xen_pt_msi.c: Check for xen_host_pci_get_* failures in xen_pt_msix_init()
[qemu.git] / hw / ppc / spapr.c
blob970093e6b593b6d9b974de9cffcee04e7ac4dfa7
1 /*
2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2010 David Gibson, IBM Corporation.
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24 * THE SOFTWARE.
27 #include "qemu/osdep.h"
28 #include "qapi/error.h"
29 #include "sysemu/sysemu.h"
30 #include "sysemu/numa.h"
31 #include "hw/hw.h"
32 #include "qemu/log.h"
33 #include "hw/fw-path-provider.h"
34 #include "elf.h"
35 #include "net/net.h"
36 #include "sysemu/device_tree.h"
37 #include "sysemu/block-backend.h"
38 #include "sysemu/cpus.h"
39 #include "sysemu/hw_accel.h"
40 #include "kvm_ppc.h"
41 #include "migration/misc.h"
42 #include "migration/global_state.h"
43 #include "migration/register.h"
44 #include "mmu-hash64.h"
45 #include "mmu-book3s-v3.h"
46 #include "qom/cpu.h"
48 #include "hw/boards.h"
49 #include "hw/ppc/ppc.h"
50 #include "hw/loader.h"
52 #include "hw/ppc/fdt.h"
53 #include "hw/ppc/spapr.h"
54 #include "hw/ppc/spapr_vio.h"
55 #include "hw/pci-host/spapr.h"
56 #include "hw/ppc/xics.h"
57 #include "hw/pci/msi.h"
59 #include "hw/pci/pci.h"
60 #include "hw/scsi/scsi.h"
61 #include "hw/virtio/virtio-scsi.h"
62 #include "hw/virtio/vhost-scsi-common.h"
64 #include "exec/address-spaces.h"
65 #include "hw/usb.h"
66 #include "qemu/config-file.h"
67 #include "qemu/error-report.h"
68 #include "trace.h"
69 #include "hw/nmi.h"
70 #include "hw/intc/intc.h"
72 #include "hw/compat.h"
73 #include "qemu/cutils.h"
74 #include "hw/ppc/spapr_cpu_core.h"
75 #include "qmp-commands.h"
77 #include <libfdt.h>
79 /* SLOF memory layout:
81 * SLOF raw image loaded at 0, copies its romfs right below the flat
82 * device-tree, then position SLOF itself 31M below that
84 * So we set FW_OVERHEAD to 40MB which should account for all of that
85 * and more
87 * We load our kernel at 4M, leaving space for SLOF initial image
89 #define FDT_MAX_SIZE 0x100000
90 #define RTAS_MAX_SIZE 0x10000
91 #define RTAS_MAX_ADDR 0x80000000 /* RTAS must stay below that */
92 #define FW_MAX_SIZE 0x400000
93 #define FW_FILE_NAME "slof.bin"
94 #define FW_OVERHEAD 0x2800000
95 #define KERNEL_LOAD_ADDR FW_MAX_SIZE
97 #define MIN_RMA_SLOF 128UL
99 #define PHANDLE_XICP 0x00001111
101 static ICSState *spapr_ics_create(sPAPRMachineState *spapr,
102 const char *type_ics,
103 int nr_irqs, Error **errp)
105 Error *local_err = NULL;
106 Object *obj;
108 obj = object_new(type_ics);
109 object_property_add_child(OBJECT(spapr), "ics", obj, &error_abort);
110 object_property_add_const_link(obj, ICS_PROP_XICS, OBJECT(spapr),
111 &error_abort);
112 object_property_set_int(obj, nr_irqs, "nr-irqs", &local_err);
113 if (local_err) {
114 goto error;
116 object_property_set_bool(obj, true, "realized", &local_err);
117 if (local_err) {
118 goto error;
121 return ICS_SIMPLE(obj);
123 error:
124 error_propagate(errp, local_err);
125 return NULL;
128 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque)
130 /* Dummy entries correspond to unused ICPState objects in older QEMUs,
131 * and newer QEMUs don't even have them. In both cases, we don't want
132 * to send anything on the wire.
134 return false;
137 static const VMStateDescription pre_2_10_vmstate_dummy_icp = {
138 .name = "icp/server",
139 .version_id = 1,
140 .minimum_version_id = 1,
141 .needed = pre_2_10_vmstate_dummy_icp_needed,
142 .fields = (VMStateField[]) {
143 VMSTATE_UNUSED(4), /* uint32_t xirr */
144 VMSTATE_UNUSED(1), /* uint8_t pending_priority */
145 VMSTATE_UNUSED(1), /* uint8_t mfrr */
146 VMSTATE_END_OF_LIST()
150 static void pre_2_10_vmstate_register_dummy_icp(int i)
152 vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp,
153 (void *)(uintptr_t) i);
156 static void pre_2_10_vmstate_unregister_dummy_icp(int i)
158 vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp,
159 (void *)(uintptr_t) i);
162 static inline int xics_max_server_number(void)
164 return DIV_ROUND_UP(max_cpus * kvmppc_smt_threads(), smp_threads);
167 static void xics_system_init(MachineState *machine, int nr_irqs, Error **errp)
169 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
170 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
172 if (kvm_enabled()) {
173 if (machine_kernel_irqchip_allowed(machine) &&
174 !xics_kvm_init(spapr, errp)) {
175 spapr->icp_type = TYPE_KVM_ICP;
176 spapr->ics = spapr_ics_create(spapr, TYPE_ICS_KVM, nr_irqs, errp);
178 if (machine_kernel_irqchip_required(machine) && !spapr->ics) {
179 error_prepend(errp, "kernel_irqchip requested but unavailable: ");
180 return;
184 if (!spapr->ics) {
185 xics_spapr_init(spapr);
186 spapr->icp_type = TYPE_ICP;
187 spapr->ics = spapr_ics_create(spapr, TYPE_ICS_SIMPLE, nr_irqs, errp);
188 if (!spapr->ics) {
189 return;
193 if (smc->pre_2_10_has_unused_icps) {
194 int i;
196 for (i = 0; i < xics_max_server_number(); i++) {
197 /* Dummy entries get deregistered when real ICPState objects
198 * are registered during CPU core hotplug.
200 pre_2_10_vmstate_register_dummy_icp(i);
205 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
206 int smt_threads)
208 int i, ret = 0;
209 uint32_t servers_prop[smt_threads];
210 uint32_t gservers_prop[smt_threads * 2];
211 int index = ppc_get_vcpu_dt_id(cpu);
213 if (cpu->compat_pvr) {
214 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
215 if (ret < 0) {
216 return ret;
220 /* Build interrupt servers and gservers properties */
221 for (i = 0; i < smt_threads; i++) {
222 servers_prop[i] = cpu_to_be32(index + i);
223 /* Hack, direct the group queues back to cpu 0 */
224 gservers_prop[i*2] = cpu_to_be32(index + i);
225 gservers_prop[i*2 + 1] = 0;
227 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
228 servers_prop, sizeof(servers_prop));
229 if (ret < 0) {
230 return ret;
232 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
233 gservers_prop, sizeof(gservers_prop));
235 return ret;
238 static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, PowerPCCPU *cpu)
240 int index = ppc_get_vcpu_dt_id(cpu);
241 uint32_t associativity[] = {cpu_to_be32(0x5),
242 cpu_to_be32(0x0),
243 cpu_to_be32(0x0),
244 cpu_to_be32(0x0),
245 cpu_to_be32(cpu->node_id),
246 cpu_to_be32(index)};
248 /* Advertise NUMA via ibm,associativity */
249 return fdt_setprop(fdt, offset, "ibm,associativity", associativity,
250 sizeof(associativity));
253 /* Populate the "ibm,pa-features" property */
254 static void spapr_populate_pa_features(CPUPPCState *env, void *fdt, int offset,
255 bool legacy_guest)
257 uint8_t pa_features_206[] = { 6, 0,
258 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
259 uint8_t pa_features_207[] = { 24, 0,
260 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
261 0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
262 0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
263 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
264 uint8_t pa_features_300[] = { 66, 0,
265 /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
266 /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
267 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
268 /* 6: DS207 */
269 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
270 /* 16: Vector */
271 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
272 /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
273 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
274 /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
275 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
276 /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
277 0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
278 /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
279 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
280 /* 42: PM, 44: PC RA, 46: SC vec'd */
281 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
282 /* 48: SIMD, 50: QP BFP, 52: String */
283 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
284 /* 54: DecFP, 56: DecI, 58: SHA */
285 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
286 /* 60: NM atomic, 62: RNG */
287 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
289 uint8_t *pa_features;
290 size_t pa_size;
292 switch (POWERPC_MMU_VER(env->mmu_model)) {
293 case POWERPC_MMU_VER_2_06:
294 pa_features = pa_features_206;
295 pa_size = sizeof(pa_features_206);
296 break;
297 case POWERPC_MMU_VER_2_07:
298 pa_features = pa_features_207;
299 pa_size = sizeof(pa_features_207);
300 break;
301 case POWERPC_MMU_VER_3_00:
302 pa_features = pa_features_300;
303 pa_size = sizeof(pa_features_300);
304 break;
305 default:
306 return;
309 if (env->ci_large_pages) {
311 * Note: we keep CI large pages off by default because a 64K capable
312 * guest provisioned with large pages might otherwise try to map a qemu
313 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
314 * even if that qemu runs on a 4k host.
315 * We dd this bit back here if we are confident this is not an issue
317 pa_features[3] |= 0x20;
319 if (kvmppc_has_cap_htm() && pa_size > 24) {
320 pa_features[24] |= 0x80; /* Transactional memory support */
322 if (legacy_guest && pa_size > 40) {
323 /* Workaround for broken kernels that attempt (guest) radix
324 * mode when they can't handle it, if they see the radix bit set
325 * in pa-features. So hide it from them. */
326 pa_features[40 + 2] &= ~0x80; /* Radix MMU */
329 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
332 static int spapr_fixup_cpu_dt(void *fdt, sPAPRMachineState *spapr)
334 int ret = 0, offset, cpus_offset;
335 CPUState *cs;
336 char cpu_model[32];
337 int smt = kvmppc_smt_threads();
338 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
340 CPU_FOREACH(cs) {
341 PowerPCCPU *cpu = POWERPC_CPU(cs);
342 CPUPPCState *env = &cpu->env;
343 DeviceClass *dc = DEVICE_GET_CLASS(cs);
344 int index = ppc_get_vcpu_dt_id(cpu);
345 int compat_smt = MIN(smp_threads, ppc_compat_max_threads(cpu));
347 if ((index % smt) != 0) {
348 continue;
351 snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index);
353 cpus_offset = fdt_path_offset(fdt, "/cpus");
354 if (cpus_offset < 0) {
355 cpus_offset = fdt_add_subnode(fdt, fdt_path_offset(fdt, "/"),
356 "cpus");
357 if (cpus_offset < 0) {
358 return cpus_offset;
361 offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model);
362 if (offset < 0) {
363 offset = fdt_add_subnode(fdt, cpus_offset, cpu_model);
364 if (offset < 0) {
365 return offset;
369 ret = fdt_setprop(fdt, offset, "ibm,pft-size",
370 pft_size_prop, sizeof(pft_size_prop));
371 if (ret < 0) {
372 return ret;
375 if (nb_numa_nodes > 1) {
376 ret = spapr_fixup_cpu_numa_dt(fdt, offset, cpu);
377 if (ret < 0) {
378 return ret;
382 ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt);
383 if (ret < 0) {
384 return ret;
387 spapr_populate_pa_features(env, fdt, offset,
388 spapr->cas_legacy_guest_workaround);
390 return ret;
393 static hwaddr spapr_node0_size(void)
395 MachineState *machine = MACHINE(qdev_get_machine());
397 if (nb_numa_nodes) {
398 int i;
399 for (i = 0; i < nb_numa_nodes; ++i) {
400 if (numa_info[i].node_mem) {
401 return MIN(pow2floor(numa_info[i].node_mem),
402 machine->ram_size);
406 return machine->ram_size;
409 static void add_str(GString *s, const gchar *s1)
411 g_string_append_len(s, s1, strlen(s1) + 1);
414 static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start,
415 hwaddr size)
417 uint32_t associativity[] = {
418 cpu_to_be32(0x4), /* length */
419 cpu_to_be32(0x0), cpu_to_be32(0x0),
420 cpu_to_be32(0x0), cpu_to_be32(nodeid)
422 char mem_name[32];
423 uint64_t mem_reg_property[2];
424 int off;
426 mem_reg_property[0] = cpu_to_be64(start);
427 mem_reg_property[1] = cpu_to_be64(size);
429 sprintf(mem_name, "memory@" TARGET_FMT_lx, start);
430 off = fdt_add_subnode(fdt, 0, mem_name);
431 _FDT(off);
432 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
433 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
434 sizeof(mem_reg_property))));
435 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
436 sizeof(associativity))));
437 return off;
440 static int spapr_populate_memory(sPAPRMachineState *spapr, void *fdt)
442 MachineState *machine = MACHINE(spapr);
443 hwaddr mem_start, node_size;
444 int i, nb_nodes = nb_numa_nodes;
445 NodeInfo *nodes = numa_info;
446 NodeInfo ramnode;
448 /* No NUMA nodes, assume there is just one node with whole RAM */
449 if (!nb_numa_nodes) {
450 nb_nodes = 1;
451 ramnode.node_mem = machine->ram_size;
452 nodes = &ramnode;
455 for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
456 if (!nodes[i].node_mem) {
457 continue;
459 if (mem_start >= machine->ram_size) {
460 node_size = 0;
461 } else {
462 node_size = nodes[i].node_mem;
463 if (node_size > machine->ram_size - mem_start) {
464 node_size = machine->ram_size - mem_start;
467 if (!mem_start) {
468 /* ppc_spapr_init() checks for rma_size <= node0_size already */
469 spapr_populate_memory_node(fdt, i, 0, spapr->rma_size);
470 mem_start += spapr->rma_size;
471 node_size -= spapr->rma_size;
473 for ( ; node_size; ) {
474 hwaddr sizetmp = pow2floor(node_size);
476 /* mem_start != 0 here */
477 if (ctzl(mem_start) < ctzl(sizetmp)) {
478 sizetmp = 1ULL << ctzl(mem_start);
481 spapr_populate_memory_node(fdt, i, mem_start, sizetmp);
482 node_size -= sizetmp;
483 mem_start += sizetmp;
487 return 0;
490 static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset,
491 sPAPRMachineState *spapr)
493 PowerPCCPU *cpu = POWERPC_CPU(cs);
494 CPUPPCState *env = &cpu->env;
495 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
496 int index = ppc_get_vcpu_dt_id(cpu);
497 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
498 0xffffffff, 0xffffffff};
499 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
500 : SPAPR_TIMEBASE_FREQ;
501 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
502 uint32_t page_sizes_prop[64];
503 size_t page_sizes_prop_size;
504 uint32_t vcpus_per_socket = smp_threads * smp_cores;
505 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
506 int compat_smt = MIN(smp_threads, ppc_compat_max_threads(cpu));
507 sPAPRDRConnector *drc;
508 int drc_index;
509 uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ];
510 int i;
512 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index);
513 if (drc) {
514 drc_index = spapr_drc_index(drc);
515 _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
518 _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
519 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
521 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
522 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
523 env->dcache_line_size)));
524 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
525 env->dcache_line_size)));
526 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
527 env->icache_line_size)));
528 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
529 env->icache_line_size)));
531 if (pcc->l1_dcache_size) {
532 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
533 pcc->l1_dcache_size)));
534 } else {
535 warn_report("Unknown L1 dcache size for cpu");
537 if (pcc->l1_icache_size) {
538 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
539 pcc->l1_icache_size)));
540 } else {
541 warn_report("Unknown L1 icache size for cpu");
544 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
545 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
546 _FDT((fdt_setprop_cell(fdt, offset, "slb-size", env->slb_nr)));
547 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", env->slb_nr)));
548 _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
549 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
551 if (env->spr_cb[SPR_PURR].oea_read) {
552 _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
555 if (env->mmu_model & POWERPC_MMU_1TSEG) {
556 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
557 segs, sizeof(segs))));
560 /* Advertise VMX/VSX (vector extensions) if available
561 * 0 / no property == no vector extensions
562 * 1 == VMX / Altivec available
563 * 2 == VSX available */
564 if (env->insns_flags & PPC_ALTIVEC) {
565 uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
567 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx)));
570 /* Advertise DFP (Decimal Floating Point) if available
571 * 0 / no property == no DFP
572 * 1 == DFP available */
573 if (env->insns_flags2 & PPC2_DFP) {
574 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
577 page_sizes_prop_size = ppc_create_page_sizes_prop(env, page_sizes_prop,
578 sizeof(page_sizes_prop));
579 if (page_sizes_prop_size) {
580 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
581 page_sizes_prop, page_sizes_prop_size)));
584 spapr_populate_pa_features(env, fdt, offset, false);
586 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
587 cs->cpu_index / vcpus_per_socket)));
589 _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
590 pft_size_prop, sizeof(pft_size_prop))));
592 if (nb_numa_nodes > 1) {
593 _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cpu));
596 _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
598 if (pcc->radix_page_info) {
599 for (i = 0; i < pcc->radix_page_info->count; i++) {
600 radix_AP_encodings[i] =
601 cpu_to_be32(pcc->radix_page_info->entries[i]);
603 _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings",
604 radix_AP_encodings,
605 pcc->radix_page_info->count *
606 sizeof(radix_AP_encodings[0]))));
610 static void spapr_populate_cpus_dt_node(void *fdt, sPAPRMachineState *spapr)
612 CPUState *cs;
613 int cpus_offset;
614 char *nodename;
615 int smt = kvmppc_smt_threads();
617 cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
618 _FDT(cpus_offset);
619 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
620 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
623 * We walk the CPUs in reverse order to ensure that CPU DT nodes
624 * created by fdt_add_subnode() end up in the right order in FDT
625 * for the guest kernel the enumerate the CPUs correctly.
627 CPU_FOREACH_REVERSE(cs) {
628 PowerPCCPU *cpu = POWERPC_CPU(cs);
629 int index = ppc_get_vcpu_dt_id(cpu);
630 DeviceClass *dc = DEVICE_GET_CLASS(cs);
631 int offset;
633 if ((index % smt) != 0) {
634 continue;
637 nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
638 offset = fdt_add_subnode(fdt, cpus_offset, nodename);
639 g_free(nodename);
640 _FDT(offset);
641 spapr_populate_cpu_dt(cs, fdt, offset, spapr);
647 * Adds ibm,dynamic-reconfiguration-memory node.
648 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
649 * of this device tree node.
651 static int spapr_populate_drconf_memory(sPAPRMachineState *spapr, void *fdt)
653 MachineState *machine = MACHINE(spapr);
654 int ret, i, offset;
655 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
656 uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)};
657 uint32_t hotplug_lmb_start = spapr->hotplug_memory.base / lmb_size;
658 uint32_t nr_lmbs = (spapr->hotplug_memory.base +
659 memory_region_size(&spapr->hotplug_memory.mr)) /
660 lmb_size;
661 uint32_t *int_buf, *cur_index, buf_len;
662 int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
665 * Don't create the node if there is no hotpluggable memory
667 if (machine->ram_size == machine->maxram_size) {
668 return 0;
672 * Allocate enough buffer size to fit in ibm,dynamic-memory
673 * or ibm,associativity-lookup-arrays
675 buf_len = MAX(nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1, nr_nodes * 4 + 2)
676 * sizeof(uint32_t);
677 cur_index = int_buf = g_malloc0(buf_len);
679 offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
681 ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
682 sizeof(prop_lmb_size));
683 if (ret < 0) {
684 goto out;
687 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
688 if (ret < 0) {
689 goto out;
692 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
693 if (ret < 0) {
694 goto out;
697 /* ibm,dynamic-memory */
698 int_buf[0] = cpu_to_be32(nr_lmbs);
699 cur_index++;
700 for (i = 0; i < nr_lmbs; i++) {
701 uint64_t addr = i * lmb_size;
702 uint32_t *dynamic_memory = cur_index;
704 if (i >= hotplug_lmb_start) {
705 sPAPRDRConnector *drc;
707 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i);
708 g_assert(drc);
710 dynamic_memory[0] = cpu_to_be32(addr >> 32);
711 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
712 dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc));
713 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
714 dynamic_memory[4] = cpu_to_be32(numa_get_node(addr, NULL));
715 if (memory_region_present(get_system_memory(), addr)) {
716 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
717 } else {
718 dynamic_memory[5] = cpu_to_be32(0);
720 } else {
722 * LMB information for RMA, boot time RAM and gap b/n RAM and
723 * hotplug memory region -- all these are marked as reserved
724 * and as having no valid DRC.
726 dynamic_memory[0] = cpu_to_be32(addr >> 32);
727 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
728 dynamic_memory[2] = cpu_to_be32(0);
729 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
730 dynamic_memory[4] = cpu_to_be32(-1);
731 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
732 SPAPR_LMB_FLAGS_DRC_INVALID);
735 cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
737 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
738 if (ret < 0) {
739 goto out;
742 /* ibm,associativity-lookup-arrays */
743 cur_index = int_buf;
744 int_buf[0] = cpu_to_be32(nr_nodes);
745 int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */
746 cur_index += 2;
747 for (i = 0; i < nr_nodes; i++) {
748 uint32_t associativity[] = {
749 cpu_to_be32(0x0),
750 cpu_to_be32(0x0),
751 cpu_to_be32(0x0),
752 cpu_to_be32(i)
754 memcpy(cur_index, associativity, sizeof(associativity));
755 cur_index += 4;
757 ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf,
758 (cur_index - int_buf) * sizeof(uint32_t));
759 out:
760 g_free(int_buf);
761 return ret;
764 static int spapr_dt_cas_updates(sPAPRMachineState *spapr, void *fdt,
765 sPAPROptionVector *ov5_updates)
767 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
768 int ret = 0, offset;
770 /* Generate ibm,dynamic-reconfiguration-memory node if required */
771 if (spapr_ovec_test(ov5_updates, OV5_DRCONF_MEMORY)) {
772 g_assert(smc->dr_lmb_enabled);
773 ret = spapr_populate_drconf_memory(spapr, fdt);
774 if (ret) {
775 goto out;
779 /* /interrupt controller */
780 if (!spapr_ovec_test(ov5_updates, OV5_XIVE_EXPLOIT)) {
781 spapr_dt_xics(xics_max_server_number(), fdt, PHANDLE_XICP);
784 offset = fdt_path_offset(fdt, "/chosen");
785 if (offset < 0) {
786 offset = fdt_add_subnode(fdt, 0, "chosen");
787 if (offset < 0) {
788 return offset;
791 ret = spapr_ovec_populate_dt(fdt, offset, spapr->ov5_cas,
792 "ibm,architecture-vec-5");
794 out:
795 return ret;
798 int spapr_h_cas_compose_response(sPAPRMachineState *spapr,
799 target_ulong addr, target_ulong size,
800 sPAPROptionVector *ov5_updates)
802 void *fdt, *fdt_skel;
803 sPAPRDeviceTreeUpdateHeader hdr = { .version_id = 1 };
805 size -= sizeof(hdr);
807 /* Create skeleton */
808 fdt_skel = g_malloc0(size);
809 _FDT((fdt_create(fdt_skel, size)));
810 _FDT((fdt_begin_node(fdt_skel, "")));
811 _FDT((fdt_end_node(fdt_skel)));
812 _FDT((fdt_finish(fdt_skel)));
813 fdt = g_malloc0(size);
814 _FDT((fdt_open_into(fdt_skel, fdt, size)));
815 g_free(fdt_skel);
817 /* Fixup cpu nodes */
818 _FDT((spapr_fixup_cpu_dt(fdt, spapr)));
820 if (spapr_dt_cas_updates(spapr, fdt, ov5_updates)) {
821 return -1;
824 /* Pack resulting tree */
825 _FDT((fdt_pack(fdt)));
827 if (fdt_totalsize(fdt) + sizeof(hdr) > size) {
828 trace_spapr_cas_failed(size);
829 return -1;
832 cpu_physical_memory_write(addr, &hdr, sizeof(hdr));
833 cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt));
834 trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr));
835 g_free(fdt);
837 return 0;
840 static void spapr_dt_rtas(sPAPRMachineState *spapr, void *fdt)
842 int rtas;
843 GString *hypertas = g_string_sized_new(256);
844 GString *qemu_hypertas = g_string_sized_new(256);
845 uint32_t refpoints[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) };
846 uint64_t max_hotplug_addr = spapr->hotplug_memory.base +
847 memory_region_size(&spapr->hotplug_memory.mr);
848 uint32_t lrdr_capacity[] = {
849 cpu_to_be32(max_hotplug_addr >> 32),
850 cpu_to_be32(max_hotplug_addr & 0xffffffff),
851 0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE),
852 cpu_to_be32(max_cpus / smp_threads),
855 _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
857 /* hypertas */
858 add_str(hypertas, "hcall-pft");
859 add_str(hypertas, "hcall-term");
860 add_str(hypertas, "hcall-dabr");
861 add_str(hypertas, "hcall-interrupt");
862 add_str(hypertas, "hcall-tce");
863 add_str(hypertas, "hcall-vio");
864 add_str(hypertas, "hcall-splpar");
865 add_str(hypertas, "hcall-bulk");
866 add_str(hypertas, "hcall-set-mode");
867 add_str(hypertas, "hcall-sprg0");
868 add_str(hypertas, "hcall-copy");
869 add_str(hypertas, "hcall-debug");
870 add_str(qemu_hypertas, "hcall-memop1");
872 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
873 add_str(hypertas, "hcall-multi-tce");
876 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
877 add_str(hypertas, "hcall-hpt-resize");
880 _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
881 hypertas->str, hypertas->len));
882 g_string_free(hypertas, TRUE);
883 _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
884 qemu_hypertas->str, qemu_hypertas->len));
885 g_string_free(qemu_hypertas, TRUE);
887 _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points",
888 refpoints, sizeof(refpoints)));
890 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
891 RTAS_ERROR_LOG_MAX));
892 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
893 RTAS_EVENT_SCAN_RATE));
895 if (msi_nonbroken) {
896 _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
900 * According to PAPR, rtas ibm,os-term does not guarantee a return
901 * back to the guest cpu.
903 * While an additional ibm,extended-os-term property indicates
904 * that rtas call return will always occur. Set this property.
906 _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
908 _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
909 lrdr_capacity, sizeof(lrdr_capacity)));
911 spapr_dt_rtas_tokens(fdt, rtas);
914 /* Prepare ibm,arch-vec-5-platform-support, which indicates the MMU features
915 * that the guest may request and thus the valid values for bytes 24..26 of
916 * option vector 5: */
917 static void spapr_dt_ov5_platform_support(void *fdt, int chosen)
919 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
921 char val[2 * 4] = {
922 23, 0x00, /* Xive mode: 0 = legacy (as in ISA 2.7), 1 = Exploitation */
923 24, 0x00, /* Hash/Radix, filled in below. */
924 25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
925 26, 0x40, /* Radix options: GTSE == yes. */
928 if (kvm_enabled()) {
929 if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
930 val[3] = 0x80; /* OV5_MMU_BOTH */
931 } else if (kvmppc_has_cap_mmu_radix()) {
932 val[3] = 0x40; /* OV5_MMU_RADIX_300 */
933 } else {
934 val[3] = 0x00; /* Hash */
936 } else {
937 if (first_ppc_cpu->env.mmu_model & POWERPC_MMU_V3) {
938 /* V3 MMU supports both hash and radix (with dynamic switching) */
939 val[3] = 0xC0;
940 } else {
941 /* Otherwise we can only do hash */
942 val[3] = 0x00;
945 _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support",
946 val, sizeof(val)));
949 static void spapr_dt_chosen(sPAPRMachineState *spapr, void *fdt)
951 MachineState *machine = MACHINE(spapr);
952 int chosen;
953 const char *boot_device = machine->boot_order;
954 char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
955 size_t cb = 0;
956 char *bootlist = get_boot_devices_list(&cb, true);
958 _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
960 _FDT(fdt_setprop_string(fdt, chosen, "bootargs", machine->kernel_cmdline));
961 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
962 spapr->initrd_base));
963 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
964 spapr->initrd_base + spapr->initrd_size));
966 if (spapr->kernel_size) {
967 uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
968 cpu_to_be64(spapr->kernel_size) };
970 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
971 &kprop, sizeof(kprop)));
972 if (spapr->kernel_le) {
973 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
976 if (boot_menu) {
977 _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu)));
979 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
980 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
981 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
983 if (cb && bootlist) {
984 int i;
986 for (i = 0; i < cb; i++) {
987 if (bootlist[i] == '\n') {
988 bootlist[i] = ' ';
991 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
994 if (boot_device && strlen(boot_device)) {
995 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
998 if (!spapr->has_graphics && stdout_path) {
999 _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
1002 spapr_dt_ov5_platform_support(fdt, chosen);
1004 g_free(stdout_path);
1005 g_free(bootlist);
1008 static void spapr_dt_hypervisor(sPAPRMachineState *spapr, void *fdt)
1010 /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
1011 * KVM to work under pHyp with some guest co-operation */
1012 int hypervisor;
1013 uint8_t hypercall[16];
1015 _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
1016 /* indicate KVM hypercall interface */
1017 _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
1018 if (kvmppc_has_cap_fixup_hcalls()) {
1020 * Older KVM versions with older guest kernels were broken
1021 * with the magic page, don't allow the guest to map it.
1023 if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
1024 sizeof(hypercall))) {
1025 _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
1026 hypercall, sizeof(hypercall)));
1031 static void *spapr_build_fdt(sPAPRMachineState *spapr,
1032 hwaddr rtas_addr,
1033 hwaddr rtas_size)
1035 MachineState *machine = MACHINE(qdev_get_machine());
1036 MachineClass *mc = MACHINE_GET_CLASS(machine);
1037 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1038 int ret;
1039 void *fdt;
1040 sPAPRPHBState *phb;
1041 char *buf;
1043 fdt = g_malloc0(FDT_MAX_SIZE);
1044 _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
1046 /* Root node */
1047 _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
1048 _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
1049 _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
1052 * Add info to guest to indentify which host is it being run on
1053 * and what is the uuid of the guest
1055 if (kvmppc_get_host_model(&buf)) {
1056 _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
1057 g_free(buf);
1059 if (kvmppc_get_host_serial(&buf)) {
1060 _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
1061 g_free(buf);
1064 buf = qemu_uuid_unparse_strdup(&qemu_uuid);
1066 _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
1067 if (qemu_uuid_set) {
1068 _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
1070 g_free(buf);
1072 if (qemu_get_vm_name()) {
1073 _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
1074 qemu_get_vm_name()));
1077 _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
1078 _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
1080 ret = spapr_populate_memory(spapr, fdt);
1081 if (ret < 0) {
1082 error_report("couldn't setup memory nodes in fdt");
1083 exit(1);
1086 /* /vdevice */
1087 spapr_dt_vdevice(spapr->vio_bus, fdt);
1089 if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
1090 ret = spapr_rng_populate_dt(fdt);
1091 if (ret < 0) {
1092 error_report("could not set up rng device in the fdt");
1093 exit(1);
1097 QLIST_FOREACH(phb, &spapr->phbs, list) {
1098 ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt);
1099 if (ret < 0) {
1100 error_report("couldn't setup PCI devices in fdt");
1101 exit(1);
1105 /* cpus */
1106 spapr_populate_cpus_dt_node(fdt, spapr);
1108 if (smc->dr_lmb_enabled) {
1109 _FDT(spapr_drc_populate_dt(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB));
1112 if (mc->has_hotpluggable_cpus) {
1113 int offset = fdt_path_offset(fdt, "/cpus");
1114 ret = spapr_drc_populate_dt(fdt, offset, NULL,
1115 SPAPR_DR_CONNECTOR_TYPE_CPU);
1116 if (ret < 0) {
1117 error_report("Couldn't set up CPU DR device tree properties");
1118 exit(1);
1122 /* /event-sources */
1123 spapr_dt_events(spapr, fdt);
1125 /* /rtas */
1126 spapr_dt_rtas(spapr, fdt);
1128 /* /chosen */
1129 spapr_dt_chosen(spapr, fdt);
1131 /* /hypervisor */
1132 if (kvm_enabled()) {
1133 spapr_dt_hypervisor(spapr, fdt);
1136 /* Build memory reserve map */
1137 if (spapr->kernel_size) {
1138 _FDT((fdt_add_mem_rsv(fdt, KERNEL_LOAD_ADDR, spapr->kernel_size)));
1140 if (spapr->initrd_size) {
1141 _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base, spapr->initrd_size)));
1144 /* ibm,client-architecture-support updates */
1145 ret = spapr_dt_cas_updates(spapr, fdt, spapr->ov5_cas);
1146 if (ret < 0) {
1147 error_report("couldn't setup CAS properties fdt");
1148 exit(1);
1151 return fdt;
1154 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1156 return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
1159 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
1160 PowerPCCPU *cpu)
1162 CPUPPCState *env = &cpu->env;
1164 /* The TCG path should also be holding the BQL at this point */
1165 g_assert(qemu_mutex_iothread_locked());
1167 if (msr_pr) {
1168 hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1169 env->gpr[3] = H_PRIVILEGE;
1170 } else {
1171 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1175 static uint64_t spapr_get_patbe(PPCVirtualHypervisor *vhyp)
1177 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1179 return spapr->patb_entry;
1182 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1183 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1184 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1185 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1186 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1189 * Get the fd to access the kernel htab, re-opening it if necessary
1191 static int get_htab_fd(sPAPRMachineState *spapr)
1193 if (spapr->htab_fd >= 0) {
1194 return spapr->htab_fd;
1197 spapr->htab_fd = kvmppc_get_htab_fd(false);
1198 if (spapr->htab_fd < 0) {
1199 error_report("Unable to open fd for reading hash table from KVM: %s",
1200 strerror(errno));
1203 return spapr->htab_fd;
1206 void close_htab_fd(sPAPRMachineState *spapr)
1208 if (spapr->htab_fd >= 0) {
1209 close(spapr->htab_fd);
1211 spapr->htab_fd = -1;
1214 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
1216 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1218 return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
1221 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
1222 hwaddr ptex, int n)
1224 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1225 hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
1227 if (!spapr->htab) {
1229 * HTAB is controlled by KVM. Fetch into temporary buffer
1231 ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
1232 kvmppc_read_hptes(hptes, ptex, n);
1233 return hptes;
1237 * HTAB is controlled by QEMU. Just point to the internally
1238 * accessible PTEG.
1240 return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
1243 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
1244 const ppc_hash_pte64_t *hptes,
1245 hwaddr ptex, int n)
1247 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1249 if (!spapr->htab) {
1250 g_free((void *)hptes);
1253 /* Nothing to do for qemu managed HPT */
1256 static void spapr_store_hpte(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1257 uint64_t pte0, uint64_t pte1)
1259 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1260 hwaddr offset = ptex * HASH_PTE_SIZE_64;
1262 if (!spapr->htab) {
1263 kvmppc_write_hpte(ptex, pte0, pte1);
1264 } else {
1265 stq_p(spapr->htab + offset, pte0);
1266 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1270 int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1272 int shift;
1274 /* We aim for a hash table of size 1/128 the size of RAM (rounded
1275 * up). The PAPR recommendation is actually 1/64 of RAM size, but
1276 * that's much more than is needed for Linux guests */
1277 shift = ctz64(pow2ceil(ramsize)) - 7;
1278 shift = MAX(shift, 18); /* Minimum architected size */
1279 shift = MIN(shift, 46); /* Maximum architected size */
1280 return shift;
1283 void spapr_free_hpt(sPAPRMachineState *spapr)
1285 g_free(spapr->htab);
1286 spapr->htab = NULL;
1287 spapr->htab_shift = 0;
1288 close_htab_fd(spapr);
1291 void spapr_reallocate_hpt(sPAPRMachineState *spapr, int shift,
1292 Error **errp)
1294 long rc;
1296 /* Clean up any HPT info from a previous boot */
1297 spapr_free_hpt(spapr);
1299 rc = kvmppc_reset_htab(shift);
1300 if (rc < 0) {
1301 /* kernel-side HPT needed, but couldn't allocate one */
1302 error_setg_errno(errp, errno,
1303 "Failed to allocate KVM HPT of order %d (try smaller maxmem?)",
1304 shift);
1305 /* This is almost certainly fatal, but if the caller really
1306 * wants to carry on with shift == 0, it's welcome to try */
1307 } else if (rc > 0) {
1308 /* kernel-side HPT allocated */
1309 if (rc != shift) {
1310 error_setg(errp,
1311 "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)",
1312 shift, rc);
1315 spapr->htab_shift = shift;
1316 spapr->htab = NULL;
1317 } else {
1318 /* kernel-side HPT not needed, allocate in userspace instead */
1319 size_t size = 1ULL << shift;
1320 int i;
1322 spapr->htab = qemu_memalign(size, size);
1323 if (!spapr->htab) {
1324 error_setg_errno(errp, errno,
1325 "Could not allocate HPT of order %d", shift);
1326 return;
1329 memset(spapr->htab, 0, size);
1330 spapr->htab_shift = shift;
1332 for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1333 DIRTY_HPTE(HPTE(spapr->htab, i));
1338 void spapr_setup_hpt_and_vrma(sPAPRMachineState *spapr)
1340 int hpt_shift;
1342 if ((spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED)
1343 || (spapr->cas_reboot
1344 && !spapr_ovec_test(spapr->ov5_cas, OV5_HPT_RESIZE))) {
1345 hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1346 } else {
1347 hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->ram_size);
1349 spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal);
1351 if (spapr->vrma_adjust) {
1352 spapr->rma_size = kvmppc_rma_size(spapr_node0_size(),
1353 spapr->htab_shift);
1355 /* We're setting up a hash table, so that means we're not radix */
1356 spapr->patb_entry = 0;
1359 static void find_unknown_sysbus_device(SysBusDevice *sbdev, void *opaque)
1361 bool matched = false;
1363 if (object_dynamic_cast(OBJECT(sbdev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
1364 matched = true;
1367 if (!matched) {
1368 error_report("Device %s is not supported by this machine yet.",
1369 qdev_fw_name(DEVICE(sbdev)));
1370 exit(1);
1374 static void ppc_spapr_reset(void)
1376 MachineState *machine = MACHINE(qdev_get_machine());
1377 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
1378 PowerPCCPU *first_ppc_cpu;
1379 uint32_t rtas_limit;
1380 hwaddr rtas_addr, fdt_addr;
1381 void *fdt;
1382 int rc;
1384 /* Check for unknown sysbus devices */
1385 foreach_dynamic_sysbus_device(find_unknown_sysbus_device, NULL);
1387 if (kvm_enabled() && kvmppc_has_cap_mmu_radix()) {
1388 /* If using KVM with radix mode available, VCPUs can be started
1389 * without a HPT because KVM will start them in radix mode.
1390 * Set the GR bit in PATB so that we know there is no HPT. */
1391 spapr->patb_entry = PATBE1_GR;
1392 } else {
1393 spapr_setup_hpt_and_vrma(spapr);
1396 qemu_devices_reset();
1399 * We place the device tree and RTAS just below either the top of the RMA,
1400 * or just below 2GB, whichever is lowere, so that it can be
1401 * processed with 32-bit real mode code if necessary
1403 rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR);
1404 rtas_addr = rtas_limit - RTAS_MAX_SIZE;
1405 fdt_addr = rtas_addr - FDT_MAX_SIZE;
1407 /* if this reset wasn't generated by CAS, we should reset our
1408 * negotiated options and start from scratch */
1409 if (!spapr->cas_reboot) {
1410 spapr_ovec_cleanup(spapr->ov5_cas);
1411 spapr->ov5_cas = spapr_ovec_new();
1413 ppc_set_compat_all(spapr->max_compat_pvr, &error_fatal);
1416 fdt = spapr_build_fdt(spapr, rtas_addr, spapr->rtas_size);
1418 spapr_load_rtas(spapr, fdt, rtas_addr);
1420 rc = fdt_pack(fdt);
1422 /* Should only fail if we've built a corrupted tree */
1423 assert(rc == 0);
1425 if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
1426 error_report("FDT too big ! 0x%x bytes (max is 0x%x)",
1427 fdt_totalsize(fdt), FDT_MAX_SIZE);
1428 exit(1);
1431 /* Load the fdt */
1432 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1433 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1434 g_free(fdt);
1436 /* Set up the entry state */
1437 first_ppc_cpu = POWERPC_CPU(first_cpu);
1438 first_ppc_cpu->env.gpr[3] = fdt_addr;
1439 first_ppc_cpu->env.gpr[5] = 0;
1440 first_cpu->halted = 0;
1441 first_ppc_cpu->env.nip = SPAPR_ENTRY_POINT;
1443 spapr->cas_reboot = false;
1446 static void spapr_create_nvram(sPAPRMachineState *spapr)
1448 DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
1449 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1451 if (dinfo) {
1452 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
1453 &error_fatal);
1456 qdev_init_nofail(dev);
1458 spapr->nvram = (struct sPAPRNVRAM *)dev;
1461 static void spapr_rtc_create(sPAPRMachineState *spapr)
1463 object_initialize(&spapr->rtc, sizeof(spapr->rtc), TYPE_SPAPR_RTC);
1464 object_property_add_child(OBJECT(spapr), "rtc", OBJECT(&spapr->rtc),
1465 &error_fatal);
1466 object_property_set_bool(OBJECT(&spapr->rtc), true, "realized",
1467 &error_fatal);
1468 object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc),
1469 "date", &error_fatal);
1472 /* Returns whether we want to use VGA or not */
1473 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1475 switch (vga_interface_type) {
1476 case VGA_NONE:
1477 return false;
1478 case VGA_DEVICE:
1479 return true;
1480 case VGA_STD:
1481 case VGA_VIRTIO:
1482 return pci_vga_init(pci_bus) != NULL;
1483 default:
1484 error_setg(errp,
1485 "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1486 return false;
1490 static int spapr_post_load(void *opaque, int version_id)
1492 sPAPRMachineState *spapr = (sPAPRMachineState *)opaque;
1493 int err = 0;
1495 if (!object_dynamic_cast(OBJECT(spapr->ics), TYPE_ICS_KVM)) {
1496 CPUState *cs;
1497 CPU_FOREACH(cs) {
1498 PowerPCCPU *cpu = POWERPC_CPU(cs);
1499 icp_resend(ICP(cpu->intc));
1503 /* In earlier versions, there was no separate qdev for the PAPR
1504 * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1505 * So when migrating from those versions, poke the incoming offset
1506 * value into the RTC device */
1507 if (version_id < 3) {
1508 err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset);
1511 if (spapr->patb_entry) {
1512 PowerPCCPU *cpu = POWERPC_CPU(first_cpu);
1513 bool radix = !!(spapr->patb_entry & PATBE1_GR);
1514 bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE);
1516 err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry);
1517 if (err) {
1518 error_report("Process table config unsupported by the host");
1519 return -EINVAL;
1523 return err;
1526 static bool version_before_3(void *opaque, int version_id)
1528 return version_id < 3;
1531 static bool spapr_pending_events_needed(void *opaque)
1533 sPAPRMachineState *spapr = (sPAPRMachineState *)opaque;
1534 return !QTAILQ_EMPTY(&spapr->pending_events);
1537 static const VMStateDescription vmstate_spapr_event_entry = {
1538 .name = "spapr_event_log_entry",
1539 .version_id = 1,
1540 .minimum_version_id = 1,
1541 .fields = (VMStateField[]) {
1542 VMSTATE_UINT32(summary, sPAPREventLogEntry),
1543 VMSTATE_UINT32(extended_length, sPAPREventLogEntry),
1544 VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, sPAPREventLogEntry, 0,
1545 NULL, extended_length),
1546 VMSTATE_END_OF_LIST()
1550 static const VMStateDescription vmstate_spapr_pending_events = {
1551 .name = "spapr_pending_events",
1552 .version_id = 1,
1553 .minimum_version_id = 1,
1554 .needed = spapr_pending_events_needed,
1555 .fields = (VMStateField[]) {
1556 VMSTATE_QTAILQ_V(pending_events, sPAPRMachineState, 1,
1557 vmstate_spapr_event_entry, sPAPREventLogEntry, next),
1558 VMSTATE_END_OF_LIST()
1562 static bool spapr_ov5_cas_needed(void *opaque)
1564 sPAPRMachineState *spapr = opaque;
1565 sPAPROptionVector *ov5_mask = spapr_ovec_new();
1566 sPAPROptionVector *ov5_legacy = spapr_ovec_new();
1567 sPAPROptionVector *ov5_removed = spapr_ovec_new();
1568 bool cas_needed;
1570 /* Prior to the introduction of sPAPROptionVector, we had two option
1571 * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1572 * Both of these options encode machine topology into the device-tree
1573 * in such a way that the now-booted OS should still be able to interact
1574 * appropriately with QEMU regardless of what options were actually
1575 * negotiatied on the source side.
1577 * As such, we can avoid migrating the CAS-negotiated options if these
1578 * are the only options available on the current machine/platform.
1579 * Since these are the only options available for pseries-2.7 and
1580 * earlier, this allows us to maintain old->new/new->old migration
1581 * compatibility.
1583 * For QEMU 2.8+, there are additional CAS-negotiatable options available
1584 * via default pseries-2.8 machines and explicit command-line parameters.
1585 * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1586 * of the actual CAS-negotiated values to continue working properly. For
1587 * example, availability of memory unplug depends on knowing whether
1588 * OV5_HP_EVT was negotiated via CAS.
1590 * Thus, for any cases where the set of available CAS-negotiatable
1591 * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
1592 * include the CAS-negotiated options in the migration stream.
1594 spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
1595 spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
1597 /* spapr_ovec_diff returns true if bits were removed. we avoid using
1598 * the mask itself since in the future it's possible "legacy" bits may be
1599 * removed via machine options, which could generate a false positive
1600 * that breaks migration.
1602 spapr_ovec_intersect(ov5_legacy, spapr->ov5, ov5_mask);
1603 cas_needed = spapr_ovec_diff(ov5_removed, spapr->ov5, ov5_legacy);
1605 spapr_ovec_cleanup(ov5_mask);
1606 spapr_ovec_cleanup(ov5_legacy);
1607 spapr_ovec_cleanup(ov5_removed);
1609 return cas_needed;
1612 static const VMStateDescription vmstate_spapr_ov5_cas = {
1613 .name = "spapr_option_vector_ov5_cas",
1614 .version_id = 1,
1615 .minimum_version_id = 1,
1616 .needed = spapr_ov5_cas_needed,
1617 .fields = (VMStateField[]) {
1618 VMSTATE_STRUCT_POINTER_V(ov5_cas, sPAPRMachineState, 1,
1619 vmstate_spapr_ovec, sPAPROptionVector),
1620 VMSTATE_END_OF_LIST()
1624 static bool spapr_patb_entry_needed(void *opaque)
1626 sPAPRMachineState *spapr = opaque;
1628 return !!spapr->patb_entry;
1631 static const VMStateDescription vmstate_spapr_patb_entry = {
1632 .name = "spapr_patb_entry",
1633 .version_id = 1,
1634 .minimum_version_id = 1,
1635 .needed = spapr_patb_entry_needed,
1636 .fields = (VMStateField[]) {
1637 VMSTATE_UINT64(patb_entry, sPAPRMachineState),
1638 VMSTATE_END_OF_LIST()
1642 static const VMStateDescription vmstate_spapr = {
1643 .name = "spapr",
1644 .version_id = 3,
1645 .minimum_version_id = 1,
1646 .post_load = spapr_post_load,
1647 .fields = (VMStateField[]) {
1648 /* used to be @next_irq */
1649 VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
1651 /* RTC offset */
1652 VMSTATE_UINT64_TEST(rtc_offset, sPAPRMachineState, version_before_3),
1654 VMSTATE_PPC_TIMEBASE_V(tb, sPAPRMachineState, 2),
1655 VMSTATE_END_OF_LIST()
1657 .subsections = (const VMStateDescription*[]) {
1658 &vmstate_spapr_ov5_cas,
1659 &vmstate_spapr_patb_entry,
1660 &vmstate_spapr_pending_events,
1661 NULL
1665 static int htab_save_setup(QEMUFile *f, void *opaque)
1667 sPAPRMachineState *spapr = opaque;
1669 /* "Iteration" header */
1670 if (!spapr->htab_shift) {
1671 qemu_put_be32(f, -1);
1672 } else {
1673 qemu_put_be32(f, spapr->htab_shift);
1676 if (spapr->htab) {
1677 spapr->htab_save_index = 0;
1678 spapr->htab_first_pass = true;
1679 } else {
1680 if (spapr->htab_shift) {
1681 assert(kvm_enabled());
1686 return 0;
1689 static void htab_save_first_pass(QEMUFile *f, sPAPRMachineState *spapr,
1690 int64_t max_ns)
1692 bool has_timeout = max_ns != -1;
1693 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1694 int index = spapr->htab_save_index;
1695 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1697 assert(spapr->htab_first_pass);
1699 do {
1700 int chunkstart;
1702 /* Consume invalid HPTEs */
1703 while ((index < htabslots)
1704 && !HPTE_VALID(HPTE(spapr->htab, index))) {
1705 CLEAN_HPTE(HPTE(spapr->htab, index));
1706 index++;
1709 /* Consume valid HPTEs */
1710 chunkstart = index;
1711 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
1712 && HPTE_VALID(HPTE(spapr->htab, index))) {
1713 CLEAN_HPTE(HPTE(spapr->htab, index));
1714 index++;
1717 if (index > chunkstart) {
1718 int n_valid = index - chunkstart;
1720 qemu_put_be32(f, chunkstart);
1721 qemu_put_be16(f, n_valid);
1722 qemu_put_be16(f, 0);
1723 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
1724 HASH_PTE_SIZE_64 * n_valid);
1726 if (has_timeout &&
1727 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
1728 break;
1731 } while ((index < htabslots) && !qemu_file_rate_limit(f));
1733 if (index >= htabslots) {
1734 assert(index == htabslots);
1735 index = 0;
1736 spapr->htab_first_pass = false;
1738 spapr->htab_save_index = index;
1741 static int htab_save_later_pass(QEMUFile *f, sPAPRMachineState *spapr,
1742 int64_t max_ns)
1744 bool final = max_ns < 0;
1745 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1746 int examined = 0, sent = 0;
1747 int index = spapr->htab_save_index;
1748 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1750 assert(!spapr->htab_first_pass);
1752 do {
1753 int chunkstart, invalidstart;
1755 /* Consume non-dirty HPTEs */
1756 while ((index < htabslots)
1757 && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
1758 index++;
1759 examined++;
1762 chunkstart = index;
1763 /* Consume valid dirty HPTEs */
1764 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
1765 && HPTE_DIRTY(HPTE(spapr->htab, index))
1766 && HPTE_VALID(HPTE(spapr->htab, index))) {
1767 CLEAN_HPTE(HPTE(spapr->htab, index));
1768 index++;
1769 examined++;
1772 invalidstart = index;
1773 /* Consume invalid dirty HPTEs */
1774 while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
1775 && HPTE_DIRTY(HPTE(spapr->htab, index))
1776 && !HPTE_VALID(HPTE(spapr->htab, index))) {
1777 CLEAN_HPTE(HPTE(spapr->htab, index));
1778 index++;
1779 examined++;
1782 if (index > chunkstart) {
1783 int n_valid = invalidstart - chunkstart;
1784 int n_invalid = index - invalidstart;
1786 qemu_put_be32(f, chunkstart);
1787 qemu_put_be16(f, n_valid);
1788 qemu_put_be16(f, n_invalid);
1789 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
1790 HASH_PTE_SIZE_64 * n_valid);
1791 sent += index - chunkstart;
1793 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
1794 break;
1798 if (examined >= htabslots) {
1799 break;
1802 if (index >= htabslots) {
1803 assert(index == htabslots);
1804 index = 0;
1806 } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
1808 if (index >= htabslots) {
1809 assert(index == htabslots);
1810 index = 0;
1813 spapr->htab_save_index = index;
1815 return (examined >= htabslots) && (sent == 0) ? 1 : 0;
1818 #define MAX_ITERATION_NS 5000000 /* 5 ms */
1819 #define MAX_KVM_BUF_SIZE 2048
1821 static int htab_save_iterate(QEMUFile *f, void *opaque)
1823 sPAPRMachineState *spapr = opaque;
1824 int fd;
1825 int rc = 0;
1827 /* Iteration header */
1828 if (!spapr->htab_shift) {
1829 qemu_put_be32(f, -1);
1830 return 0;
1831 } else {
1832 qemu_put_be32(f, 0);
1835 if (!spapr->htab) {
1836 assert(kvm_enabled());
1838 fd = get_htab_fd(spapr);
1839 if (fd < 0) {
1840 return fd;
1843 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
1844 if (rc < 0) {
1845 return rc;
1847 } else if (spapr->htab_first_pass) {
1848 htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
1849 } else {
1850 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
1853 /* End marker */
1854 qemu_put_be32(f, 0);
1855 qemu_put_be16(f, 0);
1856 qemu_put_be16(f, 0);
1858 return rc;
1861 static int htab_save_complete(QEMUFile *f, void *opaque)
1863 sPAPRMachineState *spapr = opaque;
1864 int fd;
1866 /* Iteration header */
1867 if (!spapr->htab_shift) {
1868 qemu_put_be32(f, -1);
1869 return 0;
1870 } else {
1871 qemu_put_be32(f, 0);
1874 if (!spapr->htab) {
1875 int rc;
1877 assert(kvm_enabled());
1879 fd = get_htab_fd(spapr);
1880 if (fd < 0) {
1881 return fd;
1884 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
1885 if (rc < 0) {
1886 return rc;
1888 } else {
1889 if (spapr->htab_first_pass) {
1890 htab_save_first_pass(f, spapr, -1);
1892 htab_save_later_pass(f, spapr, -1);
1895 /* End marker */
1896 qemu_put_be32(f, 0);
1897 qemu_put_be16(f, 0);
1898 qemu_put_be16(f, 0);
1900 return 0;
1903 static int htab_load(QEMUFile *f, void *opaque, int version_id)
1905 sPAPRMachineState *spapr = opaque;
1906 uint32_t section_hdr;
1907 int fd = -1;
1909 if (version_id < 1 || version_id > 1) {
1910 error_report("htab_load() bad version");
1911 return -EINVAL;
1914 section_hdr = qemu_get_be32(f);
1916 if (section_hdr == -1) {
1917 spapr_free_hpt(spapr);
1918 return 0;
1921 if (section_hdr) {
1922 Error *local_err = NULL;
1924 /* First section gives the htab size */
1925 spapr_reallocate_hpt(spapr, section_hdr, &local_err);
1926 if (local_err) {
1927 error_report_err(local_err);
1928 return -EINVAL;
1930 return 0;
1933 if (!spapr->htab) {
1934 assert(kvm_enabled());
1936 fd = kvmppc_get_htab_fd(true);
1937 if (fd < 0) {
1938 error_report("Unable to open fd to restore KVM hash table: %s",
1939 strerror(errno));
1943 while (true) {
1944 uint32_t index;
1945 uint16_t n_valid, n_invalid;
1947 index = qemu_get_be32(f);
1948 n_valid = qemu_get_be16(f);
1949 n_invalid = qemu_get_be16(f);
1951 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
1952 /* End of Stream */
1953 break;
1956 if ((index + n_valid + n_invalid) >
1957 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
1958 /* Bad index in stream */
1959 error_report(
1960 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
1961 index, n_valid, n_invalid, spapr->htab_shift);
1962 return -EINVAL;
1965 if (spapr->htab) {
1966 if (n_valid) {
1967 qemu_get_buffer(f, HPTE(spapr->htab, index),
1968 HASH_PTE_SIZE_64 * n_valid);
1970 if (n_invalid) {
1971 memset(HPTE(spapr->htab, index + n_valid), 0,
1972 HASH_PTE_SIZE_64 * n_invalid);
1974 } else {
1975 int rc;
1977 assert(fd >= 0);
1979 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
1980 if (rc < 0) {
1981 return rc;
1986 if (!spapr->htab) {
1987 assert(fd >= 0);
1988 close(fd);
1991 return 0;
1994 static void htab_save_cleanup(void *opaque)
1996 sPAPRMachineState *spapr = opaque;
1998 close_htab_fd(spapr);
2001 static SaveVMHandlers savevm_htab_handlers = {
2002 .save_setup = htab_save_setup,
2003 .save_live_iterate = htab_save_iterate,
2004 .save_live_complete_precopy = htab_save_complete,
2005 .save_cleanup = htab_save_cleanup,
2006 .load_state = htab_load,
2009 static void spapr_boot_set(void *opaque, const char *boot_device,
2010 Error **errp)
2012 MachineState *machine = MACHINE(qdev_get_machine());
2013 machine->boot_order = g_strdup(boot_device);
2016 static void spapr_create_lmb_dr_connectors(sPAPRMachineState *spapr)
2018 MachineState *machine = MACHINE(spapr);
2019 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
2020 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
2021 int i;
2023 for (i = 0; i < nr_lmbs; i++) {
2024 uint64_t addr;
2026 addr = i * lmb_size + spapr->hotplug_memory.base;
2027 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB,
2028 addr / lmb_size);
2033 * If RAM size, maxmem size and individual node mem sizes aren't aligned
2034 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
2035 * since we can't support such unaligned sizes with DRCONF_MEMORY.
2037 static void spapr_validate_node_memory(MachineState *machine, Error **errp)
2039 int i;
2041 if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2042 error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
2043 " is not aligned to %llu MiB",
2044 machine->ram_size,
2045 SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
2046 return;
2049 if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2050 error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
2051 " is not aligned to %llu MiB",
2052 machine->ram_size,
2053 SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
2054 return;
2057 for (i = 0; i < nb_numa_nodes; i++) {
2058 if (numa_info[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
2059 error_setg(errp,
2060 "Node %d memory size 0x%" PRIx64
2061 " is not aligned to %llu MiB",
2062 i, numa_info[i].node_mem,
2063 SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
2064 return;
2069 /* find cpu slot in machine->possible_cpus by core_id */
2070 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
2072 int index = id / smp_threads;
2074 if (index >= ms->possible_cpus->len) {
2075 return NULL;
2077 if (idx) {
2078 *idx = index;
2080 return &ms->possible_cpus->cpus[index];
2083 static void spapr_init_cpus(sPAPRMachineState *spapr)
2085 MachineState *machine = MACHINE(spapr);
2086 MachineClass *mc = MACHINE_GET_CLASS(machine);
2087 char *type = spapr_get_cpu_core_type(machine->cpu_model);
2088 int smt = kvmppc_smt_threads();
2089 const CPUArchIdList *possible_cpus;
2090 int boot_cores_nr = smp_cpus / smp_threads;
2091 int i;
2093 if (!type) {
2094 error_report("Unable to find sPAPR CPU Core definition");
2095 exit(1);
2098 possible_cpus = mc->possible_cpu_arch_ids(machine);
2099 if (mc->has_hotpluggable_cpus) {
2100 if (smp_cpus % smp_threads) {
2101 error_report("smp_cpus (%u) must be multiple of threads (%u)",
2102 smp_cpus, smp_threads);
2103 exit(1);
2105 if (max_cpus % smp_threads) {
2106 error_report("max_cpus (%u) must be multiple of threads (%u)",
2107 max_cpus, smp_threads);
2108 exit(1);
2110 } else {
2111 if (max_cpus != smp_cpus) {
2112 error_report("This machine version does not support CPU hotplug");
2113 exit(1);
2115 boot_cores_nr = possible_cpus->len;
2118 for (i = 0; i < possible_cpus->len; i++) {
2119 int core_id = i * smp_threads;
2121 if (mc->has_hotpluggable_cpus) {
2122 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU,
2123 (core_id / smp_threads) * smt);
2126 if (i < boot_cores_nr) {
2127 Object *core = object_new(type);
2128 int nr_threads = smp_threads;
2130 /* Handle the partially filled core for older machine types */
2131 if ((i + 1) * smp_threads >= smp_cpus) {
2132 nr_threads = smp_cpus - i * smp_threads;
2135 object_property_set_int(core, nr_threads, "nr-threads",
2136 &error_fatal);
2137 object_property_set_int(core, core_id, CPU_CORE_PROP_CORE_ID,
2138 &error_fatal);
2139 object_property_set_bool(core, true, "realized", &error_fatal);
2142 g_free(type);
2145 /* pSeries LPAR / sPAPR hardware init */
2146 static void ppc_spapr_init(MachineState *machine)
2148 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
2149 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2150 const char *kernel_filename = machine->kernel_filename;
2151 const char *initrd_filename = machine->initrd_filename;
2152 PCIHostState *phb;
2153 int i;
2154 MemoryRegion *sysmem = get_system_memory();
2155 MemoryRegion *ram = g_new(MemoryRegion, 1);
2156 MemoryRegion *rma_region;
2157 void *rma = NULL;
2158 hwaddr rma_alloc_size;
2159 hwaddr node0_size = spapr_node0_size();
2160 long load_limit, fw_size;
2161 char *filename;
2162 Error *resize_hpt_err = NULL;
2164 msi_nonbroken = true;
2166 QLIST_INIT(&spapr->phbs);
2167 QTAILQ_INIT(&spapr->pending_dimm_unplugs);
2169 /* Check HPT resizing availability */
2170 kvmppc_check_papr_resize_hpt(&resize_hpt_err);
2171 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) {
2173 * If the user explicitly requested a mode we should either
2174 * supply it, or fail completely (which we do below). But if
2175 * it's not set explicitly, we reset our mode to something
2176 * that works
2178 if (resize_hpt_err) {
2179 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
2180 error_free(resize_hpt_err);
2181 resize_hpt_err = NULL;
2182 } else {
2183 spapr->resize_hpt = smc->resize_hpt_default;
2187 assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT);
2189 if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) {
2191 * User requested HPT resize, but this host can't supply it. Bail out
2193 error_report_err(resize_hpt_err);
2194 exit(1);
2197 /* Allocate RMA if necessary */
2198 rma_alloc_size = kvmppc_alloc_rma(&rma);
2200 if (rma_alloc_size == -1) {
2201 error_report("Unable to create RMA");
2202 exit(1);
2205 if (rma_alloc_size && (rma_alloc_size < node0_size)) {
2206 spapr->rma_size = rma_alloc_size;
2207 } else {
2208 spapr->rma_size = node0_size;
2210 /* With KVM, we don't actually know whether KVM supports an
2211 * unbounded RMA (PR KVM) or is limited by the hash table size
2212 * (HV KVM using VRMA), so we always assume the latter
2214 * In that case, we also limit the initial allocations for RTAS
2215 * etc... to 256M since we have no way to know what the VRMA size
2216 * is going to be as it depends on the size of the hash table
2217 * isn't determined yet.
2219 if (kvm_enabled()) {
2220 spapr->vrma_adjust = 1;
2221 spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
2224 /* Actually we don't support unbounded RMA anymore since we
2225 * added proper emulation of HV mode. The max we can get is
2226 * 16G which also happens to be what we configure for PAPR
2227 * mode so make sure we don't do anything bigger than that
2229 spapr->rma_size = MIN(spapr->rma_size, 0x400000000ull);
2232 if (spapr->rma_size > node0_size) {
2233 error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")",
2234 spapr->rma_size);
2235 exit(1);
2238 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2239 load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
2241 /* Set up Interrupt Controller before we create the VCPUs */
2242 xics_system_init(machine, XICS_IRQS_SPAPR, &error_fatal);
2244 /* Set up containers for ibm,client-set-architecture negotiated options */
2245 spapr->ov5 = spapr_ovec_new();
2246 spapr->ov5_cas = spapr_ovec_new();
2248 if (smc->dr_lmb_enabled) {
2249 spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
2250 spapr_validate_node_memory(machine, &error_fatal);
2253 spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
2254 if (!kvm_enabled() || kvmppc_has_cap_mmu_radix()) {
2255 /* KVM and TCG always allow GTSE with radix... */
2256 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE);
2258 /* ... but not with hash (currently). */
2260 /* advertise support for dedicated HP event source to guests */
2261 if (spapr->use_hotplug_event_source) {
2262 spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
2265 /* advertise support for HPT resizing */
2266 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
2267 spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE);
2270 /* init CPUs */
2271 if (machine->cpu_model == NULL) {
2272 machine->cpu_model = kvm_enabled() ? "host" : smc->tcg_default_cpu;
2275 spapr_cpu_parse_features(spapr);
2277 spapr_init_cpus(spapr);
2279 if (kvm_enabled()) {
2280 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2281 kvmppc_enable_logical_ci_hcalls();
2282 kvmppc_enable_set_mode_hcall();
2284 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2285 kvmppc_enable_clear_ref_mod_hcalls();
2288 /* allocate RAM */
2289 memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram",
2290 machine->ram_size);
2291 memory_region_add_subregion(sysmem, 0, ram);
2293 if (rma_alloc_size && rma) {
2294 rma_region = g_new(MemoryRegion, 1);
2295 memory_region_init_ram_ptr(rma_region, NULL, "ppc_spapr.rma",
2296 rma_alloc_size, rma);
2297 vmstate_register_ram_global(rma_region);
2298 memory_region_add_subregion(sysmem, 0, rma_region);
2301 /* initialize hotplug memory address space */
2302 if (machine->ram_size < machine->maxram_size) {
2303 ram_addr_t hotplug_mem_size = machine->maxram_size - machine->ram_size;
2305 * Limit the number of hotpluggable memory slots to half the number
2306 * slots that KVM supports, leaving the other half for PCI and other
2307 * devices. However ensure that number of slots doesn't drop below 32.
2309 int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
2310 SPAPR_MAX_RAM_SLOTS;
2312 if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
2313 max_memslots = SPAPR_MAX_RAM_SLOTS;
2315 if (machine->ram_slots > max_memslots) {
2316 error_report("Specified number of memory slots %"
2317 PRIu64" exceeds max supported %d",
2318 machine->ram_slots, max_memslots);
2319 exit(1);
2322 spapr->hotplug_memory.base = ROUND_UP(machine->ram_size,
2323 SPAPR_HOTPLUG_MEM_ALIGN);
2324 memory_region_init(&spapr->hotplug_memory.mr, OBJECT(spapr),
2325 "hotplug-memory", hotplug_mem_size);
2326 memory_region_add_subregion(sysmem, spapr->hotplug_memory.base,
2327 &spapr->hotplug_memory.mr);
2330 if (smc->dr_lmb_enabled) {
2331 spapr_create_lmb_dr_connectors(spapr);
2334 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
2335 if (!filename) {
2336 error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin");
2337 exit(1);
2339 spapr->rtas_size = get_image_size(filename);
2340 if (spapr->rtas_size < 0) {
2341 error_report("Could not get size of LPAR rtas '%s'", filename);
2342 exit(1);
2344 spapr->rtas_blob = g_malloc(spapr->rtas_size);
2345 if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) {
2346 error_report("Could not load LPAR rtas '%s'", filename);
2347 exit(1);
2349 if (spapr->rtas_size > RTAS_MAX_SIZE) {
2350 error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)",
2351 (size_t)spapr->rtas_size, RTAS_MAX_SIZE);
2352 exit(1);
2354 g_free(filename);
2356 /* Set up RTAS event infrastructure */
2357 spapr_events_init(spapr);
2359 /* Set up the RTC RTAS interfaces */
2360 spapr_rtc_create(spapr);
2362 /* Set up VIO bus */
2363 spapr->vio_bus = spapr_vio_bus_init();
2365 for (i = 0; i < MAX_SERIAL_PORTS; i++) {
2366 if (serial_hds[i]) {
2367 spapr_vty_create(spapr->vio_bus, serial_hds[i]);
2371 /* We always have at least the nvram device on VIO */
2372 spapr_create_nvram(spapr);
2374 /* Set up PCI */
2375 spapr_pci_rtas_init();
2377 phb = spapr_create_phb(spapr, 0);
2379 for (i = 0; i < nb_nics; i++) {
2380 NICInfo *nd = &nd_table[i];
2382 if (!nd->model) {
2383 nd->model = g_strdup("ibmveth");
2386 if (strcmp(nd->model, "ibmveth") == 0) {
2387 spapr_vlan_create(spapr->vio_bus, nd);
2388 } else {
2389 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
2393 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
2394 spapr_vscsi_create(spapr->vio_bus);
2397 /* Graphics */
2398 if (spapr_vga_init(phb->bus, &error_fatal)) {
2399 spapr->has_graphics = true;
2400 machine->usb |= defaults_enabled() && !machine->usb_disabled;
2403 if (machine->usb) {
2404 if (smc->use_ohci_by_default) {
2405 pci_create_simple(phb->bus, -1, "pci-ohci");
2406 } else {
2407 pci_create_simple(phb->bus, -1, "nec-usb-xhci");
2410 if (spapr->has_graphics) {
2411 USBBus *usb_bus = usb_bus_find(-1);
2413 usb_create_simple(usb_bus, "usb-kbd");
2414 usb_create_simple(usb_bus, "usb-mouse");
2418 if (spapr->rma_size < (MIN_RMA_SLOF << 20)) {
2419 error_report(
2420 "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)",
2421 MIN_RMA_SLOF);
2422 exit(1);
2425 if (kernel_filename) {
2426 uint64_t lowaddr = 0;
2428 spapr->kernel_size = load_elf(kernel_filename, translate_kernel_address,
2429 NULL, NULL, &lowaddr, NULL, 1,
2430 PPC_ELF_MACHINE, 0, 0);
2431 if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
2432 spapr->kernel_size = load_elf(kernel_filename,
2433 translate_kernel_address, NULL, NULL,
2434 &lowaddr, NULL, 0, PPC_ELF_MACHINE,
2435 0, 0);
2436 spapr->kernel_le = spapr->kernel_size > 0;
2438 if (spapr->kernel_size < 0) {
2439 error_report("error loading %s: %s", kernel_filename,
2440 load_elf_strerror(spapr->kernel_size));
2441 exit(1);
2444 /* load initrd */
2445 if (initrd_filename) {
2446 /* Try to locate the initrd in the gap between the kernel
2447 * and the firmware. Add a bit of space just in case
2449 spapr->initrd_base = (KERNEL_LOAD_ADDR + spapr->kernel_size
2450 + 0x1ffff) & ~0xffff;
2451 spapr->initrd_size = load_image_targphys(initrd_filename,
2452 spapr->initrd_base,
2453 load_limit
2454 - spapr->initrd_base);
2455 if (spapr->initrd_size < 0) {
2456 error_report("could not load initial ram disk '%s'",
2457 initrd_filename);
2458 exit(1);
2463 if (bios_name == NULL) {
2464 bios_name = FW_FILE_NAME;
2466 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
2467 if (!filename) {
2468 error_report("Could not find LPAR firmware '%s'", bios_name);
2469 exit(1);
2471 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
2472 if (fw_size <= 0) {
2473 error_report("Could not load LPAR firmware '%s'", filename);
2474 exit(1);
2476 g_free(filename);
2478 /* FIXME: Should register things through the MachineState's qdev
2479 * interface, this is a legacy from the sPAPREnvironment structure
2480 * which predated MachineState but had a similar function */
2481 vmstate_register(NULL, 0, &vmstate_spapr, spapr);
2482 register_savevm_live(NULL, "spapr/htab", -1, 1,
2483 &savevm_htab_handlers, spapr);
2485 qemu_register_boot_set(spapr_boot_set, spapr);
2487 if (kvm_enabled()) {
2488 /* to stop and start vmclock */
2489 qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
2490 &spapr->tb);
2492 kvmppc_spapr_enable_inkernel_multitce();
2496 static int spapr_kvm_type(const char *vm_type)
2498 if (!vm_type) {
2499 return 0;
2502 if (!strcmp(vm_type, "HV")) {
2503 return 1;
2506 if (!strcmp(vm_type, "PR")) {
2507 return 2;
2510 error_report("Unknown kvm-type specified '%s'", vm_type);
2511 exit(1);
2515 * Implementation of an interface to adjust firmware path
2516 * for the bootindex property handling.
2518 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
2519 DeviceState *dev)
2521 #define CAST(type, obj, name) \
2522 ((type *)object_dynamic_cast(OBJECT(obj), (name)))
2523 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE);
2524 sPAPRPHBState *phb = CAST(sPAPRPHBState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
2525 VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON);
2527 if (d) {
2528 void *spapr = CAST(void, bus->parent, "spapr-vscsi");
2529 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
2530 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
2532 if (spapr) {
2534 * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
2535 * We use SRP luns of the form 8000 | (bus << 8) | (id << 5) | lun
2536 * in the top 16 bits of the 64-bit LUN
2538 unsigned id = 0x8000 | (d->id << 8) | d->lun;
2539 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2540 (uint64_t)id << 48);
2541 } else if (virtio) {
2543 * We use SRP luns of the form 01000000 | (target << 8) | lun
2544 * in the top 32 bits of the 64-bit LUN
2545 * Note: the quote above is from SLOF and it is wrong,
2546 * the actual binding is:
2547 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
2549 unsigned id = 0x1000000 | (d->id << 16) | d->lun;
2550 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2551 (uint64_t)id << 32);
2552 } else if (usb) {
2554 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
2555 * in the top 32 bits of the 64-bit LUN
2557 unsigned usb_port = atoi(usb->port->path);
2558 unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
2559 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2560 (uint64_t)id << 32);
2565 * SLOF probes the USB devices, and if it recognizes that the device is a
2566 * storage device, it changes its name to "storage" instead of "usb-host",
2567 * and additionally adds a child node for the SCSI LUN, so the correct
2568 * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
2570 if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
2571 USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
2572 if (usb_host_dev_is_scsi_storage(usbdev)) {
2573 return g_strdup_printf("storage@%s/disk", usbdev->port->path);
2577 if (phb) {
2578 /* Replace "pci" with "pci@800000020000000" */
2579 return g_strdup_printf("pci@%"PRIX64, phb->buid);
2582 if (vsc) {
2583 /* Same logic as virtio above */
2584 unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun;
2585 return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32);
2588 if (g_str_equal("pci-bridge", qdev_fw_name(dev))) {
2589 /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
2590 PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
2591 return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn));
2594 return NULL;
2597 static char *spapr_get_kvm_type(Object *obj, Error **errp)
2599 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2601 return g_strdup(spapr->kvm_type);
2604 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
2606 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2608 g_free(spapr->kvm_type);
2609 spapr->kvm_type = g_strdup(value);
2612 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
2614 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2616 return spapr->use_hotplug_event_source;
2619 static void spapr_set_modern_hotplug_events(Object *obj, bool value,
2620 Error **errp)
2622 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2624 spapr->use_hotplug_event_source = value;
2627 static char *spapr_get_resize_hpt(Object *obj, Error **errp)
2629 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2631 switch (spapr->resize_hpt) {
2632 case SPAPR_RESIZE_HPT_DEFAULT:
2633 return g_strdup("default");
2634 case SPAPR_RESIZE_HPT_DISABLED:
2635 return g_strdup("disabled");
2636 case SPAPR_RESIZE_HPT_ENABLED:
2637 return g_strdup("enabled");
2638 case SPAPR_RESIZE_HPT_REQUIRED:
2639 return g_strdup("required");
2641 g_assert_not_reached();
2644 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp)
2646 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2648 if (strcmp(value, "default") == 0) {
2649 spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT;
2650 } else if (strcmp(value, "disabled") == 0) {
2651 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
2652 } else if (strcmp(value, "enabled") == 0) {
2653 spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED;
2654 } else if (strcmp(value, "required") == 0) {
2655 spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED;
2656 } else {
2657 error_setg(errp, "Bad value for \"resize-hpt\" property");
2661 static void spapr_machine_initfn(Object *obj)
2663 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2665 spapr->htab_fd = -1;
2666 spapr->use_hotplug_event_source = true;
2667 object_property_add_str(obj, "kvm-type",
2668 spapr_get_kvm_type, spapr_set_kvm_type, NULL);
2669 object_property_set_description(obj, "kvm-type",
2670 "Specifies the KVM virtualization mode (HV, PR)",
2671 NULL);
2672 object_property_add_bool(obj, "modern-hotplug-events",
2673 spapr_get_modern_hotplug_events,
2674 spapr_set_modern_hotplug_events,
2675 NULL);
2676 object_property_set_description(obj, "modern-hotplug-events",
2677 "Use dedicated hotplug event mechanism in"
2678 " place of standard EPOW events when possible"
2679 " (required for memory hot-unplug support)",
2680 NULL);
2682 ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr,
2683 "Maximum permitted CPU compatibility mode",
2684 &error_fatal);
2686 object_property_add_str(obj, "resize-hpt",
2687 spapr_get_resize_hpt, spapr_set_resize_hpt, NULL);
2688 object_property_set_description(obj, "resize-hpt",
2689 "Resizing of the Hash Page Table (enabled, disabled, required)",
2690 NULL);
2693 static void spapr_machine_finalizefn(Object *obj)
2695 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2697 g_free(spapr->kvm_type);
2700 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
2702 cpu_synchronize_state(cs);
2703 ppc_cpu_do_system_reset(cs);
2706 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
2708 CPUState *cs;
2710 CPU_FOREACH(cs) {
2711 async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
2715 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
2716 uint32_t node, bool dedicated_hp_event_source,
2717 Error **errp)
2719 sPAPRDRConnector *drc;
2720 uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
2721 int i, fdt_offset, fdt_size;
2722 void *fdt;
2723 uint64_t addr = addr_start;
2724 bool hotplugged = spapr_drc_hotplugged(dev);
2725 Error *local_err = NULL;
2727 for (i = 0; i < nr_lmbs; i++) {
2728 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
2729 addr / SPAPR_MEMORY_BLOCK_SIZE);
2730 g_assert(drc);
2732 fdt = create_device_tree(&fdt_size);
2733 fdt_offset = spapr_populate_memory_node(fdt, node, addr,
2734 SPAPR_MEMORY_BLOCK_SIZE);
2736 spapr_drc_attach(drc, dev, fdt, fdt_offset, &local_err);
2737 if (local_err) {
2738 while (addr > addr_start) {
2739 addr -= SPAPR_MEMORY_BLOCK_SIZE;
2740 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
2741 addr / SPAPR_MEMORY_BLOCK_SIZE);
2742 spapr_drc_detach(drc);
2744 g_free(fdt);
2745 error_propagate(errp, local_err);
2746 return;
2748 if (!hotplugged) {
2749 spapr_drc_reset(drc);
2751 addr += SPAPR_MEMORY_BLOCK_SIZE;
2753 /* send hotplug notification to the
2754 * guest only in case of hotplugged memory
2756 if (hotplugged) {
2757 if (dedicated_hp_event_source) {
2758 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
2759 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
2760 spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
2761 nr_lmbs,
2762 spapr_drc_index(drc));
2763 } else {
2764 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
2765 nr_lmbs);
2770 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2771 uint32_t node, Error **errp)
2773 Error *local_err = NULL;
2774 sPAPRMachineState *ms = SPAPR_MACHINE(hotplug_dev);
2775 PCDIMMDevice *dimm = PC_DIMM(dev);
2776 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
2777 MemoryRegion *mr = ddc->get_memory_region(dimm);
2778 uint64_t align = memory_region_get_alignment(mr);
2779 uint64_t size = memory_region_size(mr);
2780 uint64_t addr;
2782 pc_dimm_memory_plug(dev, &ms->hotplug_memory, mr, align, &local_err);
2783 if (local_err) {
2784 goto out;
2787 addr = object_property_get_uint(OBJECT(dimm),
2788 PC_DIMM_ADDR_PROP, &local_err);
2789 if (local_err) {
2790 goto out_unplug;
2793 spapr_add_lmbs(dev, addr, size, node,
2794 spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT),
2795 &local_err);
2796 if (local_err) {
2797 goto out_unplug;
2800 return;
2802 out_unplug:
2803 pc_dimm_memory_unplug(dev, &ms->hotplug_memory, mr);
2804 out:
2805 error_propagate(errp, local_err);
2808 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2809 Error **errp)
2811 PCDIMMDevice *dimm = PC_DIMM(dev);
2812 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
2813 MemoryRegion *mr = ddc->get_memory_region(dimm);
2814 uint64_t size = memory_region_size(mr);
2815 char *mem_dev;
2817 if (size % SPAPR_MEMORY_BLOCK_SIZE) {
2818 error_setg(errp, "Hotplugged memory size must be a multiple of "
2819 "%lld MB", SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
2820 return;
2823 mem_dev = object_property_get_str(OBJECT(dimm), PC_DIMM_MEMDEV_PROP, NULL);
2824 if (mem_dev && !kvmppc_is_mem_backend_page_size_ok(mem_dev)) {
2825 error_setg(errp, "Memory backend has bad page size. "
2826 "Use 'memory-backend-file' with correct mem-path.");
2827 goto out;
2830 out:
2831 g_free(mem_dev);
2834 struct sPAPRDIMMState {
2835 PCDIMMDevice *dimm;
2836 uint32_t nr_lmbs;
2837 QTAILQ_ENTRY(sPAPRDIMMState) next;
2840 static sPAPRDIMMState *spapr_pending_dimm_unplugs_find(sPAPRMachineState *s,
2841 PCDIMMDevice *dimm)
2843 sPAPRDIMMState *dimm_state = NULL;
2845 QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) {
2846 if (dimm_state->dimm == dimm) {
2847 break;
2850 return dimm_state;
2853 static void spapr_pending_dimm_unplugs_add(sPAPRMachineState *spapr,
2854 sPAPRDIMMState *dimm_state)
2856 g_assert(!spapr_pending_dimm_unplugs_find(spapr, dimm_state->dimm));
2857 QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, dimm_state, next);
2860 static void spapr_pending_dimm_unplugs_remove(sPAPRMachineState *spapr,
2861 sPAPRDIMMState *dimm_state)
2863 QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next);
2864 g_free(dimm_state);
2867 static sPAPRDIMMState *spapr_recover_pending_dimm_state(sPAPRMachineState *ms,
2868 PCDIMMDevice *dimm)
2870 sPAPRDRConnector *drc;
2871 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
2872 MemoryRegion *mr = ddc->get_memory_region(dimm);
2873 uint64_t size = memory_region_size(mr);
2874 uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
2875 uint32_t avail_lmbs = 0;
2876 uint64_t addr_start, addr;
2877 int i;
2878 sPAPRDIMMState *ds;
2880 addr_start = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP,
2881 &error_abort);
2883 addr = addr_start;
2884 for (i = 0; i < nr_lmbs; i++) {
2885 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
2886 addr / SPAPR_MEMORY_BLOCK_SIZE);
2887 g_assert(drc);
2888 if (drc->dev) {
2889 avail_lmbs++;
2891 addr += SPAPR_MEMORY_BLOCK_SIZE;
2894 ds = g_malloc0(sizeof(sPAPRDIMMState));
2895 ds->nr_lmbs = avail_lmbs;
2896 ds->dimm = dimm;
2897 spapr_pending_dimm_unplugs_add(ms, ds);
2898 return ds;
2901 /* Callback to be called during DRC release. */
2902 void spapr_lmb_release(DeviceState *dev)
2904 sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_hotplug_handler(dev));
2905 PCDIMMDevice *dimm = PC_DIMM(dev);
2906 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
2907 MemoryRegion *mr = ddc->get_memory_region(dimm);
2908 sPAPRDIMMState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
2910 /* This information will get lost if a migration occurs
2911 * during the unplug process. In this case recover it. */
2912 if (ds == NULL) {
2913 ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev));
2914 /* The DRC being examined by the caller at least must be counted */
2915 g_assert(ds->nr_lmbs);
2918 if (--ds->nr_lmbs) {
2919 return;
2922 spapr_pending_dimm_unplugs_remove(spapr, ds);
2925 * Now that all the LMBs have been removed by the guest, call the
2926 * pc-dimm unplug handler to cleanup up the pc-dimm device.
2928 pc_dimm_memory_unplug(dev, &spapr->hotplug_memory, mr);
2929 object_unparent(OBJECT(dev));
2932 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
2933 DeviceState *dev, Error **errp)
2935 sPAPRMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
2936 Error *local_err = NULL;
2937 PCDIMMDevice *dimm = PC_DIMM(dev);
2938 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
2939 MemoryRegion *mr = ddc->get_memory_region(dimm);
2940 uint64_t size = memory_region_size(mr);
2941 uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
2942 uint64_t addr_start, addr;
2943 int i;
2944 sPAPRDRConnector *drc;
2945 sPAPRDIMMState *ds;
2947 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
2948 &local_err);
2949 if (local_err) {
2950 goto out;
2953 ds = g_malloc0(sizeof(sPAPRDIMMState));
2954 ds->nr_lmbs = nr_lmbs;
2955 ds->dimm = dimm;
2956 spapr_pending_dimm_unplugs_add(spapr, ds);
2958 addr = addr_start;
2959 for (i = 0; i < nr_lmbs; i++) {
2960 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
2961 addr / SPAPR_MEMORY_BLOCK_SIZE);
2962 g_assert(drc);
2964 spapr_drc_detach(drc);
2965 addr += SPAPR_MEMORY_BLOCK_SIZE;
2968 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
2969 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
2970 spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
2971 nr_lmbs, spapr_drc_index(drc));
2972 out:
2973 error_propagate(errp, local_err);
2976 static void *spapr_populate_hotplug_cpu_dt(CPUState *cs, int *fdt_offset,
2977 sPAPRMachineState *spapr)
2979 PowerPCCPU *cpu = POWERPC_CPU(cs);
2980 DeviceClass *dc = DEVICE_GET_CLASS(cs);
2981 int id = ppc_get_vcpu_dt_id(cpu);
2982 void *fdt;
2983 int offset, fdt_size;
2984 char *nodename;
2986 fdt = create_device_tree(&fdt_size);
2987 nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
2988 offset = fdt_add_subnode(fdt, 0, nodename);
2990 spapr_populate_cpu_dt(cs, fdt, offset, spapr);
2991 g_free(nodename);
2993 *fdt_offset = offset;
2994 return fdt;
2997 /* Callback to be called during DRC release. */
2998 void spapr_core_release(DeviceState *dev)
3000 MachineState *ms = MACHINE(qdev_get_hotplug_handler(dev));
3001 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
3002 CPUCore *cc = CPU_CORE(dev);
3003 CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
3005 if (smc->pre_2_10_has_unused_icps) {
3006 sPAPRCPUCore *sc = SPAPR_CPU_CORE(OBJECT(dev));
3007 sPAPRCPUCoreClass *scc = SPAPR_CPU_CORE_GET_CLASS(OBJECT(cc));
3008 const char *typename = object_class_get_name(scc->cpu_class);
3009 size_t size = object_type_get_instance_size(typename);
3010 int i;
3012 for (i = 0; i < cc->nr_threads; i++) {
3013 CPUState *cs = CPU(sc->threads + i * size);
3015 pre_2_10_vmstate_register_dummy_icp(cs->cpu_index);
3019 assert(core_slot);
3020 core_slot->cpu = NULL;
3021 object_unparent(OBJECT(dev));
3024 static
3025 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
3026 Error **errp)
3028 int index;
3029 sPAPRDRConnector *drc;
3030 CPUCore *cc = CPU_CORE(dev);
3031 int smt = kvmppc_smt_threads();
3033 if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
3034 error_setg(errp, "Unable to find CPU core with core-id: %d",
3035 cc->core_id);
3036 return;
3038 if (index == 0) {
3039 error_setg(errp, "Boot CPU core may not be unplugged");
3040 return;
3043 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index * smt);
3044 g_assert(drc);
3046 spapr_drc_detach(drc);
3048 spapr_hotplug_req_remove_by_index(drc);
3051 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3052 Error **errp)
3054 sPAPRMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3055 MachineClass *mc = MACHINE_GET_CLASS(spapr);
3056 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3057 sPAPRCPUCore *core = SPAPR_CPU_CORE(OBJECT(dev));
3058 CPUCore *cc = CPU_CORE(dev);
3059 CPUState *cs = CPU(core->threads);
3060 sPAPRDRConnector *drc;
3061 Error *local_err = NULL;
3062 int smt = kvmppc_smt_threads();
3063 CPUArchId *core_slot;
3064 int index;
3065 bool hotplugged = spapr_drc_hotplugged(dev);
3067 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3068 if (!core_slot) {
3069 error_setg(errp, "Unable to find CPU core with core-id: %d",
3070 cc->core_id);
3071 return;
3073 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index * smt);
3075 g_assert(drc || !mc->has_hotpluggable_cpus);
3077 if (drc) {
3078 void *fdt;
3079 int fdt_offset;
3081 fdt = spapr_populate_hotplug_cpu_dt(cs, &fdt_offset, spapr);
3083 spapr_drc_attach(drc, dev, fdt, fdt_offset, &local_err);
3084 if (local_err) {
3085 g_free(fdt);
3086 error_propagate(errp, local_err);
3087 return;
3090 if (hotplugged) {
3092 * Send hotplug notification interrupt to the guest only
3093 * in case of hotplugged CPUs.
3095 spapr_hotplug_req_add_by_index(drc);
3096 } else {
3097 spapr_drc_reset(drc);
3101 core_slot->cpu = OBJECT(dev);
3103 if (smc->pre_2_10_has_unused_icps) {
3104 sPAPRCPUCoreClass *scc = SPAPR_CPU_CORE_GET_CLASS(OBJECT(cc));
3105 const char *typename = object_class_get_name(scc->cpu_class);
3106 size_t size = object_type_get_instance_size(typename);
3107 int i;
3109 for (i = 0; i < cc->nr_threads; i++) {
3110 sPAPRCPUCore *sc = SPAPR_CPU_CORE(dev);
3111 void *obj = sc->threads + i * size;
3113 cs = CPU(obj);
3114 pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index);
3119 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3120 Error **errp)
3122 MachineState *machine = MACHINE(OBJECT(hotplug_dev));
3123 MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
3124 Error *local_err = NULL;
3125 CPUCore *cc = CPU_CORE(dev);
3126 char *base_core_type = spapr_get_cpu_core_type(machine->cpu_model);
3127 const char *type = object_get_typename(OBJECT(dev));
3128 CPUArchId *core_slot;
3129 int index;
3131 if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
3132 error_setg(&local_err, "CPU hotplug not supported for this machine");
3133 goto out;
3136 if (strcmp(base_core_type, type)) {
3137 error_setg(&local_err, "CPU core type should be %s", base_core_type);
3138 goto out;
3141 if (cc->core_id % smp_threads) {
3142 error_setg(&local_err, "invalid core id %d", cc->core_id);
3143 goto out;
3147 * In general we should have homogeneous threads-per-core, but old
3148 * (pre hotplug support) machine types allow the last core to have
3149 * reduced threads as a compatibility hack for when we allowed
3150 * total vcpus not a multiple of threads-per-core.
3152 if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) {
3153 error_setg(&local_err, "invalid nr-threads %d, must be %d",
3154 cc->nr_threads, smp_threads);
3155 goto out;
3158 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3159 if (!core_slot) {
3160 error_setg(&local_err, "core id %d out of range", cc->core_id);
3161 goto out;
3164 if (core_slot->cpu) {
3165 error_setg(&local_err, "core %d already populated", cc->core_id);
3166 goto out;
3169 numa_cpu_pre_plug(core_slot, dev, &local_err);
3171 out:
3172 g_free(base_core_type);
3173 error_propagate(errp, local_err);
3176 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
3177 DeviceState *dev, Error **errp)
3179 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(qdev_get_machine());
3181 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3182 int node;
3184 if (!smc->dr_lmb_enabled) {
3185 error_setg(errp, "Memory hotplug not supported for this machine");
3186 return;
3188 node = object_property_get_uint(OBJECT(dev), PC_DIMM_NODE_PROP, errp);
3189 if (*errp) {
3190 return;
3192 if (node < 0 || node >= MAX_NODES) {
3193 error_setg(errp, "Invaild node %d", node);
3194 return;
3198 * Currently PowerPC kernel doesn't allow hot-adding memory to
3199 * memory-less node, but instead will silently add the memory
3200 * to the first node that has some memory. This causes two
3201 * unexpected behaviours for the user.
3203 * - Memory gets hotplugged to a different node than what the user
3204 * specified.
3205 * - Since pc-dimm subsystem in QEMU still thinks that memory belongs
3206 * to memory-less node, a reboot will set things accordingly
3207 * and the previously hotplugged memory now ends in the right node.
3208 * This appears as if some memory moved from one node to another.
3210 * So until kernel starts supporting memory hotplug to memory-less
3211 * nodes, just prevent such attempts upfront in QEMU.
3213 if (nb_numa_nodes && !numa_info[node].node_mem) {
3214 error_setg(errp, "Can't hotplug memory to memory-less node %d",
3215 node);
3216 return;
3219 spapr_memory_plug(hotplug_dev, dev, node, errp);
3220 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3221 spapr_core_plug(hotplug_dev, dev, errp);
3225 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
3226 DeviceState *dev, Error **errp)
3228 sPAPRMachineState *sms = SPAPR_MACHINE(qdev_get_machine());
3229 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
3231 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3232 if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) {
3233 spapr_memory_unplug_request(hotplug_dev, dev, errp);
3234 } else {
3235 /* NOTE: this means there is a window after guest reset, prior to
3236 * CAS negotiation, where unplug requests will fail due to the
3237 * capability not being detected yet. This is a bit different than
3238 * the case with PCI unplug, where the events will be queued and
3239 * eventually handled by the guest after boot
3241 error_setg(errp, "Memory hot unplug not supported for this guest");
3243 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3244 if (!mc->has_hotpluggable_cpus) {
3245 error_setg(errp, "CPU hot unplug not supported on this machine");
3246 return;
3248 spapr_core_unplug_request(hotplug_dev, dev, errp);
3252 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
3253 DeviceState *dev, Error **errp)
3255 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3256 spapr_memory_pre_plug(hotplug_dev, dev, errp);
3257 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3258 spapr_core_pre_plug(hotplug_dev, dev, errp);
3262 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
3263 DeviceState *dev)
3265 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
3266 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3267 return HOTPLUG_HANDLER(machine);
3269 return NULL;
3272 static CpuInstanceProperties
3273 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index)
3275 CPUArchId *core_slot;
3276 MachineClass *mc = MACHINE_GET_CLASS(machine);
3278 /* make sure possible_cpu are intialized */
3279 mc->possible_cpu_arch_ids(machine);
3280 /* get CPU core slot containing thread that matches cpu_index */
3281 core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL);
3282 assert(core_slot);
3283 return core_slot->props;
3286 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
3288 int i;
3289 int spapr_max_cores = max_cpus / smp_threads;
3290 MachineClass *mc = MACHINE_GET_CLASS(machine);
3292 if (!mc->has_hotpluggable_cpus) {
3293 spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
3295 if (machine->possible_cpus) {
3296 assert(machine->possible_cpus->len == spapr_max_cores);
3297 return machine->possible_cpus;
3300 machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
3301 sizeof(CPUArchId) * spapr_max_cores);
3302 machine->possible_cpus->len = spapr_max_cores;
3303 for (i = 0; i < machine->possible_cpus->len; i++) {
3304 int core_id = i * smp_threads;
3306 machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
3307 machine->possible_cpus->cpus[i].arch_id = core_id;
3308 machine->possible_cpus->cpus[i].props.has_core_id = true;
3309 machine->possible_cpus->cpus[i].props.core_id = core_id;
3311 /* default distribution of CPUs over NUMA nodes */
3312 if (nb_numa_nodes) {
3313 /* preset values but do not enable them i.e. 'has_node_id = false',
3314 * numa init code will enable them later if manual mapping wasn't
3315 * present on CLI */
3316 machine->possible_cpus->cpus[i].props.node_id =
3317 core_id / smp_threads / smp_cores % nb_numa_nodes;
3320 return machine->possible_cpus;
3323 static void spapr_phb_placement(sPAPRMachineState *spapr, uint32_t index,
3324 uint64_t *buid, hwaddr *pio,
3325 hwaddr *mmio32, hwaddr *mmio64,
3326 unsigned n_dma, uint32_t *liobns, Error **errp)
3329 * New-style PHB window placement.
3331 * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
3332 * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
3333 * windows.
3335 * Some guest kernels can't work with MMIO windows above 1<<46
3336 * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
3338 * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
3339 * PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the
3340 * 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the
3341 * 1TiB 64-bit MMIO windows for each PHB.
3343 const uint64_t base_buid = 0x800000020000000ULL;
3344 #define SPAPR_MAX_PHBS ((SPAPR_PCI_LIMIT - SPAPR_PCI_BASE) / \
3345 SPAPR_PCI_MEM64_WIN_SIZE - 1)
3346 int i;
3348 /* Sanity check natural alignments */
3349 QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
3350 QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
3351 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
3352 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
3353 /* Sanity check bounds */
3354 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
3355 SPAPR_PCI_MEM32_WIN_SIZE);
3356 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
3357 SPAPR_PCI_MEM64_WIN_SIZE);
3359 if (index >= SPAPR_MAX_PHBS) {
3360 error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
3361 SPAPR_MAX_PHBS - 1);
3362 return;
3365 *buid = base_buid + index;
3366 for (i = 0; i < n_dma; ++i) {
3367 liobns[i] = SPAPR_PCI_LIOBN(index, i);
3370 *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
3371 *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
3372 *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
3375 static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
3377 sPAPRMachineState *spapr = SPAPR_MACHINE(dev);
3379 return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
3382 static void spapr_ics_resend(XICSFabric *dev)
3384 sPAPRMachineState *spapr = SPAPR_MACHINE(dev);
3386 ics_resend(spapr->ics);
3389 static ICPState *spapr_icp_get(XICSFabric *xi, int cpu_dt_id)
3391 PowerPCCPU *cpu = ppc_get_vcpu_by_dt_id(cpu_dt_id);
3393 return cpu ? ICP(cpu->intc) : NULL;
3396 static void spapr_pic_print_info(InterruptStatsProvider *obj,
3397 Monitor *mon)
3399 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3400 CPUState *cs;
3402 CPU_FOREACH(cs) {
3403 PowerPCCPU *cpu = POWERPC_CPU(cs);
3405 icp_pic_print_info(ICP(cpu->intc), mon);
3408 ics_pic_print_info(spapr->ics, mon);
3411 static void spapr_machine_class_init(ObjectClass *oc, void *data)
3413 MachineClass *mc = MACHINE_CLASS(oc);
3414 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
3415 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
3416 NMIClass *nc = NMI_CLASS(oc);
3417 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
3418 PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
3419 XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
3420 InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
3422 mc->desc = "pSeries Logical Partition (PAPR compliant)";
3425 * We set up the default / latest behaviour here. The class_init
3426 * functions for the specific versioned machine types can override
3427 * these details for backwards compatibility
3429 mc->init = ppc_spapr_init;
3430 mc->reset = ppc_spapr_reset;
3431 mc->block_default_type = IF_SCSI;
3432 mc->max_cpus = 1024;
3433 mc->no_parallel = 1;
3434 mc->default_boot_order = "";
3435 mc->default_ram_size = 512 * M_BYTE;
3436 mc->kvm_type = spapr_kvm_type;
3437 mc->has_dynamic_sysbus = true;
3438 mc->pci_allow_0_address = true;
3439 mc->get_hotplug_handler = spapr_get_hotplug_handler;
3440 hc->pre_plug = spapr_machine_device_pre_plug;
3441 hc->plug = spapr_machine_device_plug;
3442 mc->cpu_index_to_instance_props = spapr_cpu_index_to_props;
3443 mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
3444 hc->unplug_request = spapr_machine_device_unplug_request;
3446 smc->dr_lmb_enabled = true;
3447 smc->tcg_default_cpu = "POWER8";
3448 mc->has_hotpluggable_cpus = true;
3449 smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED;
3450 fwc->get_dev_path = spapr_get_fw_dev_path;
3451 nc->nmi_monitor_handler = spapr_nmi;
3452 smc->phb_placement = spapr_phb_placement;
3453 vhc->hypercall = emulate_spapr_hypercall;
3454 vhc->hpt_mask = spapr_hpt_mask;
3455 vhc->map_hptes = spapr_map_hptes;
3456 vhc->unmap_hptes = spapr_unmap_hptes;
3457 vhc->store_hpte = spapr_store_hpte;
3458 vhc->get_patbe = spapr_get_patbe;
3459 xic->ics_get = spapr_ics_get;
3460 xic->ics_resend = spapr_ics_resend;
3461 xic->icp_get = spapr_icp_get;
3462 ispc->print_info = spapr_pic_print_info;
3463 /* Force NUMA node memory size to be a multiple of
3464 * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
3465 * in which LMBs are represented and hot-added
3467 mc->numa_mem_align_shift = 28;
3470 static const TypeInfo spapr_machine_info = {
3471 .name = TYPE_SPAPR_MACHINE,
3472 .parent = TYPE_MACHINE,
3473 .abstract = true,
3474 .instance_size = sizeof(sPAPRMachineState),
3475 .instance_init = spapr_machine_initfn,
3476 .instance_finalize = spapr_machine_finalizefn,
3477 .class_size = sizeof(sPAPRMachineClass),
3478 .class_init = spapr_machine_class_init,
3479 .interfaces = (InterfaceInfo[]) {
3480 { TYPE_FW_PATH_PROVIDER },
3481 { TYPE_NMI },
3482 { TYPE_HOTPLUG_HANDLER },
3483 { TYPE_PPC_VIRTUAL_HYPERVISOR },
3484 { TYPE_XICS_FABRIC },
3485 { TYPE_INTERRUPT_STATS_PROVIDER },
3490 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \
3491 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
3492 void *data) \
3494 MachineClass *mc = MACHINE_CLASS(oc); \
3495 spapr_machine_##suffix##_class_options(mc); \
3496 if (latest) { \
3497 mc->alias = "pseries"; \
3498 mc->is_default = 1; \
3501 static void spapr_machine_##suffix##_instance_init(Object *obj) \
3503 MachineState *machine = MACHINE(obj); \
3504 spapr_machine_##suffix##_instance_options(machine); \
3506 static const TypeInfo spapr_machine_##suffix##_info = { \
3507 .name = MACHINE_TYPE_NAME("pseries-" verstr), \
3508 .parent = TYPE_SPAPR_MACHINE, \
3509 .class_init = spapr_machine_##suffix##_class_init, \
3510 .instance_init = spapr_machine_##suffix##_instance_init, \
3511 }; \
3512 static void spapr_machine_register_##suffix(void) \
3514 type_register(&spapr_machine_##suffix##_info); \
3516 type_init(spapr_machine_register_##suffix)
3519 * pseries-2.10
3521 static void spapr_machine_2_10_instance_options(MachineState *machine)
3525 static void spapr_machine_2_10_class_options(MachineClass *mc)
3527 /* Defaults for the latest behaviour inherited from the base class */
3530 DEFINE_SPAPR_MACHINE(2_10, "2.10", true);
3533 * pseries-2.9
3535 #define SPAPR_COMPAT_2_9 \
3536 HW_COMPAT_2_9 \
3538 .driver = TYPE_POWERPC_CPU, \
3539 .property = "pre-2.10-migration", \
3540 .value = "on", \
3541 }, \
3543 static void spapr_machine_2_9_instance_options(MachineState *machine)
3545 spapr_machine_2_10_instance_options(machine);
3548 static void spapr_machine_2_9_class_options(MachineClass *mc)
3550 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3552 spapr_machine_2_10_class_options(mc);
3553 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_9);
3554 mc->numa_auto_assign_ram = numa_legacy_auto_assign_ram;
3555 smc->pre_2_10_has_unused_icps = true;
3556 smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED;
3559 DEFINE_SPAPR_MACHINE(2_9, "2.9", false);
3562 * pseries-2.8
3564 #define SPAPR_COMPAT_2_8 \
3565 HW_COMPAT_2_8 \
3567 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
3568 .property = "pcie-extended-configuration-space", \
3569 .value = "off", \
3572 static void spapr_machine_2_8_instance_options(MachineState *machine)
3574 spapr_machine_2_9_instance_options(machine);
3577 static void spapr_machine_2_8_class_options(MachineClass *mc)
3579 spapr_machine_2_9_class_options(mc);
3580 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_8);
3581 mc->numa_mem_align_shift = 23;
3584 DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
3587 * pseries-2.7
3589 #define SPAPR_COMPAT_2_7 \
3590 HW_COMPAT_2_7 \
3592 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
3593 .property = "mem_win_size", \
3594 .value = stringify(SPAPR_PCI_2_7_MMIO_WIN_SIZE),\
3595 }, \
3597 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
3598 .property = "mem64_win_size", \
3599 .value = "0", \
3600 }, \
3602 .driver = TYPE_POWERPC_CPU, \
3603 .property = "pre-2.8-migration", \
3604 .value = "on", \
3605 }, \
3607 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
3608 .property = "pre-2.8-migration", \
3609 .value = "on", \
3612 static void phb_placement_2_7(sPAPRMachineState *spapr, uint32_t index,
3613 uint64_t *buid, hwaddr *pio,
3614 hwaddr *mmio32, hwaddr *mmio64,
3615 unsigned n_dma, uint32_t *liobns, Error **errp)
3617 /* Legacy PHB placement for pseries-2.7 and earlier machine types */
3618 const uint64_t base_buid = 0x800000020000000ULL;
3619 const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
3620 const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
3621 const hwaddr pio_offset = 0x80000000; /* 2 GiB */
3622 const uint32_t max_index = 255;
3623 const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
3625 uint64_t ram_top = MACHINE(spapr)->ram_size;
3626 hwaddr phb0_base, phb_base;
3627 int i;
3629 /* Do we have hotpluggable memory? */
3630 if (MACHINE(spapr)->maxram_size > ram_top) {
3631 /* Can't just use maxram_size, because there may be an
3632 * alignment gap between normal and hotpluggable memory
3633 * regions */
3634 ram_top = spapr->hotplug_memory.base +
3635 memory_region_size(&spapr->hotplug_memory.mr);
3638 phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
3640 if (index > max_index) {
3641 error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
3642 max_index);
3643 return;
3646 *buid = base_buid + index;
3647 for (i = 0; i < n_dma; ++i) {
3648 liobns[i] = SPAPR_PCI_LIOBN(index, i);
3651 phb_base = phb0_base + index * phb_spacing;
3652 *pio = phb_base + pio_offset;
3653 *mmio32 = phb_base + mmio_offset;
3655 * We don't set the 64-bit MMIO window, relying on the PHB's
3656 * fallback behaviour of automatically splitting a large "32-bit"
3657 * window into contiguous 32-bit and 64-bit windows
3661 static void spapr_machine_2_7_instance_options(MachineState *machine)
3663 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
3665 spapr_machine_2_8_instance_options(machine);
3666 spapr->use_hotplug_event_source = false;
3669 static void spapr_machine_2_7_class_options(MachineClass *mc)
3671 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3673 spapr_machine_2_8_class_options(mc);
3674 smc->tcg_default_cpu = "POWER7";
3675 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_7);
3676 smc->phb_placement = phb_placement_2_7;
3679 DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
3682 * pseries-2.6
3684 #define SPAPR_COMPAT_2_6 \
3685 HW_COMPAT_2_6 \
3687 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,\
3688 .property = "ddw",\
3689 .value = stringify(off),\
3692 static void spapr_machine_2_6_instance_options(MachineState *machine)
3694 spapr_machine_2_7_instance_options(machine);
3697 static void spapr_machine_2_6_class_options(MachineClass *mc)
3699 spapr_machine_2_7_class_options(mc);
3700 mc->has_hotpluggable_cpus = false;
3701 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_6);
3704 DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
3707 * pseries-2.5
3709 #define SPAPR_COMPAT_2_5 \
3710 HW_COMPAT_2_5 \
3712 .driver = "spapr-vlan", \
3713 .property = "use-rx-buffer-pools", \
3714 .value = "off", \
3717 static void spapr_machine_2_5_instance_options(MachineState *machine)
3719 spapr_machine_2_6_instance_options(machine);
3722 static void spapr_machine_2_5_class_options(MachineClass *mc)
3724 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3726 spapr_machine_2_6_class_options(mc);
3727 smc->use_ohci_by_default = true;
3728 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_5);
3731 DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
3734 * pseries-2.4
3736 #define SPAPR_COMPAT_2_4 \
3737 HW_COMPAT_2_4
3739 static void spapr_machine_2_4_instance_options(MachineState *machine)
3741 spapr_machine_2_5_instance_options(machine);
3744 static void spapr_machine_2_4_class_options(MachineClass *mc)
3746 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3748 spapr_machine_2_5_class_options(mc);
3749 smc->dr_lmb_enabled = false;
3750 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_4);
3753 DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
3756 * pseries-2.3
3758 #define SPAPR_COMPAT_2_3 \
3759 HW_COMPAT_2_3 \
3761 .driver = "spapr-pci-host-bridge",\
3762 .property = "dynamic-reconfiguration",\
3763 .value = "off",\
3766 static void spapr_machine_2_3_instance_options(MachineState *machine)
3768 spapr_machine_2_4_instance_options(machine);
3771 static void spapr_machine_2_3_class_options(MachineClass *mc)
3773 spapr_machine_2_4_class_options(mc);
3774 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_3);
3776 DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
3779 * pseries-2.2
3782 #define SPAPR_COMPAT_2_2 \
3783 HW_COMPAT_2_2 \
3785 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,\
3786 .property = "mem_win_size",\
3787 .value = "0x20000000",\
3790 static void spapr_machine_2_2_instance_options(MachineState *machine)
3792 spapr_machine_2_3_instance_options(machine);
3793 machine->suppress_vmdesc = true;
3796 static void spapr_machine_2_2_class_options(MachineClass *mc)
3798 spapr_machine_2_3_class_options(mc);
3799 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_2);
3801 DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
3804 * pseries-2.1
3806 #define SPAPR_COMPAT_2_1 \
3807 HW_COMPAT_2_1
3809 static void spapr_machine_2_1_instance_options(MachineState *machine)
3811 spapr_machine_2_2_instance_options(machine);
3814 static void spapr_machine_2_1_class_options(MachineClass *mc)
3816 spapr_machine_2_2_class_options(mc);
3817 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_1);
3819 DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
3821 static void spapr_machine_register_types(void)
3823 type_register_static(&spapr_machine_info);
3826 type_init(spapr_machine_register_types)