char/cadence_uart: Simplify status generation
[qemu.git] / hw / char / cadence_uart.c
blobddd72672590cafb880b0b0ffce352e41b1e7ab3b
1 /*
2 * Device model for Cadence UART
4 * Copyright (c) 2010 Xilinx Inc.
5 * Copyright (c) 2012 Peter A.G. Crosthwaite (peter.crosthwaite@petalogix.com)
6 * Copyright (c) 2012 PetaLogix Pty Ltd.
7 * Written by Haibing Ma
8 * M.Habib
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License
12 * as published by the Free Software Foundation; either version
13 * 2 of the License, or (at your option) any later version.
15 * You should have received a copy of the GNU General Public License along
16 * with this program; if not, see <http://www.gnu.org/licenses/>.
19 #include "hw/sysbus.h"
20 #include "sysemu/char.h"
21 #include "qemu/timer.h"
23 #ifdef CADENCE_UART_ERR_DEBUG
24 #define DB_PRINT(...) do { \
25 fprintf(stderr, ": %s: ", __func__); \
26 fprintf(stderr, ## __VA_ARGS__); \
27 } while (0);
28 #else
29 #define DB_PRINT(...)
30 #endif
32 #define UART_SR_INTR_RTRIG 0x00000001
33 #define UART_SR_INTR_REMPTY 0x00000002
34 #define UART_SR_INTR_RFUL 0x00000004
35 #define UART_SR_INTR_TEMPTY 0x00000008
36 #define UART_SR_INTR_TFUL 0x00000010
37 /* bits fields in CSR that correlate to CISR. If any of these bits are set in
38 * SR, then the same bit in CISR is set high too */
39 #define UART_SR_TO_CISR_MASK 0x0000001F
41 #define UART_INTR_ROVR 0x00000020
42 #define UART_INTR_FRAME 0x00000040
43 #define UART_INTR_PARE 0x00000080
44 #define UART_INTR_TIMEOUT 0x00000100
45 #define UART_INTR_DMSI 0x00000200
47 #define UART_SR_RACTIVE 0x00000400
48 #define UART_SR_TACTIVE 0x00000800
49 #define UART_SR_FDELT 0x00001000
51 #define UART_CR_RXRST 0x00000001
52 #define UART_CR_TXRST 0x00000002
53 #define UART_CR_RX_EN 0x00000004
54 #define UART_CR_RX_DIS 0x00000008
55 #define UART_CR_TX_EN 0x00000010
56 #define UART_CR_TX_DIS 0x00000020
57 #define UART_CR_RST_TO 0x00000040
58 #define UART_CR_STARTBRK 0x00000080
59 #define UART_CR_STOPBRK 0x00000100
61 #define UART_MR_CLKS 0x00000001
62 #define UART_MR_CHRL 0x00000006
63 #define UART_MR_CHRL_SH 1
64 #define UART_MR_PAR 0x00000038
65 #define UART_MR_PAR_SH 3
66 #define UART_MR_NBSTOP 0x000000C0
67 #define UART_MR_NBSTOP_SH 6
68 #define UART_MR_CHMODE 0x00000300
69 #define UART_MR_CHMODE_SH 8
70 #define UART_MR_UCLKEN 0x00000400
71 #define UART_MR_IRMODE 0x00000800
73 #define UART_DATA_BITS_6 (0x3 << UART_MR_CHRL_SH)
74 #define UART_DATA_BITS_7 (0x2 << UART_MR_CHRL_SH)
75 #define UART_PARITY_ODD (0x1 << UART_MR_PAR_SH)
76 #define UART_PARITY_EVEN (0x0 << UART_MR_PAR_SH)
77 #define UART_STOP_BITS_1 (0x3 << UART_MR_NBSTOP_SH)
78 #define UART_STOP_BITS_2 (0x2 << UART_MR_NBSTOP_SH)
79 #define NORMAL_MODE (0x0 << UART_MR_CHMODE_SH)
80 #define ECHO_MODE (0x1 << UART_MR_CHMODE_SH)
81 #define LOCAL_LOOPBACK (0x2 << UART_MR_CHMODE_SH)
82 #define REMOTE_LOOPBACK (0x3 << UART_MR_CHMODE_SH)
84 #define RX_FIFO_SIZE 16
85 #define TX_FIFO_SIZE 16
86 #define UART_INPUT_CLK 50000000
88 #define R_CR (0x00/4)
89 #define R_MR (0x04/4)
90 #define R_IER (0x08/4)
91 #define R_IDR (0x0C/4)
92 #define R_IMR (0x10/4)
93 #define R_CISR (0x14/4)
94 #define R_BRGR (0x18/4)
95 #define R_RTOR (0x1C/4)
96 #define R_RTRIG (0x20/4)
97 #define R_MCR (0x24/4)
98 #define R_MSR (0x28/4)
99 #define R_SR (0x2C/4)
100 #define R_TX_RX (0x30/4)
101 #define R_BDIV (0x34/4)
102 #define R_FDEL (0x38/4)
103 #define R_PMIN (0x3C/4)
104 #define R_PWID (0x40/4)
105 #define R_TTRIG (0x44/4)
107 #define R_MAX (R_TTRIG + 1)
109 #define TYPE_CADENCE_UART "cadence_uart"
110 #define CADENCE_UART(obj) OBJECT_CHECK(UartState, (obj), TYPE_CADENCE_UART)
112 typedef struct {
113 /*< private >*/
114 SysBusDevice parent_obj;
115 /*< public >*/
117 MemoryRegion iomem;
118 uint32_t r[R_MAX];
119 uint8_t rx_fifo[RX_FIFO_SIZE];
120 uint32_t rx_wpos;
121 uint32_t rx_count;
122 uint64_t char_tx_time;
123 CharDriverState *chr;
124 qemu_irq irq;
125 QEMUTimer *fifo_trigger_handle;
126 QEMUTimer *tx_time_handle;
127 } UartState;
129 static void uart_update_status(UartState *s)
131 s->r[R_SR] = 0;
133 s->r[R_SR] |= s->rx_count == RX_FIFO_SIZE ? UART_SR_INTR_RFUL : 0;
134 s->r[R_SR] |= !s->rx_count ? UART_SR_INTR_REMPTY : 0;
135 s->r[R_SR] |= s->rx_count >= s->r[R_RTRIG] ? UART_SR_INTR_RTRIG : 0;
137 s->r[R_SR] |= UART_SR_INTR_TEMPTY;
138 s->r[R_CISR] |= s->r[R_SR] & UART_SR_TO_CISR_MASK;
139 qemu_set_irq(s->irq, !!(s->r[R_IMR] & s->r[R_CISR]));
142 static void fifo_trigger_update(void *opaque)
144 UartState *s = (UartState *)opaque;
146 s->r[R_CISR] |= UART_INTR_TIMEOUT;
148 uart_update_status(s);
151 static void uart_tx_redo(UartState *s)
153 uint64_t new_tx_time = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
155 timer_mod(s->tx_time_handle, new_tx_time + s->char_tx_time);
157 s->r[R_SR] |= UART_SR_INTR_TEMPTY;
159 uart_update_status(s);
162 static void uart_tx_write(void *opaque)
164 UartState *s = (UartState *)opaque;
166 uart_tx_redo(s);
169 static void uart_rx_reset(UartState *s)
171 s->rx_wpos = 0;
172 s->rx_count = 0;
173 if (s->chr) {
174 qemu_chr_accept_input(s->chr);
178 static void uart_tx_reset(UartState *s)
182 static void uart_send_breaks(UartState *s)
184 int break_enabled = 1;
186 qemu_chr_fe_ioctl(s->chr, CHR_IOCTL_SERIAL_SET_BREAK,
187 &break_enabled);
190 static void uart_parameters_setup(UartState *s)
192 QEMUSerialSetParams ssp;
193 unsigned int baud_rate, packet_size;
195 baud_rate = (s->r[R_MR] & UART_MR_CLKS) ?
196 UART_INPUT_CLK / 8 : UART_INPUT_CLK;
198 ssp.speed = baud_rate / (s->r[R_BRGR] * (s->r[R_BDIV] + 1));
199 packet_size = 1;
201 switch (s->r[R_MR] & UART_MR_PAR) {
202 case UART_PARITY_EVEN:
203 ssp.parity = 'E';
204 packet_size++;
205 break;
206 case UART_PARITY_ODD:
207 ssp.parity = 'O';
208 packet_size++;
209 break;
210 default:
211 ssp.parity = 'N';
212 break;
215 switch (s->r[R_MR] & UART_MR_CHRL) {
216 case UART_DATA_BITS_6:
217 ssp.data_bits = 6;
218 break;
219 case UART_DATA_BITS_7:
220 ssp.data_bits = 7;
221 break;
222 default:
223 ssp.data_bits = 8;
224 break;
227 switch (s->r[R_MR] & UART_MR_NBSTOP) {
228 case UART_STOP_BITS_1:
229 ssp.stop_bits = 1;
230 break;
231 default:
232 ssp.stop_bits = 2;
233 break;
236 packet_size += ssp.data_bits + ssp.stop_bits;
237 s->char_tx_time = (get_ticks_per_sec() / ssp.speed) * packet_size;
238 qemu_chr_fe_ioctl(s->chr, CHR_IOCTL_SERIAL_SET_PARAMS, &ssp);
241 static int uart_can_receive(void *opaque)
243 UartState *s = (UartState *)opaque;
245 return RX_FIFO_SIZE - s->rx_count;
248 static void uart_ctrl_update(UartState *s)
250 if (s->r[R_CR] & UART_CR_TXRST) {
251 uart_tx_reset(s);
254 if (s->r[R_CR] & UART_CR_RXRST) {
255 uart_rx_reset(s);
258 s->r[R_CR] &= ~(UART_CR_TXRST | UART_CR_RXRST);
260 if ((s->r[R_CR] & UART_CR_TX_EN) && !(s->r[R_CR] & UART_CR_TX_DIS)) {
261 uart_tx_redo(s);
264 if (s->r[R_CR] & UART_CR_STARTBRK && !(s->r[R_CR] & UART_CR_STOPBRK)) {
265 uart_send_breaks(s);
269 static void uart_write_rx_fifo(void *opaque, const uint8_t *buf, int size)
271 UartState *s = (UartState *)opaque;
272 uint64_t new_rx_time = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
273 int i;
275 if ((s->r[R_CR] & UART_CR_RX_DIS) || !(s->r[R_CR] & UART_CR_RX_EN)) {
276 return;
279 if (s->rx_count == RX_FIFO_SIZE) {
280 s->r[R_CISR] |= UART_INTR_ROVR;
281 } else {
282 for (i = 0; i < size; i++) {
283 s->rx_fifo[s->rx_wpos] = buf[i];
284 s->rx_wpos = (s->rx_wpos + 1) % RX_FIFO_SIZE;
285 s->rx_count++;
287 timer_mod(s->fifo_trigger_handle, new_rx_time +
288 (s->char_tx_time * 4));
290 uart_update_status(s);
293 static void uart_write_tx_fifo(UartState *s, const uint8_t *buf, int size)
295 if ((s->r[R_CR] & UART_CR_TX_DIS) || !(s->r[R_CR] & UART_CR_TX_EN)) {
296 return;
299 qemu_chr_fe_write_all(s->chr, buf, size);
302 static void uart_receive(void *opaque, const uint8_t *buf, int size)
304 UartState *s = (UartState *)opaque;
305 uint32_t ch_mode = s->r[R_MR] & UART_MR_CHMODE;
307 if (ch_mode == NORMAL_MODE || ch_mode == ECHO_MODE) {
308 uart_write_rx_fifo(opaque, buf, size);
310 if (ch_mode == REMOTE_LOOPBACK || ch_mode == ECHO_MODE) {
311 uart_write_tx_fifo(s, buf, size);
315 static void uart_event(void *opaque, int event)
317 UartState *s = (UartState *)opaque;
318 uint8_t buf = '\0';
320 if (event == CHR_EVENT_BREAK) {
321 uart_write_rx_fifo(opaque, &buf, 1);
324 uart_update_status(s);
327 static void uart_read_rx_fifo(UartState *s, uint32_t *c)
329 if ((s->r[R_CR] & UART_CR_RX_DIS) || !(s->r[R_CR] & UART_CR_RX_EN)) {
330 return;
333 if (s->rx_count) {
334 uint32_t rx_rpos =
335 (RX_FIFO_SIZE + s->rx_wpos - s->rx_count) % RX_FIFO_SIZE;
336 *c = s->rx_fifo[rx_rpos];
337 s->rx_count--;
339 qemu_chr_accept_input(s->chr);
340 } else {
341 *c = 0;
344 uart_update_status(s);
347 static void uart_write(void *opaque, hwaddr offset,
348 uint64_t value, unsigned size)
350 UartState *s = (UartState *)opaque;
352 DB_PRINT(" offset:%x data:%08x\n", (unsigned)offset, (unsigned)value);
353 offset >>= 2;
354 switch (offset) {
355 case R_IER: /* ier (wts imr) */
356 s->r[R_IMR] |= value;
357 break;
358 case R_IDR: /* idr (wtc imr) */
359 s->r[R_IMR] &= ~value;
360 break;
361 case R_IMR: /* imr (read only) */
362 break;
363 case R_CISR: /* cisr (wtc) */
364 s->r[R_CISR] &= ~value;
365 break;
366 case R_TX_RX: /* UARTDR */
367 switch (s->r[R_MR] & UART_MR_CHMODE) {
368 case NORMAL_MODE:
369 uart_write_tx_fifo(s, (uint8_t *) &value, 1);
370 break;
371 case LOCAL_LOOPBACK:
372 uart_write_rx_fifo(opaque, (uint8_t *) &value, 1);
373 break;
375 break;
376 default:
377 s->r[offset] = value;
380 switch (offset) {
381 case R_CR:
382 uart_ctrl_update(s);
383 break;
384 case R_MR:
385 uart_parameters_setup(s);
386 break;
388 uart_update_status(s);
391 static uint64_t uart_read(void *opaque, hwaddr offset,
392 unsigned size)
394 UartState *s = (UartState *)opaque;
395 uint32_t c = 0;
397 offset >>= 2;
398 if (offset >= R_MAX) {
399 c = 0;
400 } else if (offset == R_TX_RX) {
401 uart_read_rx_fifo(s, &c);
402 } else {
403 c = s->r[offset];
406 DB_PRINT(" offset:%x data:%08x\n", (unsigned)(offset << 2), (unsigned)c);
407 return c;
410 static const MemoryRegionOps uart_ops = {
411 .read = uart_read,
412 .write = uart_write,
413 .endianness = DEVICE_NATIVE_ENDIAN,
416 static void cadence_uart_reset(DeviceState *dev)
418 UartState *s = CADENCE_UART(dev);
420 s->r[R_CR] = 0x00000128;
421 s->r[R_IMR] = 0;
422 s->r[R_CISR] = 0;
423 s->r[R_RTRIG] = 0x00000020;
424 s->r[R_BRGR] = 0x0000000F;
425 s->r[R_TTRIG] = 0x00000020;
427 uart_rx_reset(s);
428 uart_tx_reset(s);
430 s->rx_count = 0;
431 s->rx_wpos = 0;
432 uart_update_status(s);
435 static int cadence_uart_init(SysBusDevice *dev)
437 UartState *s = CADENCE_UART(dev);
439 memory_region_init_io(&s->iomem, OBJECT(s), &uart_ops, s, "uart", 0x1000);
440 sysbus_init_mmio(dev, &s->iomem);
441 sysbus_init_irq(dev, &s->irq);
443 s->fifo_trigger_handle = timer_new_ns(QEMU_CLOCK_VIRTUAL,
444 (QEMUTimerCB *)fifo_trigger_update, s);
446 s->tx_time_handle = timer_new_ns(QEMU_CLOCK_VIRTUAL,
447 (QEMUTimerCB *)uart_tx_write, s);
449 s->char_tx_time = (get_ticks_per_sec() / 9600) * 10;
451 s->chr = qemu_char_get_next_serial();
453 if (s->chr) {
454 qemu_chr_add_handlers(s->chr, uart_can_receive, uart_receive,
455 uart_event, s);
458 return 0;
461 static int cadence_uart_post_load(void *opaque, int version_id)
463 UartState *s = opaque;
465 uart_parameters_setup(s);
466 uart_update_status(s);
467 return 0;
470 static const VMStateDescription vmstate_cadence_uart = {
471 .name = "cadence_uart",
472 .version_id = 1,
473 .minimum_version_id = 1,
474 .minimum_version_id_old = 1,
475 .post_load = cadence_uart_post_load,
476 .fields = (VMStateField[]) {
477 VMSTATE_UINT32_ARRAY(r, UartState, R_MAX),
478 VMSTATE_UINT8_ARRAY(rx_fifo, UartState, RX_FIFO_SIZE),
479 VMSTATE_UINT32(rx_count, UartState),
480 VMSTATE_UINT32(rx_wpos, UartState),
481 VMSTATE_TIMER(fifo_trigger_handle, UartState),
482 VMSTATE_TIMER(tx_time_handle, UartState),
483 VMSTATE_END_OF_LIST()
487 static void cadence_uart_class_init(ObjectClass *klass, void *data)
489 DeviceClass *dc = DEVICE_CLASS(klass);
490 SysBusDeviceClass *sdc = SYS_BUS_DEVICE_CLASS(klass);
492 sdc->init = cadence_uart_init;
493 dc->vmsd = &vmstate_cadence_uart;
494 dc->reset = cadence_uart_reset;
497 static const TypeInfo cadence_uart_info = {
498 .name = TYPE_CADENCE_UART,
499 .parent = TYPE_SYS_BUS_DEVICE,
500 .instance_size = sizeof(UartState),
501 .class_init = cadence_uart_class_init,
504 static void cadence_uart_register_types(void)
506 type_register_static(&cadence_uart_info);
509 type_init(cadence_uart_register_types)