_FLAG_STATEFUL_FUNC
|
371 KVM_CPUID_FLAG_STATE_READ_NEXT
;
372 cpu_x86_cpuid(env
, i
, 0, &c
->eax
, &c
->ebx
, &c
->ecx
, &c
->edx
);
373 times
= c
->eax
& 0xff;
375 for (j
= 1; j
< times
; ++j
) {
376 c
= &cpuid_data
.entries
[cpuid_i
++];
378 c
->flags
= KVM_CPUID_FLAG_STATEFUL_FUNC
;
379 cpu_x86_cpuid(env
, i
, 0, &c
->eax
, &c
->ebx
, &c
->ecx
, &c
->edx
);
388 c
->flags
= KVM_CPUID_FLAG_SIGNIFCANT_INDEX
;
390 cpu_x86_cpuid(env
, i
, j
, &c
->eax
, &c
->ebx
, &c
->ecx
, &c
->edx
);
392 if (i
== 4 && c
->eax
== 0) {
395 if (i
== 0xb && !(c
->ecx
& 0xff00)) {
398 if (i
== 0xd && c
->eax
== 0) {
401 c
= &cpuid_data
.entries
[cpuid_i
++];
407 cpu_x86_cpuid(env
, i
, 0, &c
->eax
, &c
->ebx
, &c
->ecx
, &c
->edx
);
411 cpu_x86_cpuid(env
, 0x80000000, 0, &limit
, &unused
, &unused
, &unused
);
413 for (i
= 0x80000000; i
<= limit
; i
++) {
414 c
= &cpuid_data
.entries
[cpuid_i
++];
418 cpu_x86_cpuid(env
, i
, 0, &c
->eax
, &c
->ebx
, &c
->ecx
, &c
->edx
);
421 cpuid_data
.cpuid
.nent
= cpuid_i
;
424 if (((env
->cpuid_version
>> 8)&0xF) >= 6
425 && (env
->cpuid_features
&(CPUID_MCE
|CPUID_MCA
)) == (CPUID_MCE
|CPUID_MCA
)
426 && kvm_check_extension(env
->kvm_state
, KVM_CAP_MCE
) > 0) {
430 if (kvm_get_mce_cap_supported(env
->kvm_state
, &mcg_cap
, &banks
)) {
431 perror("kvm_get_mce_cap_supported FAILED");
433 if (banks
> MCE_BANKS_DEF
)
434 banks
= MCE_BANKS_DEF
;
435 mcg_cap
&= MCE_CAP_DEF
;
437 if (kvm_setup_mce(env
, &mcg_cap
)) {
438 perror("kvm_setup_mce FAILED");
440 env
->mcg_cap
= mcg_cap
;
446 qemu_add_vm_change_state_handler(cpu_update_state
, env
);
448 return kvm_vcpu_ioctl(env
, KVM_SET_CPUID2
, &cpuid_data
);
451 void kvm_arch_reset_vcpu(CPUState
*env
)
453 env
->exception_injected
= -1;
454 env
->interrupt_injected
= -1;
456 if (kvm_irqchip_in_kernel()) {
457 env
->mp_state
= cpu_is_bsp(env
) ? KVM_MP_STATE_RUNNABLE
:
458 KVM_MP_STATE_UNINITIALIZED
;
460 env
->mp_state
= KVM_MP_STATE_RUNNABLE
;
464 static int kvm_get_supported_msrs(KVMState
*s
)
466 static int kvm_supported_msrs
;
470 if (kvm_supported_msrs
== 0) {
471 struct kvm_msr_list msr_list
, *kvm_msr_list
;
473 kvm_supported_msrs
= -1;
475 /* Obtain MSR list from KVM. These are the MSRs that we must
478 ret
= kvm_ioctl(s
, KVM_GET_MSR_INDEX_LIST
, &msr_list
);
479 if (ret
< 0 && ret
!= -E2BIG
) {
482 /* Old kernel modules had a bug and could write beyond the provided
483 memory. Allocate at least a safe amount of 1K. */
484 kvm_msr_list
= qemu_mallocz(MAX(1024, sizeof(msr_list
) +
486 sizeof(msr_list
.indices
[0])));
488 kvm_msr_list
->nmsrs
= msr_list
.nmsrs
;
489 ret
= kvm_ioctl(s
, KVM_GET_MSR_INDEX_LIST
, kvm_msr_list
);
493 for (i
= 0; i
< kvm_msr_list
->nmsrs
; i
++) {
494 if (kvm_msr_list
->indices
[i
] == MSR_STAR
) {
498 if (kvm_msr_list
->indices
[i
] == MSR_VM_HSAVE_PA
) {
499 has_msr_hsave_pa
= true;
511 int kvm_arch_init(KVMState
*s
)
513 uint64_t identity_base
= 0xfffbc000;
515 struct utsname utsname
;
517 ret
= kvm_get_supported_msrs(s
);
523 lm_capable_kernel
= strcmp(utsname
.machine
, "x86_64") == 0;
526 * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
527 * In order to use vm86 mode, an EPT identity map and a TSS are needed.
528 * Since these must be part of guest physical memory, we need to allocate
529 * them, both by setting their start addresses in the kernel and by
530 * creating a corresponding e820 entry. We need 4 pages before the BIOS.
532 * Older KVM versions may not support setting the identity map base. In
533 * that case we need to stick with the default, i.e. a 256K maximum BIOS
536 #ifdef KVM_CAP_SET_IDENTITY_MAP_ADDR
537 if (kvm_check_extension(s
, KVM_CAP_SET_IDENTITY_MAP_ADDR
)) {
538 /* Allows up to 16M BIOSes. */
539 identity_base
= 0xfeffc000;
541 ret
= kvm_vm_ioctl(s
, KVM_SET_IDENTITY_MAP_ADDR
, &identity_base
);
547 /* Set TSS base one page after EPT identity map. */
548 ret
= kvm_vm_ioctl(s
, KVM_SET_TSS_ADDR
, identity_base
+ 0x1000);
553 /* Tell fw_cfg to notify the BIOS to reserve the range. */
554 ret
= e820_add_entry(identity_base
, 0x4000, E820_RESERVED
);
556 fprintf(stderr
, "e820_add_entry() table is full\n");
563 static void set_v8086_seg(struct kvm_segment
*lhs
, const SegmentCache
*rhs
)
565 lhs
->selector
= rhs
->selector
;
566 lhs
->base
= rhs
->base
;
567 lhs
->limit
= rhs
->limit
;
579 static void set_seg(struct kvm_segment
*lhs
, const SegmentCache
*rhs
)
581 unsigned flags
= rhs
->flags
;
582 lhs
->selector
= rhs
->selector
;
583 lhs
->base
= rhs
->base
;
584 lhs
->limit
= rhs
->limit
;
585 lhs
->type
= (flags
>> DESC_TYPE_SHIFT
) & 15;
586 lhs
->present
= (flags
& DESC_P_MASK
) != 0;
587 lhs
->dpl
= (flags
>> DESC_DPL_SHIFT
) & 3;
588 lhs
->db
= (flags
>> DESC_B_SHIFT
) & 1;
589 lhs
->s
= (flags
& DESC_S_MASK
) != 0;
590 lhs
->l
= (flags
>> DESC_L_SHIFT
) & 1;
591 lhs
->g
= (flags
& DESC_G_MASK
) != 0;
592 lhs
->avl
= (flags
& DESC_AVL_MASK
) != 0;
596 static void get_seg(SegmentCache
*lhs
, const struct kvm_segment
*rhs
)
598 lhs
->selector
= rhs
->selector
;
599 lhs
->base
= rhs
->base
;
600 lhs
->limit
= rhs
->limit
;
601 lhs
->flags
= (rhs
->type
<< DESC_TYPE_SHIFT
) |
602 (rhs
->present
* DESC_P_MASK
) |
603 (rhs
->dpl
<< DESC_DPL_SHIFT
) |
604 (rhs
->db
<< DESC_B_SHIFT
) |
605 (rhs
->s
* DESC_S_MASK
) |
606 (rhs
->l
<< DESC_L_SHIFT
) |
607 (rhs
->g
* DESC_G_MASK
) |
608 (rhs
->avl
* DESC_AVL_MASK
);
611 static void kvm_getput_reg(__u64
*kvm_reg
, target_ulong
*qemu_reg
, int set
)
614 *kvm_reg
= *qemu_reg
;
616 *qemu_reg
= *kvm_reg
;
620 static int kvm_getput_regs(CPUState
*env
, int set
)
622 struct kvm_regs regs
;
626 ret
= kvm_vcpu_ioctl(env
, KVM_GET_REGS
, ®s
);
632 kvm_getput_reg(®s
.rax
, &env
->regs
[R_EAX
], set
);
633 kvm_getput_reg(®s
.rbx
, &env
->regs
[R_EBX
], set
);
634 kvm_getput_reg(®s
.rcx
, &env
->regs
[R_ECX
], set
);
635 kvm_getput_reg(®s
.rdx
, &env
->regs
[R_EDX
], set
);
636 kvm_getput_reg(®s
.rsi
, &env
->regs
[R_ESI
], set
);
637 kvm_getput_reg(®s
.rdi
, &env
->regs
[R_EDI
], set
);
638 kvm_getput_reg(®s
.rsp
, &env
->regs
[R_ESP
], set
);
639 kvm_getput_reg(®s
.rbp
, &env
->regs
[R_EBP
], set
);
641 kvm_getput_reg(®s
.r8
, &env
->regs
[8], set
);
642 kvm_getput_reg(®s
.r9
, &env
->regs
[9], set
);
643 kvm_getput_reg(®s
.r10
, &env
->regs
[10], set
);
644 kvm_getput_reg(®s
.r11
, &env
->regs
[11], set
);
645 kvm_getput_reg(®s
.r12
, &env
->regs
[12], set
);
646 kvm_getput_reg(®s
.r13
, &env
->regs
[13], set
);
647 kvm_getput_reg(®s
.r14
, &env
->regs
[14], set
);
648 kvm_getput_reg(®s
.r15
, &env
->regs
[15], set
);
651 kvm_getput_reg(®s
.rflags
, &env
->eflags
, set
);
652 kvm_getput_reg(®s
.rip
, &env
->eip
, set
);
655 ret
= kvm_vcpu_ioctl(env
, KVM_SET_REGS
, ®s
);
661 static int kvm_put_fpu(CPUState
*env
)
666 memset(&fpu
, 0, sizeof fpu
);
667 fpu
.fsw
= env
->fpus
& ~(7 << 11);
668 fpu
.fsw
|= (env
->fpstt
& 7) << 11;
670 for (i
= 0; i
< 8; ++i
) {
671 fpu
.ftwx
|= (!env
->fptags
[i
]) << i
;
673 memcpy(fpu
.fpr
, env
->fpregs
, sizeof env
->fpregs
);
674 memcpy(fpu
.xmm
, env
->xmm_regs
, sizeof env
->xmm_regs
);
675 fpu
.mxcsr
= env
->mxcsr
;
677 return kvm_vcpu_ioctl(env
, KVM_SET_FPU
, &fpu
);
681 #define XSAVE_CWD_RIP 2
682 #define XSAVE_CWD_RDP 4
683 #define XSAVE_MXCSR 6
684 #define XSAVE_ST_SPACE 8
685 #define XSAVE_XMM_SPACE 40
686 #define XSAVE_XSTATE_BV 128
687 #define XSAVE_YMMH_SPACE 144
690 static int kvm_put_xsave(CPUState
*env
)
694 struct kvm_xsave
* xsave
;
695 uint16_t cwd
, swd
, twd
, fop
;
697 if (!kvm_has_xsave()) {
698 return kvm_put_fpu(env
);
701 xsave
= qemu_memalign(4096, sizeof(struct kvm_xsave
));
702 memset(xsave
, 0, sizeof(struct kvm_xsave
));
703 cwd
= swd
= twd
= fop
= 0;
704 swd
= env
->fpus
& ~(7 << 11);
705 swd
|= (env
->fpstt
& 7) << 11;
707 for (i
= 0; i
< 8; ++i
) {
708 twd
|= (!env
->fptags
[i
]) << i
;
710 xsave
->region
[0] = (uint32_t)(swd
<< 16) + cwd
;
711 xsave
->region
[1] = (uint32_t)(fop
<< 16) + twd
;
712 memcpy(&xsave
->region
[XSAVE_ST_SPACE
], env
->fpregs
,
714 memcpy(&xsave
->region
[XSAVE_XMM_SPACE
], env
->xmm_regs
,
715 sizeof env
->xmm_regs
);
716 xsave
->region
[XSAVE_MXCSR
] = env
->mxcsr
;
717 *(uint64_t *)&xsave
->region
[XSAVE_XSTATE_BV
] = env
->xstate_bv
;
718 memcpy(&xsave
->region
[XSAVE_YMMH_SPACE
], env
->ymmh_regs
,
719 sizeof env
->ymmh_regs
);
720 r
= kvm_vcpu_ioctl(env
, KVM_SET_XSAVE
, xsave
);
724 return kvm_put_fpu(env
);
728 static int kvm_put_xcrs(CPUState
*env
)
731 struct kvm_xcrs xcrs
;
733 if (!kvm_has_xcrs()) {
739 xcrs
.xcrs
[0].xcr
= 0;
740 xcrs
.xcrs
[0].value
= env
->xcr0
;
741 return kvm_vcpu_ioctl(env
, KVM_SET_XCRS
, &xcrs
);
747 static int kvm_put_sregs(CPUState
*env
)
749 struct kvm_sregs sregs
;
751 memset(sregs
.interrupt_bitmap
, 0, sizeof(sregs
.interrupt_bitmap
));
752 if (env
->interrupt_injected
>= 0) {
753 sregs
.interrupt_bitmap
[env
->interrupt_injected
/ 64] |=
754 (uint64_t)1 << (env
->interrupt_injected
% 64);
757 if ((env
->eflags
& VM_MASK
)) {
758 set_v8086_seg(&sregs
.cs
, &env
->segs
[R_CS
]);
759 set_v8086_seg(&sregs
.ds
, &env
->segs
[R_DS
]);
760 set_v8086_seg(&sregs
.es
, &env
->segs
[R_ES
]);
761 set_v8086_seg(&sregs
.fs
, &env
->segs
[R_FS
]);
762 set_v8086_seg(&sregs
.gs
, &env
->segs
[R_GS
]);
763 set_v8086_seg(&sregs
.ss
, &env
->segs
[R_SS
]);
765 set_seg(&sregs
.cs
, &env
->segs
[R_CS
]);
766 set_seg(&sregs
.ds
, &env
->segs
[R_DS
]);
767 set_seg(&sregs
.es
, &env
->segs
[R_ES
]);
768 set_seg(&sregs
.fs
, &env
->segs
[R_FS
]);
769 set_seg(&sregs
.gs
, &env
->segs
[R_GS
]);
770 set_seg(&sregs
.ss
, &env
->segs
[R_SS
]);
773 set_seg(&sregs
.tr
, &env
->tr
);
774 set_seg(&sregs
.ldt
, &env
->ldt
);
776 sregs
.idt
.limit
= env
->idt
.limit
;
777 sregs
.idt
.base
= env
->idt
.base
;
778 sregs
.gdt
.limit
= env
->gdt
.limit
;
779 sregs
.gdt
.base
= env
->gdt
.base
;
781 sregs
.cr0
= env
->cr
[0];
782 sregs
.cr2
= env
->cr
[2];
783 sregs
.cr3
= env
->cr
[3];
784 sregs
.cr4
= env
->cr
[4];
786 sregs
.cr8
= cpu_get_apic_tpr(env
->apic_state
);
787 sregs
.apic_base
= cpu_get_apic_base(env
->apic_state
);
789 sregs
.efer
= env
->efer
;
791 return kvm_vcpu_ioctl(env
, KVM_SET_SREGS
, &sregs
);
794 static void kvm_msr_entry_set(struct kvm_msr_entry
*entry
,
795 uint32_t index
, uint64_t value
)
797 entry
->index
= index
;
801 static int kvm_put_msrs(CPUState
*env
, int level
)
804 struct kvm_msrs info
;
805 struct kvm_msr_entry entries
[100];
807 struct kvm_msr_entry
*msrs
= msr_data
.entries
;
810 kvm_msr_entry_set(&msrs
[n
++], MSR_IA32_SYSENTER_CS
, env
->sysenter_cs
);
811 kvm_msr_entry_set(&msrs
[n
++], MSR_IA32_SYSENTER_ESP
, env
->sysenter_esp
);
812 kvm_msr_entry_set(&msrs
[n
++], MSR_IA32_SYSENTER_EIP
, env
->sysenter_eip
);
814 kvm_msr_entry_set(&msrs
[n
++], MSR_STAR
, env
->star
);
816 if (has_msr_hsave_pa
) {
817 kvm_msr_entry_set(&msrs
[n
++], MSR_VM_HSAVE_PA
, env
->vm_hsave
);
820 if (lm_capable_kernel
) {
821 kvm_msr_entry_set(&msrs
[n
++], MSR_CSTAR
, env
->cstar
);
822 kvm_msr_entry_set(&msrs
[n
++], MSR_KERNELGSBASE
, env
->kernelgsbase
);
823 kvm_msr_entry_set(&msrs
[n
++], MSR_FMASK
, env
->fmask
);
824 kvm_msr_entry_set(&msrs
[n
++], MSR_LSTAR
, env
->lstar
);
827 if (level
== KVM_PUT_FULL_STATE
) {
829 * KVM is yet unable to synchronize TSC values of multiple VCPUs on
830 * writeback. Until this is fixed, we only write the offset to SMP
831 * guests after migration, desynchronizing the VCPUs, but avoiding
832 * huge jump-backs that would occur without any writeback at all.
834 if (smp_cpus
== 1 || env
->tsc
!= 0) {
835 kvm_msr_entry_set(&msrs
[n
++], MSR_IA32_TSC
, env
->tsc
);
839 * The following paravirtual MSRs have side effects on the guest or are
840 * too heavy for normal writeback. Limit them to reset or full state
843 if (level
>= KVM_PUT_RESET_STATE
) {
844 kvm_msr_entry_set(&msrs
[n
++], MSR_KVM_SYSTEM_TIME
,
845 env
->system_time_msr
);
846 kvm_msr_entry_set(&msrs
[n
++], MSR_KVM_WALL_CLOCK
, env
->wall_clock_msr
);
847 #if defined(CONFIG_KVM_PARA) && defined(KVM_CAP_ASYNC_PF)
848 if (has_msr_async_pf_en
) {
849 kvm_msr_entry_set(&msrs
[n
++], MSR_KVM_ASYNC_PF_EN
,
850 env
->async_pf_en_msr
);
858 if (level
== KVM_PUT_RESET_STATE
) {
859 kvm_msr_entry_set(&msrs
[n
++], MSR_MCG_STATUS
, env
->mcg_status
);
860 } else if (level
== KVM_PUT_FULL_STATE
) {
861 kvm_msr_entry_set(&msrs
[n
++], MSR_MCG_STATUS
, env
->mcg_status
);
862 kvm_msr_entry_set(&msrs
[n
++], MSR_MCG_CTL
, env
->mcg_ctl
);
863 for (i
= 0; i
< (env
->mcg_cap
& 0xff) * 4; i
++) {
864 kvm_msr_entry_set(&msrs
[n
++], MSR_MC0_CTL
+ i
, env
->mce_banks
[i
]);
870 msr_data
.info
.nmsrs
= n
;
872 return kvm_vcpu_ioctl(env
, KVM_SET_MSRS
, &msr_data
);
877 static int kvm_get_fpu(CPUState
*env
)
882 ret
= kvm_vcpu_ioctl(env
, KVM_GET_FPU
, &fpu
);
887 env
->fpstt
= (fpu
.fsw
>> 11) & 7;
890 for (i
= 0; i
< 8; ++i
) {
891 env
->fptags
[i
] = !((fpu
.ftwx
>> i
) & 1);
893 memcpy(env
->fpregs
, fpu
.fpr
, sizeof env
->fpregs
);
894 memcpy(env
->xmm_regs
, fpu
.xmm
, sizeof env
->xmm_regs
);
895 env
->mxcsr
= fpu
.mxcsr
;
900 static int kvm_get_xsave(CPUState
*env
)
903 struct kvm_xsave
* xsave
;
905 uint16_t cwd
, swd
, twd
, fop
;
907 if (!kvm_has_xsave()) {
908 return kvm_get_fpu(env
);
911 xsave
= qemu_memalign(4096, sizeof(struct kvm_xsave
));
912 ret
= kvm_vcpu_ioctl(env
, KVM_GET_XSAVE
, xsave
);
918 cwd
= (uint16_t)xsave
->region
[0];
919 swd
= (uint16_t)(xsave
->region
[0] >> 16);
920 twd
= (uint16_t)xsave
->region
[1];
921 fop
= (uint16_t)(xsave
->region
[1] >> 16);
922 env
->fpstt
= (swd
>> 11) & 7;
925 for (i
= 0; i
< 8; ++i
) {
926 env
->fptags
[i
] = !((twd
>> i
) & 1);
928 env
->mxcsr
= xsave
->region
[XSAVE_MXCSR
];
929 memcpy(env
->fpregs
, &xsave
->region
[XSAVE_ST_SPACE
],
931 memcpy(env
->xmm_regs
, &xsave
->region
[XSAVE_XMM_SPACE
],
932 sizeof env
->xmm_regs
);
933 env
->xstate_bv
= *(uint64_t *)&xsave
->region
[XSAVE_XSTATE_BV
];
934 memcpy(env
->ymmh_regs
, &xsave
->region
[XSAVE_YMMH_SPACE
],
935 sizeof env
->ymmh_regs
);
939 return kvm_get_fpu(env
);
943 static int kvm_get_xcrs(CPUState
*env
)
947 struct kvm_xcrs xcrs
;
949 if (!kvm_has_xcrs()) {
953 ret
= kvm_vcpu_ioctl(env
, KVM_GET_XCRS
, &xcrs
);
958 for (i
= 0; i
< xcrs
.nr_xcrs
; i
++) {
959 /* Only support xcr0 now */
960 if (xcrs
.xcrs
[0].xcr
== 0) {
961 env
->xcr0
= xcrs
.xcrs
[0].value
;
971 static int kvm_get_sregs(CPUState
*env
)
973 struct kvm_sregs sregs
;
977 ret
= kvm_vcpu_ioctl(env
, KVM_GET_SREGS
, &sregs
);
982 /* There can only be one pending IRQ set in the bitmap at a time, so try
983 to find it and save its number instead (-1 for none). */
984 env
->interrupt_injected
= -1;
985 for (i
= 0; i
< ARRAY_SIZE(sregs
.interrupt_bitmap
); i
++) {
986 if (sregs
.interrupt_bitmap
[i
]) {
987 bit
= ctz64(sregs
.interrupt_bitmap
[i
]);
988 env
->interrupt_injected
= i
* 64 + bit
;
993 get_seg(&env
->segs
[R_CS
], &sregs
.cs
);
994 get_seg(&env
->segs
[R_DS
], &sregs
.ds
);
995 get_seg(&env
->segs
[R_ES
], &sregs
.es
);
996 get_seg(&env
->segs
[R_FS
], &sregs
.fs
);
997 get_seg(&env
->segs
[R_GS
], &sregs
.gs
);
998 get_seg(&env
->segs
[R_SS
], &sregs
.ss
);
1000 get_seg(&env
->tr
, &sregs
.tr
);
1001 get_seg(&env
->ldt
, &sregs
.ldt
);
1003 env
->idt
.limit
= sregs
.idt
.limit
;
1004 env
->idt
.base
= sregs
.idt
.base
;
1005 env
->gdt
.limit
= sregs
.gdt
.limit
;
1006 env
->gdt
.base
= sregs
.gdt
.base
;
1008 env
->cr
[0] = sregs
.cr0
;
1009 env
->cr
[2] = sregs
.cr2
;
1010 env
->cr
[3] = sregs
.cr3
;
1011 env
->cr
[4] = sregs
.cr4
;
1013 cpu_set_apic_base(env
->apic_state
, sregs
.apic_base
);
1015 env
->efer
= sregs
.efer
;
1016 //cpu_set_apic_tpr(env->apic_state, sregs.cr8);
1018 #define HFLAG_COPY_MASK \
1019 ~( HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
1020 HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
1021 HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
1022 HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
1024 hflags
= (env
->segs
[R_CS
].flags
>> DESC_DPL_SHIFT
) & HF_CPL_MASK
;
1025 hflags
|= (env
->cr
[0] & CR0_PE_MASK
) << (HF_PE_SHIFT
- CR0_PE_SHIFT
);
1026 hflags
|= (env
->cr
[0] << (HF_MP_SHIFT
- CR0_MP_SHIFT
)) &
1027 (HF_MP_MASK
| HF_EM_MASK
| HF_TS_MASK
);
1028 hflags
|= (env
->eflags
& (HF_TF_MASK
| HF_VM_MASK
| HF_IOPL_MASK
));
1029 hflags
|= (env
->cr
[4] & CR4_OSFXSR_MASK
) <<
1030 (HF_OSFXSR_SHIFT
- CR4_OSFXSR_SHIFT
);
1032 if (env
->efer
& MSR_EFER_LMA
) {
1033 hflags
|= HF_LMA_MASK
;
1036 if ((hflags
& HF_LMA_MASK
) && (env
->segs
[R_CS
].flags
& DESC_L_MASK
)) {
1037 hflags
|= HF_CS32_MASK
| HF_SS32_MASK
| HF_CS64_MASK
;
1039 hflags
|= (env
->segs
[R_CS
].flags
& DESC_B_MASK
) >>
1040 (DESC_B_SHIFT
- HF_CS32_SHIFT
);
1041 hflags
|= (env
->segs
[R_SS
].flags
& DESC_B_MASK
) >>
1042 (DESC_B_SHIFT
- HF_SS32_SHIFT
);
1043 if (!(env
->cr
[0] & CR0_PE_MASK
) || (env
->eflags
& VM_MASK
) ||
1044 !(hflags
& HF_CS32_MASK
)) {
1045 hflags
|= HF_ADDSEG_MASK
;
1047 hflags
|= ((env
->segs
[R_DS
].base
| env
->segs
[R_ES
].base
|
1048 env
->segs
[R_SS
].base
) != 0) << HF_ADDSEG_SHIFT
;
1051 env
->hflags
= (env
->hflags
& HFLAG_COPY_MASK
) | hflags
;
1056 static int kvm_get_msrs(CPUState
*env
)
1059 struct kvm_msrs info
;
1060 struct kvm_msr_entry entries
[100];
1062 struct kvm_msr_entry
*msrs
= msr_data
.entries
;
1066 msrs
[n
++].index
= MSR_IA32_SYSENTER_CS
;
1067 msrs
[n
++].index
= MSR_IA32_SYSENTER_ESP
;
1068 msrs
[n
++].index
= MSR_IA32_SYSENTER_EIP
;
1070 msrs
[n
++].index
= MSR_STAR
;
1072 if (has_msr_hsave_pa
) {
1073 msrs
[n
++].index
= MSR_VM_HSAVE_PA
;
1076 if (!env
->tsc_valid
) {
1077 msrs
[n
++].index
= MSR_IA32_TSC
;
1078 env
->tsc_valid
= !vm_running
;
1081 #ifdef TARGET_X86_64
1082 if (lm_capable_kernel
) {
1083 msrs
[n
++].index
= MSR_CSTAR
;
1084 msrs
[n
++].index
= MSR_KERNELGSBASE
;
1085 msrs
[n
++].index
= MSR_FMASK
;
1086 msrs
[n
++].index
= MSR_LSTAR
;
1089 msrs
[n
++].index
= MSR_KVM_SYSTEM_TIME
;
1090 msrs
[n
++].index
= MSR_KVM_WALL_CLOCK
;
1091 #if defined(CONFIG_KVM_PARA) && defined(KVM_CAP_ASYNC_PF)
1092 if (has_msr_async_pf_en
) {
1093 msrs
[n
++].index
= MSR_KVM_ASYNC_PF_EN
;
1099 msrs
[n
++].index
= MSR_MCG_STATUS
;
1100 msrs
[n
++].index
= MSR_MCG_CTL
;
1101 for (i
= 0; i
< (env
->mcg_cap
& 0xff) * 4; i
++) {
1102 msrs
[n
++].index
= MSR_MC0_CTL
+ i
;
1107 msr_data
.info
.nmsrs
= n
;
1108 ret
= kvm_vcpu_ioctl(env
, KVM_GET_MSRS
, &msr_data
);
1113 for (i
= 0; i
< ret
; i
++) {
1114 switch (msrs
[i
].index
) {
1115 case MSR_IA32_SYSENTER_CS
:
1116 env
->sysenter_cs
= msrs
[i
].data
;
1118 case MSR_IA32_SYSENTER_ESP
:
1119 env
->sysenter_esp
= msrs
[i
].data
;
1121 case MSR_IA32_SYSENTER_EIP
:
1122 env
->sysenter_eip
= msrs
[i
].data
;
1125 env
->star
= msrs
[i
].data
;
1127 #ifdef TARGET_X86_64
1129 env
->cstar
= msrs
[i
].data
;
1131 case MSR_KERNELGSBASE
:
1132 env
->kernelgsbase
= msrs
[i
].data
;
1135 env
->fmask
= msrs
[i
].data
;
1138 env
->lstar
= msrs
[i
].data
;
1142 env
->tsc
= msrs
[i
].data
;
1144 case MSR_VM_HSAVE_PA
:
1145 env
->vm_hsave
= msrs
[i
].data
;
1147 case MSR_KVM_SYSTEM_TIME
:
1148 env
->system_time_msr
= msrs
[i
].data
;
1150 case MSR_KVM_WALL_CLOCK
:
1151 env
->wall_clock_msr
= msrs
[i
].data
;
1154 case MSR_MCG_STATUS
:
1155 env
->mcg_status
= msrs
[i
].data
;
1158 env
->mcg_ctl
= msrs
[i
].data
;
1163 if (msrs
[i
].index
>= MSR_MC0_CTL
&&
1164 msrs
[i
].index
< MSR_MC0_CTL
+ (env
->mcg_cap
& 0xff) * 4) {
1165 env
->mce_banks
[msrs
[i
].index
- MSR_MC0_CTL
] = msrs
[i
].data
;
1169 #if defined(CONFIG_KVM_PARA) && defined(KVM_CAP_ASYNC_PF)
1170 case MSR_KVM_ASYNC_PF_EN
:
1171 env
->async_pf_en_msr
= msrs
[i
].data
;
1180 static int kvm_put_mp_state(CPUState
*env
)
1182 struct kvm_mp_state mp_state
= { .mp_state
= env
->mp_state
};
1184 return kvm_vcpu_ioctl(env
, KVM_SET_MP_STATE
, &mp_state
);
1187 static int kvm_get_mp_state(CPUState
*env
)
1189 struct kvm_mp_state mp_state
;
1192 ret
= kvm_vcpu_ioctl(env
, KVM_GET_MP_STATE
, &mp_state
);
1196 env
->mp_state
= mp_state
.mp_state
;
1197 if (kvm_irqchip_in_kernel()) {
1198 env
->halted
= (mp_state
.mp_state
== KVM_MP_STATE_HALTED
);
1203 static int kvm_put_vcpu_events(CPUState
*env
, int level
)
1205 #ifdef KVM_CAP_VCPU_EVENTS
1206 struct kvm_vcpu_events events
;
1208 if (!kvm_has_vcpu_events()) {
1212 events
.exception
.injected
= (env
->exception_injected
>= 0);
1213 events
.exception
.nr
= env
->exception_injected
;
1214 events
.exception
.has_error_code
= env
->has_error_code
;
1215 events
.exception
.error_code
= env
->error_code
;
1217 events
.interrupt
.injected
= (env
->interrupt_injected
>= 0);
1218 events
.interrupt
.nr
= env
->interrupt_injected
;
1219 events
.interrupt
.soft
= env
->soft_interrupt
;
1221 events
.nmi
.injected
= env
->nmi_injected
;
1222 events
.nmi
.pending
= env
->nmi_pending
;
1223 events
.nmi
.masked
= !!(env
->hflags2
& HF2_NMI_MASK
);
1225 events
.sipi_vector
= env
->sipi_vector
;
1228 if (level
>= KVM_PUT_RESET_STATE
) {
1230 KVM_VCPUEVENT_VALID_NMI_PENDING
| KVM_VCPUEVENT_VALID_SIPI_VECTOR
;
1233 return kvm_vcpu_ioctl(env
, KVM_SET_VCPU_EVENTS
, &events
);
1239 static int kvm_get_vcpu_events(CPUState
*env
)
1241 #ifdef KVM_CAP_VCPU_EVENTS
1242 struct kvm_vcpu_events events
;
1245 if (!kvm_has_vcpu_events()) {
1249 ret
= kvm_vcpu_ioctl(env
, KVM_GET_VCPU_EVENTS
, &events
);
1253 env
->exception_injected
=
1254 events
.exception
.injected
? events
.exception
.nr
: -1;
1255 env
->has_error_code
= events
.exception
.has_error_code
;
1256 env
->error_code
= events
.exception
.error_code
;
1258 env
->interrupt_injected
=
1259 events
.interrupt
.injected
? events
.interrupt
.nr
: -1;
1260 env
->soft_interrupt
= events
.interrupt
.soft
;
1262 env
->nmi_injected
= events
.nmi
.injected
;
1263 env
->nmi_pending
= events
.nmi
.pending
;
1264 if (events
.nmi
.masked
) {
1265 env
->hflags2
|= HF2_NMI_MASK
;
1267 env
->hflags2
&= ~HF2_NMI_MASK
;
1270 env
->sipi_vector
= events
.sipi_vector
;
1276 static int kvm_guest_debug_workarounds(CPUState
*env
)
1279 #ifdef KVM_CAP_SET_GUEST_DEBUG
1280 unsigned long reinject_trap
= 0;
1282 if (!kvm_has_vcpu_events()) {
1283 if (env
->exception_injected
== 1) {
1284 reinject_trap
= KVM_GUESTDBG_INJECT_DB
;
1285 } else if (env
->exception_injected
== 3) {
1286 reinject_trap
= KVM_GUESTDBG_INJECT_BP
;
1288 env
->exception_injected
= -1;
1292 * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
1293 * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
1294 * by updating the debug state once again if single-stepping is on.
1295 * Another reason to call kvm_update_guest_debug here is a pending debug
1296 * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
1297 * reinject them via SET_GUEST_DEBUG.
1299 if (reinject_trap
||
1300 (!kvm_has_robust_singlestep() && env
->singlestep_enabled
)) {
1301 ret
= kvm_update_guest_debug(env
, reinject_trap
);
1303 #endif /* KVM_CAP_SET_GUEST_DEBUG */
1307 static int kvm_put_debugregs(CPUState
*env
)
1309 #ifdef KVM_CAP_DEBUGREGS
1310 struct kvm_debugregs dbgregs
;
1313 if (!kvm_has_debugregs()) {
1317 for (i
= 0; i
< 4; i
++) {
1318 dbgregs
.db
[i
] = env
->dr
[i
];
1320 dbgregs
.dr6
= env
->dr
[6];
1321 dbgregs
.dr7
= env
->dr
[7];
1324 return kvm_vcpu_ioctl(env
, KVM_SET_DEBUGREGS
, &dbgregs
);
1330 static int kvm_get_debugregs(CPUState
*env
)
1332 #ifdef KVM_CAP_DEBUGREGS
1333 struct kvm_debugregs dbgregs
;
1336 if (!kvm_has_debugregs()) {
1340 ret
= kvm_vcpu_ioctl(env
, KVM_GET_DEBUGREGS
, &dbgregs
);
1344 for (i
= 0; i
< 4; i
++) {
1345 env
->dr
[i
] = dbgregs
.db
[i
];
1347 env
->dr
[4] = env
->dr
[6] = dbgregs
.dr6
;
1348 env
->dr
[5] = env
->dr
[7] = dbgregs
.dr7
;
1354 int kvm_arch_put_registers(CPUState
*env
, int level
)
1358 assert(cpu_is_stopped(env
) || qemu_cpu_self(env
));
1360 ret
= kvm_getput_regs(env
, 1);
1364 ret
= kvm_put_xsave(env
);
1368 ret
= kvm_put_xcrs(env
);
1372 ret
= kvm_put_sregs(env
);
1376 ret
= kvm_put_msrs(env
, level
);
1380 if (level
>= KVM_PUT_RESET_STATE
) {
1381 ret
= kvm_put_mp_state(env
);
1386 ret
= kvm_put_vcpu_events(env
, level
);
1390 ret
= kvm_put_debugregs(env
);
1395 ret
= kvm_guest_debug_workarounds(env
);
1402 int kvm_arch_get_registers(CPUState
*env
)
1406 assert(cpu_is_stopped(env
) || qemu_cpu_self(env
));
1408 ret
= kvm_getput_regs(env
, 0);
1412 ret
= kvm_get_xsave(env
);
1416 ret
= kvm_get_xcrs(env
);
1420 ret
= kvm_get_sregs(env
);
1424 ret
= kvm_get_msrs(env
);
1428 ret
= kvm_get_mp_state(env
);
1432 ret
= kvm_get_vcpu_events(env
);
1436 ret
= kvm_get_debugregs(env
);
1443 int kvm_arch_pre_run(CPUState
*env
, struct kvm_run
*run
)
1445 /* Force the VCPU out of its inner loop to process the INIT request */
1446 if (env
->interrupt_request
& CPU_INTERRUPT_INIT
) {
1447 env
->exit_request
= 1;
1451 if (env
->interrupt_request
& CPU_INTERRUPT_NMI
) {
1452 env
->interrupt_request
&= ~CPU_INTERRUPT_NMI
;
1453 DPRINTF("injected NMI\n");
1454 kvm_vcpu_ioctl(env
, KVM_NMI
);
1457 /* Try to inject an interrupt if the guest can accept it */
1458 if (run
->ready_for_interrupt_injection
&&
1459 (env
->interrupt_request
& CPU_INTERRUPT_HARD
) &&
1460 (env
->eflags
& IF_MASK
)) {
1463 env
->interrupt_request
&= ~CPU_INTERRUPT_HARD
;
1464 irq
= cpu_get_pic_interrupt(env
);
1466 struct kvm_interrupt intr
;
1469 DPRINTF("injected interrupt %d\n", irq
);
1470 kvm_vcpu_ioctl(env
, KVM_INTERRUPT
, &intr
);
1474 /* If we have an interrupt but the guest is not ready to receive an
1475 * interrupt, request an interrupt window exit. This will
1476 * cause a return to userspace as soon as the guest is ready to
1477 * receive interrupts. */
1478 if ((env
->interrupt_request
& CPU_INTERRUPT_HARD
)) {
1479 run
->request_interrupt_window
= 1;
1481 run
->request_interrupt_window
= 0;
1484 DPRINTF("setting tpr\n");
1485 run
->cr8
= cpu_get_apic_tpr(env
->apic_state
);
1490 int kvm_arch_post_run(CPUState
*env
, struct kvm_run
*run
)
1493 env
->eflags
|= IF_MASK
;
1495 env
->eflags
&= ~IF_MASK
;
1497 cpu_set_apic_tpr(env
->apic_state
, run
->cr8
);
1498 cpu_set_apic_base(env
->apic_state
, run
->apic_base
);
1503 int kvm_arch_process_irqchip_events(CPUState
*env
)
1505 if (env
->interrupt_request
& (CPU_INTERRUPT_HARD
| CPU_INTERRUPT_NMI
)) {
1508 if (env
->interrupt_request
& CPU_INTERRUPT_INIT
) {
1509 kvm_cpu_synchronize_state(env
);
1512 if (env
->interrupt_request
& CPU_INTERRUPT_SIPI
) {
1513 kvm_cpu_synchronize_state(env
);
1520 static int kvm_handle_halt(CPUState
*env
)
1522 if (!((env
->interrupt_request
& CPU_INTERRUPT_HARD
) &&
1523 (env
->eflags
& IF_MASK
)) &&
1524 !(env
->interrupt_request
& CPU_INTERRUPT_NMI
)) {
1532 static bool host_supports_vmx(void)
1534 uint32_t ecx
, unused
;
1536 host_cpuid(1, 0, &unused
, &unused
, &ecx
, &unused
);
1537 return ecx
& CPUID_EXT_VMX
;
1540 #define VMX_INVALID_GUEST_STATE 0x80000021
1542 int kvm_arch_handle_exit(CPUState
*env
, struct kvm_run
*run
)
1547 switch (run
->exit_reason
) {
1549 DPRINTF("handle_hlt\n");
1550 ret
= kvm_handle_halt(env
);
1552 case KVM_EXIT_SET_TPR
:
1555 case KVM_EXIT_FAIL_ENTRY
:
1556 code
= run
->fail_entry
.hardware_entry_failure_reason
;
1557 fprintf(stderr
, "KVM: entry failed, hardware error 0x%" PRIx64
"\n",
1559 if (host_supports_vmx() && code
== VMX_INVALID_GUEST_STATE
) {
1561 "\nIf you're runnning a guest on an Intel machine without "
1562 "unrestricted mode\n"
1563 "support, the failure can be most likely due to the guest "
1564 "entering an invalid\n"
1565 "state for Intel VT. For example, the guest maybe running "
1566 "in big real mode\n"
1567 "which is not supported on less recent Intel processors."
1572 case KVM_EXIT_EXCEPTION
:
1573 fprintf(stderr
, "KVM: exception %d exit (error code 0x%x)\n",
1574 run
->ex
.exception
, run
->ex
.error_code
);
1578 fprintf(stderr
, "KVM: unknown exit reason %d\n", run
->exit_reason
);
1586 #ifdef KVM_CAP_SET_GUEST_DEBUG
1587 int kvm_arch_insert_sw_breakpoint(CPUState
*env
, struct kvm_sw_breakpoint
*bp
)
1589 static const uint8_t int3
= 0xcc;
1591 if (cpu_memory_rw_debug(env
, bp
->pc
, (uint8_t *)&bp
->saved_insn
, 1, 0) ||
1592 cpu_memory_rw_debug(env
, bp
->pc
, (uint8_t *)&int3
, 1, 1)) {
1598 int kvm_arch_remove_sw_breakpoint(CPUState
*env
, struct kvm_sw_breakpoint
*bp
)
1602 if (cpu_memory_rw_debug(env
, bp
->pc
, &int3
, 1, 0) || int3
!= 0xcc ||
1603 cpu_memory_rw_debug(env
, bp
->pc
, (uint8_t *)&bp
->saved_insn
, 1, 1)) {
1615 static int nb_hw_breakpoint
;
1617 static int find_hw_breakpoint(target_ulong addr
, int len
, int type
)
1621 for (n
= 0; n
< nb_hw_breakpoint
; n
++) {
1622 if (hw_breakpoint
[n
].addr
== addr
&& hw_breakpoint
[n
].type
== type
&&
1623 (hw_breakpoint
[n
].len
== len
|| len
== -1)) {
1630 int kvm_arch_insert_hw_breakpoint(target_ulong addr
,
1631 target_ulong len
, int type
)
1634 case GDB_BREAKPOINT_HW
:
1637 case GDB_WATCHPOINT_WRITE
:
1638 case GDB_WATCHPOINT_ACCESS
:
1645 if (addr
& (len
- 1)) {
1657 if (nb_hw_breakpoint
== 4) {
1660 if (find_hw_breakpoint(addr
, len
, type
) >= 0) {
1663 hw_breakpoint
[nb_hw_breakpoint
].addr
= addr
;
1664 hw_breakpoint
[nb_hw_breakpoint
].len
= len
;
1665 hw_breakpoint
[nb_hw_breakpoint
].type
= type
;
1671 int kvm_arch_remove_hw_breakpoint(target_ulong addr
,
1672 target_ulong len
, int type
)
1676 n
= find_hw_breakpoint(addr
, (type
== GDB_BREAKPOINT_HW
) ? 1 : len
, type
);
1681 hw_breakpoint
[n
] = hw_breakpoint
[nb_hw_breakpoint
];
1686 void kvm_arch_remove_all_hw_breakpoints(void)
1688 nb_hw_breakpoint
= 0;
1691 static CPUWatchpoint hw_watchpoint
;
1693 int kvm_arch_debug(struct kvm_debug_exit_arch
*arch_info
)
1698 if (arch_info
->exception
== 1) {
1699 if (arch_info
->dr6
& (1 << 14)) {
1700 if (cpu_single_env
->singlestep_enabled
) {
1704 for (n
= 0; n
< 4; n
++) {
1705 if (arch_info
->dr6
& (1 << n
)) {
1706 switch ((arch_info
->dr7
>> (16 + n
*4)) & 0x3) {
1712 cpu_single_env
->watchpoint_hit
= &hw_watchpoint
;
1713 hw_watchpoint
.vaddr
= hw_breakpoint
[n
].addr
;
1714 hw_watchpoint
.flags
= BP_MEM_WRITE
;
1718 cpu_single_env
->watchpoint_hit
= &hw_watchpoint
;
1719 hw_watchpoint
.vaddr
= hw_breakpoint
[n
].addr
;
1720 hw_watchpoint
.flags
= BP_MEM_ACCESS
;
1726 } else if (kvm_find_sw_breakpoint(cpu_single_env
, arch_info
->pc
)) {
1730 cpu_synchronize_state(cpu_single_env
);
1731 assert(cpu_single_env
->exception_injected
== -1);
1733 cpu_single_env
->exception_injected
= arch_info
->exception
;
1734 cpu_single_env
->has_error_code
= 0;
1740 void kvm_arch_update_guest_debug(CPUState
*env
, struct kvm_guest_debug
*dbg
)
1742 const uint8_t type_code
[] = {
1743 [GDB_BREAKPOINT_HW
] = 0x0,
1744 [GDB_WATCHPOINT_WRITE
] = 0x1,
1745 [GDB_WATCHPOINT_ACCESS
] = 0x3
1747 const uint8_t len_code
[] = {
1748 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
1752 if (kvm_sw_breakpoints_active(env
)) {
1753 dbg
->control
|= KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_USE_SW_BP
;
1755 if (nb_hw_breakpoint
> 0) {
1756 dbg
->control
|= KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_USE_HW_BP
;
1757 dbg
->arch
.debugreg
[7] = 0x0600;
1758 for (n
= 0; n
< nb_hw_breakpoint
; n
++) {
1759 dbg
->arch
.debugreg
[n
] = hw_breakpoint
[n
].addr
;
1760 dbg
->arch
.debugreg
[7] |= (2 << (n
* 2)) |
1761 (type_code
[hw_breakpoint
[n
].type
] << (16 + n
*4)) |
1762 ((uint32_t)len_code
[hw_breakpoint
[n
].len
] << (18 + n
*4));
1766 #endif /* KVM_CAP_SET_GUEST_DEBUG */
1768 bool kvm_arch_stop_on_emulation_error(CPUState
*env
)
1770 return !(env
->cr
[0] & CR0_PE_MASK
) ||
1771 ((env
->segs
[R_CS
].selector
& 3) != 3);
1774 static void hardware_memory_error(void)
1776 fprintf(stderr
, "Hardware memory error!\n");
1781 static void kvm_mce_broadcast_rest(CPUState
*env
)
1783 struct kvm_x86_mce mce
= {
1785 .status
= MCI_STATUS_VAL
| MCI_STATUS_UC
,
1786 .mcg_status
= MCG_STATUS_MCIP
| MCG_STATUS_RIPV
,
1792 /* Broadcast MCA signal for processor version 06H_EH and above */
1793 if (cpu_x86_support_mca_broadcast(env
)) {
1794 for (cenv
= first_cpu
; cenv
!= NULL
; cenv
= cenv
->next_cpu
) {
1798 kvm_inject_x86_mce_on(cenv
, &mce
, ABORT_ON_ERROR
);
1803 static void kvm_mce_inj_srar_dataload(CPUState
*env
, target_phys_addr_t paddr
)
1805 struct kvm_x86_mce mce
= {
1807 .status
= MCI_STATUS_VAL
| MCI_STATUS_UC
| MCI_STATUS_EN
1808 | MCI_STATUS_MISCV
| MCI_STATUS_ADDRV
| MCI_STATUS_S
1809 | MCI_STATUS_AR
| 0x134,
1810 .mcg_status
= MCG_STATUS_MCIP
| MCG_STATUS_EIPV
,
1812 .misc
= (MCM_ADDR_PHYS
<< 6) | 0xc,
1816 r
= kvm_set_mce(env
, &mce
);
1818 fprintf(stderr
, "kvm_set_mce: %s\n", strerror(errno
));
1821 kvm_mce_broadcast_rest(env
);
1824 static void kvm_mce_inj_srao_memscrub(CPUState
*env
, target_phys_addr_t paddr
)
1826 struct kvm_x86_mce mce
= {
1828 .status
= MCI_STATUS_VAL
| MCI_STATUS_UC
| MCI_STATUS_EN
1829 | MCI_STATUS_MISCV
| MCI_STATUS_ADDRV
| MCI_STATUS_S
1831 .mcg_status
= MCG_STATUS_MCIP
| MCG_STATUS_RIPV
,
1833 .misc
= (MCM_ADDR_PHYS
<< 6) | 0xc,
1837 r
= kvm_set_mce(env
, &mce
);
1839 fprintf(stderr
, "kvm_set_mce: %s\n", strerror(errno
));
1842 kvm_mce_broadcast_rest(env
);
1845 static void kvm_mce_inj_srao_memscrub2(CPUState
*env
, target_phys_addr_t paddr
)
1847 struct kvm_x86_mce mce
= {
1849 .status
= MCI_STATUS_VAL
| MCI_STATUS_UC
| MCI_STATUS_EN
1850 | MCI_STATUS_MISCV
| MCI_STATUS_ADDRV
| MCI_STATUS_S
1852 .mcg_status
= MCG_STATUS_MCIP
| MCG_STATUS_RIPV
,
1854 .misc
= (MCM_ADDR_PHYS
<< 6) | 0xc,
1857 kvm_inject_x86_mce_on(env
, &mce
, ABORT_ON_ERROR
);
1858 kvm_mce_broadcast_rest(env
);
1863 int kvm_arch_on_sigbus_vcpu(CPUState
*env
, int code
, void *addr
)
1865 #if defined(KVM_CAP_MCE)
1867 ram_addr_t ram_addr
;
1868 target_phys_addr_t paddr
;
1870 if ((env
->mcg_cap
& MCG_SER_P
) && addr
1871 && (code
== BUS_MCEERR_AR
1872 || code
== BUS_MCEERR_AO
)) {
1873 vaddr
= (void *)addr
;
1874 if (qemu_ram_addr_from_host(vaddr
, &ram_addr
) ||
1875 !kvm_physical_memory_addr_from_ram(env
->kvm_state
, ram_addr
, &paddr
)) {
1876 fprintf(stderr
, "Hardware memory error for memory used by "
1877 "QEMU itself instead of guest system!\n");
1878 /* Hope we are lucky for AO MCE */
1879 if (code
== BUS_MCEERR_AO
) {
1882 hardware_memory_error();
1886 if (code
== BUS_MCEERR_AR
) {
1887 /* Fake an Intel architectural Data Load SRAR UCR */
1888 kvm_mce_inj_srar_dataload(env
, paddr
);
1891 * If there is an MCE excpetion being processed, ignore
1894 if (!kvm_mce_in_progress(env
)) {
1895 /* Fake an Intel architectural Memory scrubbing UCR */
1896 kvm_mce_inj_srao_memscrub(env
, paddr
);
1902 if (code
== BUS_MCEERR_AO
) {
1904 } else if (code
== BUS_MCEERR_AR
) {
1905 hardware_memory_error();
1913 int kvm_arch_on_sigbus(int code
, void *addr
)
1915 #if defined(KVM_CAP_MCE)
1916 if ((first_cpu
->mcg_cap
& MCG_SER_P
) && addr
&& code
== BUS_MCEERR_AO
) {
1918 ram_addr_t ram_addr
;
1919 target_phys_addr_t paddr
;
1921 /* Hope we are lucky for AO MCE */
1923 if (qemu_ram_addr_from_host(vaddr
, &ram_addr
) ||
1924 !kvm_physical_memory_addr_from_ram(first_cpu
->kvm_state
, ram_addr
, &paddr
)) {
1925 fprintf(stderr
, "Hardware memory error for memory used by "
1926 "QEMU itself instead of guest system!: %p\n", addr
);
1929 kvm_mce_inj_srao_memscrub2(first_cpu
, paddr
);
1933 if (code
== BUS_MCEERR_AO
) {
1935 } else if (code
== BUS_MCEERR_AR
) {
1936 hardware_memory_error();