2 * ST M25P80 emulator. Emulate all SPI flash devices based on the m25p80 command
3 * set. Known devices table current as of Jun/2012 and taken from linux.
4 * See drivers/mtd/devices/m25p80.c.
6 * Copyright (C) 2011 Edgar E. Iglesias <edgar.iglesias@gmail.com>
7 * Copyright (C) 2012 Peter A. G. Crosthwaite <peter.crosthwaite@petalogix.com>
8 * Copyright (C) 2012 PetaLogix
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License as
12 * published by the Free Software Foundation; either version 2 or
13 * (at your option) a later version of the License.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
20 * You should have received a copy of the GNU General Public License along
21 * with this program; if not, see <http://www.gnu.org/licenses/>.
24 #include "qemu/osdep.h"
25 #include "qemu/units.h"
26 #include "sysemu/block-backend.h"
27 #include "hw/qdev-properties.h"
28 #include "hw/qdev-properties-system.h"
29 #include "hw/ssi/ssi.h"
30 #include "migration/vmstate.h"
31 #include "qemu/bitops.h"
33 #include "qemu/module.h"
34 #include "qemu/error-report.h"
35 #include "qapi/error.h"
37 #include "qom/object.h"
38 #include "m25p80_sfdp.h"
40 /* 16 MiB max in 3 byte address mode */
41 #define MAX_3BYTES_SIZE 0x1000000
42 #define SPI_NOR_MAX_ID_LEN 6
44 /* Fields for FlashPartInfo->flags */
45 enum spi_flash_option_flags
{
50 HAS_SR_BP3_BIT6
= BIT(4),
53 typedef struct FlashPartInfo
{
54 const char *part_name
;
56 * This array stores the ID bytes.
57 * The first three bytes are the JEDIC ID.
58 * JEDEC ID zero means "no ID" (mostly older chips).
60 uint8_t id
[SPI_NOR_MAX_ID_LEN
];
62 /* there is confusion between manufacturers as to what a sector is. In this
63 * device model, a "sector" is the size that is erased by the ERASE_SECTOR
64 * command (opcode 0xd8).
71 * Big sized spi nor are often stacked devices, thus sometime
72 * replace chip erase with die erase.
73 * This field inform how many die is in the chip.
76 uint8_t (*sfdp_read
)(uint32_t sfdp_addr
);
79 /* adapted from linux */
80 /* Used when the "_ext_id" is two bytes at most */
81 #define INFO(_part_name, _jedec_id, _ext_id, _sector_size, _n_sectors, _flags)\
82 .part_name = _part_name,\
84 ((_jedec_id) >> 16) & 0xff,\
85 ((_jedec_id) >> 8) & 0xff,\
87 ((_ext_id) >> 8) & 0xff,\
90 .id_len = (!(_jedec_id) ? 0 : (3 + ((_ext_id) ? 2 : 0))),\
91 .sector_size = (_sector_size),\
92 .n_sectors = (_n_sectors),\
97 #define INFO6(_part_name, _jedec_id, _ext_id, _sector_size, _n_sectors, _flags)\
98 .part_name = _part_name,\
100 ((_jedec_id) >> 16) & 0xff,\
101 ((_jedec_id) >> 8) & 0xff,\
103 ((_ext_id) >> 16) & 0xff,\
104 ((_ext_id) >> 8) & 0xff,\
108 .sector_size = (_sector_size),\
109 .n_sectors = (_n_sectors),\
114 #define INFO_STACKED(_part_name, _jedec_id, _ext_id, _sector_size, _n_sectors,\
116 .part_name = _part_name,\
118 ((_jedec_id) >> 16) & 0xff,\
119 ((_jedec_id) >> 8) & 0xff,\
121 ((_ext_id) >> 8) & 0xff,\
124 .id_len = (!(_jedec_id) ? 0 : (3 + ((_ext_id) ? 2 : 0))),\
125 .sector_size = (_sector_size),\
126 .n_sectors = (_n_sectors),\
131 #define JEDEC_NUMONYX 0x20
132 #define JEDEC_WINBOND 0xEF
133 #define JEDEC_SPANSION 0x01
135 /* Numonyx (Micron) Configuration register macros */
136 #define VCFG_DUMMY 0x1
137 #define VCFG_WRAP_SEQUENTIAL 0x2
138 #define NVCFG_XIP_MODE_DISABLED (7 << 9)
139 #define NVCFG_XIP_MODE_MASK (7 << 9)
140 #define VCFG_XIP_MODE_DISABLED (1 << 3)
141 #define CFG_DUMMY_CLK_LEN 4
142 #define NVCFG_DUMMY_CLK_POS 12
143 #define VCFG_DUMMY_CLK_POS 4
144 #define EVCFG_OUT_DRIVER_STRENGTH_DEF 7
145 #define EVCFG_VPP_ACCELERATOR (1 << 3)
146 #define EVCFG_RESET_HOLD_ENABLED (1 << 4)
147 #define NVCFG_DUAL_IO_MASK (1 << 2)
148 #define EVCFG_DUAL_IO_DISABLED (1 << 6)
149 #define NVCFG_QUAD_IO_MASK (1 << 3)
150 #define EVCFG_QUAD_IO_DISABLED (1 << 7)
151 #define NVCFG_4BYTE_ADDR_MASK (1 << 0)
152 #define NVCFG_LOWER_SEGMENT_MASK (1 << 1)
154 /* Numonyx (Micron) Flag Status Register macros */
155 #define FSR_4BYTE_ADDR_MODE_ENABLED 0x1
156 #define FSR_FLASH_READY (1 << 7)
158 /* Spansion configuration registers macros. */
159 #define SPANSION_QUAD_CFG_POS 0
160 #define SPANSION_QUAD_CFG_LEN 1
161 #define SPANSION_DUMMY_CLK_POS 0
162 #define SPANSION_DUMMY_CLK_LEN 4
163 #define SPANSION_ADDR_LEN_POS 7
164 #define SPANSION_ADDR_LEN_LEN 1
167 * Spansion read mode command length in bytes,
168 * the mode is currently not supported.
171 #define SPANSION_CONTINUOUS_READ_MODE_CMD_LEN 1
172 #define WINBOND_CONTINUOUS_READ_MODE_CMD_LEN 1
174 static const FlashPartInfo known_devices
[] = {
175 /* Atmel -- some are (confusingly) marketed as "DataFlash" */
176 { INFO("at25fs010", 0x1f6601, 0, 32 << 10, 4, ER_4K
) },
177 { INFO("at25fs040", 0x1f6604, 0, 64 << 10, 8, ER_4K
) },
179 { INFO("at25df041a", 0x1f4401, 0, 64 << 10, 8, ER_4K
) },
180 { INFO("at25df321a", 0x1f4701, 0, 64 << 10, 64, ER_4K
) },
181 { INFO("at25df641", 0x1f4800, 0, 64 << 10, 128, ER_4K
) },
183 { INFO("at26f004", 0x1f0400, 0, 64 << 10, 8, ER_4K
) },
184 { INFO("at26df081a", 0x1f4501, 0, 64 << 10, 16, ER_4K
) },
185 { INFO("at26df161a", 0x1f4601, 0, 64 << 10, 32, ER_4K
) },
186 { INFO("at26df321", 0x1f4700, 0, 64 << 10, 64, ER_4K
) },
188 { INFO("at45db081d", 0x1f2500, 0, 64 << 10, 16, ER_4K
) },
190 /* Atmel EEPROMS - it is assumed, that don't care bit in command
191 * is set to 0. Block protection is not supported.
193 { INFO("at25128a-nonjedec", 0x0, 0, 1, 131072, EEPROM
) },
194 { INFO("at25256a-nonjedec", 0x0, 0, 1, 262144, EEPROM
) },
197 { INFO("en25f32", 0x1c3116, 0, 64 << 10, 64, ER_4K
) },
198 { INFO("en25p32", 0x1c2016, 0, 64 << 10, 64, 0) },
199 { INFO("en25q32b", 0x1c3016, 0, 64 << 10, 64, 0) },
200 { INFO("en25p64", 0x1c2017, 0, 64 << 10, 128, 0) },
201 { INFO("en25q64", 0x1c3017, 0, 64 << 10, 128, ER_4K
) },
204 { INFO("gd25q32", 0xc84016, 0, 64 << 10, 64, ER_4K
) },
205 { INFO("gd25q64", 0xc84017, 0, 64 << 10, 128, ER_4K
) },
207 /* Intel/Numonyx -- xxxs33b */
208 { INFO("160s33b", 0x898911, 0, 64 << 10, 32, 0) },
209 { INFO("320s33b", 0x898912, 0, 64 << 10, 64, 0) },
210 { INFO("640s33b", 0x898913, 0, 64 << 10, 128, 0) },
211 { INFO("n25q064", 0x20ba17, 0, 64 << 10, 128, 0) },
214 { INFO("is25lq040b", 0x9d4013, 0, 64 << 10, 8, ER_4K
) },
215 { INFO("is25lp080d", 0x9d6014, 0, 64 << 10, 16, ER_4K
) },
216 { INFO("is25lp016d", 0x9d6015, 0, 64 << 10, 32, ER_4K
) },
217 { INFO("is25lp032", 0x9d6016, 0, 64 << 10, 64, ER_4K
) },
218 { INFO("is25lp064", 0x9d6017, 0, 64 << 10, 128, ER_4K
) },
219 { INFO("is25lp128", 0x9d6018, 0, 64 << 10, 256, ER_4K
) },
220 { INFO("is25lp256", 0x9d6019, 0, 64 << 10, 512, ER_4K
) },
221 { INFO("is25wp032", 0x9d7016, 0, 64 << 10, 64, ER_4K
) },
222 { INFO("is25wp064", 0x9d7017, 0, 64 << 10, 128, ER_4K
) },
223 { INFO("is25wp128", 0x9d7018, 0, 64 << 10, 256, ER_4K
) },
224 { INFO("is25wp256", 0x9d7019, 0, 64 << 10, 512, ER_4K
) },
227 { INFO("mx25l2005a", 0xc22012, 0, 64 << 10, 4, ER_4K
) },
228 { INFO("mx25l4005a", 0xc22013, 0, 64 << 10, 8, ER_4K
) },
229 { INFO("mx25l8005", 0xc22014, 0, 64 << 10, 16, 0) },
230 { INFO("mx25l1606e", 0xc22015, 0, 64 << 10, 32, ER_4K
) },
231 { INFO("mx25l3205d", 0xc22016, 0, 64 << 10, 64, 0) },
232 { INFO("mx25l6405d", 0xc22017, 0, 64 << 10, 128, 0) },
233 { INFO("mx25l12805d", 0xc22018, 0, 64 << 10, 256, 0) },
234 { INFO("mx25l12855e", 0xc22618, 0, 64 << 10, 256, 0) },
235 { INFO6("mx25l25635e", 0xc22019, 0xc22019, 64 << 10, 512,
236 ER_4K
| ER_32K
), .sfdp_read
= m25p80_sfdp_mx25l25635e
},
237 { INFO6("mx25l25635f", 0xc22019, 0xc22019, 64 << 10, 512,
238 ER_4K
| ER_32K
), .sfdp_read
= m25p80_sfdp_mx25l25635f
},
239 { INFO("mx25l25655e", 0xc22619, 0, 64 << 10, 512, 0) },
240 { INFO("mx66l51235f", 0xc2201a, 0, 64 << 10, 1024, ER_4K
| ER_32K
) },
241 { INFO("mx66u51235f", 0xc2253a, 0, 64 << 10, 1024, ER_4K
| ER_32K
) },
242 { INFO("mx66u1g45g", 0xc2253b, 0, 64 << 10, 2048, ER_4K
| ER_32K
) },
243 { INFO("mx66l1g45g", 0xc2201b, 0, 64 << 10, 2048, ER_4K
| ER_32K
),
244 .sfdp_read
= m25p80_sfdp_mx66l1g45g
},
247 { INFO("n25q032a11", 0x20bb16, 0, 64 << 10, 64, ER_4K
) },
248 { INFO("n25q032a13", 0x20ba16, 0, 64 << 10, 64, ER_4K
) },
249 { INFO("n25q064a11", 0x20bb17, 0, 64 << 10, 128, ER_4K
) },
250 { INFO("n25q064a13", 0x20ba17, 0, 64 << 10, 128, ER_4K
) },
251 { INFO("n25q128a11", 0x20bb18, 0, 64 << 10, 256, ER_4K
) },
252 { INFO("n25q128a13", 0x20ba18, 0, 64 << 10, 256, ER_4K
) },
253 { INFO("n25q256a11", 0x20bb19, 0, 64 << 10, 512, ER_4K
) },
254 { INFO("n25q256a13", 0x20ba19, 0, 64 << 10, 512, ER_4K
),
255 .sfdp_read
= m25p80_sfdp_n25q256a
},
256 { INFO("n25q512a11", 0x20bb20, 0, 64 << 10, 1024, ER_4K
) },
257 { INFO("n25q512a13", 0x20ba20, 0, 64 << 10, 1024, ER_4K
) },
258 { INFO("n25q128", 0x20ba18, 0, 64 << 10, 256, 0) },
259 { INFO("n25q256a", 0x20ba19, 0, 64 << 10, 512,
260 ER_4K
| HAS_SR_BP3_BIT6
| HAS_SR_TB
),
261 .sfdp_read
= m25p80_sfdp_n25q256a
},
262 { INFO("n25q512a", 0x20ba20, 0, 64 << 10, 1024, ER_4K
) },
263 { INFO("n25q512ax3", 0x20ba20, 0x1000, 64 << 10, 1024, ER_4K
) },
264 { INFO("mt25ql512ab", 0x20ba20, 0x1044, 64 << 10, 1024, ER_4K
| ER_32K
) },
265 { INFO_STACKED("mt35xu01g", 0x2c5b1b, 0x104100, 128 << 10, 1024,
266 ER_4K
| ER_32K
, 2) },
267 { INFO_STACKED("n25q00", 0x20ba21, 0x1000, 64 << 10, 2048, ER_4K
, 4) },
268 { INFO_STACKED("n25q00a", 0x20bb21, 0x1000, 64 << 10, 2048, ER_4K
, 4) },
269 { INFO_STACKED("mt25ql01g", 0x20ba21, 0x1040, 64 << 10, 2048, ER_4K
, 2) },
270 { INFO_STACKED("mt25qu01g", 0x20bb21, 0x1040, 64 << 10, 2048, ER_4K
, 2) },
271 { INFO_STACKED("mt25ql02g", 0x20ba22, 0x1040, 64 << 10, 4096, ER_4K
| ER_32K
, 2) },
272 { INFO_STACKED("mt25qu02g", 0x20bb22, 0x1040, 64 << 10, 4096, ER_4K
| ER_32K
, 2) },
274 /* Spansion -- single (large) sector size only, at least
275 * for the chips listed here (without boot sectors).
277 { INFO("s25sl032p", 0x010215, 0x4d00, 64 << 10, 64, ER_4K
) },
278 { INFO("s25sl064p", 0x010216, 0x4d00, 64 << 10, 128, ER_4K
) },
279 { INFO("s25fl256s0", 0x010219, 0x4d00, 256 << 10, 128, 0) },
280 { INFO("s25fl256s1", 0x010219, 0x4d01, 64 << 10, 512, 0) },
281 { INFO6("s25fl512s", 0x010220, 0x4d0080, 256 << 10, 256, 0) },
282 { INFO6("s70fl01gs", 0x010221, 0x4d0080, 256 << 10, 512, 0) },
283 { INFO("s25sl12800", 0x012018, 0x0300, 256 << 10, 64, 0) },
284 { INFO("s25sl12801", 0x012018, 0x0301, 64 << 10, 256, 0) },
285 { INFO("s25fl129p0", 0x012018, 0x4d00, 256 << 10, 64, 0) },
286 { INFO("s25fl129p1", 0x012018, 0x4d01, 64 << 10, 256, 0) },
287 { INFO("s25sl004a", 0x010212, 0, 64 << 10, 8, 0) },
288 { INFO("s25sl008a", 0x010213, 0, 64 << 10, 16, 0) },
289 { INFO("s25sl016a", 0x010214, 0, 64 << 10, 32, 0) },
290 { INFO("s25sl032a", 0x010215, 0, 64 << 10, 64, 0) },
291 { INFO("s25sl064a", 0x010216, 0, 64 << 10, 128, 0) },
292 { INFO("s25fl016k", 0xef4015, 0, 64 << 10, 32, ER_4K
| ER_32K
) },
293 { INFO("s25fl064k", 0xef4017, 0, 64 << 10, 128, ER_4K
| ER_32K
) },
295 /* Spansion -- boot sectors support */
296 { INFO6("s25fs512s", 0x010220, 0x4d0081, 256 << 10, 256, 0) },
297 { INFO6("s70fs01gs", 0x010221, 0x4d0081, 256 << 10, 512, 0) },
299 /* SST -- large erase sizes are "overlays", "sectors" are 4<< 10 */
300 { INFO("sst25vf040b", 0xbf258d, 0, 64 << 10, 8, ER_4K
) },
301 { INFO("sst25vf080b", 0xbf258e, 0, 64 << 10, 16, ER_4K
) },
302 { INFO("sst25vf016b", 0xbf2541, 0, 64 << 10, 32, ER_4K
) },
303 { INFO("sst25vf032b", 0xbf254a, 0, 64 << 10, 64, ER_4K
) },
304 { INFO("sst25wf512", 0xbf2501, 0, 64 << 10, 1, ER_4K
) },
305 { INFO("sst25wf010", 0xbf2502, 0, 64 << 10, 2, ER_4K
) },
306 { INFO("sst25wf020", 0xbf2503, 0, 64 << 10, 4, ER_4K
) },
307 { INFO("sst25wf040", 0xbf2504, 0, 64 << 10, 8, ER_4K
) },
308 { INFO("sst25wf080", 0xbf2505, 0, 64 << 10, 16, ER_4K
) },
310 /* ST Microelectronics -- newer production may have feature updates */
311 { INFO("m25p05", 0x202010, 0, 32 << 10, 2, 0) },
312 { INFO("m25p10", 0x202011, 0, 32 << 10, 4, 0) },
313 { INFO("m25p20", 0x202012, 0, 64 << 10, 4, 0) },
314 { INFO("m25p40", 0x202013, 0, 64 << 10, 8, 0) },
315 { INFO("m25p80", 0x202014, 0, 64 << 10, 16, 0) },
316 { INFO("m25p16", 0x202015, 0, 64 << 10, 32, 0) },
317 { INFO("m25p32", 0x202016, 0, 64 << 10, 64, 0) },
318 { INFO("m25p64", 0x202017, 0, 64 << 10, 128, 0) },
319 { INFO("m25p128", 0x202018, 0, 256 << 10, 64, 0) },
320 { INFO("n25q032", 0x20ba16, 0, 64 << 10, 64, 0) },
322 { INFO("m45pe10", 0x204011, 0, 64 << 10, 2, 0) },
323 { INFO("m45pe80", 0x204014, 0, 64 << 10, 16, 0) },
324 { INFO("m45pe16", 0x204015, 0, 64 << 10, 32, 0) },
326 { INFO("m25pe20", 0x208012, 0, 64 << 10, 4, 0) },
327 { INFO("m25pe80", 0x208014, 0, 64 << 10, 16, 0) },
328 { INFO("m25pe16", 0x208015, 0, 64 << 10, 32, ER_4K
) },
330 { INFO("m25px32", 0x207116, 0, 64 << 10, 64, ER_4K
) },
331 { INFO("m25px32-s0", 0x207316, 0, 64 << 10, 64, ER_4K
) },
332 { INFO("m25px32-s1", 0x206316, 0, 64 << 10, 64, ER_4K
) },
333 { INFO("m25px64", 0x207117, 0, 64 << 10, 128, 0) },
335 /* Winbond -- w25x "blocks" are 64k, "sectors" are 4KiB */
336 { INFO("w25x10", 0xef3011, 0, 64 << 10, 2, ER_4K
) },
337 { INFO("w25x20", 0xef3012, 0, 64 << 10, 4, ER_4K
) },
338 { INFO("w25x40", 0xef3013, 0, 64 << 10, 8, ER_4K
) },
339 { INFO("w25x80", 0xef3014, 0, 64 << 10, 16, ER_4K
) },
340 { INFO("w25x16", 0xef3015, 0, 64 << 10, 32, ER_4K
) },
341 { INFO("w25x32", 0xef3016, 0, 64 << 10, 64, ER_4K
) },
342 { INFO("w25q32", 0xef4016, 0, 64 << 10, 64, ER_4K
) },
343 { INFO("w25q32dw", 0xef6016, 0, 64 << 10, 64, ER_4K
) },
344 { INFO("w25x64", 0xef3017, 0, 64 << 10, 128, ER_4K
) },
345 { INFO("w25q64", 0xef4017, 0, 64 << 10, 128, ER_4K
) },
346 { INFO("w25q80", 0xef5014, 0, 64 << 10, 16, ER_4K
) },
347 { INFO("w25q80bl", 0xef4014, 0, 64 << 10, 16, ER_4K
) },
348 { INFO("w25q256", 0xef4019, 0, 64 << 10, 512, ER_4K
),
349 .sfdp_read
= m25p80_sfdp_w25q256
},
350 { INFO("w25q512jv", 0xef4020, 0, 64 << 10, 1024, ER_4K
),
351 .sfdp_read
= m25p80_sfdp_w25q512jv
},
352 { INFO("w25q01jvq", 0xef4021, 0, 64 << 10, 2048, ER_4K
),
353 .sfdp_read
= m25p80_sfdp_w25q01jvq
},
365 BULK_ERASE_60
= 0x60,
399 ERASE4_SECTOR
= 0xdc,
401 EN_4BYTE_ADDR
= 0xB7,
402 EX_4BYTE_ADDR
= 0xE9,
404 EXTEND_ADDR_READ
= 0xC8,
405 EXTEND_ADDR_WRITE
= 0xC5,
411 * Micron: 0x35 - enable QPI
412 * Spansion: 0x35 - read control register
433 STATE_COLLECTING_DATA
,
434 STATE_COLLECTING_VAR_LEN_DATA
,
455 #define M25P80_INTERNAL_DATA_BUFFER_SZ 16
458 SSIPeripheral parent_obj
;
467 uint8_t data
[M25P80_INTERNAL_DATA_BUFFER_SZ
];
471 uint8_t needed_bytes
;
472 uint8_t cmd_in_progress
;
474 uint32_t nonvolatile_cfg
;
475 /* Configuration register for Macronix */
476 uint32_t volatile_cfg
;
477 uint32_t enh_volatile_cfg
;
478 /* Spansion cfg registers. */
479 uint8_t spansion_cr1nv
;
480 uint8_t spansion_cr2nv
;
481 uint8_t spansion_cr3nv
;
482 uint8_t spansion_cr4nv
;
483 uint8_t spansion_cr1v
;
484 uint8_t spansion_cr2v
;
485 uint8_t spansion_cr3v
;
486 uint8_t spansion_cr4v
;
489 bool four_bytes_address_mode
;
498 bool status_register_write_disabled
;
503 const FlashPartInfo
*pi
;
508 SSIPeripheralClass parent_class
;
512 #define TYPE_M25P80 "m25p80-generic"
513 OBJECT_DECLARE_TYPE(Flash
, M25P80Class
, M25P80
)
515 static inline Manufacturer
get_man(Flash
*s
)
517 switch (s
->pi
->id
[0]) {
535 static void blk_sync_complete(void *opaque
, int ret
)
537 QEMUIOVector
*iov
= opaque
;
539 qemu_iovec_destroy(iov
);
542 /* do nothing. Masters do not directly interact with the backing store,
543 * only the working copy so no mutexing required.
547 static void flash_sync_page(Flash
*s
, int page
)
551 if (!s
->blk
|| !blk_is_writable(s
->blk
)) {
555 iov
= g_new(QEMUIOVector
, 1);
556 qemu_iovec_init(iov
, 1);
557 qemu_iovec_add(iov
, s
->storage
+ page
* s
->pi
->page_size
,
559 blk_aio_pwritev(s
->blk
, page
* s
->pi
->page_size
, iov
, 0,
560 blk_sync_complete
, iov
);
563 static inline void flash_sync_area(Flash
*s
, int64_t off
, int64_t len
)
567 if (!s
->blk
|| !blk_is_writable(s
->blk
)) {
571 assert(!(len
% BDRV_SECTOR_SIZE
));
572 iov
= g_new(QEMUIOVector
, 1);
573 qemu_iovec_init(iov
, 1);
574 qemu_iovec_add(iov
, s
->storage
+ off
, len
);
575 blk_aio_pwritev(s
->blk
, off
, iov
, 0, blk_sync_complete
, iov
);
578 static void flash_erase(Flash
*s
, int offset
, FlashCMD cmd
)
581 uint8_t capa_to_assert
= 0;
587 capa_to_assert
= ER_4K
;
592 capa_to_assert
= ER_32K
;
596 len
= s
->pi
->sector_size
;
602 if (s
->pi
->die_cnt
) {
603 len
= s
->size
/ s
->pi
->die_cnt
;
604 offset
= offset
& (~(len
- 1));
606 qemu_log_mask(LOG_GUEST_ERROR
, "M25P80: die erase is not supported"
615 trace_m25p80_flash_erase(s
, offset
, len
);
617 if ((s
->pi
->flags
& capa_to_assert
) != capa_to_assert
) {
618 qemu_log_mask(LOG_GUEST_ERROR
, "M25P80: %d erase size not supported by"
622 if (!s
->write_enable
) {
623 qemu_log_mask(LOG_GUEST_ERROR
, "M25P80: erase with write protect!\n");
626 memset(s
->storage
+ offset
, 0xff, len
);
627 flash_sync_area(s
, offset
, len
);
630 static inline void flash_sync_dirty(Flash
*s
, int64_t newpage
)
632 if (s
->dirty_page
>= 0 && s
->dirty_page
!= newpage
) {
633 flash_sync_page(s
, s
->dirty_page
);
634 s
->dirty_page
= newpage
;
639 void flash_write8(Flash
*s
, uint32_t addr
, uint8_t data
)
641 uint32_t page
= addr
/ s
->pi
->page_size
;
642 uint8_t prev
= s
->storage
[s
->cur_addr
];
643 uint32_t block_protect_value
= (s
->block_protect3
<< 3) |
644 (s
->block_protect2
<< 2) |
645 (s
->block_protect1
<< 1) |
646 (s
->block_protect0
<< 0);
648 if (!s
->write_enable
) {
649 qemu_log_mask(LOG_GUEST_ERROR
, "M25P80: write with write protect!\n");
653 if (block_protect_value
> 0) {
654 uint32_t num_protected_sectors
= 1 << (block_protect_value
- 1);
655 uint32_t sector
= addr
/ s
->pi
->sector_size
;
657 /* top_bottom_bit == 0 means TOP */
658 if (!s
->top_bottom_bit
) {
659 if (s
->pi
->n_sectors
<= sector
+ num_protected_sectors
) {
660 qemu_log_mask(LOG_GUEST_ERROR
,
661 "M25P80: write with write protect!\n");
665 if (sector
< num_protected_sectors
) {
666 qemu_log_mask(LOG_GUEST_ERROR
,
667 "M25P80: write with write protect!\n");
673 if ((prev
^ data
) & data
) {
674 trace_m25p80_programming_zero_to_one(s
, addr
, prev
, data
);
677 if (s
->pi
->flags
& EEPROM
) {
678 s
->storage
[s
->cur_addr
] = data
;
680 s
->storage
[s
->cur_addr
] &= data
;
683 flash_sync_dirty(s
, page
);
684 s
->dirty_page
= page
;
687 static inline int get_addr_length(Flash
*s
)
689 /* check if eeprom is in use */
690 if (s
->pi
->flags
== EEPROM
) {
694 switch (s
->cmd_in_progress
) {
711 return s
->four_bytes_address_mode
? 4 : 3;
715 static void complete_collecting_data(Flash
*s
)
719 n
= get_addr_length(s
);
720 s
->cur_addr
= (n
== 3 ? s
->ear
: 0);
721 for (i
= 0; i
< n
; ++i
) {
723 s
->cur_addr
|= s
->data
[i
];
726 s
->cur_addr
&= s
->size
- 1;
728 s
->state
= STATE_IDLE
;
730 trace_m25p80_complete_collecting(s
, s
->cmd_in_progress
, n
, s
->ear
,
733 switch (s
->cmd_in_progress
) {
740 s
->state
= STATE_PAGE_PROGRAM
;
743 /* AAI programming starts from the even address */
744 s
->cur_addr
&= ~BIT(0);
745 s
->state
= STATE_PAGE_PROGRAM
;
759 s
->state
= STATE_READ
;
768 flash_erase(s
, s
->cur_addr
, s
->cmd_in_progress
);
771 s
->status_register_write_disabled
= extract32(s
->data
[0], 7, 1);
772 s
->block_protect0
= extract32(s
->data
[0], 2, 1);
773 s
->block_protect1
= extract32(s
->data
[0], 3, 1);
774 s
->block_protect2
= extract32(s
->data
[0], 4, 1);
775 if (s
->pi
->flags
& HAS_SR_TB
) {
776 s
->top_bottom_bit
= extract32(s
->data
[0], 5, 1);
778 if (s
->pi
->flags
& HAS_SR_BP3_BIT6
) {
779 s
->block_protect3
= extract32(s
->data
[0], 6, 1);
782 switch (get_man(s
)) {
784 s
->quad_enable
= !!(s
->data
[1] & 0x02);
787 s
->quad_enable
= extract32(s
->data
[0], 6, 1);
790 s
->quad_enable
= extract32(s
->data
[0], 6, 1);
792 s
->volatile_cfg
= s
->data
[1];
793 s
->four_bytes_address_mode
= extract32(s
->data
[1], 5, 1);
799 if (s
->write_enable
) {
800 s
->write_enable
= false;
804 case EXTEND_ADDR_WRITE
:
808 s
->nonvolatile_cfg
= s
->data
[0] | (s
->data
[1] << 8);
811 s
->volatile_cfg
= s
->data
[0];
814 s
->enh_volatile_cfg
= s
->data
[0];
818 if (get_man(s
) == MAN_SST
) {
819 if (s
->cur_addr
<= 1) {
821 s
->data
[0] = s
->pi
->id
[2];
822 s
->data
[1] = s
->pi
->id
[0];
824 s
->data
[0] = s
->pi
->id
[0];
825 s
->data
[1] = s
->pi
->id
[2];
829 s
->data_read_loop
= true;
830 s
->state
= STATE_READING_DATA
;
832 qemu_log_mask(LOG_GUEST_ERROR
,
833 "M25P80: Invalid read id address\n");
836 qemu_log_mask(LOG_GUEST_ERROR
,
837 "M25P80: Read id (command 0x90/0xAB) is not supported"
843 s
->state
= STATE_READING_SFDP
;
851 static void reset_memory(Flash
*s
)
853 s
->cmd_in_progress
= NOP
;
856 s
->four_bytes_address_mode
= false;
860 s
->state
= STATE_IDLE
;
861 s
->write_enable
= false;
862 s
->reset_enable
= false;
863 s
->quad_enable
= false;
864 s
->aai_enable
= false;
866 switch (get_man(s
)) {
869 s
->volatile_cfg
|= VCFG_DUMMY
;
870 s
->volatile_cfg
|= VCFG_WRAP_SEQUENTIAL
;
871 if ((s
->nonvolatile_cfg
& NVCFG_XIP_MODE_MASK
)
872 == NVCFG_XIP_MODE_DISABLED
) {
873 s
->volatile_cfg
|= VCFG_XIP_MODE_DISABLED
;
875 s
->volatile_cfg
|= deposit32(s
->volatile_cfg
,
878 extract32(s
->nonvolatile_cfg
,
883 s
->enh_volatile_cfg
= 0;
884 s
->enh_volatile_cfg
|= EVCFG_OUT_DRIVER_STRENGTH_DEF
;
885 s
->enh_volatile_cfg
|= EVCFG_VPP_ACCELERATOR
;
886 s
->enh_volatile_cfg
|= EVCFG_RESET_HOLD_ENABLED
;
887 if (s
->nonvolatile_cfg
& NVCFG_DUAL_IO_MASK
) {
888 s
->enh_volatile_cfg
|= EVCFG_DUAL_IO_DISABLED
;
890 if (s
->nonvolatile_cfg
& NVCFG_QUAD_IO_MASK
) {
891 s
->enh_volatile_cfg
|= EVCFG_QUAD_IO_DISABLED
;
893 if (!(s
->nonvolatile_cfg
& NVCFG_4BYTE_ADDR_MASK
)) {
894 s
->four_bytes_address_mode
= true;
896 if (!(s
->nonvolatile_cfg
& NVCFG_LOWER_SEGMENT_MASK
)) {
897 s
->ear
= s
->size
/ MAX_3BYTES_SIZE
- 1;
901 s
->volatile_cfg
= 0x7;
904 s
->spansion_cr1v
= s
->spansion_cr1nv
;
905 s
->spansion_cr2v
= s
->spansion_cr2nv
;
906 s
->spansion_cr3v
= s
->spansion_cr3nv
;
907 s
->spansion_cr4v
= s
->spansion_cr4nv
;
908 s
->quad_enable
= extract32(s
->spansion_cr1v
,
909 SPANSION_QUAD_CFG_POS
,
910 SPANSION_QUAD_CFG_LEN
912 s
->four_bytes_address_mode
= extract32(s
->spansion_cr2v
,
913 SPANSION_ADDR_LEN_POS
,
914 SPANSION_ADDR_LEN_LEN
921 trace_m25p80_reset_done(s
);
924 static uint8_t numonyx_mode(Flash
*s
)
926 if (!(s
->enh_volatile_cfg
& EVCFG_QUAD_IO_DISABLED
)) {
928 } else if (!(s
->enh_volatile_cfg
& EVCFG_DUAL_IO_DISABLED
)) {
935 static uint8_t numonyx_extract_cfg_num_dummies(Flash
*s
)
939 assert(get_man(s
) == MAN_NUMONYX
);
941 mode
= numonyx_mode(s
);
942 num_dummies
= extract32(s
->volatile_cfg
, 4, 4);
944 if (num_dummies
== 0x0 || num_dummies
== 0xf) {
945 switch (s
->cmd_in_progress
) {
951 num_dummies
= (mode
== MODE_QIO
) ? 10 : 8;
959 static void decode_fast_read_cmd(Flash
*s
)
961 s
->needed_bytes
= get_addr_length(s
);
962 switch (get_man(s
)) {
963 /* Dummy cycles - modeled with bytes writes instead of bits */
965 s
->needed_bytes
+= 1;
968 s
->needed_bytes
+= 8;
971 s
->needed_bytes
+= numonyx_extract_cfg_num_dummies(s
);
974 if (extract32(s
->volatile_cfg
, 6, 2) == 1) {
975 s
->needed_bytes
+= 6;
977 s
->needed_bytes
+= 8;
981 s
->needed_bytes
+= extract32(s
->spansion_cr2v
,
982 SPANSION_DUMMY_CLK_POS
,
983 SPANSION_DUMMY_CLK_LEN
988 * The Fast Read instruction code is followed by address bytes and
989 * dummy cycles, transmitted via the SI line.
991 * The number of dummy cycles is configurable but this is currently
992 * unmodeled, hence the default value 8 is used.
994 * QPI (Quad Peripheral Interface) mode has different default value
995 * of dummy cycles, but this is unsupported at the time being.
997 s
->needed_bytes
+= 1;
1004 s
->state
= STATE_COLLECTING_DATA
;
1007 static void decode_dio_read_cmd(Flash
*s
)
1009 s
->needed_bytes
= get_addr_length(s
);
1010 /* Dummy cycles modeled with bytes writes instead of bits */
1011 switch (get_man(s
)) {
1013 s
->needed_bytes
+= WINBOND_CONTINUOUS_READ_MODE_CMD_LEN
;
1016 s
->needed_bytes
+= SPANSION_CONTINUOUS_READ_MODE_CMD_LEN
;
1017 s
->needed_bytes
+= extract32(s
->spansion_cr2v
,
1018 SPANSION_DUMMY_CLK_POS
,
1019 SPANSION_DUMMY_CLK_LEN
1023 s
->needed_bytes
+= numonyx_extract_cfg_num_dummies(s
);
1026 switch (extract32(s
->volatile_cfg
, 6, 2)) {
1028 s
->needed_bytes
+= 6;
1031 s
->needed_bytes
+= 8;
1034 s
->needed_bytes
+= 4;
1040 * The Fast Read Dual I/O instruction code is followed by address bytes
1041 * and dummy cycles, transmitted via the IO1 and IO0 line.
1043 * The number of dummy cycles is configurable but this is currently
1044 * unmodeled, hence the default value 4 is used.
1046 s
->needed_bytes
+= 1;
1053 s
->state
= STATE_COLLECTING_DATA
;
1056 static void decode_qio_read_cmd(Flash
*s
)
1058 s
->needed_bytes
= get_addr_length(s
);
1059 /* Dummy cycles modeled with bytes writes instead of bits */
1060 switch (get_man(s
)) {
1062 s
->needed_bytes
+= WINBOND_CONTINUOUS_READ_MODE_CMD_LEN
;
1063 s
->needed_bytes
+= 4;
1066 s
->needed_bytes
+= SPANSION_CONTINUOUS_READ_MODE_CMD_LEN
;
1067 s
->needed_bytes
+= extract32(s
->spansion_cr2v
,
1068 SPANSION_DUMMY_CLK_POS
,
1069 SPANSION_DUMMY_CLK_LEN
1073 s
->needed_bytes
+= numonyx_extract_cfg_num_dummies(s
);
1076 switch (extract32(s
->volatile_cfg
, 6, 2)) {
1078 s
->needed_bytes
+= 4;
1081 s
->needed_bytes
+= 8;
1084 s
->needed_bytes
+= 6;
1090 * The Fast Read Quad I/O instruction code is followed by address bytes
1091 * and dummy cycles, transmitted via the IO3, IO2, IO1 and IO0 line.
1093 * The number of dummy cycles is configurable but this is currently
1094 * unmodeled, hence the default value 6 is used.
1096 * QPI (Quad Peripheral Interface) mode has different default value
1097 * of dummy cycles, but this is unsupported at the time being.
1099 s
->needed_bytes
+= 3;
1106 s
->state
= STATE_COLLECTING_DATA
;
1109 static bool is_valid_aai_cmd(uint32_t cmd
)
1111 return cmd
== AAI_WP
|| cmd
== WRDI
|| cmd
== RDSR
;
1114 static void decode_new_cmd(Flash
*s
, uint32_t value
)
1118 s
->cmd_in_progress
= value
;
1119 trace_m25p80_command_decoded(s
, value
);
1121 if (value
!= RESET_MEMORY
) {
1122 s
->reset_enable
= false;
1125 if (get_man(s
) == MAN_SST
&& s
->aai_enable
&& !is_valid_aai_cmd(value
)) {
1126 qemu_log_mask(LOG_GUEST_ERROR
,
1127 "M25P80: Invalid cmd within AAI programming sequence");
1143 s
->needed_bytes
= get_addr_length(s
);
1146 s
->state
= STATE_COLLECTING_DATA
;
1150 if (get_man(s
) != MAN_NUMONYX
|| numonyx_mode(s
) == MODE_STD
) {
1151 s
->needed_bytes
= get_addr_length(s
);
1154 s
->state
= STATE_COLLECTING_DATA
;
1156 qemu_log_mask(LOG_GUEST_ERROR
, "M25P80: Cannot execute cmd %x in "
1157 "DIO or QIO mode\n", s
->cmd_in_progress
);
1161 if (get_man(s
) != MAN_NUMONYX
|| numonyx_mode(s
) != MODE_QIO
) {
1162 s
->needed_bytes
= get_addr_length(s
);
1165 s
->state
= STATE_COLLECTING_DATA
;
1167 qemu_log_mask(LOG_GUEST_ERROR
, "M25P80: Cannot execute cmd %x in "
1168 "QIO mode\n", s
->cmd_in_progress
);
1174 if (get_man(s
) != MAN_NUMONYX
|| numonyx_mode(s
) != MODE_DIO
) {
1175 s
->needed_bytes
= get_addr_length(s
);
1178 s
->state
= STATE_COLLECTING_DATA
;
1180 qemu_log_mask(LOG_GUEST_ERROR
, "M25P80: Cannot execute cmd %x in "
1181 "DIO mode\n", s
->cmd_in_progress
);
1187 decode_fast_read_cmd(s
);
1191 if (get_man(s
) != MAN_NUMONYX
|| numonyx_mode(s
) != MODE_QIO
) {
1192 decode_fast_read_cmd(s
);
1194 qemu_log_mask(LOG_GUEST_ERROR
, "M25P80: Cannot execute cmd %x in "
1195 "QIO mode\n", s
->cmd_in_progress
);
1200 if (get_man(s
) != MAN_NUMONYX
|| numonyx_mode(s
) != MODE_DIO
) {
1201 decode_fast_read_cmd(s
);
1203 qemu_log_mask(LOG_GUEST_ERROR
, "M25P80: Cannot execute cmd %x in "
1204 "DIO mode\n", s
->cmd_in_progress
);
1210 if (get_man(s
) != MAN_NUMONYX
|| numonyx_mode(s
) != MODE_QIO
) {
1211 decode_dio_read_cmd(s
);
1213 qemu_log_mask(LOG_GUEST_ERROR
, "M25P80: Cannot execute cmd %x in "
1214 "QIO mode\n", s
->cmd_in_progress
);
1220 if (get_man(s
) != MAN_NUMONYX
|| numonyx_mode(s
) != MODE_DIO
) {
1221 decode_qio_read_cmd(s
);
1223 qemu_log_mask(LOG_GUEST_ERROR
, "M25P80: Cannot execute cmd %x in "
1224 "DIO mode\n", s
->cmd_in_progress
);
1230 * If WP# is low and status_register_write_disabled is high,
1231 * status register writes are disabled.
1232 * This is also called "hardware protected mode" (HPM). All other
1233 * combinations of the two states are called "software protected mode"
1234 * (SPM), and status register writes are permitted.
1236 if ((s
->wp_level
== 0 && s
->status_register_write_disabled
)
1237 || !s
->write_enable
) {
1238 qemu_log_mask(LOG_GUEST_ERROR
,
1239 "M25P80: Status register write is disabled!\n");
1243 switch (get_man(s
)) {
1245 s
->needed_bytes
= 2;
1246 s
->state
= STATE_COLLECTING_DATA
;
1249 s
->needed_bytes
= 2;
1250 s
->state
= STATE_COLLECTING_VAR_LEN_DATA
;
1253 s
->needed_bytes
= 1;
1254 s
->state
= STATE_COLLECTING_DATA
;
1260 s
->write_enable
= false;
1261 if (get_man(s
) == MAN_SST
) {
1262 s
->aai_enable
= false;
1266 s
->write_enable
= true;
1270 s
->data
[0] = (!!s
->write_enable
) << 1;
1271 s
->data
[0] |= (!!s
->status_register_write_disabled
) << 7;
1272 s
->data
[0] |= (!!s
->block_protect0
) << 2;
1273 s
->data
[0] |= (!!s
->block_protect1
) << 3;
1274 s
->data
[0] |= (!!s
->block_protect2
) << 4;
1275 if (s
->pi
->flags
& HAS_SR_TB
) {
1276 s
->data
[0] |= (!!s
->top_bottom_bit
) << 5;
1278 if (s
->pi
->flags
& HAS_SR_BP3_BIT6
) {
1279 s
->data
[0] |= (!!s
->block_protect3
) << 6;
1282 if (get_man(s
) == MAN_MACRONIX
|| get_man(s
) == MAN_ISSI
) {
1283 s
->data
[0] |= (!!s
->quad_enable
) << 6;
1285 if (get_man(s
) == MAN_SST
) {
1286 s
->data
[0] |= (!!s
->aai_enable
) << 6;
1291 s
->data_read_loop
= true;
1292 s
->state
= STATE_READING_DATA
;
1296 s
->data
[0] = FSR_FLASH_READY
;
1297 if (s
->four_bytes_address_mode
) {
1298 s
->data
[0] |= FSR_4BYTE_ADDR_MODE_ENABLED
;
1302 s
->data_read_loop
= true;
1303 s
->state
= STATE_READING_DATA
;
1307 if (get_man(s
) != MAN_NUMONYX
|| numonyx_mode(s
) == MODE_STD
) {
1308 trace_m25p80_populated_jedec(s
);
1309 for (i
= 0; i
< s
->pi
->id_len
; i
++) {
1310 s
->data
[i
] = s
->pi
->id
[i
];
1312 for (; i
< SPI_NOR_MAX_ID_LEN
; i
++) {
1316 s
->len
= SPI_NOR_MAX_ID_LEN
;
1318 s
->state
= STATE_READING_DATA
;
1320 qemu_log_mask(LOG_GUEST_ERROR
, "M25P80: Cannot execute JEDEC read "
1321 "in DIO or QIO mode\n");
1326 s
->data
[0] = s
->volatile_cfg
& 0xFF;
1327 s
->data
[0] |= (!!s
->four_bytes_address_mode
) << 5;
1330 s
->state
= STATE_READING_DATA
;
1335 if (s
->write_enable
) {
1336 trace_m25p80_chip_erase(s
);
1337 flash_erase(s
, 0, BULK_ERASE
);
1339 qemu_log_mask(LOG_GUEST_ERROR
, "M25P80: chip erase with write "
1346 s
->four_bytes_address_mode
= true;
1349 s
->four_bytes_address_mode
= false;
1352 case EXTEND_ADDR_READ
:
1353 s
->data
[0] = s
->ear
;
1356 s
->state
= STATE_READING_DATA
;
1359 case EXTEND_ADDR_WRITE
:
1360 if (s
->write_enable
) {
1361 s
->needed_bytes
= 1;
1364 s
->state
= STATE_COLLECTING_DATA
;
1368 s
->data
[0] = s
->nonvolatile_cfg
& 0xFF;
1369 s
->data
[1] = (s
->nonvolatile_cfg
>> 8) & 0xFF;
1372 s
->state
= STATE_READING_DATA
;
1375 if (s
->write_enable
&& get_man(s
) == MAN_NUMONYX
) {
1376 s
->needed_bytes
= 2;
1379 s
->state
= STATE_COLLECTING_DATA
;
1383 s
->data
[0] = s
->volatile_cfg
& 0xFF;
1386 s
->state
= STATE_READING_DATA
;
1389 if (s
->write_enable
) {
1390 s
->needed_bytes
= 1;
1393 s
->state
= STATE_COLLECTING_DATA
;
1397 s
->data
[0] = s
->enh_volatile_cfg
& 0xFF;
1400 s
->state
= STATE_READING_DATA
;
1403 if (s
->write_enable
) {
1404 s
->needed_bytes
= 1;
1407 s
->state
= STATE_COLLECTING_DATA
;
1411 s
->reset_enable
= true;
1414 if (s
->reset_enable
) {
1419 switch (get_man(s
)) {
1421 s
->data
[0] = (!!s
->quad_enable
) << 1;
1424 s
->state
= STATE_READING_DATA
;
1427 s
->quad_enable
= true;
1434 s
->quad_enable
= false;
1437 if (get_man(s
) == MAN_SST
) {
1438 if (s
->write_enable
) {
1439 if (s
->aai_enable
) {
1440 s
->state
= STATE_PAGE_PROGRAM
;
1442 s
->aai_enable
= true;
1443 s
->needed_bytes
= get_addr_length(s
);
1444 s
->state
= STATE_COLLECTING_DATA
;
1447 qemu_log_mask(LOG_GUEST_ERROR
,
1448 "M25P80: AAI_WP with write protect\n");
1451 qemu_log_mask(LOG_GUEST_ERROR
, "M25P80: Unknown cmd %x\n", value
);
1455 if (s
->pi
->sfdp_read
) {
1456 s
->needed_bytes
= get_addr_length(s
) + 1; /* SFDP addr + dummy */
1459 s
->state
= STATE_COLLECTING_DATA
;
1467 s
->state
= STATE_READING_DATA
;
1468 s
->data_read_loop
= true;
1470 qemu_log_mask(LOG_GUEST_ERROR
, "M25P80: Unknown cmd %x\n", value
);
1475 static int m25p80_cs(SSIPeripheral
*ss
, bool select
)
1477 Flash
*s
= M25P80(ss
);
1480 if (s
->state
== STATE_COLLECTING_VAR_LEN_DATA
) {
1481 complete_collecting_data(s
);
1485 s
->state
= STATE_IDLE
;
1486 flash_sync_dirty(s
, -1);
1487 s
->data_read_loop
= false;
1490 trace_m25p80_select(s
, select
? "de" : "");
1495 static uint32_t m25p80_transfer8(SSIPeripheral
*ss
, uint32_t tx
)
1497 Flash
*s
= M25P80(ss
);
1500 trace_m25p80_transfer(s
, s
->state
, s
->len
, s
->needed_bytes
, s
->pos
,
1501 s
->cur_addr
, (uint8_t)tx
);
1505 case STATE_PAGE_PROGRAM
:
1506 trace_m25p80_page_program(s
, s
->cur_addr
, (uint8_t)tx
);
1507 flash_write8(s
, s
->cur_addr
, (uint8_t)tx
);
1508 s
->cur_addr
= (s
->cur_addr
+ 1) & (s
->size
- 1);
1510 if (get_man(s
) == MAN_SST
&& s
->aai_enable
&& s
->cur_addr
== 0) {
1512 * There is no wrap mode during AAI programming once the highest
1513 * unprotected memory address is reached. The Write-Enable-Latch
1514 * bit is automatically reset, and AAI programming mode aborts.
1516 s
->write_enable
= false;
1517 s
->aai_enable
= false;
1523 r
= s
->storage
[s
->cur_addr
];
1524 trace_m25p80_read_byte(s
, s
->cur_addr
, (uint8_t)r
);
1525 s
->cur_addr
= (s
->cur_addr
+ 1) & (s
->size
- 1);
1528 case STATE_COLLECTING_DATA
:
1529 case STATE_COLLECTING_VAR_LEN_DATA
:
1531 if (s
->len
>= M25P80_INTERNAL_DATA_BUFFER_SZ
) {
1532 qemu_log_mask(LOG_GUEST_ERROR
,
1533 "M25P80: Write overrun internal data buffer. "
1534 "SPI controller (QEMU emulator or guest driver) "
1535 "is misbehaving\n");
1536 s
->len
= s
->pos
= 0;
1537 s
->state
= STATE_IDLE
;
1541 s
->data
[s
->len
] = (uint8_t)tx
;
1544 if (s
->len
== s
->needed_bytes
) {
1545 complete_collecting_data(s
);
1549 case STATE_READING_DATA
:
1551 if (s
->pos
>= M25P80_INTERNAL_DATA_BUFFER_SZ
) {
1552 qemu_log_mask(LOG_GUEST_ERROR
,
1553 "M25P80: Read overrun internal data buffer. "
1554 "SPI controller (QEMU emulator or guest driver) "
1555 "is misbehaving\n");
1556 s
->len
= s
->pos
= 0;
1557 s
->state
= STATE_IDLE
;
1561 r
= s
->data
[s
->pos
];
1562 trace_m25p80_read_data(s
, s
->pos
, (uint8_t)r
);
1564 if (s
->pos
== s
->len
) {
1566 if (!s
->data_read_loop
) {
1567 s
->state
= STATE_IDLE
;
1571 case STATE_READING_SFDP
:
1572 assert(s
->pi
->sfdp_read
);
1573 r
= s
->pi
->sfdp_read(s
->cur_addr
);
1574 trace_m25p80_read_sfdp(s
, s
->cur_addr
, (uint8_t)r
);
1575 s
->cur_addr
= (s
->cur_addr
+ 1) & (M25P80_SFDP_MAX_SIZE
- 1);
1580 decode_new_cmd(s
, (uint8_t)tx
);
1587 static void m25p80_write_protect_pin_irq_handler(void *opaque
, int n
, int level
)
1589 Flash
*s
= M25P80(opaque
);
1590 /* WP# is just a single pin. */
1592 s
->wp_level
= !!level
;
1595 static void m25p80_realize(SSIPeripheral
*ss
, Error
**errp
)
1597 Flash
*s
= M25P80(ss
);
1598 M25P80Class
*mc
= M25P80_GET_CLASS(s
);
1603 s
->size
= s
->pi
->sector_size
* s
->pi
->n_sectors
;
1607 uint64_t perm
= BLK_PERM_CONSISTENT_READ
|
1608 (blk_supports_write_perm(s
->blk
) ? BLK_PERM_WRITE
: 0);
1609 ret
= blk_set_perm(s
->blk
, perm
, BLK_PERM_ALL
, errp
);
1614 trace_m25p80_binding(s
);
1615 s
->storage
= blk_blockalign(s
->blk
, s
->size
);
1617 if (blk_pread(s
->blk
, 0, s
->size
, s
->storage
, 0) < 0) {
1618 error_setg(errp
, "failed to read the initial flash content");
1622 trace_m25p80_binding_no_bdrv(s
);
1623 s
->storage
= blk_blockalign(NULL
, s
->size
);
1624 memset(s
->storage
, 0xFF, s
->size
);
1627 qdev_init_gpio_in_named(DEVICE(s
),
1628 m25p80_write_protect_pin_irq_handler
, "WP#", 1);
1631 static void m25p80_reset(DeviceState
*d
)
1633 Flash
*s
= M25P80(d
);
1636 s
->status_register_write_disabled
= false;
1637 s
->block_protect0
= false;
1638 s
->block_protect1
= false;
1639 s
->block_protect2
= false;
1640 s
->block_protect3
= false;
1641 s
->top_bottom_bit
= false;
1646 static int m25p80_pre_save(void *opaque
)
1648 flash_sync_dirty((Flash
*)opaque
, -1);
1653 static Property m25p80_properties
[] = {
1654 /* This is default value for Micron flash */
1655 DEFINE_PROP_BOOL("write-enable", Flash
, write_enable
, false),
1656 DEFINE_PROP_UINT32("nonvolatile-cfg", Flash
, nonvolatile_cfg
, 0x8FFF),
1657 DEFINE_PROP_UINT8("spansion-cr1nv", Flash
, spansion_cr1nv
, 0x0),
1658 DEFINE_PROP_UINT8("spansion-cr2nv", Flash
, spansion_cr2nv
, 0x8),
1659 DEFINE_PROP_UINT8("spansion-cr3nv", Flash
, spansion_cr3nv
, 0x2),
1660 DEFINE_PROP_UINT8("spansion-cr4nv", Flash
, spansion_cr4nv
, 0x10),
1661 DEFINE_PROP_DRIVE("drive", Flash
, blk
),
1662 DEFINE_PROP_END_OF_LIST(),
1665 static int m25p80_pre_load(void *opaque
)
1667 Flash
*s
= (Flash
*)opaque
;
1669 s
->data_read_loop
= false;
1673 static bool m25p80_data_read_loop_needed(void *opaque
)
1675 Flash
*s
= (Flash
*)opaque
;
1677 return s
->data_read_loop
;
1680 static const VMStateDescription vmstate_m25p80_data_read_loop
= {
1681 .name
= "m25p80/data_read_loop",
1683 .minimum_version_id
= 1,
1684 .needed
= m25p80_data_read_loop_needed
,
1685 .fields
= (VMStateField
[]) {
1686 VMSTATE_BOOL(data_read_loop
, Flash
),
1687 VMSTATE_END_OF_LIST()
1691 static bool m25p80_aai_enable_needed(void *opaque
)
1693 Flash
*s
= (Flash
*)opaque
;
1695 return s
->aai_enable
;
1698 static const VMStateDescription vmstate_m25p80_aai_enable
= {
1699 .name
= "m25p80/aai_enable",
1701 .minimum_version_id
= 1,
1702 .needed
= m25p80_aai_enable_needed
,
1703 .fields
= (VMStateField
[]) {
1704 VMSTATE_BOOL(aai_enable
, Flash
),
1705 VMSTATE_END_OF_LIST()
1709 static bool m25p80_wp_level_srwd_needed(void *opaque
)
1711 Flash
*s
= (Flash
*)opaque
;
1713 return !s
->wp_level
|| s
->status_register_write_disabled
;
1716 static const VMStateDescription vmstate_m25p80_write_protect
= {
1717 .name
= "m25p80/write_protect",
1719 .minimum_version_id
= 1,
1720 .needed
= m25p80_wp_level_srwd_needed
,
1721 .fields
= (VMStateField
[]) {
1722 VMSTATE_BOOL(wp_level
, Flash
),
1723 VMSTATE_BOOL(status_register_write_disabled
, Flash
),
1724 VMSTATE_END_OF_LIST()
1728 static bool m25p80_block_protect_needed(void *opaque
)
1730 Flash
*s
= (Flash
*)opaque
;
1732 return s
->block_protect0
||
1733 s
->block_protect1
||
1734 s
->block_protect2
||
1735 s
->block_protect3
||
1739 static const VMStateDescription vmstate_m25p80_block_protect
= {
1740 .name
= "m25p80/block_protect",
1742 .minimum_version_id
= 1,
1743 .needed
= m25p80_block_protect_needed
,
1744 .fields
= (VMStateField
[]) {
1745 VMSTATE_BOOL(block_protect0
, Flash
),
1746 VMSTATE_BOOL(block_protect1
, Flash
),
1747 VMSTATE_BOOL(block_protect2
, Flash
),
1748 VMSTATE_BOOL(block_protect3
, Flash
),
1749 VMSTATE_BOOL(top_bottom_bit
, Flash
),
1750 VMSTATE_END_OF_LIST()
1754 static const VMStateDescription vmstate_m25p80
= {
1757 .minimum_version_id
= 0,
1758 .pre_save
= m25p80_pre_save
,
1759 .pre_load
= m25p80_pre_load
,
1760 .fields
= (VMStateField
[]) {
1761 VMSTATE_UINT8(state
, Flash
),
1762 VMSTATE_UINT8_ARRAY(data
, Flash
, M25P80_INTERNAL_DATA_BUFFER_SZ
),
1763 VMSTATE_UINT32(len
, Flash
),
1764 VMSTATE_UINT32(pos
, Flash
),
1765 VMSTATE_UINT8(needed_bytes
, Flash
),
1766 VMSTATE_UINT8(cmd_in_progress
, Flash
),
1767 VMSTATE_UINT32(cur_addr
, Flash
),
1768 VMSTATE_BOOL(write_enable
, Flash
),
1769 VMSTATE_BOOL(reset_enable
, Flash
),
1770 VMSTATE_UINT8(ear
, Flash
),
1771 VMSTATE_BOOL(four_bytes_address_mode
, Flash
),
1772 VMSTATE_UINT32(nonvolatile_cfg
, Flash
),
1773 VMSTATE_UINT32(volatile_cfg
, Flash
),
1774 VMSTATE_UINT32(enh_volatile_cfg
, Flash
),
1775 VMSTATE_BOOL(quad_enable
, Flash
),
1776 VMSTATE_UINT8(spansion_cr1nv
, Flash
),
1777 VMSTATE_UINT8(spansion_cr2nv
, Flash
),
1778 VMSTATE_UINT8(spansion_cr3nv
, Flash
),
1779 VMSTATE_UINT8(spansion_cr4nv
, Flash
),
1780 VMSTATE_END_OF_LIST()
1782 .subsections
= (const VMStateDescription
* []) {
1783 &vmstate_m25p80_data_read_loop
,
1784 &vmstate_m25p80_aai_enable
,
1785 &vmstate_m25p80_write_protect
,
1786 &vmstate_m25p80_block_protect
,
1791 static void m25p80_class_init(ObjectClass
*klass
, void *data
)
1793 DeviceClass
*dc
= DEVICE_CLASS(klass
);
1794 SSIPeripheralClass
*k
= SSI_PERIPHERAL_CLASS(klass
);
1795 M25P80Class
*mc
= M25P80_CLASS(klass
);
1797 k
->realize
= m25p80_realize
;
1798 k
->transfer
= m25p80_transfer8
;
1799 k
->set_cs
= m25p80_cs
;
1800 k
->cs_polarity
= SSI_CS_LOW
;
1801 dc
->vmsd
= &vmstate_m25p80
;
1802 device_class_set_props(dc
, m25p80_properties
);
1803 dc
->reset
= m25p80_reset
;
1807 static const TypeInfo m25p80_info
= {
1808 .name
= TYPE_M25P80
,
1809 .parent
= TYPE_SSI_PERIPHERAL
,
1810 .instance_size
= sizeof(Flash
),
1811 .class_size
= sizeof(M25P80Class
),
1815 static void m25p80_register_types(void)
1819 type_register_static(&m25p80_info
);
1820 for (i
= 0; i
< ARRAY_SIZE(known_devices
); ++i
) {
1822 .name
= known_devices
[i
].part_name
,
1823 .parent
= TYPE_M25P80
,
1824 .class_init
= m25p80_class_init
,
1825 .class_data
= (void *)&known_devices
[i
],
1831 type_init(m25p80_register_types
)