3 #include "exec/gdbstub.h"
4 #include "exec/helper-proto.h"
5 #include "qemu/host-utils.h"
6 #include "sysemu/arch_init.h"
7 #include "sysemu/sysemu.h"
8 #include "qemu/bitops.h"
9 #include "qemu/crc32c.h"
10 #include "exec/cpu_ldst.h"
12 #include <zlib.h> /* For crc32 */
14 #ifndef CONFIG_USER_ONLY
15 static inline int get_phys_addr(CPUARMState
*env
, target_ulong address
,
16 int access_type
, int is_user
,
17 hwaddr
*phys_ptr
, int *prot
,
18 target_ulong
*page_size
);
20 /* Definitions for the PMCCNTR and PMCR registers */
26 static int vfp_gdb_get_reg(CPUARMState
*env
, uint8_t *buf
, int reg
)
30 /* VFP data registers are always little-endian. */
31 nregs
= arm_feature(env
, ARM_FEATURE_VFP3
) ? 32 : 16;
33 stfq_le_p(buf
, env
->vfp
.regs
[reg
]);
36 if (arm_feature(env
, ARM_FEATURE_NEON
)) {
37 /* Aliases for Q regs. */
40 stfq_le_p(buf
, env
->vfp
.regs
[(reg
- 32) * 2]);
41 stfq_le_p(buf
+ 8, env
->vfp
.regs
[(reg
- 32) * 2 + 1]);
45 switch (reg
- nregs
) {
46 case 0: stl_p(buf
, env
->vfp
.xregs
[ARM_VFP_FPSID
]); return 4;
47 case 1: stl_p(buf
, env
->vfp
.xregs
[ARM_VFP_FPSCR
]); return 4;
48 case 2: stl_p(buf
, env
->vfp
.xregs
[ARM_VFP_FPEXC
]); return 4;
53 static int vfp_gdb_set_reg(CPUARMState
*env
, uint8_t *buf
, int reg
)
57 nregs
= arm_feature(env
, ARM_FEATURE_VFP3
) ? 32 : 16;
59 env
->vfp
.regs
[reg
] = ldfq_le_p(buf
);
62 if (arm_feature(env
, ARM_FEATURE_NEON
)) {
65 env
->vfp
.regs
[(reg
- 32) * 2] = ldfq_le_p(buf
);
66 env
->vfp
.regs
[(reg
- 32) * 2 + 1] = ldfq_le_p(buf
+ 8);
70 switch (reg
- nregs
) {
71 case 0: env
->vfp
.xregs
[ARM_VFP_FPSID
] = ldl_p(buf
); return 4;
72 case 1: env
->vfp
.xregs
[ARM_VFP_FPSCR
] = ldl_p(buf
); return 4;
73 case 2: env
->vfp
.xregs
[ARM_VFP_FPEXC
] = ldl_p(buf
) & (1 << 30); return 4;
78 static int aarch64_fpu_gdb_get_reg(CPUARMState
*env
, uint8_t *buf
, int reg
)
82 /* 128 bit FP register */
83 stfq_le_p(buf
, env
->vfp
.regs
[reg
* 2]);
84 stfq_le_p(buf
+ 8, env
->vfp
.regs
[reg
* 2 + 1]);
88 stl_p(buf
, vfp_get_fpsr(env
));
92 stl_p(buf
, vfp_get_fpcr(env
));
99 static int aarch64_fpu_gdb_set_reg(CPUARMState
*env
, uint8_t *buf
, int reg
)
103 /* 128 bit FP register */
104 env
->vfp
.regs
[reg
* 2] = ldfq_le_p(buf
);
105 env
->vfp
.regs
[reg
* 2 + 1] = ldfq_le_p(buf
+ 8);
109 vfp_set_fpsr(env
, ldl_p(buf
));
113 vfp_set_fpcr(env
, ldl_p(buf
));
120 static uint64_t raw_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
122 if (cpreg_field_is_64bit(ri
)) {
123 return CPREG_FIELD64(env
, ri
);
125 return CPREG_FIELD32(env
, ri
);
129 static void raw_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
132 if (cpreg_field_is_64bit(ri
)) {
133 CPREG_FIELD64(env
, ri
) = value
;
135 CPREG_FIELD32(env
, ri
) = value
;
139 static uint64_t read_raw_cp_reg(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
141 /* Raw read of a coprocessor register (as needed for migration, etc). */
142 if (ri
->type
& ARM_CP_CONST
) {
143 return ri
->resetvalue
;
144 } else if (ri
->raw_readfn
) {
145 return ri
->raw_readfn(env
, ri
);
146 } else if (ri
->readfn
) {
147 return ri
->readfn(env
, ri
);
149 return raw_read(env
, ri
);
153 static void write_raw_cp_reg(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
156 /* Raw write of a coprocessor register (as needed for migration, etc).
157 * Note that constant registers are treated as write-ignored; the
158 * caller should check for success by whether a readback gives the
161 if (ri
->type
& ARM_CP_CONST
) {
163 } else if (ri
->raw_writefn
) {
164 ri
->raw_writefn(env
, ri
, v
);
165 } else if (ri
->writefn
) {
166 ri
->writefn(env
, ri
, v
);
168 raw_write(env
, ri
, v
);
172 bool write_cpustate_to_list(ARMCPU
*cpu
)
174 /* Write the coprocessor state from cpu->env to the (index,value) list. */
178 for (i
= 0; i
< cpu
->cpreg_array_len
; i
++) {
179 uint32_t regidx
= kvm_to_cpreg_id(cpu
->cpreg_indexes
[i
]);
180 const ARMCPRegInfo
*ri
;
182 ri
= get_arm_cp_reginfo(cpu
->cp_regs
, regidx
);
187 if (ri
->type
& ARM_CP_NO_MIGRATE
) {
190 cpu
->cpreg_values
[i
] = read_raw_cp_reg(&cpu
->env
, ri
);
195 bool write_list_to_cpustate(ARMCPU
*cpu
)
200 for (i
= 0; i
< cpu
->cpreg_array_len
; i
++) {
201 uint32_t regidx
= kvm_to_cpreg_id(cpu
->cpreg_indexes
[i
]);
202 uint64_t v
= cpu
->cpreg_values
[i
];
203 const ARMCPRegInfo
*ri
;
205 ri
= get_arm_cp_reginfo(cpu
->cp_regs
, regidx
);
210 if (ri
->type
& ARM_CP_NO_MIGRATE
) {
213 /* Write value and confirm it reads back as written
214 * (to catch read-only registers and partially read-only
215 * registers where the incoming migration value doesn't match)
217 write_raw_cp_reg(&cpu
->env
, ri
, v
);
218 if (read_raw_cp_reg(&cpu
->env
, ri
) != v
) {
225 static void add_cpreg_to_list(gpointer key
, gpointer opaque
)
227 ARMCPU
*cpu
= opaque
;
229 const ARMCPRegInfo
*ri
;
231 regidx
= *(uint32_t *)key
;
232 ri
= get_arm_cp_reginfo(cpu
->cp_regs
, regidx
);
234 if (!(ri
->type
& ARM_CP_NO_MIGRATE
)) {
235 cpu
->cpreg_indexes
[cpu
->cpreg_array_len
] = cpreg_to_kvm_id(regidx
);
236 /* The value array need not be initialized at this point */
237 cpu
->cpreg_array_len
++;
241 static void count_cpreg(gpointer key
, gpointer opaque
)
243 ARMCPU
*cpu
= opaque
;
245 const ARMCPRegInfo
*ri
;
247 regidx
= *(uint32_t *)key
;
248 ri
= get_arm_cp_reginfo(cpu
->cp_regs
, regidx
);
250 if (!(ri
->type
& ARM_CP_NO_MIGRATE
)) {
251 cpu
->cpreg_array_len
++;
255 static gint
cpreg_key_compare(gconstpointer a
, gconstpointer b
)
257 uint64_t aidx
= cpreg_to_kvm_id(*(uint32_t *)a
);
258 uint64_t bidx
= cpreg_to_kvm_id(*(uint32_t *)b
);
269 static void cpreg_make_keylist(gpointer key
, gpointer value
, gpointer udata
)
271 GList
**plist
= udata
;
273 *plist
= g_list_prepend(*plist
, key
);
276 void init_cpreg_list(ARMCPU
*cpu
)
278 /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
279 * Note that we require cpreg_tuples[] to be sorted by key ID.
284 g_hash_table_foreach(cpu
->cp_regs
, cpreg_make_keylist
, &keys
);
286 keys
= g_list_sort(keys
, cpreg_key_compare
);
288 cpu
->cpreg_array_len
= 0;
290 g_list_foreach(keys
, count_cpreg
, cpu
);
292 arraylen
= cpu
->cpreg_array_len
;
293 cpu
->cpreg_indexes
= g_new(uint64_t, arraylen
);
294 cpu
->cpreg_values
= g_new(uint64_t, arraylen
);
295 cpu
->cpreg_vmstate_indexes
= g_new(uint64_t, arraylen
);
296 cpu
->cpreg_vmstate_values
= g_new(uint64_t, arraylen
);
297 cpu
->cpreg_vmstate_array_len
= cpu
->cpreg_array_len
;
298 cpu
->cpreg_array_len
= 0;
300 g_list_foreach(keys
, add_cpreg_to_list
, cpu
);
302 assert(cpu
->cpreg_array_len
== arraylen
);
307 static void dacr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
309 ARMCPU
*cpu
= arm_env_get_cpu(env
);
311 raw_write(env
, ri
, value
);
312 tlb_flush(CPU(cpu
), 1); /* Flush TLB as domain not tracked in TLB */
315 static void fcse_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
317 ARMCPU
*cpu
= arm_env_get_cpu(env
);
319 if (raw_read(env
, ri
) != value
) {
320 /* Unlike real hardware the qemu TLB uses virtual addresses,
321 * not modified virtual addresses, so this causes a TLB flush.
323 tlb_flush(CPU(cpu
), 1);
324 raw_write(env
, ri
, value
);
328 static void contextidr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
331 ARMCPU
*cpu
= arm_env_get_cpu(env
);
333 if (raw_read(env
, ri
) != value
&& !arm_feature(env
, ARM_FEATURE_MPU
)
334 && !extended_addresses_enabled(env
)) {
335 /* For VMSA (when not using the LPAE long descriptor page table
336 * format) this register includes the ASID, so do a TLB flush.
337 * For PMSA it is purely a process ID and no action is needed.
339 tlb_flush(CPU(cpu
), 1);
341 raw_write(env
, ri
, value
);
344 static void tlbiall_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
347 /* Invalidate all (TLBIALL) */
348 ARMCPU
*cpu
= arm_env_get_cpu(env
);
350 tlb_flush(CPU(cpu
), 1);
353 static void tlbimva_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
356 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
357 ARMCPU
*cpu
= arm_env_get_cpu(env
);
359 tlb_flush_page(CPU(cpu
), value
& TARGET_PAGE_MASK
);
362 static void tlbiasid_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
365 /* Invalidate by ASID (TLBIASID) */
366 ARMCPU
*cpu
= arm_env_get_cpu(env
);
368 tlb_flush(CPU(cpu
), value
== 0);
371 static void tlbimvaa_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
374 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
375 ARMCPU
*cpu
= arm_env_get_cpu(env
);
377 tlb_flush_page(CPU(cpu
), value
& TARGET_PAGE_MASK
);
380 /* IS variants of TLB operations must affect all cores */
381 static void tlbiall_is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
386 CPU_FOREACH(other_cs
) {
387 tlb_flush(other_cs
, 1);
391 static void tlbiasid_is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
396 CPU_FOREACH(other_cs
) {
397 tlb_flush(other_cs
, value
== 0);
401 static void tlbimva_is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
406 CPU_FOREACH(other_cs
) {
407 tlb_flush_page(other_cs
, value
& TARGET_PAGE_MASK
);
411 static void tlbimvaa_is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
416 CPU_FOREACH(other_cs
) {
417 tlb_flush_page(other_cs
, value
& TARGET_PAGE_MASK
);
421 static const ARMCPRegInfo cp_reginfo
[] = {
422 { .name
= "FCSEIDR", .cp
= 15, .crn
= 13, .crm
= 0, .opc1
= 0, .opc2
= 0,
423 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.c13_fcse
),
424 .resetvalue
= 0, .writefn
= fcse_write
, .raw_writefn
= raw_write
, },
425 { .name
= "CONTEXTIDR", .state
= ARM_CP_STATE_BOTH
,
426 .opc0
= 3, .opc1
= 0, .crn
= 13, .crm
= 0, .opc2
= 1,
428 .fieldoffset
= offsetof(CPUARMState
, cp15
.contextidr_el1
),
429 .resetvalue
= 0, .writefn
= contextidr_write
, .raw_writefn
= raw_write
, },
433 static const ARMCPRegInfo not_v8_cp_reginfo
[] = {
434 /* NB: Some of these registers exist in v8 but with more precise
435 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
437 /* MMU Domain access control / MPU write buffer control */
438 { .name
= "DACR", .cp
= 15,
439 .crn
= 3, .crm
= CP_ANY
, .opc1
= CP_ANY
, .opc2
= CP_ANY
,
440 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.c3
),
441 .resetvalue
= 0, .writefn
= dacr_write
, .raw_writefn
= raw_write
, },
442 /* ??? This covers not just the impdef TLB lockdown registers but also
443 * some v7VMSA registers relating to TEX remap, so it is overly broad.
445 { .name
= "TLB_LOCKDOWN", .cp
= 15, .crn
= 10, .crm
= CP_ANY
,
446 .opc1
= CP_ANY
, .opc2
= CP_ANY
, .access
= PL1_RW
, .type
= ARM_CP_NOP
},
447 /* Cache maintenance ops; some of this space may be overridden later. */
448 { .name
= "CACHEMAINT", .cp
= 15, .crn
= 7, .crm
= CP_ANY
,
449 .opc1
= 0, .opc2
= CP_ANY
, .access
= PL1_W
,
450 .type
= ARM_CP_NOP
| ARM_CP_OVERRIDE
},
454 static const ARMCPRegInfo not_v6_cp_reginfo
[] = {
455 /* Not all pre-v6 cores implemented this WFI, so this is slightly
458 { .name
= "WFI_v5", .cp
= 15, .crn
= 7, .crm
= 8, .opc1
= 0, .opc2
= 2,
459 .access
= PL1_W
, .type
= ARM_CP_WFI
},
463 static const ARMCPRegInfo not_v7_cp_reginfo
[] = {
464 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
465 * is UNPREDICTABLE; we choose to NOP as most implementations do).
467 { .name
= "WFI_v6", .cp
= 15, .crn
= 7, .crm
= 0, .opc1
= 0, .opc2
= 4,
468 .access
= PL1_W
, .type
= ARM_CP_WFI
},
469 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
470 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
471 * OMAPCP will override this space.
473 { .name
= "DLOCKDOWN", .cp
= 15, .crn
= 9, .crm
= 0, .opc1
= 0, .opc2
= 0,
474 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_data
),
476 { .name
= "ILOCKDOWN", .cp
= 15, .crn
= 9, .crm
= 0, .opc1
= 0, .opc2
= 1,
477 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_insn
),
479 /* v6 doesn't have the cache ID registers but Linux reads them anyway */
480 { .name
= "DUMMY", .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 1, .opc2
= CP_ANY
,
481 .access
= PL1_R
, .type
= ARM_CP_CONST
| ARM_CP_NO_MIGRATE
,
483 /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
484 * implementing it as RAZ means the "debug architecture version" bits
485 * will read as a reserved value, which should cause Linux to not try
486 * to use the debug hardware.
488 { .name
= "DBGDIDR", .cp
= 14, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 0,
489 .access
= PL0_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
490 /* MMU TLB control. Note that the wildcarding means we cover not just
491 * the unified TLB ops but also the dside/iside/inner-shareable variants.
493 { .name
= "TLBIALL", .cp
= 15, .crn
= 8, .crm
= CP_ANY
,
494 .opc1
= CP_ANY
, .opc2
= 0, .access
= PL1_W
, .writefn
= tlbiall_write
,
495 .type
= ARM_CP_NO_MIGRATE
},
496 { .name
= "TLBIMVA", .cp
= 15, .crn
= 8, .crm
= CP_ANY
,
497 .opc1
= CP_ANY
, .opc2
= 1, .access
= PL1_W
, .writefn
= tlbimva_write
,
498 .type
= ARM_CP_NO_MIGRATE
},
499 { .name
= "TLBIASID", .cp
= 15, .crn
= 8, .crm
= CP_ANY
,
500 .opc1
= CP_ANY
, .opc2
= 2, .access
= PL1_W
, .writefn
= tlbiasid_write
,
501 .type
= ARM_CP_NO_MIGRATE
},
502 { .name
= "TLBIMVAA", .cp
= 15, .crn
= 8, .crm
= CP_ANY
,
503 .opc1
= CP_ANY
, .opc2
= 3, .access
= PL1_W
, .writefn
= tlbimvaa_write
,
504 .type
= ARM_CP_NO_MIGRATE
},
508 static void cpacr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
513 /* In ARMv8 most bits of CPACR_EL1 are RES0. */
514 if (!arm_feature(env
, ARM_FEATURE_V8
)) {
515 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
516 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
517 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
519 if (arm_feature(env
, ARM_FEATURE_VFP
)) {
520 /* VFP coprocessor: cp10 & cp11 [23:20] */
521 mask
|= (1 << 31) | (1 << 30) | (0xf << 20);
523 if (!arm_feature(env
, ARM_FEATURE_NEON
)) {
524 /* ASEDIS [31] bit is RAO/WI */
528 /* VFPv3 and upwards with NEON implement 32 double precision
529 * registers (D0-D31).
531 if (!arm_feature(env
, ARM_FEATURE_NEON
) ||
532 !arm_feature(env
, ARM_FEATURE_VFP3
)) {
533 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
539 env
->cp15
.c1_coproc
= value
;
542 static const ARMCPRegInfo v6_cp_reginfo
[] = {
543 /* prefetch by MVA in v6, NOP in v7 */
544 { .name
= "MVA_prefetch",
545 .cp
= 15, .crn
= 7, .crm
= 13, .opc1
= 0, .opc2
= 1,
546 .access
= PL1_W
, .type
= ARM_CP_NOP
},
547 { .name
= "ISB", .cp
= 15, .crn
= 7, .crm
= 5, .opc1
= 0, .opc2
= 4,
548 .access
= PL0_W
, .type
= ARM_CP_NOP
},
549 { .name
= "DSB", .cp
= 15, .crn
= 7, .crm
= 10, .opc1
= 0, .opc2
= 4,
550 .access
= PL0_W
, .type
= ARM_CP_NOP
},
551 { .name
= "DMB", .cp
= 15, .crn
= 7, .crm
= 10, .opc1
= 0, .opc2
= 5,
552 .access
= PL0_W
, .type
= ARM_CP_NOP
},
553 { .name
= "IFAR", .cp
= 15, .crn
= 6, .crm
= 0, .opc1
= 0, .opc2
= 2,
555 .fieldoffset
= offsetofhigh32(CPUARMState
, cp15
.far_el
[1]),
557 /* Watchpoint Fault Address Register : should actually only be present
558 * for 1136, 1176, 11MPCore.
560 { .name
= "WFAR", .cp
= 15, .crn
= 6, .crm
= 0, .opc1
= 0, .opc2
= 1,
561 .access
= PL1_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0, },
562 { .name
= "CPACR", .state
= ARM_CP_STATE_BOTH
, .opc0
= 3,
563 .crn
= 1, .crm
= 0, .opc1
= 0, .opc2
= 2,
564 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.c1_coproc
),
565 .resetvalue
= 0, .writefn
= cpacr_write
},
569 static CPAccessResult
pmreg_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
571 /* Performance monitor registers user accessibility is controlled
574 if (arm_current_pl(env
) == 0 && !env
->cp15
.c9_pmuserenr
) {
575 return CP_ACCESS_TRAP
;
580 #ifndef CONFIG_USER_ONLY
582 static inline bool arm_ccnt_enabled(CPUARMState
*env
)
584 /* This does not support checking PMCCFILTR_EL0 register */
586 if (!(env
->cp15
.c9_pmcr
& PMCRE
)) {
593 void pmccntr_sync(CPUARMState
*env
)
597 temp_ticks
= muldiv64(qemu_clock_get_us(QEMU_CLOCK_VIRTUAL
),
598 get_ticks_per_sec(), 1000000);
600 if (env
->cp15
.c9_pmcr
& PMCRD
) {
601 /* Increment once every 64 processor clock cycles */
605 if (arm_ccnt_enabled(env
)) {
606 env
->cp15
.c15_ccnt
= temp_ticks
- env
->cp15
.c15_ccnt
;
610 static void pmcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
616 /* The counter has been reset */
617 env
->cp15
.c15_ccnt
= 0;
620 /* only the DP, X, D and E bits are writable */
621 env
->cp15
.c9_pmcr
&= ~0x39;
622 env
->cp15
.c9_pmcr
|= (value
& 0x39);
627 static uint64_t pmccntr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
629 uint64_t total_ticks
;
631 if (!arm_ccnt_enabled(env
)) {
632 /* Counter is disabled, do not change value */
633 return env
->cp15
.c15_ccnt
;
636 total_ticks
= muldiv64(qemu_clock_get_us(QEMU_CLOCK_VIRTUAL
),
637 get_ticks_per_sec(), 1000000);
639 if (env
->cp15
.c9_pmcr
& PMCRD
) {
640 /* Increment once every 64 processor clock cycles */
643 return total_ticks
- env
->cp15
.c15_ccnt
;
646 static void pmccntr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
649 uint64_t total_ticks
;
651 if (!arm_ccnt_enabled(env
)) {
652 /* Counter is disabled, set the absolute value */
653 env
->cp15
.c15_ccnt
= value
;
657 total_ticks
= muldiv64(qemu_clock_get_us(QEMU_CLOCK_VIRTUAL
),
658 get_ticks_per_sec(), 1000000);
660 if (env
->cp15
.c9_pmcr
& PMCRD
) {
661 /* Increment once every 64 processor clock cycles */
664 env
->cp15
.c15_ccnt
= total_ticks
- value
;
667 static void pmccntr_write32(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
670 uint64_t cur_val
= pmccntr_read(env
, NULL
);
672 pmccntr_write(env
, ri
, deposit64(cur_val
, 0, 32, value
));
675 #else /* CONFIG_USER_ONLY */
677 void pmccntr_sync(CPUARMState
*env
)
683 static void pmccfiltr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
687 env
->cp15
.pmccfiltr_el0
= value
& 0x7E000000;
691 static void pmcntenset_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
695 env
->cp15
.c9_pmcnten
|= value
;
698 static void pmcntenclr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
702 env
->cp15
.c9_pmcnten
&= ~value
;
705 static void pmovsr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
708 env
->cp15
.c9_pmovsr
&= ~value
;
711 static void pmxevtyper_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
714 env
->cp15
.c9_pmxevtyper
= value
& 0xff;
717 static void pmuserenr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
720 env
->cp15
.c9_pmuserenr
= value
& 1;
723 static void pmintenset_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
726 /* We have no event counters so only the C bit can be changed */
728 env
->cp15
.c9_pminten
|= value
;
731 static void pmintenclr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
735 env
->cp15
.c9_pminten
&= ~value
;
738 static void vbar_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
741 /* Note that even though the AArch64 view of this register has bits
742 * [10:0] all RES0 we can only mask the bottom 5, to comply with the
743 * architectural requirements for bits which are RES0 only in some
744 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
745 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
747 raw_write(env
, ri
, value
& ~0x1FULL
);
750 static void scr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
752 /* We only mask off bits that are RES0 both for AArch64 and AArch32.
753 * For bits that vary between AArch32/64, code needs to check the
754 * current execution mode before directly using the feature bit.
756 uint32_t valid_mask
= SCR_AARCH64_MASK
| SCR_AARCH32_MASK
;
758 if (!arm_feature(env
, ARM_FEATURE_EL2
)) {
759 valid_mask
&= ~SCR_HCE
;
761 /* On ARMv7, SMD (or SCD as it is called in v7) is only
762 * supported if EL2 exists. The bit is UNK/SBZP when
763 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
764 * when EL2 is unavailable.
766 if (arm_feature(env
, ARM_FEATURE_V7
)) {
767 valid_mask
&= ~SCR_SMD
;
771 /* Clear all-context RES0 bits. */
773 raw_write(env
, ri
, value
);
776 static uint64_t ccsidr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
778 ARMCPU
*cpu
= arm_env_get_cpu(env
);
779 return cpu
->ccsidr
[env
->cp15
.c0_cssel
];
782 static void csselr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
785 raw_write(env
, ri
, value
& 0xf);
788 static uint64_t isr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
790 CPUState
*cs
= ENV_GET_CPU(env
);
793 if (cs
->interrupt_request
& CPU_INTERRUPT_HARD
) {
796 if (cs
->interrupt_request
& CPU_INTERRUPT_FIQ
) {
799 /* External aborts are not possible in QEMU so A bit is always clear */
803 static const ARMCPRegInfo v7_cp_reginfo
[] = {
804 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
805 { .name
= "NOP", .cp
= 15, .crn
= 7, .crm
= 0, .opc1
= 0, .opc2
= 4,
806 .access
= PL1_W
, .type
= ARM_CP_NOP
},
807 /* Performance monitors are implementation defined in v7,
808 * but with an ARM recommended set of registers, which we
809 * follow (although we don't actually implement any counters)
811 * Performance registers fall into three categories:
812 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
813 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
814 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
815 * For the cases controlled by PMUSERENR we must set .access to PL0_RW
816 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
818 { .name
= "PMCNTENSET", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 1,
819 .access
= PL0_RW
, .type
= ARM_CP_NO_MIGRATE
,
820 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.c9_pmcnten
),
821 .writefn
= pmcntenset_write
,
822 .accessfn
= pmreg_access
,
823 .raw_writefn
= raw_write
},
824 { .name
= "PMCNTENSET_EL0", .state
= ARM_CP_STATE_AA64
,
825 .opc0
= 3, .opc1
= 3, .crn
= 9, .crm
= 12, .opc2
= 1,
826 .access
= PL0_RW
, .accessfn
= pmreg_access
,
827 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmcnten
), .resetvalue
= 0,
828 .writefn
= pmcntenset_write
, .raw_writefn
= raw_write
},
829 { .name
= "PMCNTENCLR", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 2,
831 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.c9_pmcnten
),
832 .accessfn
= pmreg_access
,
833 .writefn
= pmcntenclr_write
,
834 .type
= ARM_CP_NO_MIGRATE
},
835 { .name
= "PMCNTENCLR_EL0", .state
= ARM_CP_STATE_AA64
,
836 .opc0
= 3, .opc1
= 3, .crn
= 9, .crm
= 12, .opc2
= 2,
837 .access
= PL0_RW
, .accessfn
= pmreg_access
,
838 .type
= ARM_CP_NO_MIGRATE
,
839 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmcnten
),
840 .writefn
= pmcntenclr_write
},
841 { .name
= "PMOVSR", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 3,
842 .access
= PL0_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmovsr
),
843 .accessfn
= pmreg_access
,
844 .writefn
= pmovsr_write
,
845 .raw_writefn
= raw_write
},
846 /* Unimplemented so WI. */
847 { .name
= "PMSWINC", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 4,
848 .access
= PL0_W
, .accessfn
= pmreg_access
, .type
= ARM_CP_NOP
},
849 /* Since we don't implement any events, writing to PMSELR is UNPREDICTABLE.
850 * We choose to RAZ/WI.
852 { .name
= "PMSELR", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 5,
853 .access
= PL0_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0,
854 .accessfn
= pmreg_access
},
855 #ifndef CONFIG_USER_ONLY
856 { .name
= "PMCCNTR", .cp
= 15, .crn
= 9, .crm
= 13, .opc1
= 0, .opc2
= 0,
857 .access
= PL0_RW
, .resetvalue
= 0, .type
= ARM_CP_IO
,
858 .readfn
= pmccntr_read
, .writefn
= pmccntr_write32
,
859 .accessfn
= pmreg_access
},
860 { .name
= "PMCCNTR_EL0", .state
= ARM_CP_STATE_AA64
,
861 .opc0
= 3, .opc1
= 3, .crn
= 9, .crm
= 13, .opc2
= 0,
862 .access
= PL0_RW
, .accessfn
= pmreg_access
,
864 .readfn
= pmccntr_read
, .writefn
= pmccntr_write
, },
866 { .name
= "PMCCFILTR_EL0", .state
= ARM_CP_STATE_AA64
,
867 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 15, .opc2
= 7,
868 .writefn
= pmccfiltr_write
,
869 .access
= PL0_RW
, .accessfn
= pmreg_access
,
871 .fieldoffset
= offsetof(CPUARMState
, cp15
.pmccfiltr_el0
),
873 { .name
= "PMXEVTYPER", .cp
= 15, .crn
= 9, .crm
= 13, .opc1
= 0, .opc2
= 1,
875 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmxevtyper
),
876 .accessfn
= pmreg_access
, .writefn
= pmxevtyper_write
,
877 .raw_writefn
= raw_write
},
878 /* Unimplemented, RAZ/WI. */
879 { .name
= "PMXEVCNTR", .cp
= 15, .crn
= 9, .crm
= 13, .opc1
= 0, .opc2
= 2,
880 .access
= PL0_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0,
881 .accessfn
= pmreg_access
},
882 { .name
= "PMUSERENR", .cp
= 15, .crn
= 9, .crm
= 14, .opc1
= 0, .opc2
= 0,
883 .access
= PL0_R
| PL1_RW
,
884 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmuserenr
),
886 .writefn
= pmuserenr_write
, .raw_writefn
= raw_write
},
887 { .name
= "PMINTENSET", .cp
= 15, .crn
= 9, .crm
= 14, .opc1
= 0, .opc2
= 1,
889 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pminten
),
891 .writefn
= pmintenset_write
, .raw_writefn
= raw_write
},
892 { .name
= "PMINTENCLR", .cp
= 15, .crn
= 9, .crm
= 14, .opc1
= 0, .opc2
= 2,
893 .access
= PL1_RW
, .type
= ARM_CP_NO_MIGRATE
,
894 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pminten
),
895 .resetvalue
= 0, .writefn
= pmintenclr_write
, },
896 { .name
= "VBAR", .state
= ARM_CP_STATE_BOTH
,
897 .opc0
= 3, .crn
= 12, .crm
= 0, .opc1
= 0, .opc2
= 0,
898 .access
= PL1_RW
, .writefn
= vbar_write
,
899 .fieldoffset
= offsetof(CPUARMState
, cp15
.vbar_el
[1]),
901 { .name
= "SCR", .cp
= 15, .crn
= 1, .crm
= 1, .opc1
= 0, .opc2
= 0,
902 .access
= PL1_RW
, .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.scr_el3
),
903 .resetvalue
= 0, .writefn
= scr_write
},
904 { .name
= "CCSIDR", .state
= ARM_CP_STATE_BOTH
,
905 .opc0
= 3, .crn
= 0, .crm
= 0, .opc1
= 1, .opc2
= 0,
906 .access
= PL1_R
, .readfn
= ccsidr_read
, .type
= ARM_CP_NO_MIGRATE
},
907 { .name
= "CSSELR", .state
= ARM_CP_STATE_BOTH
,
908 .opc0
= 3, .crn
= 0, .crm
= 0, .opc1
= 2, .opc2
= 0,
909 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.c0_cssel
),
910 .writefn
= csselr_write
, .resetvalue
= 0 },
911 /* Auxiliary ID register: this actually has an IMPDEF value but for now
912 * just RAZ for all cores:
914 { .name
= "AIDR", .state
= ARM_CP_STATE_BOTH
,
915 .opc0
= 3, .opc1
= 1, .crn
= 0, .crm
= 0, .opc2
= 7,
916 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
917 /* Auxiliary fault status registers: these also are IMPDEF, and we
918 * choose to RAZ/WI for all cores.
920 { .name
= "AFSR0_EL1", .state
= ARM_CP_STATE_BOTH
,
921 .opc0
= 3, .opc1
= 0, .crn
= 5, .crm
= 1, .opc2
= 0,
922 .access
= PL1_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
923 { .name
= "AFSR1_EL1", .state
= ARM_CP_STATE_BOTH
,
924 .opc0
= 3, .opc1
= 0, .crn
= 5, .crm
= 1, .opc2
= 1,
925 .access
= PL1_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
926 /* MAIR can just read-as-written because we don't implement caches
927 * and so don't need to care about memory attributes.
929 { .name
= "MAIR_EL1", .state
= ARM_CP_STATE_AA64
,
930 .opc0
= 3, .opc1
= 0, .crn
= 10, .crm
= 2, .opc2
= 0,
931 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.mair_el1
),
933 /* For non-long-descriptor page tables these are PRRR and NMRR;
934 * regardless they still act as reads-as-written for QEMU.
935 * The override is necessary because of the overly-broad TLB_LOCKDOWN
938 { .name
= "MAIR0", .state
= ARM_CP_STATE_AA32
, .type
= ARM_CP_OVERRIDE
,
939 .cp
= 15, .opc1
= 0, .crn
= 10, .crm
= 2, .opc2
= 0, .access
= PL1_RW
,
940 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.mair_el1
),
941 .resetfn
= arm_cp_reset_ignore
},
942 { .name
= "MAIR1", .state
= ARM_CP_STATE_AA32
, .type
= ARM_CP_OVERRIDE
,
943 .cp
= 15, .opc1
= 0, .crn
= 10, .crm
= 2, .opc2
= 1, .access
= PL1_RW
,
944 .fieldoffset
= offsetofhigh32(CPUARMState
, cp15
.mair_el1
),
945 .resetfn
= arm_cp_reset_ignore
},
946 { .name
= "ISR_EL1", .state
= ARM_CP_STATE_BOTH
,
947 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 1, .opc2
= 0,
948 .type
= ARM_CP_NO_MIGRATE
, .access
= PL1_R
, .readfn
= isr_read
},
949 /* 32 bit ITLB invalidates */
950 { .name
= "ITLBIALL", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 5, .opc2
= 0,
951 .type
= ARM_CP_NO_MIGRATE
, .access
= PL1_W
, .writefn
= tlbiall_write
},
952 { .name
= "ITLBIMVA", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 5, .opc2
= 1,
953 .type
= ARM_CP_NO_MIGRATE
, .access
= PL1_W
, .writefn
= tlbimva_write
},
954 { .name
= "ITLBIASID", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 5, .opc2
= 2,
955 .type
= ARM_CP_NO_MIGRATE
, .access
= PL1_W
, .writefn
= tlbiasid_write
},
956 /* 32 bit DTLB invalidates */
957 { .name
= "DTLBIALL", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 6, .opc2
= 0,
958 .type
= ARM_CP_NO_MIGRATE
, .access
= PL1_W
, .writefn
= tlbiall_write
},
959 { .name
= "DTLBIMVA", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 6, .opc2
= 1,
960 .type
= ARM_CP_NO_MIGRATE
, .access
= PL1_W
, .writefn
= tlbimva_write
},
961 { .name
= "DTLBIASID", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 6, .opc2
= 2,
962 .type
= ARM_CP_NO_MIGRATE
, .access
= PL1_W
, .writefn
= tlbiasid_write
},
963 /* 32 bit TLB invalidates */
964 { .name
= "TLBIALL", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 0,
965 .type
= ARM_CP_NO_MIGRATE
, .access
= PL1_W
, .writefn
= tlbiall_write
},
966 { .name
= "TLBIMVA", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 1,
967 .type
= ARM_CP_NO_MIGRATE
, .access
= PL1_W
, .writefn
= tlbimva_write
},
968 { .name
= "TLBIASID", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 2,
969 .type
= ARM_CP_NO_MIGRATE
, .access
= PL1_W
, .writefn
= tlbiasid_write
},
970 { .name
= "TLBIMVAA", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 3,
971 .type
= ARM_CP_NO_MIGRATE
, .access
= PL1_W
, .writefn
= tlbimvaa_write
},
975 static const ARMCPRegInfo v7mp_cp_reginfo
[] = {
976 /* 32 bit TLB invalidates, Inner Shareable */
977 { .name
= "TLBIALLIS", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 0,
978 .type
= ARM_CP_NO_MIGRATE
, .access
= PL1_W
, .writefn
= tlbiall_is_write
},
979 { .name
= "TLBIMVAIS", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 1,
980 .type
= ARM_CP_NO_MIGRATE
, .access
= PL1_W
, .writefn
= tlbimva_is_write
},
981 { .name
= "TLBIASIDIS", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 2,
982 .type
= ARM_CP_NO_MIGRATE
, .access
= PL1_W
,
983 .writefn
= tlbiasid_is_write
},
984 { .name
= "TLBIMVAAIS", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 3,
985 .type
= ARM_CP_NO_MIGRATE
, .access
= PL1_W
,
986 .writefn
= tlbimvaa_is_write
},
990 static void teecr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
997 static CPAccessResult
teehbr_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
999 if (arm_current_pl(env
) == 0 && (env
->teecr
& 1)) {
1000 return CP_ACCESS_TRAP
;
1002 return CP_ACCESS_OK
;
1005 static const ARMCPRegInfo t2ee_cp_reginfo
[] = {
1006 { .name
= "TEECR", .cp
= 14, .crn
= 0, .crm
= 0, .opc1
= 6, .opc2
= 0,
1007 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, teecr
),
1009 .writefn
= teecr_write
},
1010 { .name
= "TEEHBR", .cp
= 14, .crn
= 1, .crm
= 0, .opc1
= 6, .opc2
= 0,
1011 .access
= PL0_RW
, .fieldoffset
= offsetof(CPUARMState
, teehbr
),
1012 .accessfn
= teehbr_access
, .resetvalue
= 0 },
1016 static const ARMCPRegInfo v6k_cp_reginfo
[] = {
1017 { .name
= "TPIDR_EL0", .state
= ARM_CP_STATE_AA64
,
1018 .opc0
= 3, .opc1
= 3, .opc2
= 2, .crn
= 13, .crm
= 0,
1020 .fieldoffset
= offsetof(CPUARMState
, cp15
.tpidr_el0
), .resetvalue
= 0 },
1021 { .name
= "TPIDRURW", .cp
= 15, .crn
= 13, .crm
= 0, .opc1
= 0, .opc2
= 2,
1023 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.tpidr_el0
),
1024 .resetfn
= arm_cp_reset_ignore
},
1025 { .name
= "TPIDRRO_EL0", .state
= ARM_CP_STATE_AA64
,
1026 .opc0
= 3, .opc1
= 3, .opc2
= 3, .crn
= 13, .crm
= 0,
1027 .access
= PL0_R
|PL1_W
,
1028 .fieldoffset
= offsetof(CPUARMState
, cp15
.tpidrro_el0
), .resetvalue
= 0 },
1029 { .name
= "TPIDRURO", .cp
= 15, .crn
= 13, .crm
= 0, .opc1
= 0, .opc2
= 3,
1030 .access
= PL0_R
|PL1_W
,
1031 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.tpidrro_el0
),
1032 .resetfn
= arm_cp_reset_ignore
},
1033 { .name
= "TPIDR_EL1", .state
= ARM_CP_STATE_BOTH
,
1034 .opc0
= 3, .opc1
= 0, .opc2
= 4, .crn
= 13, .crm
= 0,
1036 .fieldoffset
= offsetof(CPUARMState
, cp15
.tpidr_el1
), .resetvalue
= 0 },
1040 #ifndef CONFIG_USER_ONLY
1042 static CPAccessResult
gt_cntfrq_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1044 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero */
1045 if (arm_current_pl(env
) == 0 && !extract32(env
->cp15
.c14_cntkctl
, 0, 2)) {
1046 return CP_ACCESS_TRAP
;
1048 return CP_ACCESS_OK
;
1051 static CPAccessResult
gt_counter_access(CPUARMState
*env
, int timeridx
)
1053 /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */
1054 if (arm_current_pl(env
) == 0 &&
1055 !extract32(env
->cp15
.c14_cntkctl
, timeridx
, 1)) {
1056 return CP_ACCESS_TRAP
;
1058 return CP_ACCESS_OK
;
1061 static CPAccessResult
gt_timer_access(CPUARMState
*env
, int timeridx
)
1063 /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if
1064 * EL0[PV]TEN is zero.
1066 if (arm_current_pl(env
) == 0 &&
1067 !extract32(env
->cp15
.c14_cntkctl
, 9 - timeridx
, 1)) {
1068 return CP_ACCESS_TRAP
;
1070 return CP_ACCESS_OK
;
1073 static CPAccessResult
gt_pct_access(CPUARMState
*env
,
1074 const ARMCPRegInfo
*ri
)
1076 return gt_counter_access(env
, GTIMER_PHYS
);
1079 static CPAccessResult
gt_vct_access(CPUARMState
*env
,
1080 const ARMCPRegInfo
*ri
)
1082 return gt_counter_access(env
, GTIMER_VIRT
);
1085 static CPAccessResult
gt_ptimer_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1087 return gt_timer_access(env
, GTIMER_PHYS
);
1090 static CPAccessResult
gt_vtimer_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1092 return gt_timer_access(env
, GTIMER_VIRT
);
1095 static uint64_t gt_get_countervalue(CPUARMState
*env
)
1097 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
) / GTIMER_SCALE
;
1100 static void gt_recalc_timer(ARMCPU
*cpu
, int timeridx
)
1102 ARMGenericTimer
*gt
= &cpu
->env
.cp15
.c14_timer
[timeridx
];
1105 /* Timer enabled: calculate and set current ISTATUS, irq, and
1106 * reset timer to when ISTATUS next has to change
1108 uint64_t count
= gt_get_countervalue(&cpu
->env
);
1109 /* Note that this must be unsigned 64 bit arithmetic: */
1110 int istatus
= count
>= gt
->cval
;
1113 gt
->ctl
= deposit32(gt
->ctl
, 2, 1, istatus
);
1114 qemu_set_irq(cpu
->gt_timer_outputs
[timeridx
],
1115 (istatus
&& !(gt
->ctl
& 2)));
1117 /* Next transition is when count rolls back over to zero */
1118 nexttick
= UINT64_MAX
;
1120 /* Next transition is when we hit cval */
1121 nexttick
= gt
->cval
;
1123 /* Note that the desired next expiry time might be beyond the
1124 * signed-64-bit range of a QEMUTimer -- in this case we just
1125 * set the timer for as far in the future as possible. When the
1126 * timer expires we will reset the timer for any remaining period.
1128 if (nexttick
> INT64_MAX
/ GTIMER_SCALE
) {
1129 nexttick
= INT64_MAX
/ GTIMER_SCALE
;
1131 timer_mod(cpu
->gt_timer
[timeridx
], nexttick
);
1133 /* Timer disabled: ISTATUS and timer output always clear */
1135 qemu_set_irq(cpu
->gt_timer_outputs
[timeridx
], 0);
1136 timer_del(cpu
->gt_timer
[timeridx
]);
1140 static void gt_cnt_reset(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1142 ARMCPU
*cpu
= arm_env_get_cpu(env
);
1143 int timeridx
= ri
->opc1
& 1;
1145 timer_del(cpu
->gt_timer
[timeridx
]);
1148 static uint64_t gt_cnt_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1150 return gt_get_countervalue(env
);
1153 static void gt_cval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1156 int timeridx
= ri
->opc1
& 1;
1158 env
->cp15
.c14_timer
[timeridx
].cval
= value
;
1159 gt_recalc_timer(arm_env_get_cpu(env
), timeridx
);
1162 static uint64_t gt_tval_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1164 int timeridx
= ri
->crm
& 1;
1166 return (uint32_t)(env
->cp15
.c14_timer
[timeridx
].cval
-
1167 gt_get_countervalue(env
));
1170 static void gt_tval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1173 int timeridx
= ri
->crm
& 1;
1175 env
->cp15
.c14_timer
[timeridx
].cval
= gt_get_countervalue(env
) +
1176 + sextract64(value
, 0, 32);
1177 gt_recalc_timer(arm_env_get_cpu(env
), timeridx
);
1180 static void gt_ctl_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1183 ARMCPU
*cpu
= arm_env_get_cpu(env
);
1184 int timeridx
= ri
->crm
& 1;
1185 uint32_t oldval
= env
->cp15
.c14_timer
[timeridx
].ctl
;
1187 env
->cp15
.c14_timer
[timeridx
].ctl
= deposit64(oldval
, 0, 2, value
);
1188 if ((oldval
^ value
) & 1) {
1189 /* Enable toggled */
1190 gt_recalc_timer(cpu
, timeridx
);
1191 } else if ((oldval
^ value
) & 2) {
1192 /* IMASK toggled: don't need to recalculate,
1193 * just set the interrupt line based on ISTATUS
1195 qemu_set_irq(cpu
->gt_timer_outputs
[timeridx
],
1196 (oldval
& 4) && !(value
& 2));
1200 void arm_gt_ptimer_cb(void *opaque
)
1202 ARMCPU
*cpu
= opaque
;
1204 gt_recalc_timer(cpu
, GTIMER_PHYS
);
1207 void arm_gt_vtimer_cb(void *opaque
)
1209 ARMCPU
*cpu
= opaque
;
1211 gt_recalc_timer(cpu
, GTIMER_VIRT
);
1214 static const ARMCPRegInfo generic_timer_cp_reginfo
[] = {
1215 /* Note that CNTFRQ is purely reads-as-written for the benefit
1216 * of software; writing it doesn't actually change the timer frequency.
1217 * Our reset value matches the fixed frequency we implement the timer at.
1219 { .name
= "CNTFRQ", .cp
= 15, .crn
= 14, .crm
= 0, .opc1
= 0, .opc2
= 0,
1220 .type
= ARM_CP_NO_MIGRATE
,
1221 .access
= PL1_RW
| PL0_R
, .accessfn
= gt_cntfrq_access
,
1222 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.c14_cntfrq
),
1223 .resetfn
= arm_cp_reset_ignore
,
1225 { .name
= "CNTFRQ_EL0", .state
= ARM_CP_STATE_AA64
,
1226 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 0, .opc2
= 0,
1227 .access
= PL1_RW
| PL0_R
, .accessfn
= gt_cntfrq_access
,
1228 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_cntfrq
),
1229 .resetvalue
= (1000 * 1000 * 1000) / GTIMER_SCALE
,
1231 /* overall control: mostly access permissions */
1232 { .name
= "CNTKCTL", .state
= ARM_CP_STATE_BOTH
,
1233 .opc0
= 3, .opc1
= 0, .crn
= 14, .crm
= 1, .opc2
= 0,
1235 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_cntkctl
),
1238 /* per-timer control */
1239 { .name
= "CNTP_CTL", .cp
= 15, .crn
= 14, .crm
= 2, .opc1
= 0, .opc2
= 1,
1240 .type
= ARM_CP_IO
| ARM_CP_NO_MIGRATE
, .access
= PL1_RW
| PL0_R
,
1241 .accessfn
= gt_ptimer_access
,
1242 .fieldoffset
= offsetoflow32(CPUARMState
,
1243 cp15
.c14_timer
[GTIMER_PHYS
].ctl
),
1244 .resetfn
= arm_cp_reset_ignore
,
1245 .writefn
= gt_ctl_write
, .raw_writefn
= raw_write
,
1247 { .name
= "CNTP_CTL_EL0", .state
= ARM_CP_STATE_AA64
,
1248 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 2, .opc2
= 1,
1249 .type
= ARM_CP_IO
, .access
= PL1_RW
| PL0_R
,
1250 .accessfn
= gt_ptimer_access
,
1251 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_PHYS
].ctl
),
1253 .writefn
= gt_ctl_write
, .raw_writefn
= raw_write
,
1255 { .name
= "CNTV_CTL", .cp
= 15, .crn
= 14, .crm
= 3, .opc1
= 0, .opc2
= 1,
1256 .type
= ARM_CP_IO
| ARM_CP_NO_MIGRATE
, .access
= PL1_RW
| PL0_R
,
1257 .accessfn
= gt_vtimer_access
,
1258 .fieldoffset
= offsetoflow32(CPUARMState
,
1259 cp15
.c14_timer
[GTIMER_VIRT
].ctl
),
1260 .resetfn
= arm_cp_reset_ignore
,
1261 .writefn
= gt_ctl_write
, .raw_writefn
= raw_write
,
1263 { .name
= "CNTV_CTL_EL0", .state
= ARM_CP_STATE_AA64
,
1264 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 3, .opc2
= 1,
1265 .type
= ARM_CP_IO
, .access
= PL1_RW
| PL0_R
,
1266 .accessfn
= gt_vtimer_access
,
1267 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_VIRT
].ctl
),
1269 .writefn
= gt_ctl_write
, .raw_writefn
= raw_write
,
1271 /* TimerValue views: a 32 bit downcounting view of the underlying state */
1272 { .name
= "CNTP_TVAL", .cp
= 15, .crn
= 14, .crm
= 2, .opc1
= 0, .opc2
= 0,
1273 .type
= ARM_CP_NO_MIGRATE
| ARM_CP_IO
, .access
= PL1_RW
| PL0_R
,
1274 .accessfn
= gt_ptimer_access
,
1275 .readfn
= gt_tval_read
, .writefn
= gt_tval_write
,
1277 { .name
= "CNTP_TVAL_EL0", .state
= ARM_CP_STATE_AA64
,
1278 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 2, .opc2
= 0,
1279 .type
= ARM_CP_NO_MIGRATE
| ARM_CP_IO
, .access
= PL1_RW
| PL0_R
,
1280 .readfn
= gt_tval_read
, .writefn
= gt_tval_write
,
1282 { .name
= "CNTV_TVAL", .cp
= 15, .crn
= 14, .crm
= 3, .opc1
= 0, .opc2
= 0,
1283 .type
= ARM_CP_NO_MIGRATE
| ARM_CP_IO
, .access
= PL1_RW
| PL0_R
,
1284 .accessfn
= gt_vtimer_access
,
1285 .readfn
= gt_tval_read
, .writefn
= gt_tval_write
,
1287 { .name
= "CNTV_TVAL_EL0", .state
= ARM_CP_STATE_AA64
,
1288 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 3, .opc2
= 0,
1289 .type
= ARM_CP_NO_MIGRATE
| ARM_CP_IO
, .access
= PL1_RW
| PL0_R
,
1290 .readfn
= gt_tval_read
, .writefn
= gt_tval_write
,
1292 /* The counter itself */
1293 { .name
= "CNTPCT", .cp
= 15, .crm
= 14, .opc1
= 0,
1294 .access
= PL0_R
, .type
= ARM_CP_64BIT
| ARM_CP_NO_MIGRATE
| ARM_CP_IO
,
1295 .accessfn
= gt_pct_access
,
1296 .readfn
= gt_cnt_read
, .resetfn
= arm_cp_reset_ignore
,
1298 { .name
= "CNTPCT_EL0", .state
= ARM_CP_STATE_AA64
,
1299 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 0, .opc2
= 1,
1300 .access
= PL0_R
, .type
= ARM_CP_NO_MIGRATE
| ARM_CP_IO
,
1301 .accessfn
= gt_pct_access
,
1302 .readfn
= gt_cnt_read
, .resetfn
= gt_cnt_reset
,
1304 { .name
= "CNTVCT", .cp
= 15, .crm
= 14, .opc1
= 1,
1305 .access
= PL0_R
, .type
= ARM_CP_64BIT
| ARM_CP_NO_MIGRATE
| ARM_CP_IO
,
1306 .accessfn
= gt_vct_access
,
1307 .readfn
= gt_cnt_read
, .resetfn
= arm_cp_reset_ignore
,
1309 { .name
= "CNTVCT_EL0", .state
= ARM_CP_STATE_AA64
,
1310 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 0, .opc2
= 2,
1311 .access
= PL0_R
, .type
= ARM_CP_NO_MIGRATE
| ARM_CP_IO
,
1312 .accessfn
= gt_vct_access
,
1313 .readfn
= gt_cnt_read
, .resetfn
= gt_cnt_reset
,
1315 /* Comparison value, indicating when the timer goes off */
1316 { .name
= "CNTP_CVAL", .cp
= 15, .crm
= 14, .opc1
= 2,
1317 .access
= PL1_RW
| PL0_R
,
1318 .type
= ARM_CP_64BIT
| ARM_CP_IO
| ARM_CP_NO_MIGRATE
,
1319 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_PHYS
].cval
),
1320 .accessfn
= gt_ptimer_access
, .resetfn
= arm_cp_reset_ignore
,
1321 .writefn
= gt_cval_write
, .raw_writefn
= raw_write
,
1323 { .name
= "CNTP_CVAL_EL0", .state
= ARM_CP_STATE_AA64
,
1324 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 2, .opc2
= 2,
1325 .access
= PL1_RW
| PL0_R
,
1327 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_PHYS
].cval
),
1328 .resetvalue
= 0, .accessfn
= gt_vtimer_access
,
1329 .writefn
= gt_cval_write
, .raw_writefn
= raw_write
,
1331 { .name
= "CNTV_CVAL", .cp
= 15, .crm
= 14, .opc1
= 3,
1332 .access
= PL1_RW
| PL0_R
,
1333 .type
= ARM_CP_64BIT
| ARM_CP_IO
| ARM_CP_NO_MIGRATE
,
1334 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_VIRT
].cval
),
1335 .accessfn
= gt_vtimer_access
, .resetfn
= arm_cp_reset_ignore
,
1336 .writefn
= gt_cval_write
, .raw_writefn
= raw_write
,
1338 { .name
= "CNTV_CVAL_EL0", .state
= ARM_CP_STATE_AA64
,
1339 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 3, .opc2
= 2,
1340 .access
= PL1_RW
| PL0_R
,
1342 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_VIRT
].cval
),
1343 .resetvalue
= 0, .accessfn
= gt_vtimer_access
,
1344 .writefn
= gt_cval_write
, .raw_writefn
= raw_write
,
1350 /* In user-mode none of the generic timer registers are accessible,
1351 * and their implementation depends on QEMU_CLOCK_VIRTUAL and qdev gpio outputs,
1352 * so instead just don't register any of them.
1354 static const ARMCPRegInfo generic_timer_cp_reginfo
[] = {
1360 static void par_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
1362 if (arm_feature(env
, ARM_FEATURE_LPAE
)) {
1363 raw_write(env
, ri
, value
);
1364 } else if (arm_feature(env
, ARM_FEATURE_V7
)) {
1365 raw_write(env
, ri
, value
& 0xfffff6ff);
1367 raw_write(env
, ri
, value
& 0xfffff1ff);
1371 #ifndef CONFIG_USER_ONLY
1372 /* get_phys_addr() isn't present for user-mode-only targets */
1374 static CPAccessResult
ats_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1377 /* Other states are only available with TrustZone; in
1378 * a non-TZ implementation these registers don't exist
1379 * at all, which is an Uncategorized trap. This underdecoding
1380 * is safe because the reginfo is NO_MIGRATE.
1382 return CP_ACCESS_TRAP_UNCATEGORIZED
;
1384 return CP_ACCESS_OK
;
1387 static void ats_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
1390 target_ulong page_size
;
1392 int ret
, is_user
= ri
->opc2
& 2;
1393 int access_type
= ri
->opc2
& 1;
1395 ret
= get_phys_addr(env
, value
, access_type
, is_user
,
1396 &phys_addr
, &prot
, &page_size
);
1397 if (extended_addresses_enabled(env
)) {
1398 /* ret is a DFSR/IFSR value for the long descriptor
1399 * translation table format, but with WnR always clear.
1400 * Convert it to a 64-bit PAR.
1402 uint64_t par64
= (1 << 11); /* LPAE bit always set */
1404 par64
|= phys_addr
& ~0xfffULL
;
1405 /* We don't set the ATTR or SH fields in the PAR. */
1408 par64
|= (ret
& 0x3f) << 1; /* FS */
1409 /* Note that S2WLK and FSTAGE are always zero, because we don't
1410 * implement virtualization and therefore there can't be a stage 2
1414 env
->cp15
.par_el1
= par64
;
1416 /* ret is a DFSR/IFSR value for the short descriptor
1417 * translation table format (with WnR always clear).
1418 * Convert it to a 32-bit PAR.
1421 /* We do not set any attribute bits in the PAR */
1422 if (page_size
== (1 << 24)
1423 && arm_feature(env
, ARM_FEATURE_V7
)) {
1424 env
->cp15
.par_el1
= (phys_addr
& 0xff000000) | 1 << 1;
1426 env
->cp15
.par_el1
= phys_addr
& 0xfffff000;
1429 env
->cp15
.par_el1
= ((ret
& (1 << 10)) >> 5) |
1430 ((ret
& (1 << 12)) >> 6) |
1431 ((ret
& 0xf) << 1) | 1;
1437 static const ARMCPRegInfo vapa_cp_reginfo
[] = {
1438 { .name
= "PAR", .cp
= 15, .crn
= 7, .crm
= 4, .opc1
= 0, .opc2
= 0,
1439 .access
= PL1_RW
, .resetvalue
= 0,
1440 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.par_el1
),
1441 .writefn
= par_write
},
1442 #ifndef CONFIG_USER_ONLY
1443 { .name
= "ATS", .cp
= 15, .crn
= 7, .crm
= 8, .opc1
= 0, .opc2
= CP_ANY
,
1444 .access
= PL1_W
, .accessfn
= ats_access
,
1445 .writefn
= ats_write
, .type
= ARM_CP_NO_MIGRATE
},
1450 /* Return basic MPU access permission bits. */
1451 static uint32_t simple_mpu_ap_bits(uint32_t val
)
1458 for (i
= 0; i
< 16; i
+= 2) {
1459 ret
|= (val
>> i
) & mask
;
1465 /* Pad basic MPU access permission bits to extended format. */
1466 static uint32_t extended_mpu_ap_bits(uint32_t val
)
1473 for (i
= 0; i
< 16; i
+= 2) {
1474 ret
|= (val
& mask
) << i
;
1480 static void pmsav5_data_ap_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1483 env
->cp15
.pmsav5_data_ap
= extended_mpu_ap_bits(value
);
1486 static uint64_t pmsav5_data_ap_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1488 return simple_mpu_ap_bits(env
->cp15
.pmsav5_data_ap
);
1491 static void pmsav5_insn_ap_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1494 env
->cp15
.pmsav5_insn_ap
= extended_mpu_ap_bits(value
);
1497 static uint64_t pmsav5_insn_ap_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1499 return simple_mpu_ap_bits(env
->cp15
.pmsav5_insn_ap
);
1502 static const ARMCPRegInfo pmsav5_cp_reginfo
[] = {
1503 { .name
= "DATA_AP", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 0,
1504 .access
= PL1_RW
, .type
= ARM_CP_NO_MIGRATE
,
1505 .fieldoffset
= offsetof(CPUARMState
, cp15
.pmsav5_data_ap
),
1507 .readfn
= pmsav5_data_ap_read
, .writefn
= pmsav5_data_ap_write
, },
1508 { .name
= "INSN_AP", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 1,
1509 .access
= PL1_RW
, .type
= ARM_CP_NO_MIGRATE
,
1510 .fieldoffset
= offsetof(CPUARMState
, cp15
.pmsav5_insn_ap
),
1512 .readfn
= pmsav5_insn_ap_read
, .writefn
= pmsav5_insn_ap_write
, },
1513 { .name
= "DATA_EXT_AP", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 2,
1515 .fieldoffset
= offsetof(CPUARMState
, cp15
.pmsav5_data_ap
),
1517 { .name
= "INSN_EXT_AP", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 3,
1519 .fieldoffset
= offsetof(CPUARMState
, cp15
.pmsav5_insn_ap
),
1521 { .name
= "DCACHE_CFG", .cp
= 15, .crn
= 2, .crm
= 0, .opc1
= 0, .opc2
= 0,
1523 .fieldoffset
= offsetof(CPUARMState
, cp15
.c2_data
), .resetvalue
= 0, },
1524 { .name
= "ICACHE_CFG", .cp
= 15, .crn
= 2, .crm
= 0, .opc1
= 0, .opc2
= 1,
1526 .fieldoffset
= offsetof(CPUARMState
, cp15
.c2_insn
), .resetvalue
= 0, },
1527 /* Protection region base and size registers */
1528 { .name
= "946_PRBS0", .cp
= 15, .crn
= 6, .crm
= 0, .opc1
= 0,
1529 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
1530 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[0]) },
1531 { .name
= "946_PRBS1", .cp
= 15, .crn
= 6, .crm
= 1, .opc1
= 0,
1532 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
1533 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[1]) },
1534 { .name
= "946_PRBS2", .cp
= 15, .crn
= 6, .crm
= 2, .opc1
= 0,
1535 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
1536 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[2]) },
1537 { .name
= "946_PRBS3", .cp
= 15, .crn
= 6, .crm
= 3, .opc1
= 0,
1538 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
1539 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[3]) },
1540 { .name
= "946_PRBS4", .cp
= 15, .crn
= 6, .crm
= 4, .opc1
= 0,
1541 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
1542 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[4]) },
1543 { .name
= "946_PRBS5", .cp
= 15, .crn
= 6, .crm
= 5, .opc1
= 0,
1544 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
1545 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[5]) },
1546 { .name
= "946_PRBS6", .cp
= 15, .crn
= 6, .crm
= 6, .opc1
= 0,
1547 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
1548 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[6]) },
1549 { .name
= "946_PRBS7", .cp
= 15, .crn
= 6, .crm
= 7, .opc1
= 0,
1550 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
1551 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[7]) },
1555 static void vmsa_ttbcr_raw_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1558 int maskshift
= extract32(value
, 0, 3);
1560 if (!arm_feature(env
, ARM_FEATURE_V8
)) {
1561 if (arm_feature(env
, ARM_FEATURE_LPAE
) && (value
& TTBCR_EAE
)) {
1562 /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
1563 * using Long-desciptor translation table format */
1564 value
&= ~((7 << 19) | (3 << 14) | (0xf << 3));
1565 } else if (arm_feature(env
, ARM_FEATURE_EL3
)) {
1566 /* In an implementation that includes the Security Extensions
1567 * TTBCR has additional fields PD0 [4] and PD1 [5] for
1568 * Short-descriptor translation table format.
1570 value
&= TTBCR_PD1
| TTBCR_PD0
| TTBCR_N
;
1576 /* Note that we always calculate c2_mask and c2_base_mask, but
1577 * they are only used for short-descriptor tables (ie if EAE is 0);
1578 * for long-descriptor tables the TTBCR fields are used differently
1579 * and the c2_mask and c2_base_mask values are meaningless.
1581 raw_write(env
, ri
, value
);
1582 env
->cp15
.c2_mask
= ~(((uint32_t)0xffffffffu
) >> maskshift
);
1583 env
->cp15
.c2_base_mask
= ~((uint32_t)0x3fffu
>> maskshift
);
1586 static void vmsa_ttbcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1589 ARMCPU
*cpu
= arm_env_get_cpu(env
);
1591 if (arm_feature(env
, ARM_FEATURE_LPAE
)) {
1592 /* With LPAE the TTBCR could result in a change of ASID
1593 * via the TTBCR.A1 bit, so do a TLB flush.
1595 tlb_flush(CPU(cpu
), 1);
1597 vmsa_ttbcr_raw_write(env
, ri
, value
);
1600 static void vmsa_ttbcr_reset(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1602 env
->cp15
.c2_base_mask
= 0xffffc000u
;
1603 raw_write(env
, ri
, 0);
1604 env
->cp15
.c2_mask
= 0;
1607 static void vmsa_tcr_el1_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1610 ARMCPU
*cpu
= arm_env_get_cpu(env
);
1612 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
1613 tlb_flush(CPU(cpu
), 1);
1614 raw_write(env
, ri
, value
);
1617 static void vmsa_ttbr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1620 /* 64 bit accesses to the TTBRs can change the ASID and so we
1621 * must flush the TLB.
1623 if (cpreg_field_is_64bit(ri
)) {
1624 ARMCPU
*cpu
= arm_env_get_cpu(env
);
1626 tlb_flush(CPU(cpu
), 1);
1628 raw_write(env
, ri
, value
);
1631 static const ARMCPRegInfo vmsa_cp_reginfo
[] = {
1632 { .name
= "DFSR", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 0,
1633 .access
= PL1_RW
, .type
= ARM_CP_NO_MIGRATE
,
1634 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.esr_el
[1]),
1635 .resetfn
= arm_cp_reset_ignore
, },
1636 { .name
= "IFSR", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 1,
1638 .fieldoffset
= offsetof(CPUARMState
, cp15
.ifsr_el2
), .resetvalue
= 0, },
1639 { .name
= "ESR_EL1", .state
= ARM_CP_STATE_AA64
,
1640 .opc0
= 3, .crn
= 5, .crm
= 2, .opc1
= 0, .opc2
= 0,
1642 .fieldoffset
= offsetof(CPUARMState
, cp15
.esr_el
[1]), .resetvalue
= 0, },
1643 { .name
= "TTBR0_EL1", .state
= ARM_CP_STATE_BOTH
,
1644 .opc0
= 3, .crn
= 2, .crm
= 0, .opc1
= 0, .opc2
= 0,
1645 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.ttbr0_el1
),
1646 .writefn
= vmsa_ttbr_write
, .resetvalue
= 0 },
1647 { .name
= "TTBR1_EL1", .state
= ARM_CP_STATE_BOTH
,
1648 .opc0
= 3, .crn
= 2, .crm
= 0, .opc1
= 0, .opc2
= 1,
1649 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.ttbr1_el1
),
1650 .writefn
= vmsa_ttbr_write
, .resetvalue
= 0 },
1651 { .name
= "TCR_EL1", .state
= ARM_CP_STATE_AA64
,
1652 .opc0
= 3, .crn
= 2, .crm
= 0, .opc1
= 0, .opc2
= 2,
1653 .access
= PL1_RW
, .writefn
= vmsa_tcr_el1_write
,
1654 .resetfn
= vmsa_ttbcr_reset
, .raw_writefn
= raw_write
,
1655 .fieldoffset
= offsetof(CPUARMState
, cp15
.c2_control
) },
1656 { .name
= "TTBCR", .cp
= 15, .crn
= 2, .crm
= 0, .opc1
= 0, .opc2
= 2,
1657 .access
= PL1_RW
, .type
= ARM_CP_NO_MIGRATE
, .writefn
= vmsa_ttbcr_write
,
1658 .resetfn
= arm_cp_reset_ignore
, .raw_writefn
= vmsa_ttbcr_raw_write
,
1659 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.c2_control
) },
1660 /* 64-bit FAR; this entry also gives us the AArch32 DFAR */
1661 { .name
= "FAR_EL1", .state
= ARM_CP_STATE_BOTH
,
1662 .opc0
= 3, .crn
= 6, .crm
= 0, .opc1
= 0, .opc2
= 0,
1663 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.far_el
[1]),
1668 static void omap_ticonfig_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1671 env
->cp15
.c15_ticonfig
= value
& 0xe7;
1672 /* The OS_TYPE bit in this register changes the reported CPUID! */
1673 env
->cp15
.c0_cpuid
= (value
& (1 << 5)) ?
1674 ARM_CPUID_TI915T
: ARM_CPUID_TI925T
;
1677 static void omap_threadid_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1680 env
->cp15
.c15_threadid
= value
& 0xffff;
1683 static void omap_wfi_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1686 /* Wait-for-interrupt (deprecated) */
1687 cpu_interrupt(CPU(arm_env_get_cpu(env
)), CPU_INTERRUPT_HALT
);
1690 static void omap_cachemaint_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1693 /* On OMAP there are registers indicating the max/min index of dcache lines
1694 * containing a dirty line; cache flush operations have to reset these.
1696 env
->cp15
.c15_i_max
= 0x000;
1697 env
->cp15
.c15_i_min
= 0xff0;
1700 static const ARMCPRegInfo omap_cp_reginfo
[] = {
1701 { .name
= "DFSR", .cp
= 15, .crn
= 5, .crm
= CP_ANY
,
1702 .opc1
= CP_ANY
, .opc2
= CP_ANY
, .access
= PL1_RW
, .type
= ARM_CP_OVERRIDE
,
1703 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.esr_el
[1]),
1705 { .name
= "", .cp
= 15, .crn
= 15, .crm
= 0, .opc1
= 0, .opc2
= 0,
1706 .access
= PL1_RW
, .type
= ARM_CP_NOP
},
1707 { .name
= "TICONFIG", .cp
= 15, .crn
= 15, .crm
= 1, .opc1
= 0, .opc2
= 0,
1709 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_ticonfig
), .resetvalue
= 0,
1710 .writefn
= omap_ticonfig_write
},
1711 { .name
= "IMAX", .cp
= 15, .crn
= 15, .crm
= 2, .opc1
= 0, .opc2
= 0,
1713 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_i_max
), .resetvalue
= 0, },
1714 { .name
= "IMIN", .cp
= 15, .crn
= 15, .crm
= 3, .opc1
= 0, .opc2
= 0,
1715 .access
= PL1_RW
, .resetvalue
= 0xff0,
1716 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_i_min
) },
1717 { .name
= "THREADID", .cp
= 15, .crn
= 15, .crm
= 4, .opc1
= 0, .opc2
= 0,
1719 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_threadid
), .resetvalue
= 0,
1720 .writefn
= omap_threadid_write
},
1721 { .name
= "TI925T_STATUS", .cp
= 15, .crn
= 15,
1722 .crm
= 8, .opc1
= 0, .opc2
= 0, .access
= PL1_RW
,
1723 .type
= ARM_CP_NO_MIGRATE
,
1724 .readfn
= arm_cp_read_zero
, .writefn
= omap_wfi_write
, },
1725 /* TODO: Peripheral port remap register:
1726 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
1727 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
1730 { .name
= "OMAP_CACHEMAINT", .cp
= 15, .crn
= 7, .crm
= CP_ANY
,
1731 .opc1
= 0, .opc2
= CP_ANY
, .access
= PL1_W
,
1732 .type
= ARM_CP_OVERRIDE
| ARM_CP_NO_MIGRATE
,
1733 .writefn
= omap_cachemaint_write
},
1734 { .name
= "C9", .cp
= 15, .crn
= 9,
1735 .crm
= CP_ANY
, .opc1
= CP_ANY
, .opc2
= CP_ANY
, .access
= PL1_RW
,
1736 .type
= ARM_CP_CONST
| ARM_CP_OVERRIDE
, .resetvalue
= 0 },
1740 static void xscale_cpar_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1743 env
->cp15
.c15_cpar
= value
& 0x3fff;
1746 static const ARMCPRegInfo xscale_cp_reginfo
[] = {
1747 { .name
= "XSCALE_CPAR",
1748 .cp
= 15, .crn
= 15, .crm
= 1, .opc1
= 0, .opc2
= 0, .access
= PL1_RW
,
1749 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_cpar
), .resetvalue
= 0,
1750 .writefn
= xscale_cpar_write
, },
1751 { .name
= "XSCALE_AUXCR",
1752 .cp
= 15, .crn
= 1, .crm
= 0, .opc1
= 0, .opc2
= 1, .access
= PL1_RW
,
1753 .fieldoffset
= offsetof(CPUARMState
, cp15
.c1_xscaleauxcr
),
1755 /* XScale specific cache-lockdown: since we have no cache we NOP these
1756 * and hope the guest does not really rely on cache behaviour.
1758 { .name
= "XSCALE_LOCK_ICACHE_LINE",
1759 .cp
= 15, .opc1
= 0, .crn
= 9, .crm
= 1, .opc2
= 0,
1760 .access
= PL1_W
, .type
= ARM_CP_NOP
},
1761 { .name
= "XSCALE_UNLOCK_ICACHE",
1762 .cp
= 15, .opc1
= 0, .crn
= 9, .crm
= 1, .opc2
= 1,
1763 .access
= PL1_W
, .type
= ARM_CP_NOP
},
1764 { .name
= "XSCALE_DCACHE_LOCK",
1765 .cp
= 15, .opc1
= 0, .crn
= 9, .crm
= 2, .opc2
= 0,
1766 .access
= PL1_RW
, .type
= ARM_CP_NOP
},
1767 { .name
= "XSCALE_UNLOCK_DCACHE",
1768 .cp
= 15, .opc1
= 0, .crn
= 9, .crm
= 2, .opc2
= 1,
1769 .access
= PL1_W
, .type
= ARM_CP_NOP
},
1773 static const ARMCPRegInfo dummy_c15_cp_reginfo
[] = {
1774 /* RAZ/WI the whole crn=15 space, when we don't have a more specific
1775 * implementation of this implementation-defined space.
1776 * Ideally this should eventually disappear in favour of actually
1777 * implementing the correct behaviour for all cores.
1779 { .name
= "C15_IMPDEF", .cp
= 15, .crn
= 15,
1780 .crm
= CP_ANY
, .opc1
= CP_ANY
, .opc2
= CP_ANY
,
1782 .type
= ARM_CP_CONST
| ARM_CP_NO_MIGRATE
| ARM_CP_OVERRIDE
,
1787 static const ARMCPRegInfo cache_dirty_status_cp_reginfo
[] = {
1788 /* Cache status: RAZ because we have no cache so it's always clean */
1789 { .name
= "CDSR", .cp
= 15, .crn
= 7, .crm
= 10, .opc1
= 0, .opc2
= 6,
1790 .access
= PL1_R
, .type
= ARM_CP_CONST
| ARM_CP_NO_MIGRATE
,
1795 static const ARMCPRegInfo cache_block_ops_cp_reginfo
[] = {
1796 /* We never have a a block transfer operation in progress */
1797 { .name
= "BXSR", .cp
= 15, .crn
= 7, .crm
= 12, .opc1
= 0, .opc2
= 4,
1798 .access
= PL0_R
, .type
= ARM_CP_CONST
| ARM_CP_NO_MIGRATE
,
1800 /* The cache ops themselves: these all NOP for QEMU */
1801 { .name
= "IICR", .cp
= 15, .crm
= 5, .opc1
= 0,
1802 .access
= PL1_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
1803 { .name
= "IDCR", .cp
= 15, .crm
= 6, .opc1
= 0,
1804 .access
= PL1_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
1805 { .name
= "CDCR", .cp
= 15, .crm
= 12, .opc1
= 0,
1806 .access
= PL0_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
1807 { .name
= "PIR", .cp
= 15, .crm
= 12, .opc1
= 1,
1808 .access
= PL0_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
1809 { .name
= "PDR", .cp
= 15, .crm
= 12, .opc1
= 2,
1810 .access
= PL0_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
1811 { .name
= "CIDCR", .cp
= 15, .crm
= 14, .opc1
= 0,
1812 .access
= PL1_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
1816 static const ARMCPRegInfo cache_test_clean_cp_reginfo
[] = {
1817 /* The cache test-and-clean instructions always return (1 << 30)
1818 * to indicate that there are no dirty cache lines.
1820 { .name
= "TC_DCACHE", .cp
= 15, .crn
= 7, .crm
= 10, .opc1
= 0, .opc2
= 3,
1821 .access
= PL0_R
, .type
= ARM_CP_CONST
| ARM_CP_NO_MIGRATE
,
1822 .resetvalue
= (1 << 30) },
1823 { .name
= "TCI_DCACHE", .cp
= 15, .crn
= 7, .crm
= 14, .opc1
= 0, .opc2
= 3,
1824 .access
= PL0_R
, .type
= ARM_CP_CONST
| ARM_CP_NO_MIGRATE
,
1825 .resetvalue
= (1 << 30) },
1829 static const ARMCPRegInfo strongarm_cp_reginfo
[] = {
1830 /* Ignore ReadBuffer accesses */
1831 { .name
= "C9_READBUFFER", .cp
= 15, .crn
= 9,
1832 .crm
= CP_ANY
, .opc1
= CP_ANY
, .opc2
= CP_ANY
,
1833 .access
= PL1_RW
, .resetvalue
= 0,
1834 .type
= ARM_CP_CONST
| ARM_CP_OVERRIDE
| ARM_CP_NO_MIGRATE
},
1838 static uint64_t mpidr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1840 CPUState
*cs
= CPU(arm_env_get_cpu(env
));
1841 uint32_t mpidr
= cs
->cpu_index
;
1842 /* We don't support setting cluster ID ([8..11]) (known as Aff1
1843 * in later ARM ARM versions), or any of the higher affinity level fields,
1844 * so these bits always RAZ.
1846 if (arm_feature(env
, ARM_FEATURE_V7MP
)) {
1847 mpidr
|= (1U << 31);
1848 /* Cores which are uniprocessor (non-coherent)
1849 * but still implement the MP extensions set
1850 * bit 30. (For instance, A9UP.) However we do
1851 * not currently model any of those cores.
1857 static const ARMCPRegInfo mpidr_cp_reginfo
[] = {
1858 { .name
= "MPIDR", .state
= ARM_CP_STATE_BOTH
,
1859 .opc0
= 3, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 5,
1860 .access
= PL1_R
, .readfn
= mpidr_read
, .type
= ARM_CP_NO_MIGRATE
},
1864 static const ARMCPRegInfo lpae_cp_reginfo
[] = {
1865 /* NOP AMAIR0/1: the override is because these clash with the rather
1866 * broadly specified TLB_LOCKDOWN entry in the generic cp_reginfo.
1868 { .name
= "AMAIR0", .state
= ARM_CP_STATE_BOTH
,
1869 .opc0
= 3, .crn
= 10, .crm
= 3, .opc1
= 0, .opc2
= 0,
1870 .access
= PL1_RW
, .type
= ARM_CP_CONST
| ARM_CP_OVERRIDE
,
1872 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
1873 { .name
= "AMAIR1", .cp
= 15, .crn
= 10, .crm
= 3, .opc1
= 0, .opc2
= 1,
1874 .access
= PL1_RW
, .type
= ARM_CP_CONST
| ARM_CP_OVERRIDE
,
1876 { .name
= "PAR", .cp
= 15, .crm
= 7, .opc1
= 0,
1877 .access
= PL1_RW
, .type
= ARM_CP_64BIT
,
1878 .fieldoffset
= offsetof(CPUARMState
, cp15
.par_el1
), .resetvalue
= 0 },
1879 { .name
= "TTBR0", .cp
= 15, .crm
= 2, .opc1
= 0,
1880 .access
= PL1_RW
, .type
= ARM_CP_64BIT
| ARM_CP_NO_MIGRATE
,
1881 .fieldoffset
= offsetof(CPUARMState
, cp15
.ttbr0_el1
),
1882 .writefn
= vmsa_ttbr_write
, .resetfn
= arm_cp_reset_ignore
},
1883 { .name
= "TTBR1", .cp
= 15, .crm
= 2, .opc1
= 1,
1884 .access
= PL1_RW
, .type
= ARM_CP_64BIT
| ARM_CP_NO_MIGRATE
,
1885 .fieldoffset
= offsetof(CPUARMState
, cp15
.ttbr1_el1
),
1886 .writefn
= vmsa_ttbr_write
, .resetfn
= arm_cp_reset_ignore
},
1890 static uint64_t aa64_fpcr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1892 return vfp_get_fpcr(env
);
1895 static void aa64_fpcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1898 vfp_set_fpcr(env
, value
);
1901 static uint64_t aa64_fpsr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1903 return vfp_get_fpsr(env
);
1906 static void aa64_fpsr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1909 vfp_set_fpsr(env
, value
);
1912 static CPAccessResult
aa64_daif_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1914 if (arm_current_pl(env
) == 0 && !(env
->cp15
.c1_sys
& SCTLR_UMA
)) {
1915 return CP_ACCESS_TRAP
;
1917 return CP_ACCESS_OK
;
1920 static void aa64_daif_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1923 env
->daif
= value
& PSTATE_DAIF
;
1926 static CPAccessResult
aa64_cacheop_access(CPUARMState
*env
,
1927 const ARMCPRegInfo
*ri
)
1929 /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless
1930 * SCTLR_EL1.UCI is set.
1932 if (arm_current_pl(env
) == 0 && !(env
->cp15
.c1_sys
& SCTLR_UCI
)) {
1933 return CP_ACCESS_TRAP
;
1935 return CP_ACCESS_OK
;
1938 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
1939 * Page D4-1736 (DDI0487A.b)
1942 static void tlbi_aa64_va_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1945 /* Invalidate by VA (AArch64 version) */
1946 ARMCPU
*cpu
= arm_env_get_cpu(env
);
1947 uint64_t pageaddr
= sextract64(value
<< 12, 0, 56);
1949 tlb_flush_page(CPU(cpu
), pageaddr
);
1952 static void tlbi_aa64_vaa_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1955 /* Invalidate by VA, all ASIDs (AArch64 version) */
1956 ARMCPU
*cpu
= arm_env_get_cpu(env
);
1957 uint64_t pageaddr
= sextract64(value
<< 12, 0, 56);
1959 tlb_flush_page(CPU(cpu
), pageaddr
);
1962 static void tlbi_aa64_asid_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1965 /* Invalidate by ASID (AArch64 version) */
1966 ARMCPU
*cpu
= arm_env_get_cpu(env
);
1967 int asid
= extract64(value
, 48, 16);
1968 tlb_flush(CPU(cpu
), asid
== 0);
1971 static void tlbi_aa64_va_is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1975 uint64_t pageaddr
= sextract64(value
<< 12, 0, 56);
1977 CPU_FOREACH(other_cs
) {
1978 tlb_flush_page(other_cs
, pageaddr
);
1982 static void tlbi_aa64_vaa_is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1986 uint64_t pageaddr
= sextract64(value
<< 12, 0, 56);
1988 CPU_FOREACH(other_cs
) {
1989 tlb_flush_page(other_cs
, pageaddr
);
1993 static void tlbi_aa64_asid_is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1997 int asid
= extract64(value
, 48, 16);
1999 CPU_FOREACH(other_cs
) {
2000 tlb_flush(other_cs
, asid
== 0);
2004 static CPAccessResult
aa64_zva_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2006 /* We don't implement EL2, so the only control on DC ZVA is the
2007 * bit in the SCTLR which can prohibit access for EL0.
2009 if (arm_current_pl(env
) == 0 && !(env
->cp15
.c1_sys
& SCTLR_DZE
)) {
2010 return CP_ACCESS_TRAP
;
2012 return CP_ACCESS_OK
;
2015 static uint64_t aa64_dczid_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2017 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2018 int dzp_bit
= 1 << 4;
2020 /* DZP indicates whether DC ZVA access is allowed */
2021 if (aa64_zva_access(env
, NULL
) != CP_ACCESS_OK
) {
2024 return cpu
->dcz_blocksize
| dzp_bit
;
2027 static CPAccessResult
sp_el0_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2029 if (!(env
->pstate
& PSTATE_SP
)) {
2030 /* Access to SP_EL0 is undefined if it's being used as
2031 * the stack pointer.
2033 return CP_ACCESS_TRAP_UNCATEGORIZED
;
2035 return CP_ACCESS_OK
;
2038 static uint64_t spsel_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2040 return env
->pstate
& PSTATE_SP
;
2043 static void spsel_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t val
)
2045 update_spsel(env
, val
);
2048 static const ARMCPRegInfo v8_cp_reginfo
[] = {
2049 /* Minimal set of EL0-visible registers. This will need to be expanded
2050 * significantly for system emulation of AArch64 CPUs.
2052 { .name
= "NZCV", .state
= ARM_CP_STATE_AA64
,
2053 .opc0
= 3, .opc1
= 3, .opc2
= 0, .crn
= 4, .crm
= 2,
2054 .access
= PL0_RW
, .type
= ARM_CP_NZCV
},
2055 { .name
= "DAIF", .state
= ARM_CP_STATE_AA64
,
2056 .opc0
= 3, .opc1
= 3, .opc2
= 1, .crn
= 4, .crm
= 2,
2057 .type
= ARM_CP_NO_MIGRATE
,
2058 .access
= PL0_RW
, .accessfn
= aa64_daif_access
,
2059 .fieldoffset
= offsetof(CPUARMState
, daif
),
2060 .writefn
= aa64_daif_write
, .resetfn
= arm_cp_reset_ignore
},
2061 { .name
= "FPCR", .state
= ARM_CP_STATE_AA64
,
2062 .opc0
= 3, .opc1
= 3, .opc2
= 0, .crn
= 4, .crm
= 4,
2063 .access
= PL0_RW
, .readfn
= aa64_fpcr_read
, .writefn
= aa64_fpcr_write
},
2064 { .name
= "FPSR", .state
= ARM_CP_STATE_AA64
,
2065 .opc0
= 3, .opc1
= 3, .opc2
= 1, .crn
= 4, .crm
= 4,
2066 .access
= PL0_RW
, .readfn
= aa64_fpsr_read
, .writefn
= aa64_fpsr_write
},
2067 { .name
= "DCZID_EL0", .state
= ARM_CP_STATE_AA64
,
2068 .opc0
= 3, .opc1
= 3, .opc2
= 7, .crn
= 0, .crm
= 0,
2069 .access
= PL0_R
, .type
= ARM_CP_NO_MIGRATE
,
2070 .readfn
= aa64_dczid_read
},
2071 { .name
= "DC_ZVA", .state
= ARM_CP_STATE_AA64
,
2072 .opc0
= 1, .opc1
= 3, .crn
= 7, .crm
= 4, .opc2
= 1,
2073 .access
= PL0_W
, .type
= ARM_CP_DC_ZVA
,
2074 #ifndef CONFIG_USER_ONLY
2075 /* Avoid overhead of an access check that always passes in user-mode */
2076 .accessfn
= aa64_zva_access
,
2079 { .name
= "CURRENTEL", .state
= ARM_CP_STATE_AA64
,
2080 .opc0
= 3, .opc1
= 0, .opc2
= 2, .crn
= 4, .crm
= 2,
2081 .access
= PL1_R
, .type
= ARM_CP_CURRENTEL
},
2082 /* Cache ops: all NOPs since we don't emulate caches */
2083 { .name
= "IC_IALLUIS", .state
= ARM_CP_STATE_AA64
,
2084 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 1, .opc2
= 0,
2085 .access
= PL1_W
, .type
= ARM_CP_NOP
},
2086 { .name
= "IC_IALLU", .state
= ARM_CP_STATE_AA64
,
2087 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 5, .opc2
= 0,
2088 .access
= PL1_W
, .type
= ARM_CP_NOP
},
2089 { .name
= "IC_IVAU", .state
= ARM_CP_STATE_AA64
,
2090 .opc0
= 1, .opc1
= 3, .crn
= 7, .crm
= 5, .opc2
= 1,
2091 .access
= PL0_W
, .type
= ARM_CP_NOP
,
2092 .accessfn
= aa64_cacheop_access
},
2093 { .name
= "DC_IVAC", .state
= ARM_CP_STATE_AA64
,
2094 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 6, .opc2
= 1,
2095 .access
= PL1_W
, .type
= ARM_CP_NOP
},
2096 { .name
= "DC_ISW", .state
= ARM_CP_STATE_AA64
,
2097 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 6, .opc2
= 2,
2098 .access
= PL1_W
, .type
= ARM_CP_NOP
},
2099 { .name
= "DC_CVAC", .state
= ARM_CP_STATE_AA64
,
2100 .opc0
= 1, .opc1
= 3, .crn
= 7, .crm
= 10, .opc2
= 1,
2101 .access
= PL0_W
, .type
= ARM_CP_NOP
,
2102 .accessfn
= aa64_cacheop_access
},
2103 { .name
= "DC_CSW", .state
= ARM_CP_STATE_AA64
,
2104 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 10, .opc2
= 2,
2105 .access
= PL1_W
, .type
= ARM_CP_NOP
},
2106 { .name
= "DC_CVAU", .state
= ARM_CP_STATE_AA64
,
2107 .opc0
= 1, .opc1
= 3, .crn
= 7, .crm
= 11, .opc2
= 1,
2108 .access
= PL0_W
, .type
= ARM_CP_NOP
,
2109 .accessfn
= aa64_cacheop_access
},
2110 { .name
= "DC_CIVAC", .state
= ARM_CP_STATE_AA64
,
2111 .opc0
= 1, .opc1
= 3, .crn
= 7, .crm
= 14, .opc2
= 1,
2112 .access
= PL0_W
, .type
= ARM_CP_NOP
,
2113 .accessfn
= aa64_cacheop_access
},
2114 { .name
= "DC_CISW", .state
= ARM_CP_STATE_AA64
,
2115 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 14, .opc2
= 2,
2116 .access
= PL1_W
, .type
= ARM_CP_NOP
},
2117 /* TLBI operations */
2118 { .name
= "TLBI_VMALLE1IS", .state
= ARM_CP_STATE_AA64
,
2119 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 0,
2120 .access
= PL1_W
, .type
= ARM_CP_NO_MIGRATE
,
2121 .writefn
= tlbiall_is_write
},
2122 { .name
= "TLBI_VAE1IS", .state
= ARM_CP_STATE_AA64
,
2123 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 1,
2124 .access
= PL1_W
, .type
= ARM_CP_NO_MIGRATE
,
2125 .writefn
= tlbi_aa64_va_is_write
},
2126 { .name
= "TLBI_ASIDE1IS", .state
= ARM_CP_STATE_AA64
,
2127 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 2,
2128 .access
= PL1_W
, .type
= ARM_CP_NO_MIGRATE
,
2129 .writefn
= tlbi_aa64_asid_is_write
},
2130 { .name
= "TLBI_VAAE1IS", .state
= ARM_CP_STATE_AA64
,
2131 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 3,
2132 .access
= PL1_W
, .type
= ARM_CP_NO_MIGRATE
,
2133 .writefn
= tlbi_aa64_vaa_is_write
},
2134 { .name
= "TLBI_VALE1IS", .state
= ARM_CP_STATE_AA64
,
2135 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 5,
2136 .access
= PL1_W
, .type
= ARM_CP_NO_MIGRATE
,
2137 .writefn
= tlbi_aa64_va_is_write
},
2138 { .name
= "TLBI_VAALE1IS", .state
= ARM_CP_STATE_AA64
,
2139 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 7,
2140 .access
= PL1_W
, .type
= ARM_CP_NO_MIGRATE
,
2141 .writefn
= tlbi_aa64_vaa_is_write
},
2142 { .name
= "TLBI_VMALLE1", .state
= ARM_CP_STATE_AA64
,
2143 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 0,
2144 .access
= PL1_W
, .type
= ARM_CP_NO_MIGRATE
,
2145 .writefn
= tlbiall_write
},
2146 { .name
= "TLBI_VAE1", .state
= ARM_CP_STATE_AA64
,
2147 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 1,
2148 .access
= PL1_W
, .type
= ARM_CP_NO_MIGRATE
,
2149 .writefn
= tlbi_aa64_va_write
},
2150 { .name
= "TLBI_ASIDE1", .state
= ARM_CP_STATE_AA64
,
2151 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 2,
2152 .access
= PL1_W
, .type
= ARM_CP_NO_MIGRATE
,
2153 .writefn
= tlbi_aa64_asid_write
},
2154 { .name
= "TLBI_VAAE1", .state
= ARM_CP_STATE_AA64
,
2155 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 3,
2156 .access
= PL1_W
, .type
= ARM_CP_NO_MIGRATE
,
2157 .writefn
= tlbi_aa64_vaa_write
},
2158 { .name
= "TLBI_VALE1", .state
= ARM_CP_STATE_AA64
,
2159 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 5,
2160 .access
= PL1_W
, .type
= ARM_CP_NO_MIGRATE
,
2161 .writefn
= tlbi_aa64_va_write
},
2162 { .name
= "TLBI_VAALE1", .state
= ARM_CP_STATE_AA64
,
2163 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 7,
2164 .access
= PL1_W
, .type
= ARM_CP_NO_MIGRATE
,
2165 .writefn
= tlbi_aa64_vaa_write
},
2166 #ifndef CONFIG_USER_ONLY
2167 /* 64 bit address translation operations */
2168 { .name
= "AT_S1E1R", .state
= ARM_CP_STATE_AA64
,
2169 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 8, .opc2
= 0,
2170 .access
= PL1_W
, .type
= ARM_CP_NO_MIGRATE
, .writefn
= ats_write
},
2171 { .name
= "AT_S1E1W", .state
= ARM_CP_STATE_AA64
,
2172 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 8, .opc2
= 1,
2173 .access
= PL1_W
, .type
= ARM_CP_NO_MIGRATE
, .writefn
= ats_write
},
2174 { .name
= "AT_S1E0R", .state
= ARM_CP_STATE_AA64
,
2175 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 8, .opc2
= 2,
2176 .access
= PL1_W
, .type
= ARM_CP_NO_MIGRATE
, .writefn
= ats_write
},
2177 { .name
= "AT_S1E0W", .state
= ARM_CP_STATE_AA64
,
2178 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 8, .opc2
= 3,
2179 .access
= PL1_W
, .type
= ARM_CP_NO_MIGRATE
, .writefn
= ats_write
},
2181 /* TLB invalidate last level of translation table walk */
2182 { .name
= "TLBIMVALIS", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 5,
2183 .type
= ARM_CP_NO_MIGRATE
, .access
= PL1_W
, .writefn
= tlbimva_is_write
},
2184 { .name
= "TLBIMVAALIS", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 7,
2185 .type
= ARM_CP_NO_MIGRATE
, .access
= PL1_W
,
2186 .writefn
= tlbimvaa_is_write
},
2187 { .name
= "TLBIMVAL", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 5,
2188 .type
= ARM_CP_NO_MIGRATE
, .access
= PL1_W
, .writefn
= tlbimva_write
},
2189 { .name
= "TLBIMVAAL", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 7,
2190 .type
= ARM_CP_NO_MIGRATE
, .access
= PL1_W
, .writefn
= tlbimvaa_write
},
2191 /* 32 bit cache operations */
2192 { .name
= "ICIALLUIS", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 1, .opc2
= 0,
2193 .type
= ARM_CP_NOP
, .access
= PL1_W
},
2194 { .name
= "BPIALLUIS", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 1, .opc2
= 6,
2195 .type
= ARM_CP_NOP
, .access
= PL1_W
},
2196 { .name
= "ICIALLU", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 5, .opc2
= 0,
2197 .type
= ARM_CP_NOP
, .access
= PL1_W
},
2198 { .name
= "ICIMVAU", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 5, .opc2
= 1,
2199 .type
= ARM_CP_NOP
, .access
= PL1_W
},
2200 { .name
= "BPIALL", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 5, .opc2
= 6,
2201 .type
= ARM_CP_NOP
, .access
= PL1_W
},
2202 { .name
= "BPIMVA", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 5, .opc2
= 7,
2203 .type
= ARM_CP_NOP
, .access
= PL1_W
},
2204 { .name
= "DCIMVAC", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 6, .opc2
= 1,
2205 .type
= ARM_CP_NOP
, .access
= PL1_W
},
2206 { .name
= "DCISW", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 6, .opc2
= 2,
2207 .type
= ARM_CP_NOP
, .access
= PL1_W
},
2208 { .name
= "DCCMVAC", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 10, .opc2
= 1,
2209 .type
= ARM_CP_NOP
, .access
= PL1_W
},
2210 { .name
= "DCCSW", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 10, .opc2
= 2,
2211 .type
= ARM_CP_NOP
, .access
= PL1_W
},
2212 { .name
= "DCCMVAU", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 11, .opc2
= 1,
2213 .type
= ARM_CP_NOP
, .access
= PL1_W
},
2214 { .name
= "DCCIMVAC", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 14, .opc2
= 1,
2215 .type
= ARM_CP_NOP
, .access
= PL1_W
},
2216 { .name
= "DCCISW", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 14, .opc2
= 2,
2217 .type
= ARM_CP_NOP
, .access
= PL1_W
},
2218 /* MMU Domain access control / MPU write buffer control */
2219 { .name
= "DACR", .cp
= 15,
2220 .opc1
= 0, .crn
= 3, .crm
= 0, .opc2
= 0,
2221 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.c3
),
2222 .resetvalue
= 0, .writefn
= dacr_write
, .raw_writefn
= raw_write
, },
2223 { .name
= "ELR_EL1", .state
= ARM_CP_STATE_AA64
,
2224 .type
= ARM_CP_NO_MIGRATE
,
2225 .opc0
= 3, .opc1
= 0, .crn
= 4, .crm
= 0, .opc2
= 1,
2227 .fieldoffset
= offsetof(CPUARMState
, elr_el
[1]) },
2228 { .name
= "SPSR_EL1", .state
= ARM_CP_STATE_AA64
,
2229 .type
= ARM_CP_NO_MIGRATE
,
2230 .opc0
= 3, .opc1
= 0, .crn
= 4, .crm
= 0, .opc2
= 0,
2231 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, banked_spsr
[0]) },
2232 /* We rely on the access checks not allowing the guest to write to the
2233 * state field when SPSel indicates that it's being used as the stack
2236 { .name
= "SP_EL0", .state
= ARM_CP_STATE_AA64
,
2237 .opc0
= 3, .opc1
= 0, .crn
= 4, .crm
= 1, .opc2
= 0,
2238 .access
= PL1_RW
, .accessfn
= sp_el0_access
,
2239 .type
= ARM_CP_NO_MIGRATE
,
2240 .fieldoffset
= offsetof(CPUARMState
, sp_el
[0]) },
2241 { .name
= "SPSel", .state
= ARM_CP_STATE_AA64
,
2242 .opc0
= 3, .opc1
= 0, .crn
= 4, .crm
= 2, .opc2
= 0,
2243 .type
= ARM_CP_NO_MIGRATE
,
2244 .access
= PL1_RW
, .readfn
= spsel_read
, .writefn
= spsel_write
},
2248 /* Used to describe the behaviour of EL2 regs when EL2 does not exist. */
2249 static const ARMCPRegInfo v8_el3_no_el2_cp_reginfo
[] = {
2250 { .name
= "VBAR_EL2", .state
= ARM_CP_STATE_AA64
,
2251 .opc0
= 3, .opc1
= 4, .crn
= 12, .crm
= 0, .opc2
= 0,
2253 .readfn
= arm_cp_read_zero
, .writefn
= arm_cp_write_ignore
},
2254 { .name
= "HCR_EL2", .state
= ARM_CP_STATE_AA64
,
2255 .type
= ARM_CP_NO_MIGRATE
,
2256 .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 1, .opc2
= 0,
2258 .readfn
= arm_cp_read_zero
, .writefn
= arm_cp_write_ignore
},
2262 static void hcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
2264 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2265 uint64_t valid_mask
= HCR_MASK
;
2267 if (arm_feature(env
, ARM_FEATURE_EL3
)) {
2268 valid_mask
&= ~HCR_HCD
;
2270 valid_mask
&= ~HCR_TSC
;
2273 /* Clear RES0 bits. */
2274 value
&= valid_mask
;
2276 /* These bits change the MMU setup:
2277 * HCR_VM enables stage 2 translation
2278 * HCR_PTW forbids certain page-table setups
2279 * HCR_DC Disables stage1 and enables stage2 translation
2281 if ((raw_read(env
, ri
) ^ value
) & (HCR_VM
| HCR_PTW
| HCR_DC
)) {
2282 tlb_flush(CPU(cpu
), 1);
2284 raw_write(env
, ri
, value
);
2287 static const ARMCPRegInfo v8_el2_cp_reginfo
[] = {
2288 { .name
= "HCR_EL2", .state
= ARM_CP_STATE_AA64
,
2289 .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 1, .opc2
= 0,
2290 .access
= PL2_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.hcr_el2
),
2291 .writefn
= hcr_write
},
2292 { .name
= "ELR_EL2", .state
= ARM_CP_STATE_AA64
,
2293 .type
= ARM_CP_NO_MIGRATE
,
2294 .opc0
= 3, .opc1
= 4, .crn
= 4, .crm
= 0, .opc2
= 1,
2296 .fieldoffset
= offsetof(CPUARMState
, elr_el
[2]) },
2297 { .name
= "ESR_EL2", .state
= ARM_CP_STATE_AA64
,
2298 .type
= ARM_CP_NO_MIGRATE
,
2299 .opc0
= 3, .opc1
= 4, .crn
= 5, .crm
= 2, .opc2
= 0,
2300 .access
= PL2_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.esr_el
[2]) },
2301 { .name
= "FAR_EL2", .state
= ARM_CP_STATE_AA64
,
2302 .opc0
= 3, .opc1
= 4, .crn
= 6, .crm
= 0, .opc2
= 0,
2303 .access
= PL2_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.far_el
[2]) },
2304 { .name
= "SPSR_EL2", .state
= ARM_CP_STATE_AA64
,
2305 .type
= ARM_CP_NO_MIGRATE
,
2306 .opc0
= 3, .opc1
= 4, .crn
= 4, .crm
= 0, .opc2
= 0,
2307 .access
= PL2_RW
, .fieldoffset
= offsetof(CPUARMState
, banked_spsr
[6]) },
2308 { .name
= "VBAR_EL2", .state
= ARM_CP_STATE_AA64
,
2309 .opc0
= 3, .opc1
= 4, .crn
= 12, .crm
= 0, .opc2
= 0,
2310 .access
= PL2_RW
, .writefn
= vbar_write
,
2311 .fieldoffset
= offsetof(CPUARMState
, cp15
.vbar_el
[2]),
2316 static const ARMCPRegInfo v8_el3_cp_reginfo
[] = {
2317 { .name
= "ELR_EL3", .state
= ARM_CP_STATE_AA64
,
2318 .type
= ARM_CP_NO_MIGRATE
,
2319 .opc0
= 3, .opc1
= 6, .crn
= 4, .crm
= 0, .opc2
= 1,
2321 .fieldoffset
= offsetof(CPUARMState
, elr_el
[3]) },
2322 { .name
= "ESR_EL3", .state
= ARM_CP_STATE_AA64
,
2323 .type
= ARM_CP_NO_MIGRATE
,
2324 .opc0
= 3, .opc1
= 6, .crn
= 5, .crm
= 2, .opc2
= 0,
2325 .access
= PL3_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.esr_el
[3]) },
2326 { .name
= "FAR_EL3", .state
= ARM_CP_STATE_AA64
,
2327 .opc0
= 3, .opc1
= 6, .crn
= 6, .crm
= 0, .opc2
= 0,
2328 .access
= PL3_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.far_el
[3]) },
2329 { .name
= "SPSR_EL3", .state
= ARM_CP_STATE_AA64
,
2330 .type
= ARM_CP_NO_MIGRATE
,
2331 .opc0
= 3, .opc1
= 6, .crn
= 4, .crm
= 0, .opc2
= 0,
2332 .access
= PL3_RW
, .fieldoffset
= offsetof(CPUARMState
, banked_spsr
[7]) },
2333 { .name
= "VBAR_EL3", .state
= ARM_CP_STATE_AA64
,
2334 .opc0
= 3, .opc1
= 6, .crn
= 12, .crm
= 0, .opc2
= 0,
2335 .access
= PL3_RW
, .writefn
= vbar_write
,
2336 .fieldoffset
= offsetof(CPUARMState
, cp15
.vbar_el
[3]),
2338 { .name
= "SCR_EL3", .state
= ARM_CP_STATE_AA64
,
2339 .type
= ARM_CP_NO_MIGRATE
,
2340 .opc0
= 3, .opc1
= 6, .crn
= 1, .crm
= 1, .opc2
= 0,
2341 .access
= PL3_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.scr_el3
),
2342 .writefn
= scr_write
},
2346 static void sctlr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2349 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2351 if (raw_read(env
, ri
) == value
) {
2352 /* Skip the TLB flush if nothing actually changed; Linux likes
2353 * to do a lot of pointless SCTLR writes.
2358 raw_write(env
, ri
, value
);
2359 /* ??? Lots of these bits are not implemented. */
2360 /* This may enable/disable the MMU, so do a TLB flush. */
2361 tlb_flush(CPU(cpu
), 1);
2364 static CPAccessResult
ctr_el0_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2366 /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64,
2367 * but the AArch32 CTR has its own reginfo struct)
2369 if (arm_current_pl(env
) == 0 && !(env
->cp15
.c1_sys
& SCTLR_UCT
)) {
2370 return CP_ACCESS_TRAP
;
2372 return CP_ACCESS_OK
;
2375 static const ARMCPRegInfo debug_cp_reginfo
[] = {
2376 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
2377 * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1;
2378 * unlike DBGDRAR it is never accessible from EL0.
2379 * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64
2382 { .name
= "DBGDRAR", .cp
= 14, .crn
= 1, .crm
= 0, .opc1
= 0, .opc2
= 0,
2383 .access
= PL0_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
2384 { .name
= "MDRAR_EL1", .state
= ARM_CP_STATE_AA64
,
2385 .opc0
= 2, .opc1
= 0, .crn
= 1, .crm
= 0, .opc2
= 0,
2386 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
2387 { .name
= "DBGDSAR", .cp
= 14, .crn
= 2, .crm
= 0, .opc1
= 0, .opc2
= 0,
2388 .access
= PL0_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
2389 /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */
2390 { .name
= "MDSCR_EL1", .state
= ARM_CP_STATE_BOTH
,
2391 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 2,
2393 .fieldoffset
= offsetof(CPUARMState
, cp15
.mdscr_el1
),
2395 /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1.
2396 * We don't implement the configurable EL0 access.
2398 { .name
= "MDCCSR_EL0", .state
= ARM_CP_STATE_BOTH
,
2399 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 0,
2400 .type
= ARM_CP_NO_MIGRATE
,
2402 .fieldoffset
= offsetof(CPUARMState
, cp15
.mdscr_el1
),
2403 .resetfn
= arm_cp_reset_ignore
},
2404 /* We define a dummy WI OSLAR_EL1, because Linux writes to it. */
2405 { .name
= "OSLAR_EL1", .state
= ARM_CP_STATE_BOTH
,
2406 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 1, .crm
= 0, .opc2
= 4,
2407 .access
= PL1_W
, .type
= ARM_CP_NOP
},
2408 /* Dummy OSDLR_EL1: 32-bit Linux will read this */
2409 { .name
= "OSDLR_EL1", .state
= ARM_CP_STATE_BOTH
,
2410 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 1, .crm
= 3, .opc2
= 4,
2411 .access
= PL1_RW
, .type
= ARM_CP_NOP
},
2412 /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't
2413 * implement vector catch debug events yet.
2416 .cp
= 14, .opc1
= 0, .crn
= 0, .crm
= 7, .opc2
= 0,
2417 .access
= PL1_RW
, .type
= ARM_CP_NOP
},
2421 static const ARMCPRegInfo debug_lpae_cp_reginfo
[] = {
2422 /* 64 bit access versions of the (dummy) debug registers */
2423 { .name
= "DBGDRAR", .cp
= 14, .crm
= 1, .opc1
= 0,
2424 .access
= PL0_R
, .type
= ARM_CP_CONST
|ARM_CP_64BIT
, .resetvalue
= 0 },
2425 { .name
= "DBGDSAR", .cp
= 14, .crm
= 2, .opc1
= 0,
2426 .access
= PL0_R
, .type
= ARM_CP_CONST
|ARM_CP_64BIT
, .resetvalue
= 0 },
2430 void hw_watchpoint_update(ARMCPU
*cpu
, int n
)
2432 CPUARMState
*env
= &cpu
->env
;
2434 vaddr wvr
= env
->cp15
.dbgwvr
[n
];
2435 uint64_t wcr
= env
->cp15
.dbgwcr
[n
];
2437 int flags
= BP_CPU
| BP_STOP_BEFORE_ACCESS
;
2439 if (env
->cpu_watchpoint
[n
]) {
2440 cpu_watchpoint_remove_by_ref(CPU(cpu
), env
->cpu_watchpoint
[n
]);
2441 env
->cpu_watchpoint
[n
] = NULL
;
2444 if (!extract64(wcr
, 0, 1)) {
2445 /* E bit clear : watchpoint disabled */
2449 switch (extract64(wcr
, 3, 2)) {
2451 /* LSC 00 is reserved and must behave as if the wp is disabled */
2454 flags
|= BP_MEM_READ
;
2457 flags
|= BP_MEM_WRITE
;
2460 flags
|= BP_MEM_ACCESS
;
2464 /* Attempts to use both MASK and BAS fields simultaneously are
2465 * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
2466 * thus generating a watchpoint for every byte in the masked region.
2468 mask
= extract64(wcr
, 24, 4);
2469 if (mask
== 1 || mask
== 2) {
2470 /* Reserved values of MASK; we must act as if the mask value was
2471 * some non-reserved value, or as if the watchpoint were disabled.
2472 * We choose the latter.
2476 /* Watchpoint covers an aligned area up to 2GB in size */
2478 /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
2479 * whether the watchpoint fires when the unmasked bits match; we opt
2480 * to generate the exceptions.
2484 /* Watchpoint covers bytes defined by the byte address select bits */
2485 int bas
= extract64(wcr
, 5, 8);
2489 /* This must act as if the watchpoint is disabled */
2493 if (extract64(wvr
, 2, 1)) {
2494 /* Deprecated case of an only 4-aligned address. BAS[7:4] are
2495 * ignored, and BAS[3:0] define which bytes to watch.
2499 /* The BAS bits are supposed to be programmed to indicate a contiguous
2500 * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
2501 * we fire for each byte in the word/doubleword addressed by the WVR.
2502 * We choose to ignore any non-zero bits after the first range of 1s.
2504 basstart
= ctz32(bas
);
2505 len
= cto32(bas
>> basstart
);
2509 cpu_watchpoint_insert(CPU(cpu
), wvr
, len
, flags
,
2510 &env
->cpu_watchpoint
[n
]);
2513 void hw_watchpoint_update_all(ARMCPU
*cpu
)
2516 CPUARMState
*env
= &cpu
->env
;
2518 /* Completely clear out existing QEMU watchpoints and our array, to
2519 * avoid possible stale entries following migration load.
2521 cpu_watchpoint_remove_all(CPU(cpu
), BP_CPU
);
2522 memset(env
->cpu_watchpoint
, 0, sizeof(env
->cpu_watchpoint
));
2524 for (i
= 0; i
< ARRAY_SIZE(cpu
->env
.cpu_watchpoint
); i
++) {
2525 hw_watchpoint_update(cpu
, i
);
2529 static void dbgwvr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2532 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2535 /* Bits [63:49] are hardwired to the value of bit [48]; that is, the
2536 * register reads and behaves as if values written are sign extended.
2537 * Bits [1:0] are RES0.
2539 value
= sextract64(value
, 0, 49) & ~3ULL;
2541 raw_write(env
, ri
, value
);
2542 hw_watchpoint_update(cpu
, i
);
2545 static void dbgwcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2548 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2551 raw_write(env
, ri
, value
);
2552 hw_watchpoint_update(cpu
, i
);
2555 void hw_breakpoint_update(ARMCPU
*cpu
, int n
)
2557 CPUARMState
*env
= &cpu
->env
;
2558 uint64_t bvr
= env
->cp15
.dbgbvr
[n
];
2559 uint64_t bcr
= env
->cp15
.dbgbcr
[n
];
2564 if (env
->cpu_breakpoint
[n
]) {
2565 cpu_breakpoint_remove_by_ref(CPU(cpu
), env
->cpu_breakpoint
[n
]);
2566 env
->cpu_breakpoint
[n
] = NULL
;
2569 if (!extract64(bcr
, 0, 1)) {
2570 /* E bit clear : watchpoint disabled */
2574 bt
= extract64(bcr
, 20, 4);
2577 case 4: /* unlinked address mismatch (reserved if AArch64) */
2578 case 5: /* linked address mismatch (reserved if AArch64) */
2579 qemu_log_mask(LOG_UNIMP
,
2580 "arm: address mismatch breakpoint types not implemented");
2582 case 0: /* unlinked address match */
2583 case 1: /* linked address match */
2585 /* Bits [63:49] are hardwired to the value of bit [48]; that is,
2586 * we behave as if the register was sign extended. Bits [1:0] are
2587 * RES0. The BAS field is used to allow setting breakpoints on 16
2588 * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether
2589 * a bp will fire if the addresses covered by the bp and the addresses
2590 * covered by the insn overlap but the insn doesn't start at the
2591 * start of the bp address range. We choose to require the insn and
2592 * the bp to have the same address. The constraints on writing to
2593 * BAS enforced in dbgbcr_write mean we have only four cases:
2594 * 0b0000 => no breakpoint
2595 * 0b0011 => breakpoint on addr
2596 * 0b1100 => breakpoint on addr + 2
2597 * 0b1111 => breakpoint on addr
2598 * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
2600 int bas
= extract64(bcr
, 5, 4);
2601 addr
= sextract64(bvr
, 0, 49) & ~3ULL;
2610 case 2: /* unlinked context ID match */
2611 case 8: /* unlinked VMID match (reserved if no EL2) */
2612 case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
2613 qemu_log_mask(LOG_UNIMP
,
2614 "arm: unlinked context breakpoint types not implemented");
2616 case 9: /* linked VMID match (reserved if no EL2) */
2617 case 11: /* linked context ID and VMID match (reserved if no EL2) */
2618 case 3: /* linked context ID match */
2620 /* We must generate no events for Linked context matches (unless
2621 * they are linked to by some other bp/wp, which is handled in
2622 * updates for the linking bp/wp). We choose to also generate no events
2623 * for reserved values.
2628 cpu_breakpoint_insert(CPU(cpu
), addr
, flags
, &env
->cpu_breakpoint
[n
]);
2631 void hw_breakpoint_update_all(ARMCPU
*cpu
)
2634 CPUARMState
*env
= &cpu
->env
;
2636 /* Completely clear out existing QEMU breakpoints and our array, to
2637 * avoid possible stale entries following migration load.
2639 cpu_breakpoint_remove_all(CPU(cpu
), BP_CPU
);
2640 memset(env
->cpu_breakpoint
, 0, sizeof(env
->cpu_breakpoint
));
2642 for (i
= 0; i
< ARRAY_SIZE(cpu
->env
.cpu_breakpoint
); i
++) {
2643 hw_breakpoint_update(cpu
, i
);
2647 static void dbgbvr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2650 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2653 raw_write(env
, ri
, value
);
2654 hw_breakpoint_update(cpu
, i
);
2657 static void dbgbcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2660 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2663 /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only
2666 value
= deposit64(value
, 6, 1, extract64(value
, 5, 1));
2667 value
= deposit64(value
, 8, 1, extract64(value
, 7, 1));
2669 raw_write(env
, ri
, value
);
2670 hw_breakpoint_update(cpu
, i
);
2673 static void define_debug_regs(ARMCPU
*cpu
)
2675 /* Define v7 and v8 architectural debug registers.
2676 * These are just dummy implementations for now.
2679 int wrps
, brps
, ctx_cmps
;
2680 ARMCPRegInfo dbgdidr
= {
2681 .name
= "DBGDIDR", .cp
= 14, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 0,
2682 .access
= PL0_R
, .type
= ARM_CP_CONST
, .resetvalue
= cpu
->dbgdidr
,
2685 /* Note that all these register fields hold "number of Xs minus 1". */
2686 brps
= extract32(cpu
->dbgdidr
, 24, 4);
2687 wrps
= extract32(cpu
->dbgdidr
, 28, 4);
2688 ctx_cmps
= extract32(cpu
->dbgdidr
, 20, 4);
2690 assert(ctx_cmps
<= brps
);
2692 /* The DBGDIDR and ID_AA64DFR0_EL1 define various properties
2693 * of the debug registers such as number of breakpoints;
2694 * check that if they both exist then they agree.
2696 if (arm_feature(&cpu
->env
, ARM_FEATURE_AARCH64
)) {
2697 assert(extract32(cpu
->id_aa64dfr0
, 12, 4) == brps
);
2698 assert(extract32(cpu
->id_aa64dfr0
, 20, 4) == wrps
);
2699 assert(extract32(cpu
->id_aa64dfr0
, 28, 4) == ctx_cmps
);
2702 define_one_arm_cp_reg(cpu
, &dbgdidr
);
2703 define_arm_cp_regs(cpu
, debug_cp_reginfo
);
2705 if (arm_feature(&cpu
->env
, ARM_FEATURE_LPAE
)) {
2706 define_arm_cp_regs(cpu
, debug_lpae_cp_reginfo
);
2709 for (i
= 0; i
< brps
+ 1; i
++) {
2710 ARMCPRegInfo dbgregs
[] = {
2711 { .name
= "DBGBVR", .state
= ARM_CP_STATE_BOTH
,
2712 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 0, .crm
= i
, .opc2
= 4,
2714 .fieldoffset
= offsetof(CPUARMState
, cp15
.dbgbvr
[i
]),
2715 .writefn
= dbgbvr_write
, .raw_writefn
= raw_write
2717 { .name
= "DBGBCR", .state
= ARM_CP_STATE_BOTH
,
2718 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 0, .crm
= i
, .opc2
= 5,
2720 .fieldoffset
= offsetof(CPUARMState
, cp15
.dbgbcr
[i
]),
2721 .writefn
= dbgbcr_write
, .raw_writefn
= raw_write
2725 define_arm_cp_regs(cpu
, dbgregs
);
2728 for (i
= 0; i
< wrps
+ 1; i
++) {
2729 ARMCPRegInfo dbgregs
[] = {
2730 { .name
= "DBGWVR", .state
= ARM_CP_STATE_BOTH
,
2731 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 0, .crm
= i
, .opc2
= 6,
2733 .fieldoffset
= offsetof(CPUARMState
, cp15
.dbgwvr
[i
]),
2734 .writefn
= dbgwvr_write
, .raw_writefn
= raw_write
2736 { .name
= "DBGWCR", .state
= ARM_CP_STATE_BOTH
,
2737 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 0, .crm
= i
, .opc2
= 7,
2739 .fieldoffset
= offsetof(CPUARMState
, cp15
.dbgwcr
[i
]),
2740 .writefn
= dbgwcr_write
, .raw_writefn
= raw_write
2744 define_arm_cp_regs(cpu
, dbgregs
);
2748 void register_cp_regs_for_features(ARMCPU
*cpu
)
2750 /* Register all the coprocessor registers based on feature bits */
2751 CPUARMState
*env
= &cpu
->env
;
2752 if (arm_feature(env
, ARM_FEATURE_M
)) {
2753 /* M profile has no coprocessor registers */
2757 define_arm_cp_regs(cpu
, cp_reginfo
);
2758 if (!arm_feature(env
, ARM_FEATURE_V8
)) {
2759 /* Must go early as it is full of wildcards that may be
2760 * overridden by later definitions.
2762 define_arm_cp_regs(cpu
, not_v8_cp_reginfo
);
2765 if (arm_feature(env
, ARM_FEATURE_V6
)) {
2766 /* The ID registers all have impdef reset values */
2767 ARMCPRegInfo v6_idregs
[] = {
2768 { .name
= "ID_PFR0", .state
= ARM_CP_STATE_BOTH
,
2769 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 0,
2770 .access
= PL1_R
, .type
= ARM_CP_CONST
,
2771 .resetvalue
= cpu
->id_pfr0
},
2772 { .name
= "ID_PFR1", .state
= ARM_CP_STATE_BOTH
,
2773 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 1,
2774 .access
= PL1_R
, .type
= ARM_CP_CONST
,
2775 .resetvalue
= cpu
->id_pfr1
},
2776 { .name
= "ID_DFR0", .state
= ARM_CP_STATE_BOTH
,
2777 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 2,
2778 .access
= PL1_R
, .type
= ARM_CP_CONST
,
2779 .resetvalue
= cpu
->id_dfr0
},
2780 { .name
= "ID_AFR0", .state
= ARM_CP_STATE_BOTH
,
2781 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 3,
2782 .access
= PL1_R
, .type
= ARM_CP_CONST
,
2783 .resetvalue
= cpu
->id_afr0
},
2784 { .name
= "ID_MMFR0", .state
= ARM_CP_STATE_BOTH
,
2785 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 4,
2786 .access
= PL1_R
, .type
= ARM_CP_CONST
,
2787 .resetvalue
= cpu
->id_mmfr0
},
2788 { .name
= "ID_MMFR1", .state
= ARM_CP_STATE_BOTH
,
2789 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 5,
2790 .access
= PL1_R
, .type
= ARM_CP_CONST
,
2791 .resetvalue
= cpu
->id_mmfr1
},
2792 { .name
= "ID_MMFR2", .state
= ARM_CP_STATE_BOTH
,
2793 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 6,
2794 .access
= PL1_R
, .type
= ARM_CP_CONST
,
2795 .resetvalue
= cpu
->id_mmfr2
},
2796 { .name
= "ID_MMFR3", .state
= ARM_CP_STATE_BOTH
,
2797 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 7,
2798 .access
= PL1_R
, .type
= ARM_CP_CONST
,
2799 .resetvalue
= cpu
->id_mmfr3
},
2800 { .name
= "ID_ISAR0", .state
= ARM_CP_STATE_BOTH
,
2801 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 0,
2802 .access
= PL1_R
, .type
= ARM_CP_CONST
,
2803 .resetvalue
= cpu
->id_isar0
},
2804 { .name
= "ID_ISAR1", .state
= ARM_CP_STATE_BOTH
,
2805 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 1,
2806 .access
= PL1_R
, .type
= ARM_CP_CONST
,
2807 .resetvalue
= cpu
->id_isar1
},
2808 { .name
= "ID_ISAR2", .state
= ARM_CP_STATE_BOTH
,
2809 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 2,
2810 .access
= PL1_R
, .type
= ARM_CP_CONST
,
2811 .resetvalue
= cpu
->id_isar2
},
2812 { .name
= "ID_ISAR3", .state
= ARM_CP_STATE_BOTH
,
2813 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 3,
2814 .access
= PL1_R
, .type
= ARM_CP_CONST
,
2815 .resetvalue
= cpu
->id_isar3
},
2816 { .name
= "ID_ISAR4", .state
= ARM_CP_STATE_BOTH
,
2817 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 4,
2818 .access
= PL1_R
, .type
= ARM_CP_CONST
,
2819 .resetvalue
= cpu
->id_isar4
},
2820 { .name
= "ID_ISAR5", .state
= ARM_CP_STATE_BOTH
,
2821 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 5,
2822 .access
= PL1_R
, .type
= ARM_CP_CONST
,
2823 .resetvalue
= cpu
->id_isar5
},
2824 /* 6..7 are as yet unallocated and must RAZ */
2825 { .name
= "ID_ISAR6", .cp
= 15, .crn
= 0, .crm
= 2,
2826 .opc1
= 0, .opc2
= 6, .access
= PL1_R
, .type
= ARM_CP_CONST
,
2828 { .name
= "ID_ISAR7", .cp
= 15, .crn
= 0, .crm
= 2,
2829 .opc1
= 0, .opc2
= 7, .access
= PL1_R
, .type
= ARM_CP_CONST
,
2833 define_arm_cp_regs(cpu
, v6_idregs
);
2834 define_arm_cp_regs(cpu
, v6_cp_reginfo
);
2836 define_arm_cp_regs(cpu
, not_v6_cp_reginfo
);
2838 if (arm_feature(env
, ARM_FEATURE_V6K
)) {
2839 define_arm_cp_regs(cpu
, v6k_cp_reginfo
);
2841 if (arm_feature(env
, ARM_FEATURE_V7MP
)) {
2842 define_arm_cp_regs(cpu
, v7mp_cp_reginfo
);
2844 if (arm_feature(env
, ARM_FEATURE_V7
)) {
2845 /* v7 performance monitor control register: same implementor
2846 * field as main ID register, and we implement only the cycle
2849 #ifndef CONFIG_USER_ONLY
2850 ARMCPRegInfo pmcr
= {
2851 .name
= "PMCR", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 0,
2853 .type
= ARM_CP_IO
| ARM_CP_NO_MIGRATE
,
2854 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.c9_pmcr
),
2855 .accessfn
= pmreg_access
, .writefn
= pmcr_write
,
2856 .raw_writefn
= raw_write
,
2858 ARMCPRegInfo pmcr64
= {
2859 .name
= "PMCR_EL0", .state
= ARM_CP_STATE_AA64
,
2860 .opc0
= 3, .opc1
= 3, .crn
= 9, .crm
= 12, .opc2
= 0,
2861 .access
= PL0_RW
, .accessfn
= pmreg_access
,
2863 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmcr
),
2864 .resetvalue
= cpu
->midr
& 0xff000000,
2865 .writefn
= pmcr_write
, .raw_writefn
= raw_write
,
2867 define_one_arm_cp_reg(cpu
, &pmcr
);
2868 define_one_arm_cp_reg(cpu
, &pmcr64
);
2870 ARMCPRegInfo clidr
= {
2871 .name
= "CLIDR", .state
= ARM_CP_STATE_BOTH
,
2872 .opc0
= 3, .crn
= 0, .crm
= 0, .opc1
= 1, .opc2
= 1,
2873 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= cpu
->clidr
2875 define_one_arm_cp_reg(cpu
, &clidr
);
2876 define_arm_cp_regs(cpu
, v7_cp_reginfo
);
2877 define_debug_regs(cpu
);
2879 define_arm_cp_regs(cpu
, not_v7_cp_reginfo
);
2881 if (arm_feature(env
, ARM_FEATURE_V8
)) {
2882 /* AArch64 ID registers, which all have impdef reset values */
2883 ARMCPRegInfo v8_idregs
[] = {
2884 { .name
= "ID_AA64PFR0_EL1", .state
= ARM_CP_STATE_AA64
,
2885 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 4, .opc2
= 0,
2886 .access
= PL1_R
, .type
= ARM_CP_CONST
,
2887 .resetvalue
= cpu
->id_aa64pfr0
},
2888 { .name
= "ID_AA64PFR1_EL1", .state
= ARM_CP_STATE_AA64
,
2889 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 4, .opc2
= 1,
2890 .access
= PL1_R
, .type
= ARM_CP_CONST
,
2891 .resetvalue
= cpu
->id_aa64pfr1
},
2892 { .name
= "ID_AA64DFR0_EL1", .state
= ARM_CP_STATE_AA64
,
2893 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 5, .opc2
= 0,
2894 .access
= PL1_R
, .type
= ARM_CP_CONST
,
2895 /* We mask out the PMUVer field, because we don't currently
2896 * implement the PMU. Not advertising it prevents the guest
2897 * from trying to use it and getting UNDEFs on registers we
2900 .resetvalue
= cpu
->id_aa64dfr0
& ~0xf00 },
2901 { .name
= "ID_AA64DFR1_EL1", .state
= ARM_CP_STATE_AA64
,
2902 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 5, .opc2
= 1,
2903 .access
= PL1_R
, .type
= ARM_CP_CONST
,
2904 .resetvalue
= cpu
->id_aa64dfr1
},
2905 { .name
= "ID_AA64AFR0_EL1", .state
= ARM_CP_STATE_AA64
,
2906 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 5, .opc2
= 4,
2907 .access
= PL1_R
, .type
= ARM_CP_CONST
,
2908 .resetvalue
= cpu
->id_aa64afr0
},
2909 { .name
= "ID_AA64AFR1_EL1", .state
= ARM_CP_STATE_AA64
,
2910 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 5, .opc2
= 5,
2911 .access
= PL1_R
, .type
= ARM_CP_CONST
,
2912 .resetvalue
= cpu
->id_aa64afr1
},
2913 { .name
= "ID_AA64ISAR0_EL1", .state
= ARM_CP_STATE_AA64
,
2914 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 6, .opc2
= 0,
2915 .access
= PL1_R
, .type
= ARM_CP_CONST
,
2916 .resetvalue
= cpu
->id_aa64isar0
},
2917 { .name
= "ID_AA64ISAR1_EL1", .state
= ARM_CP_STATE_AA64
,
2918 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 6, .opc2
= 1,
2919 .access
= PL1_R
, .type
= ARM_CP_CONST
,
2920 .resetvalue
= cpu
->id_aa64isar1
},
2921 { .name
= "ID_AA64MMFR0_EL1", .state
= ARM_CP_STATE_AA64
,
2922 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 7, .opc2
= 0,
2923 .access
= PL1_R
, .type
= ARM_CP_CONST
,
2924 .resetvalue
= cpu
->id_aa64mmfr0
},
2925 { .name
= "ID_AA64MMFR1_EL1", .state
= ARM_CP_STATE_AA64
,
2926 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 7, .opc2
= 1,
2927 .access
= PL1_R
, .type
= ARM_CP_CONST
,
2928 .resetvalue
= cpu
->id_aa64mmfr1
},
2929 { .name
= "MVFR0_EL1", .state
= ARM_CP_STATE_AA64
,
2930 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 3, .opc2
= 0,
2931 .access
= PL1_R
, .type
= ARM_CP_CONST
,
2932 .resetvalue
= cpu
->mvfr0
},
2933 { .name
= "MVFR1_EL1", .state
= ARM_CP_STATE_AA64
,
2934 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 3, .opc2
= 1,
2935 .access
= PL1_R
, .type
= ARM_CP_CONST
,
2936 .resetvalue
= cpu
->mvfr1
},
2937 { .name
= "MVFR2_EL1", .state
= ARM_CP_STATE_AA64
,
2938 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 3, .opc2
= 2,
2939 .access
= PL1_R
, .type
= ARM_CP_CONST
,
2940 .resetvalue
= cpu
->mvfr2
},
2943 ARMCPRegInfo rvbar
= {
2944 .name
= "RVBAR_EL1", .state
= ARM_CP_STATE_AA64
,
2945 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 0, .opc2
= 2,
2946 .type
= ARM_CP_CONST
, .access
= PL1_R
, .resetvalue
= cpu
->rvbar
2948 define_one_arm_cp_reg(cpu
, &rvbar
);
2949 define_arm_cp_regs(cpu
, v8_idregs
);
2950 define_arm_cp_regs(cpu
, v8_cp_reginfo
);
2952 if (arm_feature(env
, ARM_FEATURE_EL2
)) {
2953 define_arm_cp_regs(cpu
, v8_el2_cp_reginfo
);
2955 /* If EL2 is missing but higher ELs are enabled, we need to
2956 * register the no_el2 reginfos.
2958 if (arm_feature(env
, ARM_FEATURE_EL3
)) {
2959 define_arm_cp_regs(cpu
, v8_el3_no_el2_cp_reginfo
);
2962 if (arm_feature(env
, ARM_FEATURE_EL3
)) {
2963 define_arm_cp_regs(cpu
, v8_el3_cp_reginfo
);
2965 if (arm_feature(env
, ARM_FEATURE_MPU
)) {
2966 /* These are the MPU registers prior to PMSAv6. Any new
2967 * PMSA core later than the ARM946 will require that we
2968 * implement the PMSAv6 or PMSAv7 registers, which are
2969 * completely different.
2971 assert(!arm_feature(env
, ARM_FEATURE_V6
));
2972 define_arm_cp_regs(cpu
, pmsav5_cp_reginfo
);
2974 define_arm_cp_regs(cpu
, vmsa_cp_reginfo
);
2976 if (arm_feature(env
, ARM_FEATURE_THUMB2EE
)) {
2977 define_arm_cp_regs(cpu
, t2ee_cp_reginfo
);
2979 if (arm_feature(env
, ARM_FEATURE_GENERIC_TIMER
)) {
2980 define_arm_cp_regs(cpu
, generic_timer_cp_reginfo
);
2982 if (arm_feature(env
, ARM_FEATURE_VAPA
)) {
2983 define_arm_cp_regs(cpu
, vapa_cp_reginfo
);
2985 if (arm_feature(env
, ARM_FEATURE_CACHE_TEST_CLEAN
)) {
2986 define_arm_cp_regs(cpu
, cache_test_clean_cp_reginfo
);
2988 if (arm_feature(env
, ARM_FEATURE_CACHE_DIRTY_REG
)) {
2989 define_arm_cp_regs(cpu
, cache_dirty_status_cp_reginfo
);
2991 if (arm_feature(env
, ARM_FEATURE_CACHE_BLOCK_OPS
)) {
2992 define_arm_cp_regs(cpu
, cache_block_ops_cp_reginfo
);
2994 if (arm_feature(env
, ARM_FEATURE_OMAPCP
)) {
2995 define_arm_cp_regs(cpu
, omap_cp_reginfo
);
2997 if (arm_feature(env
, ARM_FEATURE_STRONGARM
)) {
2998 define_arm_cp_regs(cpu
, strongarm_cp_reginfo
);
3000 if (arm_feature(env
, ARM_FEATURE_XSCALE
)) {
3001 define_arm_cp_regs(cpu
, xscale_cp_reginfo
);
3003 if (arm_feature(env
, ARM_FEATURE_DUMMY_C15_REGS
)) {
3004 define_arm_cp_regs(cpu
, dummy_c15_cp_reginfo
);
3006 if (arm_feature(env
, ARM_FEATURE_LPAE
)) {
3007 define_arm_cp_regs(cpu
, lpae_cp_reginfo
);
3009 /* Slightly awkwardly, the OMAP and StrongARM cores need all of
3010 * cp15 crn=0 to be writes-ignored, whereas for other cores they should
3011 * be read-only (ie write causes UNDEF exception).
3014 ARMCPRegInfo id_pre_v8_midr_cp_reginfo
[] = {
3015 /* Pre-v8 MIDR space.
3016 * Note that the MIDR isn't a simple constant register because
3017 * of the TI925 behaviour where writes to another register can
3018 * cause the MIDR value to change.
3020 * Unimplemented registers in the c15 0 0 0 space default to
3021 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
3022 * and friends override accordingly.
3025 .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= CP_ANY
,
3026 .access
= PL1_R
, .resetvalue
= cpu
->midr
,
3027 .writefn
= arm_cp_write_ignore
, .raw_writefn
= raw_write
,
3028 .fieldoffset
= offsetof(CPUARMState
, cp15
.c0_cpuid
),
3029 .type
= ARM_CP_OVERRIDE
},
3030 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
3032 .cp
= 15, .crn
= 0, .crm
= 3, .opc1
= 0, .opc2
= CP_ANY
,
3033 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3035 .cp
= 15, .crn
= 0, .crm
= 4, .opc1
= 0, .opc2
= CP_ANY
,
3036 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3038 .cp
= 15, .crn
= 0, .crm
= 5, .opc1
= 0, .opc2
= CP_ANY
,
3039 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3041 .cp
= 15, .crn
= 0, .crm
= 6, .opc1
= 0, .opc2
= CP_ANY
,
3042 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3044 .cp
= 15, .crn
= 0, .crm
= 7, .opc1
= 0, .opc2
= CP_ANY
,
3045 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3048 ARMCPRegInfo id_v8_midr_cp_reginfo
[] = {
3049 /* v8 MIDR -- the wildcard isn't necessary, and nor is the
3050 * variable-MIDR TI925 behaviour. Instead we have a single
3051 * (strictly speaking IMPDEF) alias of the MIDR, REVIDR.
3053 { .name
= "MIDR_EL1", .state
= ARM_CP_STATE_BOTH
,
3054 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 0, .opc2
= 0,
3055 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= cpu
->midr
},
3056 { .name
= "REVIDR_EL1", .state
= ARM_CP_STATE_BOTH
,
3057 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 0, .opc2
= 6,
3058 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= cpu
->midr
},
3061 ARMCPRegInfo id_cp_reginfo
[] = {
3062 /* These are common to v8 and pre-v8 */
3064 .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 1,
3065 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= cpu
->ctr
},
3066 { .name
= "CTR_EL0", .state
= ARM_CP_STATE_AA64
,
3067 .opc0
= 3, .opc1
= 3, .opc2
= 1, .crn
= 0, .crm
= 0,
3068 .access
= PL0_R
, .accessfn
= ctr_el0_access
,
3069 .type
= ARM_CP_CONST
, .resetvalue
= cpu
->ctr
},
3070 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
3072 .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 2,
3073 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3075 .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 3,
3076 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3079 ARMCPRegInfo crn0_wi_reginfo
= {
3080 .name
= "CRN0_WI", .cp
= 15, .crn
= 0, .crm
= CP_ANY
,
3081 .opc1
= CP_ANY
, .opc2
= CP_ANY
, .access
= PL1_W
,
3082 .type
= ARM_CP_NOP
| ARM_CP_OVERRIDE
3084 if (arm_feature(env
, ARM_FEATURE_OMAPCP
) ||
3085 arm_feature(env
, ARM_FEATURE_STRONGARM
)) {
3087 /* Register the blanket "writes ignored" value first to cover the
3088 * whole space. Then update the specific ID registers to allow write
3089 * access, so that they ignore writes rather than causing them to
3092 define_one_arm_cp_reg(cpu
, &crn0_wi_reginfo
);
3093 for (r
= id_pre_v8_midr_cp_reginfo
;
3094 r
->type
!= ARM_CP_SENTINEL
; r
++) {
3097 for (r
= id_cp_reginfo
; r
->type
!= ARM_CP_SENTINEL
; r
++) {
3101 if (arm_feature(env
, ARM_FEATURE_V8
)) {
3102 define_arm_cp_regs(cpu
, id_v8_midr_cp_reginfo
);
3104 define_arm_cp_regs(cpu
, id_pre_v8_midr_cp_reginfo
);
3106 define_arm_cp_regs(cpu
, id_cp_reginfo
);
3109 if (arm_feature(env
, ARM_FEATURE_MPIDR
)) {
3110 define_arm_cp_regs(cpu
, mpidr_cp_reginfo
);
3113 if (arm_feature(env
, ARM_FEATURE_AUXCR
)) {
3114 ARMCPRegInfo auxcr
= {
3115 .name
= "ACTLR_EL1", .state
= ARM_CP_STATE_BOTH
,
3116 .opc0
= 3, .opc1
= 0, .crn
= 1, .crm
= 0, .opc2
= 1,
3117 .access
= PL1_RW
, .type
= ARM_CP_CONST
,
3118 .resetvalue
= cpu
->reset_auxcr
3120 define_one_arm_cp_reg(cpu
, &auxcr
);
3123 if (arm_feature(env
, ARM_FEATURE_CBAR
)) {
3124 if (arm_feature(env
, ARM_FEATURE_AARCH64
)) {
3125 /* 32 bit view is [31:18] 0...0 [43:32]. */
3126 uint32_t cbar32
= (extract64(cpu
->reset_cbar
, 18, 14) << 18)
3127 | extract64(cpu
->reset_cbar
, 32, 12);
3128 ARMCPRegInfo cbar_reginfo
[] = {
3130 .type
= ARM_CP_CONST
,
3131 .cp
= 15, .crn
= 15, .crm
= 0, .opc1
= 4, .opc2
= 0,
3132 .access
= PL1_R
, .resetvalue
= cpu
->reset_cbar
},
3133 { .name
= "CBAR_EL1", .state
= ARM_CP_STATE_AA64
,
3134 .type
= ARM_CP_CONST
,
3135 .opc0
= 3, .opc1
= 1, .crn
= 15, .crm
= 3, .opc2
= 0,
3136 .access
= PL1_R
, .resetvalue
= cbar32
},
3139 /* We don't implement a r/w 64 bit CBAR currently */
3140 assert(arm_feature(env
, ARM_FEATURE_CBAR_RO
));
3141 define_arm_cp_regs(cpu
, cbar_reginfo
);
3143 ARMCPRegInfo cbar
= {
3145 .cp
= 15, .crn
= 15, .crm
= 0, .opc1
= 4, .opc2
= 0,
3146 .access
= PL1_R
|PL3_W
, .resetvalue
= cpu
->reset_cbar
,
3147 .fieldoffset
= offsetof(CPUARMState
,
3148 cp15
.c15_config_base_address
)
3150 if (arm_feature(env
, ARM_FEATURE_CBAR_RO
)) {
3151 cbar
.access
= PL1_R
;
3152 cbar
.fieldoffset
= 0;
3153 cbar
.type
= ARM_CP_CONST
;
3155 define_one_arm_cp_reg(cpu
, &cbar
);
3159 /* Generic registers whose values depend on the implementation */
3161 ARMCPRegInfo sctlr
= {
3162 .name
= "SCTLR", .state
= ARM_CP_STATE_BOTH
,
3163 .opc0
= 3, .crn
= 1, .crm
= 0, .opc1
= 0, .opc2
= 0,
3164 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.c1_sys
),
3165 .writefn
= sctlr_write
, .resetvalue
= cpu
->reset_sctlr
,
3166 .raw_writefn
= raw_write
,
3168 if (arm_feature(env
, ARM_FEATURE_XSCALE
)) {
3169 /* Normally we would always end the TB on an SCTLR write, but Linux
3170 * arch/arm/mach-pxa/sleep.S expects two instructions following
3171 * an MMU enable to execute from cache. Imitate this behaviour.
3173 sctlr
.type
|= ARM_CP_SUPPRESS_TB_END
;
3175 define_one_arm_cp_reg(cpu
, &sctlr
);
3179 ARMCPU
*cpu_arm_init(const char *cpu_model
)
3181 return ARM_CPU(cpu_generic_init(TYPE_ARM_CPU
, cpu_model
));
3184 void arm_cpu_register_gdb_regs_for_features(ARMCPU
*cpu
)
3186 CPUState
*cs
= CPU(cpu
);
3187 CPUARMState
*env
= &cpu
->env
;
3189 if (arm_feature(env
, ARM_FEATURE_AARCH64
)) {
3190 gdb_register_coprocessor(cs
, aarch64_fpu_gdb_get_reg
,
3191 aarch64_fpu_gdb_set_reg
,
3192 34, "aarch64-fpu.xml", 0);
3193 } else if (arm_feature(env
, ARM_FEATURE_NEON
)) {
3194 gdb_register_coprocessor(cs
, vfp_gdb_get_reg
, vfp_gdb_set_reg
,
3195 51, "arm-neon.xml", 0);
3196 } else if (arm_feature(env
, ARM_FEATURE_VFP3
)) {
3197 gdb_register_coprocessor(cs
, vfp_gdb_get_reg
, vfp_gdb_set_reg
,
3198 35, "arm-vfp3.xml", 0);
3199 } else if (arm_feature(env
, ARM_FEATURE_VFP
)) {
3200 gdb_register_coprocessor(cs
, vfp_gdb_get_reg
, vfp_gdb_set_reg
,
3201 19, "arm-vfp.xml", 0);
3205 /* Sort alphabetically by type name, except for "any". */
3206 static gint
arm_cpu_list_compare(gconstpointer a
, gconstpointer b
)
3208 ObjectClass
*class_a
= (ObjectClass
*)a
;
3209 ObjectClass
*class_b
= (ObjectClass
*)b
;
3210 const char *name_a
, *name_b
;
3212 name_a
= object_class_get_name(class_a
);
3213 name_b
= object_class_get_name(class_b
);
3214 if (strcmp(name_a
, "any-" TYPE_ARM_CPU
) == 0) {
3216 } else if (strcmp(name_b
, "any-" TYPE_ARM_CPU
) == 0) {
3219 return strcmp(name_a
, name_b
);
3223 static void arm_cpu_list_entry(gpointer data
, gpointer user_data
)
3225 ObjectClass
*oc
= data
;
3226 CPUListState
*s
= user_data
;
3227 const char *typename
;
3230 typename
= object_class_get_name(oc
);
3231 name
= g_strndup(typename
, strlen(typename
) - strlen("-" TYPE_ARM_CPU
));
3232 (*s
->cpu_fprintf
)(s
->file
, " %s\n",
3237 void arm_cpu_list(FILE *f
, fprintf_function cpu_fprintf
)
3241 .cpu_fprintf
= cpu_fprintf
,
3245 list
= object_class_get_list(TYPE_ARM_CPU
, false);
3246 list
= g_slist_sort(list
, arm_cpu_list_compare
);
3247 (*cpu_fprintf
)(f
, "Available CPUs:\n");
3248 g_slist_foreach(list
, arm_cpu_list_entry
, &s
);
3251 /* The 'host' CPU type is dynamically registered only if KVM is
3252 * enabled, so we have to special-case it here:
3254 (*cpu_fprintf
)(f
, " host (only available in KVM mode)\n");
3258 static void arm_cpu_add_definition(gpointer data
, gpointer user_data
)
3260 ObjectClass
*oc
= data
;
3261 CpuDefinitionInfoList
**cpu_list
= user_data
;
3262 CpuDefinitionInfoList
*entry
;
3263 CpuDefinitionInfo
*info
;
3264 const char *typename
;
3266 typename
= object_class_get_name(oc
);
3267 info
= g_malloc0(sizeof(*info
));
3268 info
->name
= g_strndup(typename
,
3269 strlen(typename
) - strlen("-" TYPE_ARM_CPU
));
3271 entry
= g_malloc0(sizeof(*entry
));
3272 entry
->value
= info
;
3273 entry
->next
= *cpu_list
;
3277 CpuDefinitionInfoList
*arch_query_cpu_definitions(Error
**errp
)
3279 CpuDefinitionInfoList
*cpu_list
= NULL
;
3282 list
= object_class_get_list(TYPE_ARM_CPU
, false);
3283 g_slist_foreach(list
, arm_cpu_add_definition
, &cpu_list
);
3289 static void add_cpreg_to_hashtable(ARMCPU
*cpu
, const ARMCPRegInfo
*r
,
3290 void *opaque
, int state
,
3291 int crm
, int opc1
, int opc2
)
3293 /* Private utility function for define_one_arm_cp_reg_with_opaque():
3294 * add a single reginfo struct to the hash table.
3296 uint32_t *key
= g_new(uint32_t, 1);
3297 ARMCPRegInfo
*r2
= g_memdup(r
, sizeof(ARMCPRegInfo
));
3298 int is64
= (r
->type
& ARM_CP_64BIT
) ? 1 : 0;
3299 if (r
->state
== ARM_CP_STATE_BOTH
&& state
== ARM_CP_STATE_AA32
) {
3300 /* The AArch32 view of a shared register sees the lower 32 bits
3301 * of a 64 bit backing field. It is not migratable as the AArch64
3302 * view handles that. AArch64 also handles reset.
3303 * We assume it is a cp15 register if the .cp field is left unset.
3308 r2
->type
|= ARM_CP_NO_MIGRATE
;
3309 r2
->resetfn
= arm_cp_reset_ignore
;
3310 #ifdef HOST_WORDS_BIGENDIAN
3311 if (r2
->fieldoffset
) {
3312 r2
->fieldoffset
+= sizeof(uint32_t);
3316 if (state
== ARM_CP_STATE_AA64
) {
3317 /* To allow abbreviation of ARMCPRegInfo
3318 * definitions, we treat cp == 0 as equivalent to
3319 * the value for "standard guest-visible sysreg".
3320 * STATE_BOTH definitions are also always "standard
3321 * sysreg" in their AArch64 view (the .cp value may
3322 * be non-zero for the benefit of the AArch32 view).
3324 if (r
->cp
== 0 || r
->state
== ARM_CP_STATE_BOTH
) {
3325 r2
->cp
= CP_REG_ARM64_SYSREG_CP
;
3327 *key
= ENCODE_AA64_CP_REG(r2
->cp
, r2
->crn
, crm
,
3328 r2
->opc0
, opc1
, opc2
);
3330 *key
= ENCODE_CP_REG(r2
->cp
, is64
, r2
->crn
, crm
, opc1
, opc2
);
3333 r2
->opaque
= opaque
;
3335 /* reginfo passed to helpers is correct for the actual access,
3336 * and is never ARM_CP_STATE_BOTH:
3339 /* Make sure reginfo passed to helpers for wildcarded regs
3340 * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
3345 /* By convention, for wildcarded registers only the first
3346 * entry is used for migration; the others are marked as
3347 * NO_MIGRATE so we don't try to transfer the register
3348 * multiple times. Special registers (ie NOP/WFI) are
3351 if ((r
->type
& ARM_CP_SPECIAL
) ||
3352 ((r
->crm
== CP_ANY
) && crm
!= 0) ||
3353 ((r
->opc1
== CP_ANY
) && opc1
!= 0) ||
3354 ((r
->opc2
== CP_ANY
) && opc2
!= 0)) {
3355 r2
->type
|= ARM_CP_NO_MIGRATE
;
3358 /* Overriding of an existing definition must be explicitly
3361 if (!(r
->type
& ARM_CP_OVERRIDE
)) {
3362 ARMCPRegInfo
*oldreg
;
3363 oldreg
= g_hash_table_lookup(cpu
->cp_regs
, key
);
3364 if (oldreg
&& !(oldreg
->type
& ARM_CP_OVERRIDE
)) {
3365 fprintf(stderr
, "Register redefined: cp=%d %d bit "
3366 "crn=%d crm=%d opc1=%d opc2=%d, "
3367 "was %s, now %s\n", r2
->cp
, 32 + 32 * is64
,
3368 r2
->crn
, r2
->crm
, r2
->opc1
, r2
->opc2
,
3369 oldreg
->name
, r2
->name
);
3370 g_assert_not_reached();
3373 g_hash_table_insert(cpu
->cp_regs
, key
, r2
);
3377 void define_one_arm_cp_reg_with_opaque(ARMCPU
*cpu
,
3378 const ARMCPRegInfo
*r
, void *opaque
)
3380 /* Define implementations of coprocessor registers.
3381 * We store these in a hashtable because typically
3382 * there are less than 150 registers in a space which
3383 * is 16*16*16*8*8 = 262144 in size.
3384 * Wildcarding is supported for the crm, opc1 and opc2 fields.
3385 * If a register is defined twice then the second definition is
3386 * used, so this can be used to define some generic registers and
3387 * then override them with implementation specific variations.
3388 * At least one of the original and the second definition should
3389 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
3390 * against accidental use.
3392 * The state field defines whether the register is to be
3393 * visible in the AArch32 or AArch64 execution state. If the
3394 * state is set to ARM_CP_STATE_BOTH then we synthesise a
3395 * reginfo structure for the AArch32 view, which sees the lower
3396 * 32 bits of the 64 bit register.
3398 * Only registers visible in AArch64 may set r->opc0; opc0 cannot
3399 * be wildcarded. AArch64 registers are always considered to be 64
3400 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
3401 * the register, if any.
3403 int crm
, opc1
, opc2
, state
;
3404 int crmmin
= (r
->crm
== CP_ANY
) ? 0 : r
->crm
;
3405 int crmmax
= (r
->crm
== CP_ANY
) ? 15 : r
->crm
;
3406 int opc1min
= (r
->opc1
== CP_ANY
) ? 0 : r
->opc1
;
3407 int opc1max
= (r
->opc1
== CP_ANY
) ? 7 : r
->opc1
;
3408 int opc2min
= (r
->opc2
== CP_ANY
) ? 0 : r
->opc2
;
3409 int opc2max
= (r
->opc2
== CP_ANY
) ? 7 : r
->opc2
;
3410 /* 64 bit registers have only CRm and Opc1 fields */
3411 assert(!((r
->type
& ARM_CP_64BIT
) && (r
->opc2
|| r
->crn
)));
3412 /* op0 only exists in the AArch64 encodings */
3413 assert((r
->state
!= ARM_CP_STATE_AA32
) || (r
->opc0
== 0));
3414 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
3415 assert((r
->state
!= ARM_CP_STATE_AA64
) || !(r
->type
& ARM_CP_64BIT
));
3416 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
3417 * encodes a minimum access level for the register. We roll this
3418 * runtime check into our general permission check code, so check
3419 * here that the reginfo's specified permissions are strict enough
3420 * to encompass the generic architectural permission check.
3422 if (r
->state
!= ARM_CP_STATE_AA32
) {
3425 case 0: case 1: case 2:
3438 /* unallocated encoding, so not possible */
3446 /* min_EL EL1, secure mode only (we don't check the latter) */
3450 /* broken reginfo with out-of-range opc1 */
3454 /* assert our permissions are not too lax (stricter is fine) */
3455 assert((r
->access
& ~mask
) == 0);
3458 /* Check that the register definition has enough info to handle
3459 * reads and writes if they are permitted.
3461 if (!(r
->type
& (ARM_CP_SPECIAL
|ARM_CP_CONST
))) {
3462 if (r
->access
& PL3_R
) {
3463 assert(r
->fieldoffset
|| r
->readfn
);
3465 if (r
->access
& PL3_W
) {
3466 assert(r
->fieldoffset
|| r
->writefn
);
3469 /* Bad type field probably means missing sentinel at end of reg list */
3470 assert(cptype_valid(r
->type
));
3471 for (crm
= crmmin
; crm
<= crmmax
; crm
++) {
3472 for (opc1
= opc1min
; opc1
<= opc1max
; opc1
++) {
3473 for (opc2
= opc2min
; opc2
<= opc2max
; opc2
++) {
3474 for (state
= ARM_CP_STATE_AA32
;
3475 state
<= ARM_CP_STATE_AA64
; state
++) {
3476 if (r
->state
!= state
&& r
->state
!= ARM_CP_STATE_BOTH
) {
3479 add_cpreg_to_hashtable(cpu
, r
, opaque
, state
,
3487 void define_arm_cp_regs_with_opaque(ARMCPU
*cpu
,
3488 const ARMCPRegInfo
*regs
, void *opaque
)
3490 /* Define a whole list of registers */
3491 const ARMCPRegInfo
*r
;
3492 for (r
= regs
; r
->type
!= ARM_CP_SENTINEL
; r
++) {
3493 define_one_arm_cp_reg_with_opaque(cpu
, r
, opaque
);
3497 const ARMCPRegInfo
*get_arm_cp_reginfo(GHashTable
*cpregs
, uint32_t encoded_cp
)
3499 return g_hash_table_lookup(cpregs
, &encoded_cp
);
3502 void arm_cp_write_ignore(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3505 /* Helper coprocessor write function for write-ignore registers */
3508 uint64_t arm_cp_read_zero(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
3510 /* Helper coprocessor write function for read-as-zero registers */
3514 void arm_cp_reset_ignore(CPUARMState
*env
, const ARMCPRegInfo
*opaque
)
3516 /* Helper coprocessor reset function for do-nothing-on-reset registers */
3519 static int bad_mode_switch(CPUARMState
*env
, int mode
)
3521 /* Return true if it is not valid for us to switch to
3522 * this CPU mode (ie all the UNPREDICTABLE cases in
3523 * the ARM ARM CPSRWriteByInstr pseudocode).
3526 case ARM_CPU_MODE_USR
:
3527 case ARM_CPU_MODE_SYS
:
3528 case ARM_CPU_MODE_SVC
:
3529 case ARM_CPU_MODE_ABT
:
3530 case ARM_CPU_MODE_UND
:
3531 case ARM_CPU_MODE_IRQ
:
3532 case ARM_CPU_MODE_FIQ
:
3539 uint32_t cpsr_read(CPUARMState
*env
)
3542 ZF
= (env
->ZF
== 0);
3543 return env
->uncached_cpsr
| (env
->NF
& 0x80000000) | (ZF
<< 30) |
3544 (env
->CF
<< 29) | ((env
->VF
& 0x80000000) >> 3) | (env
->QF
<< 27)
3545 | (env
->thumb
<< 5) | ((env
->condexec_bits
& 3) << 25)
3546 | ((env
->condexec_bits
& 0xfc) << 8)
3547 | (env
->GE
<< 16) | (env
->daif
& CPSR_AIF
);
3550 void cpsr_write(CPUARMState
*env
, uint32_t val
, uint32_t mask
)
3552 if (mask
& CPSR_NZCV
) {
3553 env
->ZF
= (~val
) & CPSR_Z
;
3555 env
->CF
= (val
>> 29) & 1;
3556 env
->VF
= (val
<< 3) & 0x80000000;
3559 env
->QF
= ((val
& CPSR_Q
) != 0);
3561 env
->thumb
= ((val
& CPSR_T
) != 0);
3562 if (mask
& CPSR_IT_0_1
) {
3563 env
->condexec_bits
&= ~3;
3564 env
->condexec_bits
|= (val
>> 25) & 3;
3566 if (mask
& CPSR_IT_2_7
) {
3567 env
->condexec_bits
&= 3;
3568 env
->condexec_bits
|= (val
>> 8) & 0xfc;
3570 if (mask
& CPSR_GE
) {
3571 env
->GE
= (val
>> 16) & 0xf;
3574 env
->daif
&= ~(CPSR_AIF
& mask
);
3575 env
->daif
|= val
& CPSR_AIF
& mask
;
3577 if ((env
->uncached_cpsr
^ val
) & mask
& CPSR_M
) {
3578 if (bad_mode_switch(env
, val
& CPSR_M
)) {
3579 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE.
3580 * We choose to ignore the attempt and leave the CPSR M field
3585 switch_mode(env
, val
& CPSR_M
);
3588 mask
&= ~CACHED_CPSR_BITS
;
3589 env
->uncached_cpsr
= (env
->uncached_cpsr
& ~mask
) | (val
& mask
);
3592 /* Sign/zero extend */
3593 uint32_t HELPER(sxtb16
)(uint32_t x
)
3596 res
= (uint16_t)(int8_t)x
;
3597 res
|= (uint32_t)(int8_t)(x
>> 16) << 16;
3601 uint32_t HELPER(uxtb16
)(uint32_t x
)
3604 res
= (uint16_t)(uint8_t)x
;
3605 res
|= (uint32_t)(uint8_t)(x
>> 16) << 16;
3609 uint32_t HELPER(clz
)(uint32_t x
)
3614 int32_t HELPER(sdiv
)(int32_t num
, int32_t den
)
3618 if (num
== INT_MIN
&& den
== -1)
3623 uint32_t HELPER(udiv
)(uint32_t num
, uint32_t den
)
3630 uint32_t HELPER(rbit
)(uint32_t x
)
3632 x
= ((x
& 0xff000000) >> 24)
3633 | ((x
& 0x00ff0000) >> 8)
3634 | ((x
& 0x0000ff00) << 8)
3635 | ((x
& 0x000000ff) << 24);
3636 x
= ((x
& 0xf0f0f0f0) >> 4)
3637 | ((x
& 0x0f0f0f0f) << 4);
3638 x
= ((x
& 0x88888888) >> 3)
3639 | ((x
& 0x44444444) >> 1)
3640 | ((x
& 0x22222222) << 1)
3641 | ((x
& 0x11111111) << 3);
3645 #if defined(CONFIG_USER_ONLY)
3647 void arm_cpu_do_interrupt(CPUState
*cs
)
3649 cs
->exception_index
= -1;
3652 int arm_cpu_handle_mmu_fault(CPUState
*cs
, vaddr address
, int rw
,
3655 ARMCPU
*cpu
= ARM_CPU(cs
);
3656 CPUARMState
*env
= &cpu
->env
;
3658 env
->exception
.vaddress
= address
;
3660 cs
->exception_index
= EXCP_PREFETCH_ABORT
;
3662 cs
->exception_index
= EXCP_DATA_ABORT
;
3667 /* These should probably raise undefined insn exceptions. */
3668 void HELPER(v7m_msr
)(CPUARMState
*env
, uint32_t reg
, uint32_t val
)
3670 ARMCPU
*cpu
= arm_env_get_cpu(env
);
3672 cpu_abort(CPU(cpu
), "v7m_msr %d\n", reg
);
3675 uint32_t HELPER(v7m_mrs
)(CPUARMState
*env
, uint32_t reg
)
3677 ARMCPU
*cpu
= arm_env_get_cpu(env
);
3679 cpu_abort(CPU(cpu
), "v7m_mrs %d\n", reg
);
3683 void switch_mode(CPUARMState
*env
, int mode
)
3685 ARMCPU
*cpu
= arm_env_get_cpu(env
);
3687 if (mode
!= ARM_CPU_MODE_USR
) {
3688 cpu_abort(CPU(cpu
), "Tried to switch out of user mode\n");
3692 void HELPER(set_r13_banked
)(CPUARMState
*env
, uint32_t mode
, uint32_t val
)
3694 ARMCPU
*cpu
= arm_env_get_cpu(env
);
3696 cpu_abort(CPU(cpu
), "banked r13 write\n");
3699 uint32_t HELPER(get_r13_banked
)(CPUARMState
*env
, uint32_t mode
)
3701 ARMCPU
*cpu
= arm_env_get_cpu(env
);
3703 cpu_abort(CPU(cpu
), "banked r13 read\n");
3709 /* Map CPU modes onto saved register banks. */
3710 int bank_number(int mode
)
3713 case ARM_CPU_MODE_USR
:
3714 case ARM_CPU_MODE_SYS
:
3716 case ARM_CPU_MODE_SVC
:
3718 case ARM_CPU_MODE_ABT
:
3720 case ARM_CPU_MODE_UND
:
3722 case ARM_CPU_MODE_IRQ
:
3724 case ARM_CPU_MODE_FIQ
:
3726 case ARM_CPU_MODE_HYP
:
3728 case ARM_CPU_MODE_MON
:
3731 hw_error("bank number requested for bad CPSR mode value 0x%x\n", mode
);
3734 void switch_mode(CPUARMState
*env
, int mode
)
3739 old_mode
= env
->uncached_cpsr
& CPSR_M
;
3740 if (mode
== old_mode
)
3743 if (old_mode
== ARM_CPU_MODE_FIQ
) {
3744 memcpy (env
->fiq_regs
, env
->regs
+ 8, 5 * sizeof(uint32_t));
3745 memcpy (env
->regs
+ 8, env
->usr_regs
, 5 * sizeof(uint32_t));
3746 } else if (mode
== ARM_CPU_MODE_FIQ
) {
3747 memcpy (env
->usr_regs
, env
->regs
+ 8, 5 * sizeof(uint32_t));
3748 memcpy (env
->regs
+ 8, env
->fiq_regs
, 5 * sizeof(uint32_t));
3751 i
= bank_number(old_mode
);
3752 env
->banked_r13
[i
] = env
->regs
[13];
3753 env
->banked_r14
[i
] = env
->regs
[14];
3754 env
->banked_spsr
[i
] = env
->spsr
;
3756 i
= bank_number(mode
);
3757 env
->regs
[13] = env
->banked_r13
[i
];
3758 env
->regs
[14] = env
->banked_r14
[i
];
3759 env
->spsr
= env
->banked_spsr
[i
];
3762 static void v7m_push(CPUARMState
*env
, uint32_t val
)
3764 CPUState
*cs
= CPU(arm_env_get_cpu(env
));
3767 stl_phys(cs
->as
, env
->regs
[13], val
);
3770 static uint32_t v7m_pop(CPUARMState
*env
)
3772 CPUState
*cs
= CPU(arm_env_get_cpu(env
));
3775 val
= ldl_phys(cs
->as
, env
->regs
[13]);
3780 /* Switch to V7M main or process stack pointer. */
3781 static void switch_v7m_sp(CPUARMState
*env
, int process
)
3784 if (env
->v7m
.current_sp
!= process
) {
3785 tmp
= env
->v7m
.other_sp
;
3786 env
->v7m
.other_sp
= env
->regs
[13];
3787 env
->regs
[13] = tmp
;
3788 env
->v7m
.current_sp
= process
;
3792 static void do_v7m_exception_exit(CPUARMState
*env
)
3797 type
= env
->regs
[15];
3798 if (env
->v7m
.exception
!= 0)
3799 armv7m_nvic_complete_irq(env
->nvic
, env
->v7m
.exception
);
3801 /* Switch to the target stack. */
3802 switch_v7m_sp(env
, (type
& 4) != 0);
3803 /* Pop registers. */
3804 env
->regs
[0] = v7m_pop(env
);
3805 env
->regs
[1] = v7m_pop(env
);
3806 env
->regs
[2] = v7m_pop(env
);
3807 env
->regs
[3] = v7m_pop(env
);
3808 env
->regs
[12] = v7m_pop(env
);
3809 env
->regs
[14] = v7m_pop(env
);
3810 env
->regs
[15] = v7m_pop(env
);
3811 xpsr
= v7m_pop(env
);
3812 xpsr_write(env
, xpsr
, 0xfffffdff);
3813 /* Undo stack alignment. */
3816 /* ??? The exception return type specifies Thread/Handler mode. However
3817 this is also implied by the xPSR value. Not sure what to do
3818 if there is a mismatch. */
3819 /* ??? Likewise for mismatches between the CONTROL register and the stack
3823 void arm_v7m_cpu_do_interrupt(CPUState
*cs
)
3825 ARMCPU
*cpu
= ARM_CPU(cs
);
3826 CPUARMState
*env
= &cpu
->env
;
3827 uint32_t xpsr
= xpsr_read(env
);
3831 arm_log_exception(cs
->exception_index
);
3834 if (env
->v7m
.current_sp
)
3836 if (env
->v7m
.exception
== 0)
3839 /* For exceptions we just mark as pending on the NVIC, and let that
3841 /* TODO: Need to escalate if the current priority is higher than the
3842 one we're raising. */
3843 switch (cs
->exception_index
) {
3845 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_USAGE
);
3848 /* The PC already points to the next instruction. */
3849 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_SVC
);
3851 case EXCP_PREFETCH_ABORT
:
3852 case EXCP_DATA_ABORT
:
3853 /* TODO: if we implemented the MPU registers, this is where we
3854 * should set the MMFAR, etc from exception.fsr and exception.vaddress.
3856 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_MEM
);
3859 if (semihosting_enabled
) {
3861 nr
= arm_lduw_code(env
, env
->regs
[15], env
->bswap_code
) & 0xff;
3864 env
->regs
[0] = do_arm_semihosting(env
);
3865 qemu_log_mask(CPU_LOG_INT
, "...handled as semihosting call\n");
3869 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_DEBUG
);
3872 env
->v7m
.exception
= armv7m_nvic_acknowledge_irq(env
->nvic
);
3874 case EXCP_EXCEPTION_EXIT
:
3875 do_v7m_exception_exit(env
);
3878 cpu_abort(cs
, "Unhandled exception 0x%x\n", cs
->exception_index
);
3879 return; /* Never happens. Keep compiler happy. */
3882 /* Align stack pointer. */
3883 /* ??? Should only do this if Configuration Control Register
3884 STACKALIGN bit is set. */
3885 if (env
->regs
[13] & 4) {
3889 /* Switch to the handler mode. */
3890 v7m_push(env
, xpsr
);
3891 v7m_push(env
, env
->regs
[15]);
3892 v7m_push(env
, env
->regs
[14]);
3893 v7m_push(env
, env
->regs
[12]);
3894 v7m_push(env
, env
->regs
[3]);
3895 v7m_push(env
, env
->regs
[2]);
3896 v7m_push(env
, env
->regs
[1]);
3897 v7m_push(env
, env
->regs
[0]);
3898 switch_v7m_sp(env
, 0);
3900 env
->condexec_bits
= 0;
3902 addr
= ldl_phys(cs
->as
, env
->v7m
.vecbase
+ env
->v7m
.exception
* 4);
3903 env
->regs
[15] = addr
& 0xfffffffe;
3904 env
->thumb
= addr
& 1;
3907 /* Handle a CPU exception. */
3908 void arm_cpu_do_interrupt(CPUState
*cs
)
3910 ARMCPU
*cpu
= ARM_CPU(cs
);
3911 CPUARMState
*env
= &cpu
->env
;
3920 arm_log_exception(cs
->exception_index
);
3922 /* If this is a debug exception we must update the DBGDSCR.MOE bits */
3923 switch (env
->exception
.syndrome
>> ARM_EL_EC_SHIFT
) {
3925 case EC_BREAKPOINT_SAME_EL
:
3929 case EC_WATCHPOINT_SAME_EL
:
3935 case EC_VECTORCATCH
:
3944 env
->cp15
.mdscr_el1
= deposit64(env
->cp15
.mdscr_el1
, 2, 4, moe
);
3947 /* TODO: Vectored interrupt controller. */
3948 switch (cs
->exception_index
) {
3950 new_mode
= ARM_CPU_MODE_UND
;
3959 if (semihosting_enabled
) {
3960 /* Check for semihosting interrupt. */
3962 mask
= arm_lduw_code(env
, env
->regs
[15] - 2, env
->bswap_code
)
3965 mask
= arm_ldl_code(env
, env
->regs
[15] - 4, env
->bswap_code
)
3968 /* Only intercept calls from privileged modes, to provide some
3969 semblance of security. */
3970 if (((mask
== 0x123456 && !env
->thumb
)
3971 || (mask
== 0xab && env
->thumb
))
3972 && (env
->uncached_cpsr
& CPSR_M
) != ARM_CPU_MODE_USR
) {
3973 env
->regs
[0] = do_arm_semihosting(env
);
3974 qemu_log_mask(CPU_LOG_INT
, "...handled as semihosting call\n");
3978 new_mode
= ARM_CPU_MODE_SVC
;
3981 /* The PC already points to the next instruction. */
3985 /* See if this is a semihosting syscall. */
3986 if (env
->thumb
&& semihosting_enabled
) {
3987 mask
= arm_lduw_code(env
, env
->regs
[15], env
->bswap_code
) & 0xff;
3989 && (env
->uncached_cpsr
& CPSR_M
) != ARM_CPU_MODE_USR
) {
3991 env
->regs
[0] = do_arm_semihosting(env
);
3992 qemu_log_mask(CPU_LOG_INT
, "...handled as semihosting call\n");
3996 env
->exception
.fsr
= 2;
3997 /* Fall through to prefetch abort. */
3998 case EXCP_PREFETCH_ABORT
:
3999 env
->cp15
.ifsr_el2
= env
->exception
.fsr
;
4000 env
->cp15
.far_el
[1] = deposit64(env
->cp15
.far_el
[1], 32, 32,
4001 env
->exception
.vaddress
);
4002 qemu_log_mask(CPU_LOG_INT
, "...with IFSR 0x%x IFAR 0x%x\n",
4003 env
->cp15
.ifsr_el2
, (uint32_t)env
->exception
.vaddress
);
4004 new_mode
= ARM_CPU_MODE_ABT
;
4006 mask
= CPSR_A
| CPSR_I
;
4009 case EXCP_DATA_ABORT
:
4010 env
->cp15
.esr_el
[1] = env
->exception
.fsr
;
4011 env
->cp15
.far_el
[1] = deposit64(env
->cp15
.far_el
[1], 0, 32,
4012 env
->exception
.vaddress
);
4013 qemu_log_mask(CPU_LOG_INT
, "...with DFSR 0x%x DFAR 0x%x\n",
4014 (uint32_t)env
->cp15
.esr_el
[1],
4015 (uint32_t)env
->exception
.vaddress
);
4016 new_mode
= ARM_CPU_MODE_ABT
;
4018 mask
= CPSR_A
| CPSR_I
;
4022 new_mode
= ARM_CPU_MODE_IRQ
;
4024 /* Disable IRQ and imprecise data aborts. */
4025 mask
= CPSR_A
| CPSR_I
;
4029 new_mode
= ARM_CPU_MODE_FIQ
;
4031 /* Disable FIQ, IRQ and imprecise data aborts. */
4032 mask
= CPSR_A
| CPSR_I
| CPSR_F
;
4036 cpu_abort(cs
, "Unhandled exception 0x%x\n", cs
->exception_index
);
4037 return; /* Never happens. Keep compiler happy. */
4040 if (env
->cp15
.c1_sys
& SCTLR_V
) {
4041 /* when enabled, base address cannot be remapped. */
4044 /* ARM v7 architectures provide a vector base address register to remap
4045 * the interrupt vector table.
4046 * This register is only followed in non-monitor mode, and has a secure
4047 * and un-secure copy. Since the cpu is always in a un-secure operation
4048 * and is never in monitor mode this feature is always active.
4049 * Note: only bits 31:5 are valid.
4051 addr
+= env
->cp15
.vbar_el
[1];
4053 switch_mode (env
, new_mode
);
4054 /* For exceptions taken to AArch32 we must clear the SS bit in both
4055 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
4057 env
->uncached_cpsr
&= ~PSTATE_SS
;
4058 env
->spsr
= cpsr_read(env
);
4059 /* Clear IT bits. */
4060 env
->condexec_bits
= 0;
4061 /* Switch to the new mode, and to the correct instruction set. */
4062 env
->uncached_cpsr
= (env
->uncached_cpsr
& ~CPSR_M
) | new_mode
;
4064 /* this is a lie, as the was no c1_sys on V4T/V5, but who cares
4065 * and we should just guard the thumb mode on V4 */
4066 if (arm_feature(env
, ARM_FEATURE_V4T
)) {
4067 env
->thumb
= (env
->cp15
.c1_sys
& SCTLR_TE
) != 0;
4069 env
->regs
[14] = env
->regs
[15] + offset
;
4070 env
->regs
[15] = addr
;
4071 cs
->interrupt_request
|= CPU_INTERRUPT_EXITTB
;
4074 /* Check section/page access permissions.
4075 Returns the page protection flags, or zero if the access is not
4077 static inline int check_ap(CPUARMState
*env
, int ap
, int domain_prot
,
4078 int access_type
, int is_user
)
4082 if (domain_prot
== 3) {
4083 return PAGE_READ
| PAGE_WRITE
;
4086 if (access_type
== 1)
4089 prot_ro
= PAGE_READ
;
4093 if (arm_feature(env
, ARM_FEATURE_V7
)) {
4096 if (access_type
== 1)
4098 switch (env
->cp15
.c1_sys
& (SCTLR_S
| SCTLR_R
)) {
4100 return is_user
? 0 : PAGE_READ
;
4107 return is_user
? 0 : PAGE_READ
| PAGE_WRITE
;
4112 return PAGE_READ
| PAGE_WRITE
;
4114 return PAGE_READ
| PAGE_WRITE
;
4115 case 4: /* Reserved. */
4118 return is_user
? 0 : prot_ro
;
4122 if (!arm_feature (env
, ARM_FEATURE_V6K
))
4130 static bool get_level1_table_address(CPUARMState
*env
, uint32_t *table
,
4133 if (address
& env
->cp15
.c2_mask
) {
4134 if ((env
->cp15
.c2_control
& TTBCR_PD1
)) {
4135 /* Translation table walk disabled for TTBR1 */
4138 *table
= env
->cp15
.ttbr1_el1
& 0xffffc000;
4140 if ((env
->cp15
.c2_control
& TTBCR_PD0
)) {
4141 /* Translation table walk disabled for TTBR0 */
4144 *table
= env
->cp15
.ttbr0_el1
& env
->cp15
.c2_base_mask
;
4146 *table
|= (address
>> 18) & 0x3ffc;
4150 static int get_phys_addr_v5(CPUARMState
*env
, uint32_t address
, int access_type
,
4151 int is_user
, hwaddr
*phys_ptr
,
4152 int *prot
, target_ulong
*page_size
)
4154 CPUState
*cs
= CPU(arm_env_get_cpu(env
));
4164 /* Pagetable walk. */
4165 /* Lookup l1 descriptor. */
4166 if (!get_level1_table_address(env
, &table
, address
)) {
4167 /* Section translation fault if page walk is disabled by PD0 or PD1 */
4171 desc
= ldl_phys(cs
->as
, table
);
4173 domain
= (desc
>> 5) & 0x0f;
4174 domain_prot
= (env
->cp15
.c3
>> (domain
* 2)) & 3;
4176 /* Section translation fault. */
4180 if (domain_prot
== 0 || domain_prot
== 2) {
4182 code
= 9; /* Section domain fault. */
4184 code
= 11; /* Page domain fault. */
4189 phys_addr
= (desc
& 0xfff00000) | (address
& 0x000fffff);
4190 ap
= (desc
>> 10) & 3;
4192 *page_size
= 1024 * 1024;
4194 /* Lookup l2 entry. */
4196 /* Coarse pagetable. */
4197 table
= (desc
& 0xfffffc00) | ((address
>> 10) & 0x3fc);
4199 /* Fine pagetable. */
4200 table
= (desc
& 0xfffff000) | ((address
>> 8) & 0xffc);
4202 desc
= ldl_phys(cs
->as
, table
);
4204 case 0: /* Page translation fault. */
4207 case 1: /* 64k page. */
4208 phys_addr
= (desc
& 0xffff0000) | (address
& 0xffff);
4209 ap
= (desc
>> (4 + ((address
>> 13) & 6))) & 3;
4210 *page_size
= 0x10000;
4212 case 2: /* 4k page. */
4213 phys_addr
= (desc
& 0xfffff000) | (address
& 0xfff);
4214 ap
= (desc
>> (4 + ((address
>> 9) & 6))) & 3;
4215 *page_size
= 0x1000;
4217 case 3: /* 1k page. */
4219 if (arm_feature(env
, ARM_FEATURE_XSCALE
)) {
4220 phys_addr
= (desc
& 0xfffff000) | (address
& 0xfff);
4222 /* Page translation fault. */
4227 phys_addr
= (desc
& 0xfffffc00) | (address
& 0x3ff);
4229 ap
= (desc
>> 4) & 3;
4233 /* Never happens, but compiler isn't smart enough to tell. */
4238 *prot
= check_ap(env
, ap
, domain_prot
, access_type
, is_user
);
4240 /* Access permission fault. */
4244 *phys_ptr
= phys_addr
;
4247 return code
| (domain
<< 4);
4250 static int get_phys_addr_v6(CPUARMState
*env
, uint32_t address
, int access_type
,
4251 int is_user
, hwaddr
*phys_ptr
,
4252 int *prot
, target_ulong
*page_size
)
4254 CPUState
*cs
= CPU(arm_env_get_cpu(env
));
4266 /* Pagetable walk. */
4267 /* Lookup l1 descriptor. */
4268 if (!get_level1_table_address(env
, &table
, address
)) {
4269 /* Section translation fault if page walk is disabled by PD0 or PD1 */
4273 desc
= ldl_phys(cs
->as
, table
);
4275 if (type
== 0 || (type
== 3 && !arm_feature(env
, ARM_FEATURE_PXN
))) {
4276 /* Section translation fault, or attempt to use the encoding
4277 * which is Reserved on implementations without PXN.
4282 if ((type
== 1) || !(desc
& (1 << 18))) {
4283 /* Page or Section. */
4284 domain
= (desc
>> 5) & 0x0f;
4286 domain_prot
= (env
->cp15
.c3
>> (domain
* 2)) & 3;
4287 if (domain_prot
== 0 || domain_prot
== 2) {
4289 code
= 9; /* Section domain fault. */
4291 code
= 11; /* Page domain fault. */
4296 if (desc
& (1 << 18)) {
4298 phys_addr
= (desc
& 0xff000000) | (address
& 0x00ffffff);
4299 *page_size
= 0x1000000;
4302 phys_addr
= (desc
& 0xfff00000) | (address
& 0x000fffff);
4303 *page_size
= 0x100000;
4305 ap
= ((desc
>> 10) & 3) | ((desc
>> 13) & 4);
4306 xn
= desc
& (1 << 4);
4310 if (arm_feature(env
, ARM_FEATURE_PXN
)) {
4311 pxn
= (desc
>> 2) & 1;
4313 /* Lookup l2 entry. */
4314 table
= (desc
& 0xfffffc00) | ((address
>> 10) & 0x3fc);
4315 desc
= ldl_phys(cs
->as
, table
);
4316 ap
= ((desc
>> 4) & 3) | ((desc
>> 7) & 4);
4318 case 0: /* Page translation fault. */
4321 case 1: /* 64k page. */
4322 phys_addr
= (desc
& 0xffff0000) | (address
& 0xffff);
4323 xn
= desc
& (1 << 15);
4324 *page_size
= 0x10000;
4326 case 2: case 3: /* 4k page. */
4327 phys_addr
= (desc
& 0xfffff000) | (address
& 0xfff);
4329 *page_size
= 0x1000;
4332 /* Never happens, but compiler isn't smart enough to tell. */
4337 if (domain_prot
== 3) {
4338 *prot
= PAGE_READ
| PAGE_WRITE
| PAGE_EXEC
;
4340 if (pxn
&& !is_user
) {
4343 if (xn
&& access_type
== 2)
4346 /* The simplified model uses AP[0] as an access control bit. */
4347 if ((env
->cp15
.c1_sys
& SCTLR_AFE
) && (ap
& 1) == 0) {
4348 /* Access flag fault. */
4349 code
= (code
== 15) ? 6 : 3;
4352 *prot
= check_ap(env
, ap
, domain_prot
, access_type
, is_user
);
4354 /* Access permission fault. */
4361 *phys_ptr
= phys_addr
;
4364 return code
| (domain
<< 4);
4367 /* Fault type for long-descriptor MMU fault reporting; this corresponds
4368 * to bits [5..2] in the STATUS field in long-format DFSR/IFSR.
4371 translation_fault
= 1,
4373 permission_fault
= 3,
4376 static int get_phys_addr_lpae(CPUARMState
*env
, target_ulong address
,
4377 int access_type
, int is_user
,
4378 hwaddr
*phys_ptr
, int *prot
,
4379 target_ulong
*page_size_ptr
)
4381 CPUState
*cs
= CPU(arm_env_get_cpu(env
));
4382 /* Read an LPAE long-descriptor translation table. */
4383 MMUFaultType fault_type
= translation_fault
;
4390 hwaddr descaddr
, descmask
;
4391 uint32_t tableattrs
;
4392 target_ulong page_size
;
4394 int32_t granule_sz
= 9;
4395 int32_t va_size
= 32;
4398 if (arm_el_is_aa64(env
, 1)) {
4400 if (extract64(address
, 55, 1))
4401 tbi
= extract64(env
->cp15
.c2_control
, 38, 1);
4403 tbi
= extract64(env
->cp15
.c2_control
, 37, 1);
4407 /* Determine whether this address is in the region controlled by
4408 * TTBR0 or TTBR1 (or if it is in neither region and should fault).
4409 * This is a Non-secure PL0/1 stage 1 translation, so controlled by
4410 * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32:
4412 uint32_t t0sz
= extract32(env
->cp15
.c2_control
, 0, 6);
4413 if (arm_el_is_aa64(env
, 1)) {
4414 t0sz
= MIN(t0sz
, 39);
4415 t0sz
= MAX(t0sz
, 16);
4417 uint32_t t1sz
= extract32(env
->cp15
.c2_control
, 16, 6);
4418 if (arm_el_is_aa64(env
, 1)) {
4419 t1sz
= MIN(t1sz
, 39);
4420 t1sz
= MAX(t1sz
, 16);
4422 if (t0sz
&& !extract64(address
, va_size
- t0sz
, t0sz
- tbi
)) {
4423 /* there is a ttbr0 region and we are in it (high bits all zero) */
4425 } else if (t1sz
&& !extract64(~address
, va_size
- t1sz
, t1sz
- tbi
)) {
4426 /* there is a ttbr1 region and we are in it (high bits all one) */
4429 /* ttbr0 region is "everything not in the ttbr1 region" */
4432 /* ttbr1 region is "everything not in the ttbr0 region" */
4435 /* in the gap between the two regions, this is a Translation fault */
4436 fault_type
= translation_fault
;
4440 /* Note that QEMU ignores shareability and cacheability attributes,
4441 * so we don't need to do anything with the SH, ORGN, IRGN fields
4442 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the
4443 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
4444 * implement any ASID-like capability so we can ignore it (instead
4445 * we will always flush the TLB any time the ASID is changed).
4447 if (ttbr_select
== 0) {
4448 ttbr
= env
->cp15
.ttbr0_el1
;
4449 epd
= extract32(env
->cp15
.c2_control
, 7, 1);
4452 tg
= extract32(env
->cp15
.c2_control
, 14, 2);
4453 if (tg
== 1) { /* 64KB pages */
4456 if (tg
== 2) { /* 16KB pages */
4460 ttbr
= env
->cp15
.ttbr1_el1
;
4461 epd
= extract32(env
->cp15
.c2_control
, 23, 1);
4464 tg
= extract32(env
->cp15
.c2_control
, 30, 2);
4465 if (tg
== 3) { /* 64KB pages */
4468 if (tg
== 1) { /* 16KB pages */
4474 /* Translation table walk disabled => Translation fault on TLB miss */
4478 /* The starting level depends on the virtual address size which can be
4479 * up to 48-bits and the translation granule size.
4481 if ((va_size
- tsz
) > (granule_sz
* 4 + 3)) {
4483 } else if ((va_size
- tsz
) > (granule_sz
* 3 + 3)) {
4489 /* Clear the vaddr bits which aren't part of the within-region address,
4490 * so that we don't have to special case things when calculating the
4491 * first descriptor address.
4494 address
&= (1ULL << (va_size
- tsz
)) - 1;
4497 descmask
= (1ULL << (granule_sz
+ 3)) - 1;
4499 /* Now we can extract the actual base address from the TTBR */
4500 descaddr
= extract64(ttbr
, 0, 48);
4501 descaddr
&= ~((1ULL << (va_size
- tsz
- (granule_sz
* (4 - level
)))) - 1);
4505 uint64_t descriptor
;
4507 descaddr
|= (address
>> (granule_sz
* (4 - level
))) & descmask
;
4509 descriptor
= ldq_phys(cs
->as
, descaddr
);
4510 if (!(descriptor
& 1) ||
4511 (!(descriptor
& 2) && (level
== 3))) {
4512 /* Invalid, or the Reserved level 3 encoding */
4515 descaddr
= descriptor
& 0xfffffff000ULL
;
4517 if ((descriptor
& 2) && (level
< 3)) {
4518 /* Table entry. The top five bits are attributes which may
4519 * propagate down through lower levels of the table (and
4520 * which are all arranged so that 0 means "no effect", so
4521 * we can gather them up by ORing in the bits at each level).
4523 tableattrs
|= extract64(descriptor
, 59, 5);
4527 /* Block entry at level 1 or 2, or page entry at level 3.
4528 * These are basically the same thing, although the number
4529 * of bits we pull in from the vaddr varies.
4531 page_size
= (1ULL << ((granule_sz
* (4 - level
)) + 3));
4532 descaddr
|= (address
& (page_size
- 1));
4533 /* Extract attributes from the descriptor and merge with table attrs */
4534 attrs
= extract64(descriptor
, 2, 10)
4535 | (extract64(descriptor
, 52, 12) << 10);
4536 attrs
|= extract32(tableattrs
, 0, 2) << 11; /* XN, PXN */
4537 attrs
|= extract32(tableattrs
, 3, 1) << 5; /* APTable[1] => AP[2] */
4538 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
4539 * means "force PL1 access only", which means forcing AP[1] to 0.
4541 if (extract32(tableattrs
, 2, 1)) {
4544 /* Since we're always in the Non-secure state, NSTable is ignored. */
4547 /* Here descaddr is the final physical address, and attributes
4550 fault_type
= access_fault
;
4551 if ((attrs
& (1 << 8)) == 0) {
4555 fault_type
= permission_fault
;
4556 if (is_user
&& !(attrs
& (1 << 4))) {
4557 /* Unprivileged access not enabled */
4560 *prot
= PAGE_READ
| PAGE_WRITE
| PAGE_EXEC
;
4561 if ((arm_feature(env
, ARM_FEATURE_V8
) && is_user
&& (attrs
& (1 << 12))) ||
4562 (!arm_feature(env
, ARM_FEATURE_V8
) && (attrs
& (1 << 12))) ||
4563 (!is_user
&& (attrs
& (1 << 11)))) {
4564 /* XN/UXN or PXN. Since we only implement EL0/EL1 we unconditionally
4565 * treat XN/UXN as UXN for v8.
4567 if (access_type
== 2) {
4570 *prot
&= ~PAGE_EXEC
;
4572 if (attrs
& (1 << 5)) {
4573 /* Write access forbidden */
4574 if (access_type
== 1) {
4577 *prot
&= ~PAGE_WRITE
;
4580 *phys_ptr
= descaddr
;
4581 *page_size_ptr
= page_size
;
4585 /* Long-descriptor format IFSR/DFSR value */
4586 return (1 << 9) | (fault_type
<< 2) | level
;
4589 static int get_phys_addr_mpu(CPUARMState
*env
, uint32_t address
,
4590 int access_type
, int is_user
,
4591 hwaddr
*phys_ptr
, int *prot
)
4597 *phys_ptr
= address
;
4598 for (n
= 7; n
>= 0; n
--) {
4599 base
= env
->cp15
.c6_region
[n
];
4600 if ((base
& 1) == 0)
4602 mask
= 1 << ((base
>> 1) & 0x1f);
4603 /* Keep this shift separate from the above to avoid an
4604 (undefined) << 32. */
4605 mask
= (mask
<< 1) - 1;
4606 if (((base
^ address
) & ~mask
) == 0)
4612 if (access_type
== 2) {
4613 mask
= env
->cp15
.pmsav5_insn_ap
;
4615 mask
= env
->cp15
.pmsav5_data_ap
;
4617 mask
= (mask
>> (n
* 4)) & 0xf;
4624 *prot
= PAGE_READ
| PAGE_WRITE
;
4629 *prot
|= PAGE_WRITE
;
4632 *prot
= PAGE_READ
| PAGE_WRITE
;
4643 /* Bad permission. */
4650 /* get_phys_addr - get the physical address for this virtual address
4652 * Find the physical address corresponding to the given virtual address,
4653 * by doing a translation table walk on MMU based systems or using the
4654 * MPU state on MPU based systems.
4656 * Returns 0 if the translation was successful. Otherwise, phys_ptr,
4657 * prot and page_size are not filled in, and the return value provides
4658 * information on why the translation aborted, in the format of a
4659 * DFSR/IFSR fault register, with the following caveats:
4660 * * we honour the short vs long DFSR format differences.
4661 * * the WnR bit is never set (the caller must do this).
4662 * * for MPU based systems we don't bother to return a full FSR format
4666 * @address: virtual address to get physical address for
4667 * @access_type: 0 for read, 1 for write, 2 for execute
4668 * @is_user: 0 for privileged access, 1 for user
4669 * @phys_ptr: set to the physical address corresponding to the virtual address
4670 * @prot: set to the permissions for the page containing phys_ptr
4671 * @page_size: set to the size of the page containing phys_ptr
4673 static inline int get_phys_addr(CPUARMState
*env
, target_ulong address
,
4674 int access_type
, int is_user
,
4675 hwaddr
*phys_ptr
, int *prot
,
4676 target_ulong
*page_size
)
4678 /* Fast Context Switch Extension. */
4679 if (address
< 0x02000000)
4680 address
+= env
->cp15
.c13_fcse
;
4682 if ((env
->cp15
.c1_sys
& SCTLR_M
) == 0) {
4683 /* MMU/MPU disabled. */
4684 *phys_ptr
= address
;
4685 *prot
= PAGE_READ
| PAGE_WRITE
| PAGE_EXEC
;
4686 *page_size
= TARGET_PAGE_SIZE
;
4688 } else if (arm_feature(env
, ARM_FEATURE_MPU
)) {
4689 *page_size
= TARGET_PAGE_SIZE
;
4690 return get_phys_addr_mpu(env
, address
, access_type
, is_user
, phys_ptr
,
4692 } else if (extended_addresses_enabled(env
)) {
4693 return get_phys_addr_lpae(env
, address
, access_type
, is_user
, phys_ptr
,
4695 } else if (env
->cp15
.c1_sys
& SCTLR_XP
) {
4696 return get_phys_addr_v6(env
, address
, access_type
, is_user
, phys_ptr
,
4699 return get_phys_addr_v5(env
, address
, access_type
, is_user
, phys_ptr
,
4704 int arm_cpu_handle_mmu_fault(CPUState
*cs
, vaddr address
,
4705 int access_type
, int mmu_idx
)
4707 ARMCPU
*cpu
= ARM_CPU(cs
);
4708 CPUARMState
*env
= &cpu
->env
;
4710 target_ulong page_size
;
4714 bool same_el
= (arm_current_pl(env
) != 0);
4716 is_user
= mmu_idx
== MMU_USER_IDX
;
4717 ret
= get_phys_addr(env
, address
, access_type
, is_user
, &phys_addr
, &prot
,
4720 /* Map a single [sub]page. */
4721 phys_addr
&= TARGET_PAGE_MASK
;
4722 address
&= TARGET_PAGE_MASK
;
4723 tlb_set_page(cs
, address
, phys_addr
, prot
, mmu_idx
, page_size
);
4727 /* AArch64 syndrome does not have an LPAE bit */
4728 syn
= ret
& ~(1 << 9);
4730 /* For insn and data aborts we assume there is no instruction syndrome
4731 * information; this is always true for exceptions reported to EL1.
4733 if (access_type
== 2) {
4734 syn
= syn_insn_abort(same_el
, 0, 0, syn
);
4735 cs
->exception_index
= EXCP_PREFETCH_ABORT
;
4737 syn
= syn_data_abort(same_el
, 0, 0, 0, access_type
== 1, syn
);
4738 if (access_type
== 1 && arm_feature(env
, ARM_FEATURE_V6
)) {
4741 cs
->exception_index
= EXCP_DATA_ABORT
;
4744 env
->exception
.syndrome
= syn
;
4745 env
->exception
.vaddress
= address
;
4746 env
->exception
.fsr
= ret
;
4750 hwaddr
arm_cpu_get_phys_page_debug(CPUState
*cs
, vaddr addr
)
4752 ARMCPU
*cpu
= ARM_CPU(cs
);
4754 target_ulong page_size
;
4758 ret
= get_phys_addr(&cpu
->env
, addr
, 0, 0, &phys_addr
, &prot
, &page_size
);
4767 void HELPER(set_r13_banked
)(CPUARMState
*env
, uint32_t mode
, uint32_t val
)
4769 if ((env
->uncached_cpsr
& CPSR_M
) == mode
) {
4770 env
->regs
[13] = val
;
4772 env
->banked_r13
[bank_number(mode
)] = val
;
4776 uint32_t HELPER(get_r13_banked
)(CPUARMState
*env
, uint32_t mode
)
4778 if ((env
->uncached_cpsr
& CPSR_M
) == mode
) {
4779 return env
->regs
[13];
4781 return env
->banked_r13
[bank_number(mode
)];
4785 uint32_t HELPER(v7m_mrs
)(CPUARMState
*env
, uint32_t reg
)
4787 ARMCPU
*cpu
= arm_env_get_cpu(env
);
4791 return xpsr_read(env
) & 0xf8000000;
4793 return xpsr_read(env
) & 0xf80001ff;
4795 return xpsr_read(env
) & 0xff00fc00;
4797 return xpsr_read(env
) & 0xff00fdff;
4799 return xpsr_read(env
) & 0x000001ff;
4801 return xpsr_read(env
) & 0x0700fc00;
4803 return xpsr_read(env
) & 0x0700edff;
4805 return env
->v7m
.current_sp
? env
->v7m
.other_sp
: env
->regs
[13];
4807 return env
->v7m
.current_sp
? env
->regs
[13] : env
->v7m
.other_sp
;
4808 case 16: /* PRIMASK */
4809 return (env
->daif
& PSTATE_I
) != 0;
4810 case 17: /* BASEPRI */
4811 case 18: /* BASEPRI_MAX */
4812 return env
->v7m
.basepri
;
4813 case 19: /* FAULTMASK */
4814 return (env
->daif
& PSTATE_F
) != 0;
4815 case 20: /* CONTROL */
4816 return env
->v7m
.control
;
4818 /* ??? For debugging only. */
4819 cpu_abort(CPU(cpu
), "Unimplemented system register read (%d)\n", reg
);
4824 void HELPER(v7m_msr
)(CPUARMState
*env
, uint32_t reg
, uint32_t val
)
4826 ARMCPU
*cpu
= arm_env_get_cpu(env
);
4830 xpsr_write(env
, val
, 0xf8000000);
4833 xpsr_write(env
, val
, 0xf8000000);
4836 xpsr_write(env
, val
, 0xfe00fc00);
4839 xpsr_write(env
, val
, 0xfe00fc00);
4842 /* IPSR bits are readonly. */
4845 xpsr_write(env
, val
, 0x0600fc00);
4848 xpsr_write(env
, val
, 0x0600fc00);
4851 if (env
->v7m
.current_sp
)
4852 env
->v7m
.other_sp
= val
;
4854 env
->regs
[13] = val
;
4857 if (env
->v7m
.current_sp
)
4858 env
->regs
[13] = val
;
4860 env
->v7m
.other_sp
= val
;
4862 case 16: /* PRIMASK */
4864 env
->daif
|= PSTATE_I
;
4866 env
->daif
&= ~PSTATE_I
;
4869 case 17: /* BASEPRI */
4870 env
->v7m
.basepri
= val
& 0xff;
4872 case 18: /* BASEPRI_MAX */
4874 if (val
!= 0 && (val
< env
->v7m
.basepri
|| env
->v7m
.basepri
== 0))
4875 env
->v7m
.basepri
= val
;
4877 case 19: /* FAULTMASK */
4879 env
->daif
|= PSTATE_F
;
4881 env
->daif
&= ~PSTATE_F
;
4884 case 20: /* CONTROL */
4885 env
->v7m
.control
= val
& 3;
4886 switch_v7m_sp(env
, (val
& 2) != 0);
4889 /* ??? For debugging only. */
4890 cpu_abort(CPU(cpu
), "Unimplemented system register write (%d)\n", reg
);
4897 void HELPER(dc_zva
)(CPUARMState
*env
, uint64_t vaddr_in
)
4899 /* Implement DC ZVA, which zeroes a fixed-length block of memory.
4900 * Note that we do not implement the (architecturally mandated)
4901 * alignment fault for attempts to use this on Device memory
4902 * (which matches the usual QEMU behaviour of not implementing either
4903 * alignment faults or any memory attribute handling).
4906 ARMCPU
*cpu
= arm_env_get_cpu(env
);
4907 uint64_t blocklen
= 4 << cpu
->dcz_blocksize
;
4908 uint64_t vaddr
= vaddr_in
& ~(blocklen
- 1);
4910 #ifndef CONFIG_USER_ONLY
4912 /* Slightly awkwardly, QEMU's TARGET_PAGE_SIZE may be less than
4913 * the block size so we might have to do more than one TLB lookup.
4914 * We know that in fact for any v8 CPU the page size is at least 4K
4915 * and the block size must be 2K or less, but TARGET_PAGE_SIZE is only
4916 * 1K as an artefact of legacy v5 subpage support being present in the
4917 * same QEMU executable.
4919 int maxidx
= DIV_ROUND_UP(blocklen
, TARGET_PAGE_SIZE
);
4920 void *hostaddr
[maxidx
];
4923 for (try = 0; try < 2; try++) {
4925 for (i
= 0; i
< maxidx
; i
++) {
4926 hostaddr
[i
] = tlb_vaddr_to_host(env
,
4927 vaddr
+ TARGET_PAGE_SIZE
* i
,
4928 1, cpu_mmu_index(env
));
4934 /* If it's all in the TLB it's fair game for just writing to;
4935 * we know we don't need to update dirty status, etc.
4937 for (i
= 0; i
< maxidx
- 1; i
++) {
4938 memset(hostaddr
[i
], 0, TARGET_PAGE_SIZE
);
4940 memset(hostaddr
[i
], 0, blocklen
- (i
* TARGET_PAGE_SIZE
));
4943 /* OK, try a store and see if we can populate the tlb. This
4944 * might cause an exception if the memory isn't writable,
4945 * in which case we will longjmp out of here. We must for
4946 * this purpose use the actual register value passed to us
4947 * so that we get the fault address right.
4949 helper_ret_stb_mmu(env
, vaddr_in
, 0, cpu_mmu_index(env
), GETRA());
4950 /* Now we can populate the other TLB entries, if any */
4951 for (i
= 0; i
< maxidx
; i
++) {
4952 uint64_t va
= vaddr
+ TARGET_PAGE_SIZE
* i
;
4953 if (va
!= (vaddr_in
& TARGET_PAGE_MASK
)) {
4954 helper_ret_stb_mmu(env
, va
, 0, cpu_mmu_index(env
), GETRA());
4959 /* Slow path (probably attempt to do this to an I/O device or
4960 * similar, or clearing of a block of code we have translations
4961 * cached for). Just do a series of byte writes as the architecture
4962 * demands. It's not worth trying to use a cpu_physical_memory_map(),
4963 * memset(), unmap() sequence here because:
4964 * + we'd need to account for the blocksize being larger than a page
4965 * + the direct-RAM access case is almost always going to be dealt
4966 * with in the fastpath code above, so there's no speed benefit
4967 * + we would have to deal with the map returning NULL because the
4968 * bounce buffer was in use
4970 for (i
= 0; i
< blocklen
; i
++) {
4971 helper_ret_stb_mmu(env
, vaddr
+ i
, 0, cpu_mmu_index(env
), GETRA());
4975 memset(g2h(vaddr
), 0, blocklen
);
4979 /* Note that signed overflow is undefined in C. The following routines are
4980 careful to use unsigned types where modulo arithmetic is required.
4981 Failure to do so _will_ break on newer gcc. */
4983 /* Signed saturating arithmetic. */
4985 /* Perform 16-bit signed saturating addition. */
4986 static inline uint16_t add16_sat(uint16_t a
, uint16_t b
)
4991 if (((res
^ a
) & 0x8000) && !((a
^ b
) & 0x8000)) {
5000 /* Perform 8-bit signed saturating addition. */
5001 static inline uint8_t add8_sat(uint8_t a
, uint8_t b
)
5006 if (((res
^ a
) & 0x80) && !((a
^ b
) & 0x80)) {
5015 /* Perform 16-bit signed saturating subtraction. */
5016 static inline uint16_t sub16_sat(uint16_t a
, uint16_t b
)
5021 if (((res
^ a
) & 0x8000) && ((a
^ b
) & 0x8000)) {
5030 /* Perform 8-bit signed saturating subtraction. */
5031 static inline uint8_t sub8_sat(uint8_t a
, uint8_t b
)
5036 if (((res
^ a
) & 0x80) && ((a
^ b
) & 0x80)) {
5045 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
5046 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
5047 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
5048 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
5051 #include "op_addsub.h"
5053 /* Unsigned saturating arithmetic. */
5054 static inline uint16_t add16_usat(uint16_t a
, uint16_t b
)
5063 static inline uint16_t sub16_usat(uint16_t a
, uint16_t b
)
5071 static inline uint8_t add8_usat(uint8_t a
, uint8_t b
)
5080 static inline uint8_t sub8_usat(uint8_t a
, uint8_t b
)
5088 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
5089 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
5090 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
5091 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
5094 #include "op_addsub.h"
5096 /* Signed modulo arithmetic. */
5097 #define SARITH16(a, b, n, op) do { \
5099 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
5100 RESULT(sum, n, 16); \
5102 ge |= 3 << (n * 2); \
5105 #define SARITH8(a, b, n, op) do { \
5107 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
5108 RESULT(sum, n, 8); \
5114 #define ADD16(a, b, n) SARITH16(a, b, n, +)
5115 #define SUB16(a, b, n) SARITH16(a, b, n, -)
5116 #define ADD8(a, b, n) SARITH8(a, b, n, +)
5117 #define SUB8(a, b, n) SARITH8(a, b, n, -)
5121 #include "op_addsub.h"
5123 /* Unsigned modulo arithmetic. */
5124 #define ADD16(a, b, n) do { \
5126 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
5127 RESULT(sum, n, 16); \
5128 if ((sum >> 16) == 1) \
5129 ge |= 3 << (n * 2); \
5132 #define ADD8(a, b, n) do { \
5134 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
5135 RESULT(sum, n, 8); \
5136 if ((sum >> 8) == 1) \
5140 #define SUB16(a, b, n) do { \
5142 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
5143 RESULT(sum, n, 16); \
5144 if ((sum >> 16) == 0) \
5145 ge |= 3 << (n * 2); \
5148 #define SUB8(a, b, n) do { \
5150 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
5151 RESULT(sum, n, 8); \
5152 if ((sum >> 8) == 0) \
5159 #include "op_addsub.h"
5161 /* Halved signed arithmetic. */
5162 #define ADD16(a, b, n) \
5163 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
5164 #define SUB16(a, b, n) \
5165 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
5166 #define ADD8(a, b, n) \
5167 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
5168 #define SUB8(a, b, n) \
5169 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
5172 #include "op_addsub.h"
5174 /* Halved unsigned arithmetic. */
5175 #define ADD16(a, b, n) \
5176 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
5177 #define SUB16(a, b, n) \
5178 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
5179 #define ADD8(a, b, n) \
5180 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
5181 #define SUB8(a, b, n) \
5182 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
5185 #include "op_addsub.h"
5187 static inline uint8_t do_usad(uint8_t a
, uint8_t b
)
5195 /* Unsigned sum of absolute byte differences. */
5196 uint32_t HELPER(usad8
)(uint32_t a
, uint32_t b
)
5199 sum
= do_usad(a
, b
);
5200 sum
+= do_usad(a
>> 8, b
>> 8);
5201 sum
+= do_usad(a
>> 16, b
>>16);
5202 sum
+= do_usad(a
>> 24, b
>> 24);
5206 /* For ARMv6 SEL instruction. */
5207 uint32_t HELPER(sel_flags
)(uint32_t flags
, uint32_t a
, uint32_t b
)
5220 return (a
& mask
) | (b
& ~mask
);
5223 /* VFP support. We follow the convention used for VFP instructions:
5224 Single precision routines have a "s" suffix, double precision a
5227 /* Convert host exception flags to vfp form. */
5228 static inline int vfp_exceptbits_from_host(int host_bits
)
5230 int target_bits
= 0;
5232 if (host_bits
& float_flag_invalid
)
5234 if (host_bits
& float_flag_divbyzero
)
5236 if (host_bits
& float_flag_overflow
)
5238 if (host_bits
& (float_flag_underflow
| float_flag_output_denormal
))
5240 if (host_bits
& float_flag_inexact
)
5241 target_bits
|= 0x10;
5242 if (host_bits
& float_flag_input_denormal
)
5243 target_bits
|= 0x80;
5247 uint32_t HELPER(vfp_get_fpscr
)(CPUARMState
*env
)
5252 fpscr
= (env
->vfp
.xregs
[ARM_VFP_FPSCR
] & 0xffc8ffff)
5253 | (env
->vfp
.vec_len
<< 16)
5254 | (env
->vfp
.vec_stride
<< 20);
5255 i
= get_float_exception_flags(&env
->vfp
.fp_status
);
5256 i
|= get_float_exception_flags(&env
->vfp
.standard_fp_status
);
5257 fpscr
|= vfp_exceptbits_from_host(i
);
5261 uint32_t vfp_get_fpscr(CPUARMState
*env
)
5263 return HELPER(vfp_get_fpscr
)(env
);
5266 /* Convert vfp exception flags to target form. */
5267 static inline int vfp_exceptbits_to_host(int target_bits
)
5271 if (target_bits
& 1)
5272 host_bits
|= float_flag_invalid
;
5273 if (target_bits
& 2)
5274 host_bits
|= float_flag_divbyzero
;
5275 if (target_bits
& 4)
5276 host_bits
|= float_flag_overflow
;
5277 if (target_bits
& 8)
5278 host_bits
|= float_flag_underflow
;
5279 if (target_bits
& 0x10)
5280 host_bits
|= float_flag_inexact
;
5281 if (target_bits
& 0x80)
5282 host_bits
|= float_flag_input_denormal
;
5286 void HELPER(vfp_set_fpscr
)(CPUARMState
*env
, uint32_t val
)
5291 changed
= env
->vfp
.xregs
[ARM_VFP_FPSCR
];
5292 env
->vfp
.xregs
[ARM_VFP_FPSCR
] = (val
& 0xffc8ffff);
5293 env
->vfp
.vec_len
= (val
>> 16) & 7;
5294 env
->vfp
.vec_stride
= (val
>> 20) & 3;
5297 if (changed
& (3 << 22)) {
5298 i
= (val
>> 22) & 3;
5300 case FPROUNDING_TIEEVEN
:
5301 i
= float_round_nearest_even
;
5303 case FPROUNDING_POSINF
:
5306 case FPROUNDING_NEGINF
:
5307 i
= float_round_down
;
5309 case FPROUNDING_ZERO
:
5310 i
= float_round_to_zero
;
5313 set_float_rounding_mode(i
, &env
->vfp
.fp_status
);
5315 if (changed
& (1 << 24)) {
5316 set_flush_to_zero((val
& (1 << 24)) != 0, &env
->vfp
.fp_status
);
5317 set_flush_inputs_to_zero((val
& (1 << 24)) != 0, &env
->vfp
.fp_status
);
5319 if (changed
& (1 << 25))
5320 set_default_nan_mode((val
& (1 << 25)) != 0, &env
->vfp
.fp_status
);
5322 i
= vfp_exceptbits_to_host(val
);
5323 set_float_exception_flags(i
, &env
->vfp
.fp_status
);
5324 set_float_exception_flags(0, &env
->vfp
.standard_fp_status
);
5327 void vfp_set_fpscr(CPUARMState
*env
, uint32_t val
)
5329 HELPER(vfp_set_fpscr
)(env
, val
);
5332 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
5334 #define VFP_BINOP(name) \
5335 float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
5337 float_status *fpst = fpstp; \
5338 return float32_ ## name(a, b, fpst); \
5340 float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
5342 float_status *fpst = fpstp; \
5343 return float64_ ## name(a, b, fpst); \
5355 float32
VFP_HELPER(neg
, s
)(float32 a
)
5357 return float32_chs(a
);
5360 float64
VFP_HELPER(neg
, d
)(float64 a
)
5362 return float64_chs(a
);
5365 float32
VFP_HELPER(abs
, s
)(float32 a
)
5367 return float32_abs(a
);
5370 float64
VFP_HELPER(abs
, d
)(float64 a
)
5372 return float64_abs(a
);
5375 float32
VFP_HELPER(sqrt
, s
)(float32 a
, CPUARMState
*env
)
5377 return float32_sqrt(a
, &env
->vfp
.fp_status
);
5380 float64
VFP_HELPER(sqrt
, d
)(float64 a
, CPUARMState
*env
)
5382 return float64_sqrt(a
, &env
->vfp
.fp_status
);
5385 /* XXX: check quiet/signaling case */
5386 #define DO_VFP_cmp(p, type) \
5387 void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env) \
5390 switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
5391 case 0: flags = 0x6; break; \
5392 case -1: flags = 0x8; break; \
5393 case 1: flags = 0x2; break; \
5394 default: case 2: flags = 0x3; break; \
5396 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
5397 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
5399 void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \
5402 switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
5403 case 0: flags = 0x6; break; \
5404 case -1: flags = 0x8; break; \
5405 case 1: flags = 0x2; break; \
5406 default: case 2: flags = 0x3; break; \
5408 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
5409 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
5411 DO_VFP_cmp(s
, float32
)
5412 DO_VFP_cmp(d
, float64
)
5415 /* Integer to float and float to integer conversions */
5417 #define CONV_ITOF(name, fsz, sign) \
5418 float##fsz HELPER(name)(uint32_t x, void *fpstp) \
5420 float_status *fpst = fpstp; \
5421 return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \
5424 #define CONV_FTOI(name, fsz, sign, round) \
5425 uint32_t HELPER(name)(float##fsz x, void *fpstp) \
5427 float_status *fpst = fpstp; \
5428 if (float##fsz##_is_any_nan(x)) { \
5429 float_raise(float_flag_invalid, fpst); \
5432 return float##fsz##_to_##sign##int32##round(x, fpst); \
5435 #define FLOAT_CONVS(name, p, fsz, sign) \
5436 CONV_ITOF(vfp_##name##to##p, fsz, sign) \
5437 CONV_FTOI(vfp_to##name##p, fsz, sign, ) \
5438 CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero)
5440 FLOAT_CONVS(si
, s
, 32, )
5441 FLOAT_CONVS(si
, d
, 64, )
5442 FLOAT_CONVS(ui
, s
, 32, u
)
5443 FLOAT_CONVS(ui
, d
, 64, u
)
5449 /* floating point conversion */
5450 float64
VFP_HELPER(fcvtd
, s
)(float32 x
, CPUARMState
*env
)
5452 float64 r
= float32_to_float64(x
, &env
->vfp
.fp_status
);
5453 /* ARM requires that S<->D conversion of any kind of NaN generates
5454 * a quiet NaN by forcing the most significant frac bit to 1.
5456 return float64_maybe_silence_nan(r
);
5459 float32
VFP_HELPER(fcvts
, d
)(float64 x
, CPUARMState
*env
)
5461 float32 r
= float64_to_float32(x
, &env
->vfp
.fp_status
);
5462 /* ARM requires that S<->D conversion of any kind of NaN generates
5463 * a quiet NaN by forcing the most significant frac bit to 1.
5465 return float32_maybe_silence_nan(r
);
5468 /* VFP3 fixed point conversion. */
5469 #define VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
5470 float##fsz HELPER(vfp_##name##to##p)(uint##isz##_t x, uint32_t shift, \
5473 float_status *fpst = fpstp; \
5475 tmp = itype##_to_##float##fsz(x, fpst); \
5476 return float##fsz##_scalbn(tmp, -(int)shift, fpst); \
5479 /* Notice that we want only input-denormal exception flags from the
5480 * scalbn operation: the other possible flags (overflow+inexact if
5481 * we overflow to infinity, output-denormal) aren't correct for the
5482 * complete scale-and-convert operation.
5484 #define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, round) \
5485 uint##isz##_t HELPER(vfp_to##name##p##round)(float##fsz x, \
5489 float_status *fpst = fpstp; \
5490 int old_exc_flags = get_float_exception_flags(fpst); \
5492 if (float##fsz##_is_any_nan(x)) { \
5493 float_raise(float_flag_invalid, fpst); \
5496 tmp = float##fsz##_scalbn(x, shift, fpst); \
5497 old_exc_flags |= get_float_exception_flags(fpst) \
5498 & float_flag_input_denormal; \
5499 set_float_exception_flags(old_exc_flags, fpst); \
5500 return float##fsz##_to_##itype##round(tmp, fpst); \
5503 #define VFP_CONV_FIX(name, p, fsz, isz, itype) \
5504 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
5505 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, _round_to_zero) \
5506 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
5508 #define VFP_CONV_FIX_A64(name, p, fsz, isz, itype) \
5509 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
5510 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
5512 VFP_CONV_FIX(sh
, d
, 64, 64, int16
)
5513 VFP_CONV_FIX(sl
, d
, 64, 64, int32
)
5514 VFP_CONV_FIX_A64(sq
, d
, 64, 64, int64
)
5515 VFP_CONV_FIX(uh
, d
, 64, 64, uint16
)
5516 VFP_CONV_FIX(ul
, d
, 64, 64, uint32
)
5517 VFP_CONV_FIX_A64(uq
, d
, 64, 64, uint64
)
5518 VFP_CONV_FIX(sh
, s
, 32, 32, int16
)
5519 VFP_CONV_FIX(sl
, s
, 32, 32, int32
)
5520 VFP_CONV_FIX_A64(sq
, s
, 32, 64, int64
)
5521 VFP_CONV_FIX(uh
, s
, 32, 32, uint16
)
5522 VFP_CONV_FIX(ul
, s
, 32, 32, uint32
)
5523 VFP_CONV_FIX_A64(uq
, s
, 32, 64, uint64
)
5525 #undef VFP_CONV_FIX_FLOAT
5526 #undef VFP_CONV_FLOAT_FIX_ROUND
5528 /* Set the current fp rounding mode and return the old one.
5529 * The argument is a softfloat float_round_ value.
5531 uint32_t HELPER(set_rmode
)(uint32_t rmode
, CPUARMState
*env
)
5533 float_status
*fp_status
= &env
->vfp
.fp_status
;
5535 uint32_t prev_rmode
= get_float_rounding_mode(fp_status
);
5536 set_float_rounding_mode(rmode
, fp_status
);
5541 /* Set the current fp rounding mode in the standard fp status and return
5542 * the old one. This is for NEON instructions that need to change the
5543 * rounding mode but wish to use the standard FPSCR values for everything
5544 * else. Always set the rounding mode back to the correct value after
5546 * The argument is a softfloat float_round_ value.
5548 uint32_t HELPER(set_neon_rmode
)(uint32_t rmode
, CPUARMState
*env
)
5550 float_status
*fp_status
= &env
->vfp
.standard_fp_status
;
5552 uint32_t prev_rmode
= get_float_rounding_mode(fp_status
);
5553 set_float_rounding_mode(rmode
, fp_status
);
5558 /* Half precision conversions. */
5559 static float32
do_fcvt_f16_to_f32(uint32_t a
, CPUARMState
*env
, float_status
*s
)
5561 int ieee
= (env
->vfp
.xregs
[ARM_VFP_FPSCR
] & (1 << 26)) == 0;
5562 float32 r
= float16_to_float32(make_float16(a
), ieee
, s
);
5564 return float32_maybe_silence_nan(r
);
5569 static uint32_t do_fcvt_f32_to_f16(float32 a
, CPUARMState
*env
, float_status
*s
)
5571 int ieee
= (env
->vfp
.xregs
[ARM_VFP_FPSCR
] & (1 << 26)) == 0;
5572 float16 r
= float32_to_float16(a
, ieee
, s
);
5574 r
= float16_maybe_silence_nan(r
);
5576 return float16_val(r
);
5579 float32
HELPER(neon_fcvt_f16_to_f32
)(uint32_t a
, CPUARMState
*env
)
5581 return do_fcvt_f16_to_f32(a
, env
, &env
->vfp
.standard_fp_status
);
5584 uint32_t HELPER(neon_fcvt_f32_to_f16
)(float32 a
, CPUARMState
*env
)
5586 return do_fcvt_f32_to_f16(a
, env
, &env
->vfp
.standard_fp_status
);
5589 float32
HELPER(vfp_fcvt_f16_to_f32
)(uint32_t a
, CPUARMState
*env
)
5591 return do_fcvt_f16_to_f32(a
, env
, &env
->vfp
.fp_status
);
5594 uint32_t HELPER(vfp_fcvt_f32_to_f16
)(float32 a
, CPUARMState
*env
)
5596 return do_fcvt_f32_to_f16(a
, env
, &env
->vfp
.fp_status
);
5599 float64
HELPER(vfp_fcvt_f16_to_f64
)(uint32_t a
, CPUARMState
*env
)
5601 int ieee
= (env
->vfp
.xregs
[ARM_VFP_FPSCR
] & (1 << 26)) == 0;
5602 float64 r
= float16_to_float64(make_float16(a
), ieee
, &env
->vfp
.fp_status
);
5604 return float64_maybe_silence_nan(r
);
5609 uint32_t HELPER(vfp_fcvt_f64_to_f16
)(float64 a
, CPUARMState
*env
)
5611 int ieee
= (env
->vfp
.xregs
[ARM_VFP_FPSCR
] & (1 << 26)) == 0;
5612 float16 r
= float64_to_float16(a
, ieee
, &env
->vfp
.fp_status
);
5614 r
= float16_maybe_silence_nan(r
);
5616 return float16_val(r
);
5619 #define float32_two make_float32(0x40000000)
5620 #define float32_three make_float32(0x40400000)
5621 #define float32_one_point_five make_float32(0x3fc00000)
5623 float32
HELPER(recps_f32
)(float32 a
, float32 b
, CPUARMState
*env
)
5625 float_status
*s
= &env
->vfp
.standard_fp_status
;
5626 if ((float32_is_infinity(a
) && float32_is_zero_or_denormal(b
)) ||
5627 (float32_is_infinity(b
) && float32_is_zero_or_denormal(a
))) {
5628 if (!(float32_is_zero(a
) || float32_is_zero(b
))) {
5629 float_raise(float_flag_input_denormal
, s
);
5633 return float32_sub(float32_two
, float32_mul(a
, b
, s
), s
);
5636 float32
HELPER(rsqrts_f32
)(float32 a
, float32 b
, CPUARMState
*env
)
5638 float_status
*s
= &env
->vfp
.standard_fp_status
;
5640 if ((float32_is_infinity(a
) && float32_is_zero_or_denormal(b
)) ||
5641 (float32_is_infinity(b
) && float32_is_zero_or_denormal(a
))) {
5642 if (!(float32_is_zero(a
) || float32_is_zero(b
))) {
5643 float_raise(float_flag_input_denormal
, s
);
5645 return float32_one_point_five
;
5647 product
= float32_mul(a
, b
, s
);
5648 return float32_div(float32_sub(float32_three
, product
, s
), float32_two
, s
);
5653 /* Constants 256 and 512 are used in some helpers; we avoid relying on
5654 * int->float conversions at run-time. */
5655 #define float64_256 make_float64(0x4070000000000000LL)
5656 #define float64_512 make_float64(0x4080000000000000LL)
5657 #define float32_maxnorm make_float32(0x7f7fffff)
5658 #define float64_maxnorm make_float64(0x7fefffffffffffffLL)
5660 /* Reciprocal functions
5662 * The algorithm that must be used to calculate the estimate
5663 * is specified by the ARM ARM, see FPRecipEstimate()
5666 static float64
recip_estimate(float64 a
, float_status
*real_fp_status
)
5668 /* These calculations mustn't set any fp exception flags,
5669 * so we use a local copy of the fp_status.
5671 float_status dummy_status
= *real_fp_status
;
5672 float_status
*s
= &dummy_status
;
5673 /* q = (int)(a * 512.0) */
5674 float64 q
= float64_mul(float64_512
, a
, s
);
5675 int64_t q_int
= float64_to_int64_round_to_zero(q
, s
);
5677 /* r = 1.0 / (((double)q + 0.5) / 512.0) */
5678 q
= int64_to_float64(q_int
, s
);
5679 q
= float64_add(q
, float64_half
, s
);
5680 q
= float64_div(q
, float64_512
, s
);
5681 q
= float64_div(float64_one
, q
, s
);
5683 /* s = (int)(256.0 * r + 0.5) */
5684 q
= float64_mul(q
, float64_256
, s
);
5685 q
= float64_add(q
, float64_half
, s
);
5686 q_int
= float64_to_int64_round_to_zero(q
, s
);
5688 /* return (double)s / 256.0 */
5689 return float64_div(int64_to_float64(q_int
, s
), float64_256
, s
);
5692 /* Common wrapper to call recip_estimate */
5693 static float64
call_recip_estimate(float64 num
, int off
, float_status
*fpst
)
5695 uint64_t val64
= float64_val(num
);
5696 uint64_t frac
= extract64(val64
, 0, 52);
5697 int64_t exp
= extract64(val64
, 52, 11);
5699 float64 scaled
, estimate
;
5701 /* Generate the scaled number for the estimate function */
5703 if (extract64(frac
, 51, 1) == 0) {
5705 frac
= extract64(frac
, 0, 50) << 2;
5707 frac
= extract64(frac
, 0, 51) << 1;
5711 /* scaled = '0' : '01111111110' : fraction<51:44> : Zeros(44); */
5712 scaled
= make_float64((0x3feULL
<< 52)
5713 | extract64(frac
, 44, 8) << 44);
5715 estimate
= recip_estimate(scaled
, fpst
);
5717 /* Build new result */
5718 val64
= float64_val(estimate
);
5719 sbit
= 0x8000000000000000ULL
& val64
;
5721 frac
= extract64(val64
, 0, 52);
5724 frac
= 1ULL << 51 | extract64(frac
, 1, 51);
5725 } else if (exp
== -1) {
5726 frac
= 1ULL << 50 | extract64(frac
, 2, 50);
5730 return make_float64(sbit
| (exp
<< 52) | frac
);
5733 static bool round_to_inf(float_status
*fpst
, bool sign_bit
)
5735 switch (fpst
->float_rounding_mode
) {
5736 case float_round_nearest_even
: /* Round to Nearest */
5738 case float_round_up
: /* Round to +Inf */
5740 case float_round_down
: /* Round to -Inf */
5742 case float_round_to_zero
: /* Round to Zero */
5746 g_assert_not_reached();
5749 float32
HELPER(recpe_f32
)(float32 input
, void *fpstp
)
5751 float_status
*fpst
= fpstp
;
5752 float32 f32
= float32_squash_input_denormal(input
, fpst
);
5753 uint32_t f32_val
= float32_val(f32
);
5754 uint32_t f32_sbit
= 0x80000000ULL
& f32_val
;
5755 int32_t f32_exp
= extract32(f32_val
, 23, 8);
5756 uint32_t f32_frac
= extract32(f32_val
, 0, 23);
5762 if (float32_is_any_nan(f32
)) {
5764 if (float32_is_signaling_nan(f32
)) {
5765 float_raise(float_flag_invalid
, fpst
);
5766 nan
= float32_maybe_silence_nan(f32
);
5768 if (fpst
->default_nan_mode
) {
5769 nan
= float32_default_nan
;
5772 } else if (float32_is_infinity(f32
)) {
5773 return float32_set_sign(float32_zero
, float32_is_neg(f32
));
5774 } else if (float32_is_zero(f32
)) {
5775 float_raise(float_flag_divbyzero
, fpst
);
5776 return float32_set_sign(float32_infinity
, float32_is_neg(f32
));
5777 } else if ((f32_val
& ~(1ULL << 31)) < (1ULL << 21)) {
5778 /* Abs(value) < 2.0^-128 */
5779 float_raise(float_flag_overflow
| float_flag_inexact
, fpst
);
5780 if (round_to_inf(fpst
, f32_sbit
)) {
5781 return float32_set_sign(float32_infinity
, float32_is_neg(f32
));
5783 return float32_set_sign(float32_maxnorm
, float32_is_neg(f32
));
5785 } else if (f32_exp
>= 253 && fpst
->flush_to_zero
) {
5786 float_raise(float_flag_underflow
, fpst
);
5787 return float32_set_sign(float32_zero
, float32_is_neg(f32
));
5791 f64
= make_float64(((int64_t)(f32_exp
) << 52) | (int64_t)(f32_frac
) << 29);
5792 r64
= call_recip_estimate(f64
, 253, fpst
);
5793 r64_val
= float64_val(r64
);
5794 r64_exp
= extract64(r64_val
, 52, 11);
5795 r64_frac
= extract64(r64_val
, 0, 52);
5797 /* result = sign : result_exp<7:0> : fraction<51:29>; */
5798 return make_float32(f32_sbit
|
5799 (r64_exp
& 0xff) << 23 |
5800 extract64(r64_frac
, 29, 24));
5803 float64
HELPER(recpe_f64
)(float64 input
, void *fpstp
)
5805 float_status
*fpst
= fpstp
;
5806 float64 f64
= float64_squash_input_denormal(input
, fpst
);
5807 uint64_t f64_val
= float64_val(f64
);
5808 uint64_t f64_sbit
= 0x8000000000000000ULL
& f64_val
;
5809 int64_t f64_exp
= extract64(f64_val
, 52, 11);
5815 /* Deal with any special cases */
5816 if (float64_is_any_nan(f64
)) {
5818 if (float64_is_signaling_nan(f64
)) {
5819 float_raise(float_flag_invalid
, fpst
);
5820 nan
= float64_maybe_silence_nan(f64
);
5822 if (fpst
->default_nan_mode
) {
5823 nan
= float64_default_nan
;
5826 } else if (float64_is_infinity(f64
)) {
5827 return float64_set_sign(float64_zero
, float64_is_neg(f64
));
5828 } else if (float64_is_zero(f64
)) {
5829 float_raise(float_flag_divbyzero
, fpst
);
5830 return float64_set_sign(float64_infinity
, float64_is_neg(f64
));
5831 } else if ((f64_val
& ~(1ULL << 63)) < (1ULL << 50)) {
5832 /* Abs(value) < 2.0^-1024 */
5833 float_raise(float_flag_overflow
| float_flag_inexact
, fpst
);
5834 if (round_to_inf(fpst
, f64_sbit
)) {
5835 return float64_set_sign(float64_infinity
, float64_is_neg(f64
));
5837 return float64_set_sign(float64_maxnorm
, float64_is_neg(f64
));
5839 } else if (f64_exp
>= 1023 && fpst
->flush_to_zero
) {
5840 float_raise(float_flag_underflow
, fpst
);
5841 return float64_set_sign(float64_zero
, float64_is_neg(f64
));
5844 r64
= call_recip_estimate(f64
, 2045, fpst
);
5845 r64_val
= float64_val(r64
);
5846 r64_exp
= extract64(r64_val
, 52, 11);
5847 r64_frac
= extract64(r64_val
, 0, 52);
5849 /* result = sign : result_exp<10:0> : fraction<51:0> */
5850 return make_float64(f64_sbit
|
5851 ((r64_exp
& 0x7ff) << 52) |
5855 /* The algorithm that must be used to calculate the estimate
5856 * is specified by the ARM ARM.
5858 static float64
recip_sqrt_estimate(float64 a
, float_status
*real_fp_status
)
5860 /* These calculations mustn't set any fp exception flags,
5861 * so we use a local copy of the fp_status.
5863 float_status dummy_status
= *real_fp_status
;
5864 float_status
*s
= &dummy_status
;
5868 if (float64_lt(a
, float64_half
, s
)) {
5869 /* range 0.25 <= a < 0.5 */
5871 /* a in units of 1/512 rounded down */
5872 /* q0 = (int)(a * 512.0); */
5873 q
= float64_mul(float64_512
, a
, s
);
5874 q_int
= float64_to_int64_round_to_zero(q
, s
);
5876 /* reciprocal root r */
5877 /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0); */
5878 q
= int64_to_float64(q_int
, s
);
5879 q
= float64_add(q
, float64_half
, s
);
5880 q
= float64_div(q
, float64_512
, s
);
5881 q
= float64_sqrt(q
, s
);
5882 q
= float64_div(float64_one
, q
, s
);
5884 /* range 0.5 <= a < 1.0 */
5886 /* a in units of 1/256 rounded down */
5887 /* q1 = (int)(a * 256.0); */
5888 q
= float64_mul(float64_256
, a
, s
);
5889 int64_t q_int
= float64_to_int64_round_to_zero(q
, s
);
5891 /* reciprocal root r */
5892 /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */
5893 q
= int64_to_float64(q_int
, s
);
5894 q
= float64_add(q
, float64_half
, s
);
5895 q
= float64_div(q
, float64_256
, s
);
5896 q
= float64_sqrt(q
, s
);
5897 q
= float64_div(float64_one
, q
, s
);
5899 /* r in units of 1/256 rounded to nearest */
5900 /* s = (int)(256.0 * r + 0.5); */
5902 q
= float64_mul(q
, float64_256
,s
);
5903 q
= float64_add(q
, float64_half
, s
);
5904 q_int
= float64_to_int64_round_to_zero(q
, s
);
5906 /* return (double)s / 256.0;*/
5907 return float64_div(int64_to_float64(q_int
, s
), float64_256
, s
);
5910 float32
HELPER(rsqrte_f32
)(float32 input
, void *fpstp
)
5912 float_status
*s
= fpstp
;
5913 float32 f32
= float32_squash_input_denormal(input
, s
);
5914 uint32_t val
= float32_val(f32
);
5915 uint32_t f32_sbit
= 0x80000000 & val
;
5916 int32_t f32_exp
= extract32(val
, 23, 8);
5917 uint32_t f32_frac
= extract32(val
, 0, 23);
5923 if (float32_is_any_nan(f32
)) {
5925 if (float32_is_signaling_nan(f32
)) {
5926 float_raise(float_flag_invalid
, s
);
5927 nan
= float32_maybe_silence_nan(f32
);
5929 if (s
->default_nan_mode
) {
5930 nan
= float32_default_nan
;
5933 } else if (float32_is_zero(f32
)) {
5934 float_raise(float_flag_divbyzero
, s
);
5935 return float32_set_sign(float32_infinity
, float32_is_neg(f32
));
5936 } else if (float32_is_neg(f32
)) {
5937 float_raise(float_flag_invalid
, s
);
5938 return float32_default_nan
;
5939 } else if (float32_is_infinity(f32
)) {
5940 return float32_zero
;
5943 /* Scale and normalize to a double-precision value between 0.25 and 1.0,
5944 * preserving the parity of the exponent. */
5946 f64_frac
= ((uint64_t) f32_frac
) << 29;
5948 while (extract64(f64_frac
, 51, 1) == 0) {
5949 f64_frac
= f64_frac
<< 1;
5950 f32_exp
= f32_exp
-1;
5952 f64_frac
= extract64(f64_frac
, 0, 51) << 1;
5955 if (extract64(f32_exp
, 0, 1) == 0) {
5956 f64
= make_float64(((uint64_t) f32_sbit
) << 32
5960 f64
= make_float64(((uint64_t) f32_sbit
) << 32
5965 result_exp
= (380 - f32_exp
) / 2;
5967 f64
= recip_sqrt_estimate(f64
, s
);
5969 val64
= float64_val(f64
);
5971 val
= ((result_exp
& 0xff) << 23)
5972 | ((val64
>> 29) & 0x7fffff);
5973 return make_float32(val
);
5976 float64
HELPER(rsqrte_f64
)(float64 input
, void *fpstp
)
5978 float_status
*s
= fpstp
;
5979 float64 f64
= float64_squash_input_denormal(input
, s
);
5980 uint64_t val
= float64_val(f64
);
5981 uint64_t f64_sbit
= 0x8000000000000000ULL
& val
;
5982 int64_t f64_exp
= extract64(val
, 52, 11);
5983 uint64_t f64_frac
= extract64(val
, 0, 52);
5985 uint64_t result_frac
;
5987 if (float64_is_any_nan(f64
)) {
5989 if (float64_is_signaling_nan(f64
)) {
5990 float_raise(float_flag_invalid
, s
);
5991 nan
= float64_maybe_silence_nan(f64
);
5993 if (s
->default_nan_mode
) {
5994 nan
= float64_default_nan
;
5997 } else if (float64_is_zero(f64
)) {
5998 float_raise(float_flag_divbyzero
, s
);
5999 return float64_set_sign(float64_infinity
, float64_is_neg(f64
));
6000 } else if (float64_is_neg(f64
)) {
6001 float_raise(float_flag_invalid
, s
);
6002 return float64_default_nan
;
6003 } else if (float64_is_infinity(f64
)) {
6004 return float64_zero
;
6007 /* Scale and normalize to a double-precision value between 0.25 and 1.0,
6008 * preserving the parity of the exponent. */
6011 while (extract64(f64_frac
, 51, 1) == 0) {
6012 f64_frac
= f64_frac
<< 1;
6013 f64_exp
= f64_exp
- 1;
6015 f64_frac
= extract64(f64_frac
, 0, 51) << 1;
6018 if (extract64(f64_exp
, 0, 1) == 0) {
6019 f64
= make_float64(f64_sbit
6023 f64
= make_float64(f64_sbit
6028 result_exp
= (3068 - f64_exp
) / 2;
6030 f64
= recip_sqrt_estimate(f64
, s
);
6032 result_frac
= extract64(float64_val(f64
), 0, 52);
6034 return make_float64(f64_sbit
|
6035 ((result_exp
& 0x7ff) << 52) |
6039 uint32_t HELPER(recpe_u32
)(uint32_t a
, void *fpstp
)
6041 float_status
*s
= fpstp
;
6044 if ((a
& 0x80000000) == 0) {
6048 f64
= make_float64((0x3feULL
<< 52)
6049 | ((int64_t)(a
& 0x7fffffff) << 21));
6051 f64
= recip_estimate(f64
, s
);
6053 return 0x80000000 | ((float64_val(f64
) >> 21) & 0x7fffffff);
6056 uint32_t HELPER(rsqrte_u32
)(uint32_t a
, void *fpstp
)
6058 float_status
*fpst
= fpstp
;
6061 if ((a
& 0xc0000000) == 0) {
6065 if (a
& 0x80000000) {
6066 f64
= make_float64((0x3feULL
<< 52)
6067 | ((uint64_t)(a
& 0x7fffffff) << 21));
6068 } else { /* bits 31-30 == '01' */
6069 f64
= make_float64((0x3fdULL
<< 52)
6070 | ((uint64_t)(a
& 0x3fffffff) << 22));
6073 f64
= recip_sqrt_estimate(f64
, fpst
);
6075 return 0x80000000 | ((float64_val(f64
) >> 21) & 0x7fffffff);
6078 /* VFPv4 fused multiply-accumulate */
6079 float32
VFP_HELPER(muladd
, s
)(float32 a
, float32 b
, float32 c
, void *fpstp
)
6081 float_status
*fpst
= fpstp
;
6082 return float32_muladd(a
, b
, c
, 0, fpst
);
6085 float64
VFP_HELPER(muladd
, d
)(float64 a
, float64 b
, float64 c
, void *fpstp
)
6087 float_status
*fpst
= fpstp
;
6088 return float64_muladd(a
, b
, c
, 0, fpst
);
6091 /* ARMv8 round to integral */
6092 float32
HELPER(rints_exact
)(float32 x
, void *fp_status
)
6094 return float32_round_to_int(x
, fp_status
);
6097 float64
HELPER(rintd_exact
)(float64 x
, void *fp_status
)
6099 return float64_round_to_int(x
, fp_status
);
6102 float32
HELPER(rints
)(float32 x
, void *fp_status
)
6104 int old_flags
= get_float_exception_flags(fp_status
), new_flags
;
6107 ret
= float32_round_to_int(x
, fp_status
);
6109 /* Suppress any inexact exceptions the conversion produced */
6110 if (!(old_flags
& float_flag_inexact
)) {
6111 new_flags
= get_float_exception_flags(fp_status
);
6112 set_float_exception_flags(new_flags
& ~float_flag_inexact
, fp_status
);
6118 float64
HELPER(rintd
)(float64 x
, void *fp_status
)
6120 int old_flags
= get_float_exception_flags(fp_status
), new_flags
;
6123 ret
= float64_round_to_int(x
, fp_status
);
6125 new_flags
= get_float_exception_flags(fp_status
);
6127 /* Suppress any inexact exceptions the conversion produced */
6128 if (!(old_flags
& float_flag_inexact
)) {
6129 new_flags
= get_float_exception_flags(fp_status
);
6130 set_float_exception_flags(new_flags
& ~float_flag_inexact
, fp_status
);
6136 /* Convert ARM rounding mode to softfloat */
6137 int arm_rmode_to_sf(int rmode
)
6140 case FPROUNDING_TIEAWAY
:
6141 rmode
= float_round_ties_away
;
6143 case FPROUNDING_ODD
:
6144 /* FIXME: add support for TIEAWAY and ODD */
6145 qemu_log_mask(LOG_UNIMP
, "arm: unimplemented rounding mode: %d\n",
6147 case FPROUNDING_TIEEVEN
:
6149 rmode
= float_round_nearest_even
;
6151 case FPROUNDING_POSINF
:
6152 rmode
= float_round_up
;
6154 case FPROUNDING_NEGINF
:
6155 rmode
= float_round_down
;
6157 case FPROUNDING_ZERO
:
6158 rmode
= float_round_to_zero
;
6165 * The upper bytes of val (above the number specified by 'bytes') must have
6166 * been zeroed out by the caller.
6168 uint32_t HELPER(crc32
)(uint32_t acc
, uint32_t val
, uint32_t bytes
)
6174 /* zlib crc32 converts the accumulator and output to one's complement. */
6175 return crc32(acc
^ 0xffffffff, buf
, bytes
) ^ 0xffffffff;
6178 uint32_t HELPER(crc32c
)(uint32_t acc
, uint32_t val
, uint32_t bytes
)
6184 /* Linux crc32c converts the output to one's complement. */
6185 return crc32c(acc
, buf
, bytes
) ^ 0xffffffff;