2 * virtual page mapping and translated block handling
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
23 #include <sys/types.h>
27 #include "qemu-common.h"
35 #include "qemu-timer.h"
36 #if defined(CONFIG_USER_ONLY)
39 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
40 #include <sys/param.h>
41 #if __FreeBSD_version >= 700104
42 #define HAVE_KINFO_GETVMMAP
43 #define sigqueue sigqueue_freebsd /* avoid redefinition */
46 #include <machine/profile.h>
56 //#define DEBUG_TB_INVALIDATE
59 //#define DEBUG_UNASSIGNED
61 /* make various TB consistency checks */
62 //#define DEBUG_TB_CHECK
63 //#define DEBUG_TLB_CHECK
65 //#define DEBUG_IOPORT
66 //#define DEBUG_SUBPAGE
68 #if !defined(CONFIG_USER_ONLY)
69 /* TB consistency checks only implemented for usermode emulation. */
73 #define SMC_BITMAP_USE_THRESHOLD 10
75 static TranslationBlock
*tbs
;
76 static int code_gen_max_blocks
;
77 TranslationBlock
*tb_phys_hash
[CODE_GEN_PHYS_HASH_SIZE
];
79 /* any access to the tbs or the page table must use this lock */
80 spinlock_t tb_lock
= SPIN_LOCK_UNLOCKED
;
82 #if defined(__arm__) || defined(__sparc_v9__)
83 /* The prologue must be reachable with a direct jump. ARM and Sparc64
84 have limited branch ranges (possibly also PPC) so place it in a
85 section close to code segment. */
86 #define code_gen_section \
87 __attribute__((__section__(".gen_code"))) \
88 __attribute__((aligned (32)))
90 /* Maximum alignment for Win32 is 16. */
91 #define code_gen_section \
92 __attribute__((aligned (16)))
94 #define code_gen_section \
95 __attribute__((aligned (32)))
98 uint8_t code_gen_prologue
[1024] code_gen_section
;
99 static uint8_t *code_gen_buffer
;
100 static unsigned long code_gen_buffer_size
;
101 /* threshold to flush the translated code buffer */
102 static unsigned long code_gen_buffer_max_size
;
103 static uint8_t *code_gen_ptr
;
105 #if !defined(CONFIG_USER_ONLY)
107 static int in_migration
;
109 RAMList ram_list
= { .blocks
= QLIST_HEAD_INITIALIZER(ram_list
) };
113 /* current CPU in the current thread. It is only valid inside
115 CPUState
*cpu_single_env
;
116 /* 0 = Do not count executed instructions.
117 1 = Precise instruction counting.
118 2 = Adaptive rate instruction counting. */
120 /* Current instruction counter. While executing translated code this may
121 include some instructions that have not yet been executed. */
124 typedef struct PageDesc
{
125 /* list of TBs intersecting this ram page */
126 TranslationBlock
*first_tb
;
127 /* in order to optimize self modifying code, we count the number
128 of lookups we do to a given page to use a bitmap */
129 unsigned int code_write_count
;
130 uint8_t *code_bitmap
;
131 #if defined(CONFIG_USER_ONLY)
136 /* In system mode we want L1_MAP to be based on ram offsets,
137 while in user mode we want it to be based on virtual addresses. */
138 #if !defined(CONFIG_USER_ONLY)
139 #if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
140 # define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS
142 # define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS
145 # define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS
148 /* Size of the L2 (and L3, etc) page tables. */
150 #define L2_SIZE (1 << L2_BITS)
152 /* The bits remaining after N lower levels of page tables. */
153 #define P_L1_BITS_REM \
154 ((TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
155 #define V_L1_BITS_REM \
156 ((L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
158 /* Size of the L1 page table. Avoid silly small sizes. */
159 #if P_L1_BITS_REM < 4
160 #define P_L1_BITS (P_L1_BITS_REM + L2_BITS)
162 #define P_L1_BITS P_L1_BITS_REM
165 #if V_L1_BITS_REM < 4
166 #define V_L1_BITS (V_L1_BITS_REM + L2_BITS)
168 #define V_L1_BITS V_L1_BITS_REM
171 #define P_L1_SIZE ((target_phys_addr_t)1 << P_L1_BITS)
172 #define V_L1_SIZE ((target_ulong)1 << V_L1_BITS)
174 #define P_L1_SHIFT (TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS - P_L1_BITS)
175 #define V_L1_SHIFT (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - V_L1_BITS)
177 unsigned long qemu_real_host_page_size
;
178 unsigned long qemu_host_page_bits
;
179 unsigned long qemu_host_page_size
;
180 unsigned long qemu_host_page_mask
;
182 /* This is a multi-level map on the virtual address space.
183 The bottom level has pointers to PageDesc. */
184 static void *l1_map
[V_L1_SIZE
];
186 #if !defined(CONFIG_USER_ONLY)
187 typedef struct PhysPageDesc
{
188 /* offset in host memory of the page + io_index in the low bits */
189 ram_addr_t phys_offset
;
190 ram_addr_t region_offset
;
193 /* This is a multi-level map on the physical address space.
194 The bottom level has pointers to PhysPageDesc. */
195 static void *l1_phys_map
[P_L1_SIZE
];
197 static void io_mem_init(void);
199 /* io memory support */
200 CPUWriteMemoryFunc
*io_mem_write
[IO_MEM_NB_ENTRIES
][4];
201 CPUReadMemoryFunc
*io_mem_read
[IO_MEM_NB_ENTRIES
][4];
202 void *io_mem_opaque
[IO_MEM_NB_ENTRIES
];
203 static char io_mem_used
[IO_MEM_NB_ENTRIES
];
204 static int io_mem_watch
;
209 static const char *logfilename
= "qemu.log";
211 static const char *logfilename
= "/tmp/qemu.log";
215 static int log_append
= 0;
218 #if !defined(CONFIG_USER_ONLY)
219 static int tlb_flush_count
;
221 static int tb_flush_count
;
222 static int tb_phys_invalidate_count
;
225 static void map_exec(void *addr
, long size
)
228 VirtualProtect(addr
, size
,
229 PAGE_EXECUTE_READWRITE
, &old_protect
);
233 static void map_exec(void *addr
, long size
)
235 unsigned long start
, end
, page_size
;
237 page_size
= getpagesize();
238 start
= (unsigned long)addr
;
239 start
&= ~(page_size
- 1);
241 end
= (unsigned long)addr
+ size
;
242 end
+= page_size
- 1;
243 end
&= ~(page_size
- 1);
245 mprotect((void *)start
, end
- start
,
246 PROT_READ
| PROT_WRITE
| PROT_EXEC
);
250 static void page_init(void)
252 /* NOTE: we can always suppose that qemu_host_page_size >=
256 SYSTEM_INFO system_info
;
258 GetSystemInfo(&system_info
);
259 qemu_real_host_page_size
= system_info
.dwPageSize
;
262 qemu_real_host_page_size
= getpagesize();
264 if (qemu_host_page_size
== 0)
265 qemu_host_page_size
= qemu_real_host_page_size
;
266 if (qemu_host_page_size
< TARGET_PAGE_SIZE
)
267 qemu_host_page_size
= TARGET_PAGE_SIZE
;
268 qemu_host_page_bits
= 0;
269 while ((1 << qemu_host_page_bits
) < qemu_host_page_size
)
270 qemu_host_page_bits
++;
271 qemu_host_page_mask
= ~(qemu_host_page_size
- 1);
273 #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
275 #ifdef HAVE_KINFO_GETVMMAP
276 struct kinfo_vmentry
*freep
;
279 freep
= kinfo_getvmmap(getpid(), &cnt
);
282 for (i
= 0; i
< cnt
; i
++) {
283 unsigned long startaddr
, endaddr
;
285 startaddr
= freep
[i
].kve_start
;
286 endaddr
= freep
[i
].kve_end
;
287 if (h2g_valid(startaddr
)) {
288 startaddr
= h2g(startaddr
) & TARGET_PAGE_MASK
;
290 if (h2g_valid(endaddr
)) {
291 endaddr
= h2g(endaddr
);
292 page_set_flags(startaddr
, endaddr
, PAGE_RESERVED
);
294 #if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
296 page_set_flags(startaddr
, endaddr
, PAGE_RESERVED
);
307 last_brk
= (unsigned long)sbrk(0);
309 f
= fopen("/compat/linux/proc/self/maps", "r");
314 unsigned long startaddr
, endaddr
;
317 n
= fscanf (f
, "%lx-%lx %*[^\n]\n", &startaddr
, &endaddr
);
319 if (n
== 2 && h2g_valid(startaddr
)) {
320 startaddr
= h2g(startaddr
) & TARGET_PAGE_MASK
;
322 if (h2g_valid(endaddr
)) {
323 endaddr
= h2g(endaddr
);
327 page_set_flags(startaddr
, endaddr
, PAGE_RESERVED
);
339 static PageDesc
*page_find_alloc(tb_page_addr_t index
, int alloc
)
345 #if defined(CONFIG_USER_ONLY)
346 /* We can't use qemu_malloc because it may recurse into a locked mutex. */
347 # define ALLOC(P, SIZE) \
349 P = mmap(NULL, SIZE, PROT_READ | PROT_WRITE, \
350 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); \
353 # define ALLOC(P, SIZE) \
354 do { P = qemu_mallocz(SIZE); } while (0)
357 /* Level 1. Always allocated. */
358 lp
= l1_map
+ ((index
>> V_L1_SHIFT
) & (V_L1_SIZE
- 1));
361 for (i
= V_L1_SHIFT
/ L2_BITS
- 1; i
> 0; i
--) {
368 ALLOC(p
, sizeof(void *) * L2_SIZE
);
372 lp
= p
+ ((index
>> (i
* L2_BITS
)) & (L2_SIZE
- 1));
380 ALLOC(pd
, sizeof(PageDesc
) * L2_SIZE
);
386 return pd
+ (index
& (L2_SIZE
- 1));
389 static inline PageDesc
*page_find(tb_page_addr_t index
)
391 return page_find_alloc(index
, 0);
394 #if !defined(CONFIG_USER_ONLY)
395 static PhysPageDesc
*phys_page_find_alloc(target_phys_addr_t index
, int alloc
)
401 /* Level 1. Always allocated. */
402 lp
= l1_phys_map
+ ((index
>> P_L1_SHIFT
) & (P_L1_SIZE
- 1));
405 for (i
= P_L1_SHIFT
/ L2_BITS
- 1; i
> 0; i
--) {
411 *lp
= p
= qemu_mallocz(sizeof(void *) * L2_SIZE
);
413 lp
= p
+ ((index
>> (i
* L2_BITS
)) & (L2_SIZE
- 1));
424 *lp
= pd
= qemu_malloc(sizeof(PhysPageDesc
) * L2_SIZE
);
426 for (i
= 0; i
< L2_SIZE
; i
++) {
427 pd
[i
].phys_offset
= IO_MEM_UNASSIGNED
;
428 pd
[i
].region_offset
= (index
+ i
) << TARGET_PAGE_BITS
;
432 return pd
+ (index
& (L2_SIZE
- 1));
435 static inline PhysPageDesc
*phys_page_find(target_phys_addr_t index
)
437 return phys_page_find_alloc(index
, 0);
440 static void tlb_protect_code(ram_addr_t ram_addr
);
441 static void tlb_unprotect_code_phys(CPUState
*env
, ram_addr_t ram_addr
,
443 #define mmap_lock() do { } while(0)
444 #define mmap_unlock() do { } while(0)
447 #define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
449 #if defined(CONFIG_USER_ONLY)
450 /* Currently it is not recommended to allocate big chunks of data in
451 user mode. It will change when a dedicated libc will be used */
452 #define USE_STATIC_CODE_GEN_BUFFER
455 #ifdef USE_STATIC_CODE_GEN_BUFFER
456 static uint8_t static_code_gen_buffer
[DEFAULT_CODE_GEN_BUFFER_SIZE
]
457 __attribute__((aligned (CODE_GEN_ALIGN
)));
460 static void code_gen_alloc(unsigned long tb_size
)
462 #ifdef USE_STATIC_CODE_GEN_BUFFER
463 code_gen_buffer
= static_code_gen_buffer
;
464 code_gen_buffer_size
= DEFAULT_CODE_GEN_BUFFER_SIZE
;
465 map_exec(code_gen_buffer
, code_gen_buffer_size
);
467 code_gen_buffer_size
= tb_size
;
468 if (code_gen_buffer_size
== 0) {
469 #if defined(CONFIG_USER_ONLY)
470 /* in user mode, phys_ram_size is not meaningful */
471 code_gen_buffer_size
= DEFAULT_CODE_GEN_BUFFER_SIZE
;
473 /* XXX: needs adjustments */
474 code_gen_buffer_size
= (unsigned long)(ram_size
/ 4);
477 if (code_gen_buffer_size
< MIN_CODE_GEN_BUFFER_SIZE
)
478 code_gen_buffer_size
= MIN_CODE_GEN_BUFFER_SIZE
;
479 /* The code gen buffer location may have constraints depending on
480 the host cpu and OS */
481 #if defined(__linux__)
486 flags
= MAP_PRIVATE
| MAP_ANONYMOUS
;
487 #if defined(__x86_64__)
489 /* Cannot map more than that */
490 if (code_gen_buffer_size
> (800 * 1024 * 1024))
491 code_gen_buffer_size
= (800 * 1024 * 1024);
492 #elif defined(__sparc_v9__)
493 // Map the buffer below 2G, so we can use direct calls and branches
495 start
= (void *) 0x60000000UL
;
496 if (code_gen_buffer_size
> (512 * 1024 * 1024))
497 code_gen_buffer_size
= (512 * 1024 * 1024);
498 #elif defined(__arm__)
499 /* Map the buffer below 32M, so we can use direct calls and branches */
501 start
= (void *) 0x01000000UL
;
502 if (code_gen_buffer_size
> 16 * 1024 * 1024)
503 code_gen_buffer_size
= 16 * 1024 * 1024;
504 #elif defined(__s390x__)
505 /* Map the buffer so that we can use direct calls and branches. */
506 /* We have a +- 4GB range on the branches; leave some slop. */
507 if (code_gen_buffer_size
> (3ul * 1024 * 1024 * 1024)) {
508 code_gen_buffer_size
= 3ul * 1024 * 1024 * 1024;
510 start
= (void *)0x90000000UL
;
512 code_gen_buffer
= mmap(start
, code_gen_buffer_size
,
513 PROT_WRITE
| PROT_READ
| PROT_EXEC
,
515 if (code_gen_buffer
== MAP_FAILED
) {
516 fprintf(stderr
, "Could not allocate dynamic translator buffer\n");
520 #elif defined(__FreeBSD__) || defined(__FreeBSD_kernel__) \
521 || defined(__DragonFly__) || defined(__OpenBSD__)
525 flags
= MAP_PRIVATE
| MAP_ANONYMOUS
;
526 #if defined(__x86_64__)
527 /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
528 * 0x40000000 is free */
530 addr
= (void *)0x40000000;
531 /* Cannot map more than that */
532 if (code_gen_buffer_size
> (800 * 1024 * 1024))
533 code_gen_buffer_size
= (800 * 1024 * 1024);
534 #elif defined(__sparc_v9__)
535 // Map the buffer below 2G, so we can use direct calls and branches
537 addr
= (void *) 0x60000000UL
;
538 if (code_gen_buffer_size
> (512 * 1024 * 1024)) {
539 code_gen_buffer_size
= (512 * 1024 * 1024);
542 code_gen_buffer
= mmap(addr
, code_gen_buffer_size
,
543 PROT_WRITE
| PROT_READ
| PROT_EXEC
,
545 if (code_gen_buffer
== MAP_FAILED
) {
546 fprintf(stderr
, "Could not allocate dynamic translator buffer\n");
551 code_gen_buffer
= qemu_malloc(code_gen_buffer_size
);
552 map_exec(code_gen_buffer
, code_gen_buffer_size
);
554 #endif /* !USE_STATIC_CODE_GEN_BUFFER */
555 map_exec(code_gen_prologue
, sizeof(code_gen_prologue
));
556 code_gen_buffer_max_size
= code_gen_buffer_size
-
557 (TCG_MAX_OP_SIZE
* OPC_MAX_SIZE
);
558 code_gen_max_blocks
= code_gen_buffer_size
/ CODE_GEN_AVG_BLOCK_SIZE
;
559 tbs
= qemu_malloc(code_gen_max_blocks
* sizeof(TranslationBlock
));
562 /* Must be called before using the QEMU cpus. 'tb_size' is the size
563 (in bytes) allocated to the translation buffer. Zero means default
565 void cpu_exec_init_all(unsigned long tb_size
)
568 code_gen_alloc(tb_size
);
569 code_gen_ptr
= code_gen_buffer
;
571 #if !defined(CONFIG_USER_ONLY)
574 #if !defined(CONFIG_USER_ONLY) || !defined(CONFIG_USE_GUEST_BASE)
575 /* There's no guest base to take into account, so go ahead and
576 initialize the prologue now. */
577 tcg_prologue_init(&tcg_ctx
);
581 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
583 static int cpu_common_post_load(void *opaque
, int version_id
)
585 CPUState
*env
= opaque
;
587 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
588 version_id is increased. */
589 env
->interrupt_request
&= ~0x01;
595 static const VMStateDescription vmstate_cpu_common
= {
596 .name
= "cpu_common",
598 .minimum_version_id
= 1,
599 .minimum_version_id_old
= 1,
600 .post_load
= cpu_common_post_load
,
601 .fields
= (VMStateField
[]) {
602 VMSTATE_UINT32(halted
, CPUState
),
603 VMSTATE_UINT32(interrupt_request
, CPUState
),
604 VMSTATE_END_OF_LIST()
609 CPUState
*qemu_get_cpu(int cpu
)
611 CPUState
*env
= first_cpu
;
614 if (env
->cpu_index
== cpu
)
622 void cpu_exec_init(CPUState
*env
)
627 #if defined(CONFIG_USER_ONLY)
630 env
->next_cpu
= NULL
;
633 while (*penv
!= NULL
) {
634 penv
= &(*penv
)->next_cpu
;
637 env
->cpu_index
= cpu_index
;
639 QTAILQ_INIT(&env
->breakpoints
);
640 QTAILQ_INIT(&env
->watchpoints
);
641 #ifndef CONFIG_USER_ONLY
642 env
->thread_id
= qemu_get_thread_id();
645 #if defined(CONFIG_USER_ONLY)
648 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
649 vmstate_register(NULL
, cpu_index
, &vmstate_cpu_common
, env
);
650 register_savevm(NULL
, "cpu", cpu_index
, CPU_SAVE_VERSION
,
651 cpu_save
, cpu_load
, env
);
655 /* Allocate a new translation block. Flush the translation buffer if
656 too many translation blocks or too much generated code. */
657 static TranslationBlock
*tb_alloc(target_ulong pc
)
659 TranslationBlock
*tb
;
661 if (nb_tbs
>= code_gen_max_blocks
||
662 (code_gen_ptr
- code_gen_buffer
) >= code_gen_buffer_max_size
)
670 void tb_free(TranslationBlock
*tb
)
672 /* In practice this is mostly used for single use temporary TB
673 Ignore the hard cases and just back up if this TB happens to
674 be the last one generated. */
675 if (nb_tbs
> 0 && tb
== &tbs
[nb_tbs
- 1]) {
676 code_gen_ptr
= tb
->tc_ptr
;
681 static inline void invalidate_page_bitmap(PageDesc
*p
)
683 if (p
->code_bitmap
) {
684 qemu_free(p
->code_bitmap
);
685 p
->code_bitmap
= NULL
;
687 p
->code_write_count
= 0;
690 /* Set to NULL all the 'first_tb' fields in all PageDescs. */
692 static void page_flush_tb_1 (int level
, void **lp
)
701 for (i
= 0; i
< L2_SIZE
; ++i
) {
702 pd
[i
].first_tb
= NULL
;
703 invalidate_page_bitmap(pd
+ i
);
707 for (i
= 0; i
< L2_SIZE
; ++i
) {
708 page_flush_tb_1 (level
- 1, pp
+ i
);
713 static void page_flush_tb(void)
716 for (i
= 0; i
< V_L1_SIZE
; i
++) {
717 page_flush_tb_1(V_L1_SHIFT
/ L2_BITS
- 1, l1_map
+ i
);
721 /* flush all the translation blocks */
722 /* XXX: tb_flush is currently not thread safe */
723 void tb_flush(CPUState
*env1
)
726 #if defined(DEBUG_FLUSH)
727 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
728 (unsigned long)(code_gen_ptr
- code_gen_buffer
),
730 ((unsigned long)(code_gen_ptr
- code_gen_buffer
)) / nb_tbs
: 0);
732 if ((unsigned long)(code_gen_ptr
- code_gen_buffer
) > code_gen_buffer_size
)
733 cpu_abort(env1
, "Internal error: code buffer overflow\n");
737 for(env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
738 memset (env
->tb_jmp_cache
, 0, TB_JMP_CACHE_SIZE
* sizeof (void *));
741 memset (tb_phys_hash
, 0, CODE_GEN_PHYS_HASH_SIZE
* sizeof (void *));
744 code_gen_ptr
= code_gen_buffer
;
745 /* XXX: flush processor icache at this point if cache flush is
750 #ifdef DEBUG_TB_CHECK
752 static void tb_invalidate_check(target_ulong address
)
754 TranslationBlock
*tb
;
756 address
&= TARGET_PAGE_MASK
;
757 for(i
= 0;i
< CODE_GEN_PHYS_HASH_SIZE
; i
++) {
758 for(tb
= tb_phys_hash
[i
]; tb
!= NULL
; tb
= tb
->phys_hash_next
) {
759 if (!(address
+ TARGET_PAGE_SIZE
<= tb
->pc
||
760 address
>= tb
->pc
+ tb
->size
)) {
761 printf("ERROR invalidate: address=" TARGET_FMT_lx
762 " PC=%08lx size=%04x\n",
763 address
, (long)tb
->pc
, tb
->size
);
769 /* verify that all the pages have correct rights for code */
770 static void tb_page_check(void)
772 TranslationBlock
*tb
;
773 int i
, flags1
, flags2
;
775 for(i
= 0;i
< CODE_GEN_PHYS_HASH_SIZE
; i
++) {
776 for(tb
= tb_phys_hash
[i
]; tb
!= NULL
; tb
= tb
->phys_hash_next
) {
777 flags1
= page_get_flags(tb
->pc
);
778 flags2
= page_get_flags(tb
->pc
+ tb
->size
- 1);
779 if ((flags1
& PAGE_WRITE
) || (flags2
& PAGE_WRITE
)) {
780 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
781 (long)tb
->pc
, tb
->size
, flags1
, flags2
);
789 /* invalidate one TB */
790 static inline void tb_remove(TranslationBlock
**ptb
, TranslationBlock
*tb
,
793 TranslationBlock
*tb1
;
797 *ptb
= *(TranslationBlock
**)((char *)tb1
+ next_offset
);
800 ptb
= (TranslationBlock
**)((char *)tb1
+ next_offset
);
804 static inline void tb_page_remove(TranslationBlock
**ptb
, TranslationBlock
*tb
)
806 TranslationBlock
*tb1
;
812 tb1
= (TranslationBlock
*)((long)tb1
& ~3);
814 *ptb
= tb1
->page_next
[n1
];
817 ptb
= &tb1
->page_next
[n1
];
821 static inline void tb_jmp_remove(TranslationBlock
*tb
, int n
)
823 TranslationBlock
*tb1
, **ptb
;
826 ptb
= &tb
->jmp_next
[n
];
829 /* find tb(n) in circular list */
833 tb1
= (TranslationBlock
*)((long)tb1
& ~3);
834 if (n1
== n
&& tb1
== tb
)
837 ptb
= &tb1
->jmp_first
;
839 ptb
= &tb1
->jmp_next
[n1
];
842 /* now we can suppress tb(n) from the list */
843 *ptb
= tb
->jmp_next
[n
];
845 tb
->jmp_next
[n
] = NULL
;
849 /* reset the jump entry 'n' of a TB so that it is not chained to
851 static inline void tb_reset_jump(TranslationBlock
*tb
, int n
)
853 tb_set_jmp_target(tb
, n
, (unsigned long)(tb
->tc_ptr
+ tb
->tb_next_offset
[n
]));
856 void tb_phys_invalidate(TranslationBlock
*tb
, tb_page_addr_t page_addr
)
861 tb_page_addr_t phys_pc
;
862 TranslationBlock
*tb1
, *tb2
;
864 /* remove the TB from the hash list */
865 phys_pc
= tb
->page_addr
[0] + (tb
->pc
& ~TARGET_PAGE_MASK
);
866 h
= tb_phys_hash_func(phys_pc
);
867 tb_remove(&tb_phys_hash
[h
], tb
,
868 offsetof(TranslationBlock
, phys_hash_next
));
870 /* remove the TB from the page list */
871 if (tb
->page_addr
[0] != page_addr
) {
872 p
= page_find(tb
->page_addr
[0] >> TARGET_PAGE_BITS
);
873 tb_page_remove(&p
->first_tb
, tb
);
874 invalidate_page_bitmap(p
);
876 if (tb
->page_addr
[1] != -1 && tb
->page_addr
[1] != page_addr
) {
877 p
= page_find(tb
->page_addr
[1] >> TARGET_PAGE_BITS
);
878 tb_page_remove(&p
->first_tb
, tb
);
879 invalidate_page_bitmap(p
);
882 tb_invalidated_flag
= 1;
884 /* remove the TB from the hash list */
885 h
= tb_jmp_cache_hash_func(tb
->pc
);
886 for(env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
887 if (env
->tb_jmp_cache
[h
] == tb
)
888 env
->tb_jmp_cache
[h
] = NULL
;
891 /* suppress this TB from the two jump lists */
892 tb_jmp_remove(tb
, 0);
893 tb_jmp_remove(tb
, 1);
895 /* suppress any remaining jumps to this TB */
901 tb1
= (TranslationBlock
*)((long)tb1
& ~3);
902 tb2
= tb1
->jmp_next
[n1
];
903 tb_reset_jump(tb1
, n1
);
904 tb1
->jmp_next
[n1
] = NULL
;
907 tb
->jmp_first
= (TranslationBlock
*)((long)tb
| 2); /* fail safe */
909 tb_phys_invalidate_count
++;
912 static inline void set_bits(uint8_t *tab
, int start
, int len
)
918 mask
= 0xff << (start
& 7);
919 if ((start
& ~7) == (end
& ~7)) {
921 mask
&= ~(0xff << (end
& 7));
926 start
= (start
+ 8) & ~7;
928 while (start
< end1
) {
933 mask
= ~(0xff << (end
& 7));
939 static void build_page_bitmap(PageDesc
*p
)
941 int n
, tb_start
, tb_end
;
942 TranslationBlock
*tb
;
944 p
->code_bitmap
= qemu_mallocz(TARGET_PAGE_SIZE
/ 8);
949 tb
= (TranslationBlock
*)((long)tb
& ~3);
950 /* NOTE: this is subtle as a TB may span two physical pages */
952 /* NOTE: tb_end may be after the end of the page, but
953 it is not a problem */
954 tb_start
= tb
->pc
& ~TARGET_PAGE_MASK
;
955 tb_end
= tb_start
+ tb
->size
;
956 if (tb_end
> TARGET_PAGE_SIZE
)
957 tb_end
= TARGET_PAGE_SIZE
;
960 tb_end
= ((tb
->pc
+ tb
->size
) & ~TARGET_PAGE_MASK
);
962 set_bits(p
->code_bitmap
, tb_start
, tb_end
- tb_start
);
963 tb
= tb
->page_next
[n
];
967 TranslationBlock
*tb_gen_code(CPUState
*env
,
968 target_ulong pc
, target_ulong cs_base
,
969 int flags
, int cflags
)
971 TranslationBlock
*tb
;
973 tb_page_addr_t phys_pc
, phys_page2
;
974 target_ulong virt_page2
;
977 phys_pc
= get_page_addr_code(env
, pc
);
980 /* flush must be done */
982 /* cannot fail at this point */
984 /* Don't forget to invalidate previous TB info. */
985 tb_invalidated_flag
= 1;
987 tc_ptr
= code_gen_ptr
;
989 tb
->cs_base
= cs_base
;
992 cpu_gen_code(env
, tb
, &code_gen_size
);
993 code_gen_ptr
= (void *)(((unsigned long)code_gen_ptr
+ code_gen_size
+ CODE_GEN_ALIGN
- 1) & ~(CODE_GEN_ALIGN
- 1));
995 /* check next page if needed */
996 virt_page2
= (pc
+ tb
->size
- 1) & TARGET_PAGE_MASK
;
998 if ((pc
& TARGET_PAGE_MASK
) != virt_page2
) {
999 phys_page2
= get_page_addr_code(env
, virt_page2
);
1001 tb_link_page(tb
, phys_pc
, phys_page2
);
1005 /* invalidate all TBs which intersect with the target physical page
1006 starting in range [start;end[. NOTE: start and end must refer to
1007 the same physical page. 'is_cpu_write_access' should be true if called
1008 from a real cpu write access: the virtual CPU will exit the current
1009 TB if code is modified inside this TB. */
1010 void tb_invalidate_phys_page_range(tb_page_addr_t start
, tb_page_addr_t end
,
1011 int is_cpu_write_access
)
1013 TranslationBlock
*tb
, *tb_next
, *saved_tb
;
1014 CPUState
*env
= cpu_single_env
;
1015 tb_page_addr_t tb_start
, tb_end
;
1018 #ifdef TARGET_HAS_PRECISE_SMC
1019 int current_tb_not_found
= is_cpu_write_access
;
1020 TranslationBlock
*current_tb
= NULL
;
1021 int current_tb_modified
= 0;
1022 target_ulong current_pc
= 0;
1023 target_ulong current_cs_base
= 0;
1024 int current_flags
= 0;
1025 #endif /* TARGET_HAS_PRECISE_SMC */
1027 p
= page_find(start
>> TARGET_PAGE_BITS
);
1030 if (!p
->code_bitmap
&&
1031 ++p
->code_write_count
>= SMC_BITMAP_USE_THRESHOLD
&&
1032 is_cpu_write_access
) {
1033 /* build code bitmap */
1034 build_page_bitmap(p
);
1037 /* we remove all the TBs in the range [start, end[ */
1038 /* XXX: see if in some cases it could be faster to invalidate all the code */
1040 while (tb
!= NULL
) {
1042 tb
= (TranslationBlock
*)((long)tb
& ~3);
1043 tb_next
= tb
->page_next
[n
];
1044 /* NOTE: this is subtle as a TB may span two physical pages */
1046 /* NOTE: tb_end may be after the end of the page, but
1047 it is not a problem */
1048 tb_start
= tb
->page_addr
[0] + (tb
->pc
& ~TARGET_PAGE_MASK
);
1049 tb_end
= tb_start
+ tb
->size
;
1051 tb_start
= tb
->page_addr
[1];
1052 tb_end
= tb_start
+ ((tb
->pc
+ tb
->size
) & ~TARGET_PAGE_MASK
);
1054 if (!(tb_end
<= start
|| tb_start
>= end
)) {
1055 #ifdef TARGET_HAS_PRECISE_SMC
1056 if (current_tb_not_found
) {
1057 current_tb_not_found
= 0;
1059 if (env
->mem_io_pc
) {
1060 /* now we have a real cpu fault */
1061 current_tb
= tb_find_pc(env
->mem_io_pc
);
1064 if (current_tb
== tb
&&
1065 (current_tb
->cflags
& CF_COUNT_MASK
) != 1) {
1066 /* If we are modifying the current TB, we must stop
1067 its execution. We could be more precise by checking
1068 that the modification is after the current PC, but it
1069 would require a specialized function to partially
1070 restore the CPU state */
1072 current_tb_modified
= 1;
1073 cpu_restore_state(current_tb
, env
, env
->mem_io_pc
);
1074 cpu_get_tb_cpu_state(env
, ¤t_pc
, ¤t_cs_base
,
1077 #endif /* TARGET_HAS_PRECISE_SMC */
1078 /* we need to do that to handle the case where a signal
1079 occurs while doing tb_phys_invalidate() */
1082 saved_tb
= env
->current_tb
;
1083 env
->current_tb
= NULL
;
1085 tb_phys_invalidate(tb
, -1);
1087 env
->current_tb
= saved_tb
;
1088 if (env
->interrupt_request
&& env
->current_tb
)
1089 cpu_interrupt(env
, env
->interrupt_request
);
1094 #if !defined(CONFIG_USER_ONLY)
1095 /* if no code remaining, no need to continue to use slow writes */
1097 invalidate_page_bitmap(p
);
1098 if (is_cpu_write_access
) {
1099 tlb_unprotect_code_phys(env
, start
, env
->mem_io_vaddr
);
1103 #ifdef TARGET_HAS_PRECISE_SMC
1104 if (current_tb_modified
) {
1105 /* we generate a block containing just the instruction
1106 modifying the memory. It will ensure that it cannot modify
1108 env
->current_tb
= NULL
;
1109 tb_gen_code(env
, current_pc
, current_cs_base
, current_flags
, 1);
1110 cpu_resume_from_signal(env
, NULL
);
1115 /* len must be <= 8 and start must be a multiple of len */
1116 static inline void tb_invalidate_phys_page_fast(tb_page_addr_t start
, int len
)
1122 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1123 cpu_single_env
->mem_io_vaddr
, len
,
1124 cpu_single_env
->eip
,
1125 cpu_single_env
->eip
+ (long)cpu_single_env
->segs
[R_CS
].base
);
1128 p
= page_find(start
>> TARGET_PAGE_BITS
);
1131 if (p
->code_bitmap
) {
1132 offset
= start
& ~TARGET_PAGE_MASK
;
1133 b
= p
->code_bitmap
[offset
>> 3] >> (offset
& 7);
1134 if (b
& ((1 << len
) - 1))
1138 tb_invalidate_phys_page_range(start
, start
+ len
, 1);
1142 #if !defined(CONFIG_SOFTMMU)
1143 static void tb_invalidate_phys_page(tb_page_addr_t addr
,
1144 unsigned long pc
, void *puc
)
1146 TranslationBlock
*tb
;
1149 #ifdef TARGET_HAS_PRECISE_SMC
1150 TranslationBlock
*current_tb
= NULL
;
1151 CPUState
*env
= cpu_single_env
;
1152 int current_tb_modified
= 0;
1153 target_ulong current_pc
= 0;
1154 target_ulong current_cs_base
= 0;
1155 int current_flags
= 0;
1158 addr
&= TARGET_PAGE_MASK
;
1159 p
= page_find(addr
>> TARGET_PAGE_BITS
);
1163 #ifdef TARGET_HAS_PRECISE_SMC
1164 if (tb
&& pc
!= 0) {
1165 current_tb
= tb_find_pc(pc
);
1168 while (tb
!= NULL
) {
1170 tb
= (TranslationBlock
*)((long)tb
& ~3);
1171 #ifdef TARGET_HAS_PRECISE_SMC
1172 if (current_tb
== tb
&&
1173 (current_tb
->cflags
& CF_COUNT_MASK
) != 1) {
1174 /* If we are modifying the current TB, we must stop
1175 its execution. We could be more precise by checking
1176 that the modification is after the current PC, but it
1177 would require a specialized function to partially
1178 restore the CPU state */
1180 current_tb_modified
= 1;
1181 cpu_restore_state(current_tb
, env
, pc
);
1182 cpu_get_tb_cpu_state(env
, ¤t_pc
, ¤t_cs_base
,
1185 #endif /* TARGET_HAS_PRECISE_SMC */
1186 tb_phys_invalidate(tb
, addr
);
1187 tb
= tb
->page_next
[n
];
1190 #ifdef TARGET_HAS_PRECISE_SMC
1191 if (current_tb_modified
) {
1192 /* we generate a block containing just the instruction
1193 modifying the memory. It will ensure that it cannot modify
1195 env
->current_tb
= NULL
;
1196 tb_gen_code(env
, current_pc
, current_cs_base
, current_flags
, 1);
1197 cpu_resume_from_signal(env
, puc
);
1203 /* add the tb in the target page and protect it if necessary */
1204 static inline void tb_alloc_page(TranslationBlock
*tb
,
1205 unsigned int n
, tb_page_addr_t page_addr
)
1208 TranslationBlock
*last_first_tb
;
1210 tb
->page_addr
[n
] = page_addr
;
1211 p
= page_find_alloc(page_addr
>> TARGET_PAGE_BITS
, 1);
1212 tb
->page_next
[n
] = p
->first_tb
;
1213 last_first_tb
= p
->first_tb
;
1214 p
->first_tb
= (TranslationBlock
*)((long)tb
| n
);
1215 invalidate_page_bitmap(p
);
1217 #if defined(TARGET_HAS_SMC) || 1
1219 #if defined(CONFIG_USER_ONLY)
1220 if (p
->flags
& PAGE_WRITE
) {
1225 /* force the host page as non writable (writes will have a
1226 page fault + mprotect overhead) */
1227 page_addr
&= qemu_host_page_mask
;
1229 for(addr
= page_addr
; addr
< page_addr
+ qemu_host_page_size
;
1230 addr
+= TARGET_PAGE_SIZE
) {
1232 p2
= page_find (addr
>> TARGET_PAGE_BITS
);
1236 p2
->flags
&= ~PAGE_WRITE
;
1238 mprotect(g2h(page_addr
), qemu_host_page_size
,
1239 (prot
& PAGE_BITS
) & ~PAGE_WRITE
);
1240 #ifdef DEBUG_TB_INVALIDATE
1241 printf("protecting code page: 0x" TARGET_FMT_lx
"\n",
1246 /* if some code is already present, then the pages are already
1247 protected. So we handle the case where only the first TB is
1248 allocated in a physical page */
1249 if (!last_first_tb
) {
1250 tlb_protect_code(page_addr
);
1254 #endif /* TARGET_HAS_SMC */
1257 /* add a new TB and link it to the physical page tables. phys_page2 is
1258 (-1) to indicate that only one page contains the TB. */
1259 void tb_link_page(TranslationBlock
*tb
,
1260 tb_page_addr_t phys_pc
, tb_page_addr_t phys_page2
)
1263 TranslationBlock
**ptb
;
1265 /* Grab the mmap lock to stop another thread invalidating this TB
1266 before we are done. */
1268 /* add in the physical hash table */
1269 h
= tb_phys_hash_func(phys_pc
);
1270 ptb
= &tb_phys_hash
[h
];
1271 tb
->phys_hash_next
= *ptb
;
1274 /* add in the page list */
1275 tb_alloc_page(tb
, 0, phys_pc
& TARGET_PAGE_MASK
);
1276 if (phys_page2
!= -1)
1277 tb_alloc_page(tb
, 1, phys_page2
);
1279 tb
->page_addr
[1] = -1;
1281 tb
->jmp_first
= (TranslationBlock
*)((long)tb
| 2);
1282 tb
->jmp_next
[0] = NULL
;
1283 tb
->jmp_next
[1] = NULL
;
1285 /* init original jump addresses */
1286 if (tb
->tb_next_offset
[0] != 0xffff)
1287 tb_reset_jump(tb
, 0);
1288 if (tb
->tb_next_offset
[1] != 0xffff)
1289 tb_reset_jump(tb
, 1);
1291 #ifdef DEBUG_TB_CHECK
1297 /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1298 tb[1].tc_ptr. Return NULL if not found */
1299 TranslationBlock
*tb_find_pc(unsigned long tc_ptr
)
1301 int m_min
, m_max
, m
;
1303 TranslationBlock
*tb
;
1307 if (tc_ptr
< (unsigned long)code_gen_buffer
||
1308 tc_ptr
>= (unsigned long)code_gen_ptr
)
1310 /* binary search (cf Knuth) */
1313 while (m_min
<= m_max
) {
1314 m
= (m_min
+ m_max
) >> 1;
1316 v
= (unsigned long)tb
->tc_ptr
;
1319 else if (tc_ptr
< v
) {
1328 static void tb_reset_jump_recursive(TranslationBlock
*tb
);
1330 static inline void tb_reset_jump_recursive2(TranslationBlock
*tb
, int n
)
1332 TranslationBlock
*tb1
, *tb_next
, **ptb
;
1335 tb1
= tb
->jmp_next
[n
];
1337 /* find head of list */
1340 tb1
= (TranslationBlock
*)((long)tb1
& ~3);
1343 tb1
= tb1
->jmp_next
[n1
];
1345 /* we are now sure now that tb jumps to tb1 */
1348 /* remove tb from the jmp_first list */
1349 ptb
= &tb_next
->jmp_first
;
1353 tb1
= (TranslationBlock
*)((long)tb1
& ~3);
1354 if (n1
== n
&& tb1
== tb
)
1356 ptb
= &tb1
->jmp_next
[n1
];
1358 *ptb
= tb
->jmp_next
[n
];
1359 tb
->jmp_next
[n
] = NULL
;
1361 /* suppress the jump to next tb in generated code */
1362 tb_reset_jump(tb
, n
);
1364 /* suppress jumps in the tb on which we could have jumped */
1365 tb_reset_jump_recursive(tb_next
);
1369 static void tb_reset_jump_recursive(TranslationBlock
*tb
)
1371 tb_reset_jump_recursive2(tb
, 0);
1372 tb_reset_jump_recursive2(tb
, 1);
1375 #if defined(TARGET_HAS_ICE)
1376 #if defined(CONFIG_USER_ONLY)
1377 static void breakpoint_invalidate(CPUState
*env
, target_ulong pc
)
1379 tb_invalidate_phys_page_range(pc
, pc
+ 1, 0);
1382 static void breakpoint_invalidate(CPUState
*env
, target_ulong pc
)
1384 target_phys_addr_t addr
;
1386 ram_addr_t ram_addr
;
1389 addr
= cpu_get_phys_page_debug(env
, pc
);
1390 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
1392 pd
= IO_MEM_UNASSIGNED
;
1394 pd
= p
->phys_offset
;
1396 ram_addr
= (pd
& TARGET_PAGE_MASK
) | (pc
& ~TARGET_PAGE_MASK
);
1397 tb_invalidate_phys_page_range(ram_addr
, ram_addr
+ 1, 0);
1400 #endif /* TARGET_HAS_ICE */
1402 #if defined(CONFIG_USER_ONLY)
1403 void cpu_watchpoint_remove_all(CPUState
*env
, int mask
)
1408 int cpu_watchpoint_insert(CPUState
*env
, target_ulong addr
, target_ulong len
,
1409 int flags
, CPUWatchpoint
**watchpoint
)
1414 /* Add a watchpoint. */
1415 int cpu_watchpoint_insert(CPUState
*env
, target_ulong addr
, target_ulong len
,
1416 int flags
, CPUWatchpoint
**watchpoint
)
1418 target_ulong len_mask
= ~(len
- 1);
1421 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
1422 if ((len
!= 1 && len
!= 2 && len
!= 4 && len
!= 8) || (addr
& ~len_mask
)) {
1423 fprintf(stderr
, "qemu: tried to set invalid watchpoint at "
1424 TARGET_FMT_lx
", len=" TARGET_FMT_lu
"\n", addr
, len
);
1427 wp
= qemu_malloc(sizeof(*wp
));
1430 wp
->len_mask
= len_mask
;
1433 /* keep all GDB-injected watchpoints in front */
1435 QTAILQ_INSERT_HEAD(&env
->watchpoints
, wp
, entry
);
1437 QTAILQ_INSERT_TAIL(&env
->watchpoints
, wp
, entry
);
1439 tlb_flush_page(env
, addr
);
1446 /* Remove a specific watchpoint. */
1447 int cpu_watchpoint_remove(CPUState
*env
, target_ulong addr
, target_ulong len
,
1450 target_ulong len_mask
= ~(len
- 1);
1453 QTAILQ_FOREACH(wp
, &env
->watchpoints
, entry
) {
1454 if (addr
== wp
->vaddr
&& len_mask
== wp
->len_mask
1455 && flags
== (wp
->flags
& ~BP_WATCHPOINT_HIT
)) {
1456 cpu_watchpoint_remove_by_ref(env
, wp
);
1463 /* Remove a specific watchpoint by reference. */
1464 void cpu_watchpoint_remove_by_ref(CPUState
*env
, CPUWatchpoint
*watchpoint
)
1466 QTAILQ_REMOVE(&env
->watchpoints
, watchpoint
, entry
);
1468 tlb_flush_page(env
, watchpoint
->vaddr
);
1470 qemu_free(watchpoint
);
1473 /* Remove all matching watchpoints. */
1474 void cpu_watchpoint_remove_all(CPUState
*env
, int mask
)
1476 CPUWatchpoint
*wp
, *next
;
1478 QTAILQ_FOREACH_SAFE(wp
, &env
->watchpoints
, entry
, next
) {
1479 if (wp
->flags
& mask
)
1480 cpu_watchpoint_remove_by_ref(env
, wp
);
1485 /* Add a breakpoint. */
1486 int cpu_breakpoint_insert(CPUState
*env
, target_ulong pc
, int flags
,
1487 CPUBreakpoint
**breakpoint
)
1489 #if defined(TARGET_HAS_ICE)
1492 bp
= qemu_malloc(sizeof(*bp
));
1497 /* keep all GDB-injected breakpoints in front */
1499 QTAILQ_INSERT_HEAD(&env
->breakpoints
, bp
, entry
);
1501 QTAILQ_INSERT_TAIL(&env
->breakpoints
, bp
, entry
);
1503 breakpoint_invalidate(env
, pc
);
1513 /* Remove a specific breakpoint. */
1514 int cpu_breakpoint_remove(CPUState
*env
, target_ulong pc
, int flags
)
1516 #if defined(TARGET_HAS_ICE)
1519 QTAILQ_FOREACH(bp
, &env
->breakpoints
, entry
) {
1520 if (bp
->pc
== pc
&& bp
->flags
== flags
) {
1521 cpu_breakpoint_remove_by_ref(env
, bp
);
1531 /* Remove a specific breakpoint by reference. */
1532 void cpu_breakpoint_remove_by_ref(CPUState
*env
, CPUBreakpoint
*breakpoint
)
1534 #if defined(TARGET_HAS_ICE)
1535 QTAILQ_REMOVE(&env
->breakpoints
, breakpoint
, entry
);
1537 breakpoint_invalidate(env
, breakpoint
->pc
);
1539 qemu_free(breakpoint
);
1543 /* Remove all matching breakpoints. */
1544 void cpu_breakpoint_remove_all(CPUState
*env
, int mask
)
1546 #if defined(TARGET_HAS_ICE)
1547 CPUBreakpoint
*bp
, *next
;
1549 QTAILQ_FOREACH_SAFE(bp
, &env
->breakpoints
, entry
, next
) {
1550 if (bp
->flags
& mask
)
1551 cpu_breakpoint_remove_by_ref(env
, bp
);
1556 /* enable or disable single step mode. EXCP_DEBUG is returned by the
1557 CPU loop after each instruction */
1558 void cpu_single_step(CPUState
*env
, int enabled
)
1560 #if defined(TARGET_HAS_ICE)
1561 if (env
->singlestep_enabled
!= enabled
) {
1562 env
->singlestep_enabled
= enabled
;
1564 kvm_update_guest_debug(env
, 0);
1566 /* must flush all the translated code to avoid inconsistencies */
1567 /* XXX: only flush what is necessary */
1574 /* enable or disable low levels log */
1575 void cpu_set_log(int log_flags
)
1577 loglevel
= log_flags
;
1578 if (loglevel
&& !logfile
) {
1579 logfile
= fopen(logfilename
, log_append
? "a" : "w");
1581 perror(logfilename
);
1584 #if !defined(CONFIG_SOFTMMU)
1585 /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
1587 static char logfile_buf
[4096];
1588 setvbuf(logfile
, logfile_buf
, _IOLBF
, sizeof(logfile_buf
));
1590 #elif !defined(_WIN32)
1591 /* Win32 doesn't support line-buffering and requires size >= 2 */
1592 setvbuf(logfile
, NULL
, _IOLBF
, 0);
1596 if (!loglevel
&& logfile
) {
1602 void cpu_set_log_filename(const char *filename
)
1604 logfilename
= strdup(filename
);
1609 cpu_set_log(loglevel
);
1612 static void cpu_unlink_tb(CPUState
*env
)
1614 /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
1615 problem and hope the cpu will stop of its own accord. For userspace
1616 emulation this often isn't actually as bad as it sounds. Often
1617 signals are used primarily to interrupt blocking syscalls. */
1618 TranslationBlock
*tb
;
1619 static spinlock_t interrupt_lock
= SPIN_LOCK_UNLOCKED
;
1621 spin_lock(&interrupt_lock
);
1622 tb
= env
->current_tb
;
1623 /* if the cpu is currently executing code, we must unlink it and
1624 all the potentially executing TB */
1626 env
->current_tb
= NULL
;
1627 tb_reset_jump_recursive(tb
);
1629 spin_unlock(&interrupt_lock
);
1632 /* mask must never be zero, except for A20 change call */
1633 void cpu_interrupt(CPUState
*env
, int mask
)
1637 old_mask
= env
->interrupt_request
;
1638 env
->interrupt_request
|= mask
;
1640 #ifndef CONFIG_USER_ONLY
1642 * If called from iothread context, wake the target cpu in
1645 if (!qemu_cpu_is_self(env
)) {
1652 env
->icount_decr
.u16
.high
= 0xffff;
1653 #ifndef CONFIG_USER_ONLY
1655 && (mask
& ~old_mask
) != 0) {
1656 cpu_abort(env
, "Raised interrupt while not in I/O function");
1664 void cpu_reset_interrupt(CPUState
*env
, int mask
)
1666 env
->interrupt_request
&= ~mask
;
1669 void cpu_exit(CPUState
*env
)
1671 env
->exit_request
= 1;
1675 const CPULogItem cpu_log_items
[] = {
1676 { CPU_LOG_TB_OUT_ASM
, "out_asm",
1677 "show generated host assembly code for each compiled TB" },
1678 { CPU_LOG_TB_IN_ASM
, "in_asm",
1679 "show target assembly code for each compiled TB" },
1680 { CPU_LOG_TB_OP
, "op",
1681 "show micro ops for each compiled TB" },
1682 { CPU_LOG_TB_OP_OPT
, "op_opt",
1685 "before eflags optimization and "
1687 "after liveness analysis" },
1688 { CPU_LOG_INT
, "int",
1689 "show interrupts/exceptions in short format" },
1690 { CPU_LOG_EXEC
, "exec",
1691 "show trace before each executed TB (lots of logs)" },
1692 { CPU_LOG_TB_CPU
, "cpu",
1693 "show CPU state before block translation" },
1695 { CPU_LOG_PCALL
, "pcall",
1696 "show protected mode far calls/returns/exceptions" },
1697 { CPU_LOG_RESET
, "cpu_reset",
1698 "show CPU state before CPU resets" },
1701 { CPU_LOG_IOPORT
, "ioport",
1702 "show all i/o ports accesses" },
1707 #ifndef CONFIG_USER_ONLY
1708 static QLIST_HEAD(memory_client_list
, CPUPhysMemoryClient
) memory_client_list
1709 = QLIST_HEAD_INITIALIZER(memory_client_list
);
1711 static void cpu_notify_set_memory(target_phys_addr_t start_addr
,
1713 ram_addr_t phys_offset
)
1715 CPUPhysMemoryClient
*client
;
1716 QLIST_FOREACH(client
, &memory_client_list
, list
) {
1717 client
->set_memory(client
, start_addr
, size
, phys_offset
);
1721 static int cpu_notify_sync_dirty_bitmap(target_phys_addr_t start
,
1722 target_phys_addr_t end
)
1724 CPUPhysMemoryClient
*client
;
1725 QLIST_FOREACH(client
, &memory_client_list
, list
) {
1726 int r
= client
->sync_dirty_bitmap(client
, start
, end
);
1733 static int cpu_notify_migration_log(int enable
)
1735 CPUPhysMemoryClient
*client
;
1736 QLIST_FOREACH(client
, &memory_client_list
, list
) {
1737 int r
= client
->migration_log(client
, enable
);
1744 static void phys_page_for_each_1(CPUPhysMemoryClient
*client
,
1745 int level
, void **lp
)
1753 PhysPageDesc
*pd
= *lp
;
1754 for (i
= 0; i
< L2_SIZE
; ++i
) {
1755 if (pd
[i
].phys_offset
!= IO_MEM_UNASSIGNED
) {
1756 client
->set_memory(client
, pd
[i
].region_offset
,
1757 TARGET_PAGE_SIZE
, pd
[i
].phys_offset
);
1762 for (i
= 0; i
< L2_SIZE
; ++i
) {
1763 phys_page_for_each_1(client
, level
- 1, pp
+ i
);
1768 static void phys_page_for_each(CPUPhysMemoryClient
*client
)
1771 for (i
= 0; i
< P_L1_SIZE
; ++i
) {
1772 phys_page_for_each_1(client
, P_L1_SHIFT
/ L2_BITS
- 1,
1777 void cpu_register_phys_memory_client(CPUPhysMemoryClient
*client
)
1779 QLIST_INSERT_HEAD(&memory_client_list
, client
, list
);
1780 phys_page_for_each(client
);
1783 void cpu_unregister_phys_memory_client(CPUPhysMemoryClient
*client
)
1785 QLIST_REMOVE(client
, list
);
1789 static int cmp1(const char *s1
, int n
, const char *s2
)
1791 if (strlen(s2
) != n
)
1793 return memcmp(s1
, s2
, n
) == 0;
1796 /* takes a comma separated list of log masks. Return 0 if error. */
1797 int cpu_str_to_log_mask(const char *str
)
1799 const CPULogItem
*item
;
1806 p1
= strchr(p
, ',');
1809 if(cmp1(p
,p1
-p
,"all")) {
1810 for(item
= cpu_log_items
; item
->mask
!= 0; item
++) {
1814 for(item
= cpu_log_items
; item
->mask
!= 0; item
++) {
1815 if (cmp1(p
, p1
- p
, item
->name
))
1829 void cpu_abort(CPUState
*env
, const char *fmt
, ...)
1836 fprintf(stderr
, "qemu: fatal: ");
1837 vfprintf(stderr
, fmt
, ap
);
1838 fprintf(stderr
, "\n");
1840 cpu_dump_state(env
, stderr
, fprintf
, X86_DUMP_FPU
| X86_DUMP_CCOP
);
1842 cpu_dump_state(env
, stderr
, fprintf
, 0);
1844 if (qemu_log_enabled()) {
1845 qemu_log("qemu: fatal: ");
1846 qemu_log_vprintf(fmt
, ap2
);
1849 log_cpu_state(env
, X86_DUMP_FPU
| X86_DUMP_CCOP
);
1851 log_cpu_state(env
, 0);
1858 #if defined(CONFIG_USER_ONLY)
1860 struct sigaction act
;
1861 sigfillset(&act
.sa_mask
);
1862 act
.sa_handler
= SIG_DFL
;
1863 sigaction(SIGABRT
, &act
, NULL
);
1869 CPUState
*cpu_copy(CPUState
*env
)
1871 CPUState
*new_env
= cpu_init(env
->cpu_model_str
);
1872 CPUState
*next_cpu
= new_env
->next_cpu
;
1873 int cpu_index
= new_env
->cpu_index
;
1874 #if defined(TARGET_HAS_ICE)
1879 memcpy(new_env
, env
, sizeof(CPUState
));
1881 /* Preserve chaining and index. */
1882 new_env
->next_cpu
= next_cpu
;
1883 new_env
->cpu_index
= cpu_index
;
1885 /* Clone all break/watchpoints.
1886 Note: Once we support ptrace with hw-debug register access, make sure
1887 BP_CPU break/watchpoints are handled correctly on clone. */
1888 QTAILQ_INIT(&env
->breakpoints
);
1889 QTAILQ_INIT(&env
->watchpoints
);
1890 #if defined(TARGET_HAS_ICE)
1891 QTAILQ_FOREACH(bp
, &env
->breakpoints
, entry
) {
1892 cpu_breakpoint_insert(new_env
, bp
->pc
, bp
->flags
, NULL
);
1894 QTAILQ_FOREACH(wp
, &env
->watchpoints
, entry
) {
1895 cpu_watchpoint_insert(new_env
, wp
->vaddr
, (~wp
->len_mask
) + 1,
1903 #if !defined(CONFIG_USER_ONLY)
1905 static inline void tlb_flush_jmp_cache(CPUState
*env
, target_ulong addr
)
1909 /* Discard jump cache entries for any tb which might potentially
1910 overlap the flushed page. */
1911 i
= tb_jmp_cache_hash_page(addr
- TARGET_PAGE_SIZE
);
1912 memset (&env
->tb_jmp_cache
[i
], 0,
1913 TB_JMP_PAGE_SIZE
* sizeof(TranslationBlock
*));
1915 i
= tb_jmp_cache_hash_page(addr
);
1916 memset (&env
->tb_jmp_cache
[i
], 0,
1917 TB_JMP_PAGE_SIZE
* sizeof(TranslationBlock
*));
1920 static CPUTLBEntry s_cputlb_empty_entry
= {
1927 /* NOTE: if flush_global is true, also flush global entries (not
1929 void tlb_flush(CPUState
*env
, int flush_global
)
1933 #if defined(DEBUG_TLB)
1934 printf("tlb_flush:\n");
1936 /* must reset current TB so that interrupts cannot modify the
1937 links while we are modifying them */
1938 env
->current_tb
= NULL
;
1940 for(i
= 0; i
< CPU_TLB_SIZE
; i
++) {
1942 for (mmu_idx
= 0; mmu_idx
< NB_MMU_MODES
; mmu_idx
++) {
1943 env
->tlb_table
[mmu_idx
][i
] = s_cputlb_empty_entry
;
1947 memset (env
->tb_jmp_cache
, 0, TB_JMP_CACHE_SIZE
* sizeof (void *));
1949 env
->tlb_flush_addr
= -1;
1950 env
->tlb_flush_mask
= 0;
1954 static inline void tlb_flush_entry(CPUTLBEntry
*tlb_entry
, target_ulong addr
)
1956 if (addr
== (tlb_entry
->addr_read
&
1957 (TARGET_PAGE_MASK
| TLB_INVALID_MASK
)) ||
1958 addr
== (tlb_entry
->addr_write
&
1959 (TARGET_PAGE_MASK
| TLB_INVALID_MASK
)) ||
1960 addr
== (tlb_entry
->addr_code
&
1961 (TARGET_PAGE_MASK
| TLB_INVALID_MASK
))) {
1962 *tlb_entry
= s_cputlb_empty_entry
;
1966 void tlb_flush_page(CPUState
*env
, target_ulong addr
)
1971 #if defined(DEBUG_TLB)
1972 printf("tlb_flush_page: " TARGET_FMT_lx
"\n", addr
);
1974 /* Check if we need to flush due to large pages. */
1975 if ((addr
& env
->tlb_flush_mask
) == env
->tlb_flush_addr
) {
1976 #if defined(DEBUG_TLB)
1977 printf("tlb_flush_page: forced full flush ("
1978 TARGET_FMT_lx
"/" TARGET_FMT_lx
")\n",
1979 env
->tlb_flush_addr
, env
->tlb_flush_mask
);
1984 /* must reset current TB so that interrupts cannot modify the
1985 links while we are modifying them */
1986 env
->current_tb
= NULL
;
1988 addr
&= TARGET_PAGE_MASK
;
1989 i
= (addr
>> TARGET_PAGE_BITS
) & (CPU_TLB_SIZE
- 1);
1990 for (mmu_idx
= 0; mmu_idx
< NB_MMU_MODES
; mmu_idx
++)
1991 tlb_flush_entry(&env
->tlb_table
[mmu_idx
][i
], addr
);
1993 tlb_flush_jmp_cache(env
, addr
);
1996 /* update the TLBs so that writes to code in the virtual page 'addr'
1998 static void tlb_protect_code(ram_addr_t ram_addr
)
2000 cpu_physical_memory_reset_dirty(ram_addr
,
2001 ram_addr
+ TARGET_PAGE_SIZE
,
2005 /* update the TLB so that writes in physical page 'phys_addr' are no longer
2006 tested for self modifying code */
2007 static void tlb_unprotect_code_phys(CPUState
*env
, ram_addr_t ram_addr
,
2010 cpu_physical_memory_set_dirty_flags(ram_addr
, CODE_DIRTY_FLAG
);
2013 static inline void tlb_reset_dirty_range(CPUTLBEntry
*tlb_entry
,
2014 unsigned long start
, unsigned long length
)
2017 if ((tlb_entry
->addr_write
& ~TARGET_PAGE_MASK
) == IO_MEM_RAM
) {
2018 addr
= (tlb_entry
->addr_write
& TARGET_PAGE_MASK
) + tlb_entry
->addend
;
2019 if ((addr
- start
) < length
) {
2020 tlb_entry
->addr_write
= (tlb_entry
->addr_write
& TARGET_PAGE_MASK
) | TLB_NOTDIRTY
;
2025 /* Note: start and end must be within the same ram block. */
2026 void cpu_physical_memory_reset_dirty(ram_addr_t start
, ram_addr_t end
,
2030 unsigned long length
, start1
;
2033 start
&= TARGET_PAGE_MASK
;
2034 end
= TARGET_PAGE_ALIGN(end
);
2036 length
= end
- start
;
2039 cpu_physical_memory_mask_dirty_range(start
, length
, dirty_flags
);
2041 /* we modify the TLB cache so that the dirty bit will be set again
2042 when accessing the range */
2043 start1
= (unsigned long)qemu_safe_ram_ptr(start
);
2044 /* Chek that we don't span multiple blocks - this breaks the
2045 address comparisons below. */
2046 if ((unsigned long)qemu_safe_ram_ptr(end
- 1) - start1
2047 != (end
- 1) - start
) {
2051 for(env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
2053 for (mmu_idx
= 0; mmu_idx
< NB_MMU_MODES
; mmu_idx
++) {
2054 for(i
= 0; i
< CPU_TLB_SIZE
; i
++)
2055 tlb_reset_dirty_range(&env
->tlb_table
[mmu_idx
][i
],
2061 int cpu_physical_memory_set_dirty_tracking(int enable
)
2064 in_migration
= enable
;
2065 ret
= cpu_notify_migration_log(!!enable
);
2069 int cpu_physical_memory_get_dirty_tracking(void)
2071 return in_migration
;
2074 int cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr
,
2075 target_phys_addr_t end_addr
)
2079 ret
= cpu_notify_sync_dirty_bitmap(start_addr
, end_addr
);
2083 int cpu_physical_log_start(target_phys_addr_t start_addr
,
2086 CPUPhysMemoryClient
*client
;
2087 QLIST_FOREACH(client
, &memory_client_list
, list
) {
2088 if (client
->log_start
) {
2089 int r
= client
->log_start(client
, start_addr
, size
);
2098 int cpu_physical_log_stop(target_phys_addr_t start_addr
,
2101 CPUPhysMemoryClient
*client
;
2102 QLIST_FOREACH(client
, &memory_client_list
, list
) {
2103 if (client
->log_stop
) {
2104 int r
= client
->log_stop(client
, start_addr
, size
);
2113 static inline void tlb_update_dirty(CPUTLBEntry
*tlb_entry
)
2115 ram_addr_t ram_addr
;
2118 if ((tlb_entry
->addr_write
& ~TARGET_PAGE_MASK
) == IO_MEM_RAM
) {
2119 p
= (void *)(unsigned long)((tlb_entry
->addr_write
& TARGET_PAGE_MASK
)
2120 + tlb_entry
->addend
);
2121 ram_addr
= qemu_ram_addr_from_host_nofail(p
);
2122 if (!cpu_physical_memory_is_dirty(ram_addr
)) {
2123 tlb_entry
->addr_write
|= TLB_NOTDIRTY
;
2128 /* update the TLB according to the current state of the dirty bits */
2129 void cpu_tlb_update_dirty(CPUState
*env
)
2133 for (mmu_idx
= 0; mmu_idx
< NB_MMU_MODES
; mmu_idx
++) {
2134 for(i
= 0; i
< CPU_TLB_SIZE
; i
++)
2135 tlb_update_dirty(&env
->tlb_table
[mmu_idx
][i
]);
2139 static inline void tlb_set_dirty1(CPUTLBEntry
*tlb_entry
, target_ulong vaddr
)
2141 if (tlb_entry
->addr_write
== (vaddr
| TLB_NOTDIRTY
))
2142 tlb_entry
->addr_write
= vaddr
;
2145 /* update the TLB corresponding to virtual page vaddr
2146 so that it is no longer dirty */
2147 static inline void tlb_set_dirty(CPUState
*env
, target_ulong vaddr
)
2152 vaddr
&= TARGET_PAGE_MASK
;
2153 i
= (vaddr
>> TARGET_PAGE_BITS
) & (CPU_TLB_SIZE
- 1);
2154 for (mmu_idx
= 0; mmu_idx
< NB_MMU_MODES
; mmu_idx
++)
2155 tlb_set_dirty1(&env
->tlb_table
[mmu_idx
][i
], vaddr
);
2158 /* Our TLB does not support large pages, so remember the area covered by
2159 large pages and trigger a full TLB flush if these are invalidated. */
2160 static void tlb_add_large_page(CPUState
*env
, target_ulong vaddr
,
2163 target_ulong mask
= ~(size
- 1);
2165 if (env
->tlb_flush_addr
== (target_ulong
)-1) {
2166 env
->tlb_flush_addr
= vaddr
& mask
;
2167 env
->tlb_flush_mask
= mask
;
2170 /* Extend the existing region to include the new page.
2171 This is a compromise between unnecessary flushes and the cost
2172 of maintaining a full variable size TLB. */
2173 mask
&= env
->tlb_flush_mask
;
2174 while (((env
->tlb_flush_addr
^ vaddr
) & mask
) != 0) {
2177 env
->tlb_flush_addr
&= mask
;
2178 env
->tlb_flush_mask
= mask
;
2181 /* Add a new TLB entry. At most one entry for a given virtual address
2182 is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
2183 supplied size is only used by tlb_flush_page. */
2184 void tlb_set_page(CPUState
*env
, target_ulong vaddr
,
2185 target_phys_addr_t paddr
, int prot
,
2186 int mmu_idx
, target_ulong size
)
2191 target_ulong address
;
2192 target_ulong code_address
;
2193 unsigned long addend
;
2196 target_phys_addr_t iotlb
;
2198 assert(size
>= TARGET_PAGE_SIZE
);
2199 if (size
!= TARGET_PAGE_SIZE
) {
2200 tlb_add_large_page(env
, vaddr
, size
);
2202 p
= phys_page_find(paddr
>> TARGET_PAGE_BITS
);
2204 pd
= IO_MEM_UNASSIGNED
;
2206 pd
= p
->phys_offset
;
2208 #if defined(DEBUG_TLB)
2209 printf("tlb_set_page: vaddr=" TARGET_FMT_lx
" paddr=0x" TARGET_FMT_plx
2210 " prot=%x idx=%d pd=0x%08lx\n",
2211 vaddr
, paddr
, prot
, mmu_idx
, pd
);
2215 if ((pd
& ~TARGET_PAGE_MASK
) > IO_MEM_ROM
&& !(pd
& IO_MEM_ROMD
)) {
2216 /* IO memory case (romd handled later) */
2217 address
|= TLB_MMIO
;
2219 addend
= (unsigned long)qemu_get_ram_ptr(pd
& TARGET_PAGE_MASK
);
2220 if ((pd
& ~TARGET_PAGE_MASK
) <= IO_MEM_ROM
) {
2222 iotlb
= pd
& TARGET_PAGE_MASK
;
2223 if ((pd
& ~TARGET_PAGE_MASK
) == IO_MEM_RAM
)
2224 iotlb
|= IO_MEM_NOTDIRTY
;
2226 iotlb
|= IO_MEM_ROM
;
2228 /* IO handlers are currently passed a physical address.
2229 It would be nice to pass an offset from the base address
2230 of that region. This would avoid having to special case RAM,
2231 and avoid full address decoding in every device.
2232 We can't use the high bits of pd for this because
2233 IO_MEM_ROMD uses these as a ram address. */
2234 iotlb
= (pd
& ~TARGET_PAGE_MASK
);
2236 iotlb
+= p
->region_offset
;
2242 code_address
= address
;
2243 /* Make accesses to pages with watchpoints go via the
2244 watchpoint trap routines. */
2245 QTAILQ_FOREACH(wp
, &env
->watchpoints
, entry
) {
2246 if (vaddr
== (wp
->vaddr
& TARGET_PAGE_MASK
)) {
2247 /* Avoid trapping reads of pages with a write breakpoint. */
2248 if ((prot
& PAGE_WRITE
) || (wp
->flags
& BP_MEM_READ
)) {
2249 iotlb
= io_mem_watch
+ paddr
;
2250 address
|= TLB_MMIO
;
2256 index
= (vaddr
>> TARGET_PAGE_BITS
) & (CPU_TLB_SIZE
- 1);
2257 env
->iotlb
[mmu_idx
][index
] = iotlb
- vaddr
;
2258 te
= &env
->tlb_table
[mmu_idx
][index
];
2259 te
->addend
= addend
- vaddr
;
2260 if (prot
& PAGE_READ
) {
2261 te
->addr_read
= address
;
2266 if (prot
& PAGE_EXEC
) {
2267 te
->addr_code
= code_address
;
2271 if (prot
& PAGE_WRITE
) {
2272 if ((pd
& ~TARGET_PAGE_MASK
) == IO_MEM_ROM
||
2273 (pd
& IO_MEM_ROMD
)) {
2274 /* Write access calls the I/O callback. */
2275 te
->addr_write
= address
| TLB_MMIO
;
2276 } else if ((pd
& ~TARGET_PAGE_MASK
) == IO_MEM_RAM
&&
2277 !cpu_physical_memory_is_dirty(pd
)) {
2278 te
->addr_write
= address
| TLB_NOTDIRTY
;
2280 te
->addr_write
= address
;
2283 te
->addr_write
= -1;
2289 void tlb_flush(CPUState
*env
, int flush_global
)
2293 void tlb_flush_page(CPUState
*env
, target_ulong addr
)
2298 * Walks guest process memory "regions" one by one
2299 * and calls callback function 'fn' for each region.
2302 struct walk_memory_regions_data
2304 walk_memory_regions_fn fn
;
2306 unsigned long start
;
2310 static int walk_memory_regions_end(struct walk_memory_regions_data
*data
,
2311 abi_ulong end
, int new_prot
)
2313 if (data
->start
!= -1ul) {
2314 int rc
= data
->fn(data
->priv
, data
->start
, end
, data
->prot
);
2320 data
->start
= (new_prot
? end
: -1ul);
2321 data
->prot
= new_prot
;
2326 static int walk_memory_regions_1(struct walk_memory_regions_data
*data
,
2327 abi_ulong base
, int level
, void **lp
)
2333 return walk_memory_regions_end(data
, base
, 0);
2338 for (i
= 0; i
< L2_SIZE
; ++i
) {
2339 int prot
= pd
[i
].flags
;
2341 pa
= base
| (i
<< TARGET_PAGE_BITS
);
2342 if (prot
!= data
->prot
) {
2343 rc
= walk_memory_regions_end(data
, pa
, prot
);
2351 for (i
= 0; i
< L2_SIZE
; ++i
) {
2352 pa
= base
| ((abi_ulong
)i
<<
2353 (TARGET_PAGE_BITS
+ L2_BITS
* level
));
2354 rc
= walk_memory_regions_1(data
, pa
, level
- 1, pp
+ i
);
2364 int walk_memory_regions(void *priv
, walk_memory_regions_fn fn
)
2366 struct walk_memory_regions_data data
;
2374 for (i
= 0; i
< V_L1_SIZE
; i
++) {
2375 int rc
= walk_memory_regions_1(&data
, (abi_ulong
)i
<< V_L1_SHIFT
,
2376 V_L1_SHIFT
/ L2_BITS
- 1, l1_map
+ i
);
2382 return walk_memory_regions_end(&data
, 0, 0);
2385 static int dump_region(void *priv
, abi_ulong start
,
2386 abi_ulong end
, unsigned long prot
)
2388 FILE *f
= (FILE *)priv
;
2390 (void) fprintf(f
, TARGET_ABI_FMT_lx
"-"TARGET_ABI_FMT_lx
2391 " "TARGET_ABI_FMT_lx
" %c%c%c\n",
2392 start
, end
, end
- start
,
2393 ((prot
& PAGE_READ
) ? 'r' : '-'),
2394 ((prot
& PAGE_WRITE
) ? 'w' : '-'),
2395 ((prot
& PAGE_EXEC
) ? 'x' : '-'));
2400 /* dump memory mappings */
2401 void page_dump(FILE *f
)
2403 (void) fprintf(f
, "%-8s %-8s %-8s %s\n",
2404 "start", "end", "size", "prot");
2405 walk_memory_regions(f
, dump_region
);
2408 int page_get_flags(target_ulong address
)
2412 p
= page_find(address
>> TARGET_PAGE_BITS
);
2418 /* Modify the flags of a page and invalidate the code if necessary.
2419 The flag PAGE_WRITE_ORG is positioned automatically depending
2420 on PAGE_WRITE. The mmap_lock should already be held. */
2421 void page_set_flags(target_ulong start
, target_ulong end
, int flags
)
2423 target_ulong addr
, len
;
2425 /* This function should never be called with addresses outside the
2426 guest address space. If this assert fires, it probably indicates
2427 a missing call to h2g_valid. */
2428 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2429 assert(end
< ((abi_ulong
)1 << L1_MAP_ADDR_SPACE_BITS
));
2431 assert(start
< end
);
2433 start
= start
& TARGET_PAGE_MASK
;
2434 end
= TARGET_PAGE_ALIGN(end
);
2436 if (flags
& PAGE_WRITE
) {
2437 flags
|= PAGE_WRITE_ORG
;
2440 for (addr
= start
, len
= end
- start
;
2442 len
-= TARGET_PAGE_SIZE
, addr
+= TARGET_PAGE_SIZE
) {
2443 PageDesc
*p
= page_find_alloc(addr
>> TARGET_PAGE_BITS
, 1);
2445 /* If the write protection bit is set, then we invalidate
2447 if (!(p
->flags
& PAGE_WRITE
) &&
2448 (flags
& PAGE_WRITE
) &&
2450 tb_invalidate_phys_page(addr
, 0, NULL
);
2456 int page_check_range(target_ulong start
, target_ulong len
, int flags
)
2462 /* This function should never be called with addresses outside the
2463 guest address space. If this assert fires, it probably indicates
2464 a missing call to h2g_valid. */
2465 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2466 assert(start
< ((abi_ulong
)1 << L1_MAP_ADDR_SPACE_BITS
));
2472 if (start
+ len
- 1 < start
) {
2473 /* We've wrapped around. */
2477 end
= TARGET_PAGE_ALIGN(start
+len
); /* must do before we loose bits in the next step */
2478 start
= start
& TARGET_PAGE_MASK
;
2480 for (addr
= start
, len
= end
- start
;
2482 len
-= TARGET_PAGE_SIZE
, addr
+= TARGET_PAGE_SIZE
) {
2483 p
= page_find(addr
>> TARGET_PAGE_BITS
);
2486 if( !(p
->flags
& PAGE_VALID
) )
2489 if ((flags
& PAGE_READ
) && !(p
->flags
& PAGE_READ
))
2491 if (flags
& PAGE_WRITE
) {
2492 if (!(p
->flags
& PAGE_WRITE_ORG
))
2494 /* unprotect the page if it was put read-only because it
2495 contains translated code */
2496 if (!(p
->flags
& PAGE_WRITE
)) {
2497 if (!page_unprotect(addr
, 0, NULL
))
2506 /* called from signal handler: invalidate the code and unprotect the
2507 page. Return TRUE if the fault was successfully handled. */
2508 int page_unprotect(target_ulong address
, unsigned long pc
, void *puc
)
2512 target_ulong host_start
, host_end
, addr
;
2514 /* Technically this isn't safe inside a signal handler. However we
2515 know this only ever happens in a synchronous SEGV handler, so in
2516 practice it seems to be ok. */
2519 p
= page_find(address
>> TARGET_PAGE_BITS
);
2525 /* if the page was really writable, then we change its
2526 protection back to writable */
2527 if ((p
->flags
& PAGE_WRITE_ORG
) && !(p
->flags
& PAGE_WRITE
)) {
2528 host_start
= address
& qemu_host_page_mask
;
2529 host_end
= host_start
+ qemu_host_page_size
;
2532 for (addr
= host_start
; addr
< host_end
; addr
+= TARGET_PAGE_SIZE
) {
2533 p
= page_find(addr
>> TARGET_PAGE_BITS
);
2534 p
->flags
|= PAGE_WRITE
;
2537 /* and since the content will be modified, we must invalidate
2538 the corresponding translated code. */
2539 tb_invalidate_phys_page(addr
, pc
, puc
);
2540 #ifdef DEBUG_TB_CHECK
2541 tb_invalidate_check(addr
);
2544 mprotect((void *)g2h(host_start
), qemu_host_page_size
,
2554 static inline void tlb_set_dirty(CPUState
*env
,
2555 unsigned long addr
, target_ulong vaddr
)
2558 #endif /* defined(CONFIG_USER_ONLY) */
2560 #if !defined(CONFIG_USER_ONLY)
2562 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
2563 typedef struct subpage_t
{
2564 target_phys_addr_t base
;
2565 ram_addr_t sub_io_index
[TARGET_PAGE_SIZE
];
2566 ram_addr_t region_offset
[TARGET_PAGE_SIZE
];
2569 static int subpage_register (subpage_t
*mmio
, uint32_t start
, uint32_t end
,
2570 ram_addr_t memory
, ram_addr_t region_offset
);
2571 static subpage_t
*subpage_init (target_phys_addr_t base
, ram_addr_t
*phys
,
2572 ram_addr_t orig_memory
,
2573 ram_addr_t region_offset
);
2574 #define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \
2577 if (addr > start_addr) \
2580 start_addr2 = start_addr & ~TARGET_PAGE_MASK; \
2581 if (start_addr2 > 0) \
2585 if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \
2586 end_addr2 = TARGET_PAGE_SIZE - 1; \
2588 end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \
2589 if (end_addr2 < TARGET_PAGE_SIZE - 1) \
2594 /* register physical memory.
2595 For RAM, 'size' must be a multiple of the target page size.
2596 If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
2597 io memory page. The address used when calling the IO function is
2598 the offset from the start of the region, plus region_offset. Both
2599 start_addr and region_offset are rounded down to a page boundary
2600 before calculating this offset. This should not be a problem unless
2601 the low bits of start_addr and region_offset differ. */
2602 void cpu_register_physical_memory_offset(target_phys_addr_t start_addr
,
2604 ram_addr_t phys_offset
,
2605 ram_addr_t region_offset
)
2607 target_phys_addr_t addr
, end_addr
;
2610 ram_addr_t orig_size
= size
;
2614 cpu_notify_set_memory(start_addr
, size
, phys_offset
);
2616 if (phys_offset
== IO_MEM_UNASSIGNED
) {
2617 region_offset
= start_addr
;
2619 region_offset
&= TARGET_PAGE_MASK
;
2620 size
= (size
+ TARGET_PAGE_SIZE
- 1) & TARGET_PAGE_MASK
;
2621 end_addr
= start_addr
+ (target_phys_addr_t
)size
;
2625 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
2626 if (p
&& p
->phys_offset
!= IO_MEM_UNASSIGNED
) {
2627 ram_addr_t orig_memory
= p
->phys_offset
;
2628 target_phys_addr_t start_addr2
, end_addr2
;
2629 int need_subpage
= 0;
2631 CHECK_SUBPAGE(addr
, start_addr
, start_addr2
, end_addr
, end_addr2
,
2634 if (!(orig_memory
& IO_MEM_SUBPAGE
)) {
2635 subpage
= subpage_init((addr
& TARGET_PAGE_MASK
),
2636 &p
->phys_offset
, orig_memory
,
2639 subpage
= io_mem_opaque
[(orig_memory
& ~TARGET_PAGE_MASK
)
2642 subpage_register(subpage
, start_addr2
, end_addr2
, phys_offset
,
2644 p
->region_offset
= 0;
2646 p
->phys_offset
= phys_offset
;
2647 if ((phys_offset
& ~TARGET_PAGE_MASK
) <= IO_MEM_ROM
||
2648 (phys_offset
& IO_MEM_ROMD
))
2649 phys_offset
+= TARGET_PAGE_SIZE
;
2652 p
= phys_page_find_alloc(addr
>> TARGET_PAGE_BITS
, 1);
2653 p
->phys_offset
= phys_offset
;
2654 p
->region_offset
= region_offset
;
2655 if ((phys_offset
& ~TARGET_PAGE_MASK
) <= IO_MEM_ROM
||
2656 (phys_offset
& IO_MEM_ROMD
)) {
2657 phys_offset
+= TARGET_PAGE_SIZE
;
2659 target_phys_addr_t start_addr2
, end_addr2
;
2660 int need_subpage
= 0;
2662 CHECK_SUBPAGE(addr
, start_addr
, start_addr2
, end_addr
,
2663 end_addr2
, need_subpage
);
2666 subpage
= subpage_init((addr
& TARGET_PAGE_MASK
),
2667 &p
->phys_offset
, IO_MEM_UNASSIGNED
,
2668 addr
& TARGET_PAGE_MASK
);
2669 subpage_register(subpage
, start_addr2
, end_addr2
,
2670 phys_offset
, region_offset
);
2671 p
->region_offset
= 0;
2675 region_offset
+= TARGET_PAGE_SIZE
;
2676 addr
+= TARGET_PAGE_SIZE
;
2677 } while (addr
!= end_addr
);
2679 /* since each CPU stores ram addresses in its TLB cache, we must
2680 reset the modified entries */
2682 for(env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
2687 /* XXX: temporary until new memory mapping API */
2688 ram_addr_t
cpu_get_physical_page_desc(target_phys_addr_t addr
)
2692 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
2694 return IO_MEM_UNASSIGNED
;
2695 return p
->phys_offset
;
2698 void qemu_register_coalesced_mmio(target_phys_addr_t addr
, ram_addr_t size
)
2701 kvm_coalesce_mmio_region(addr
, size
);
2704 void qemu_unregister_coalesced_mmio(target_phys_addr_t addr
, ram_addr_t size
)
2707 kvm_uncoalesce_mmio_region(addr
, size
);
2710 void qemu_flush_coalesced_mmio_buffer(void)
2713 kvm_flush_coalesced_mmio_buffer();
2716 #if defined(__linux__) && !defined(TARGET_S390X)
2718 #include <sys/vfs.h>
2720 #define HUGETLBFS_MAGIC 0x958458f6
2722 static long gethugepagesize(const char *path
)
2728 ret
= statfs(path
, &fs
);
2729 } while (ret
!= 0 && errno
== EINTR
);
2736 if (fs
.f_type
!= HUGETLBFS_MAGIC
)
2737 fprintf(stderr
, "Warning: path not on HugeTLBFS: %s\n", path
);
2742 static void *file_ram_alloc(RAMBlock
*block
,
2752 unsigned long hpagesize
;
2754 hpagesize
= gethugepagesize(path
);
2759 if (memory
< hpagesize
) {
2763 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2764 fprintf(stderr
, "host lacks kvm mmu notifiers, -mem-path unsupported\n");
2768 if (asprintf(&filename
, "%s/qemu_back_mem.XXXXXX", path
) == -1) {
2772 fd
= mkstemp(filename
);
2774 perror("unable to create backing store for hugepages");
2781 memory
= (memory
+hpagesize
-1) & ~(hpagesize
-1);
2784 * ftruncate is not supported by hugetlbfs in older
2785 * hosts, so don't bother bailing out on errors.
2786 * If anything goes wrong with it under other filesystems,
2789 if (ftruncate(fd
, memory
))
2790 perror("ftruncate");
2793 /* NB: MAP_POPULATE won't exhaustively alloc all phys pages in the case
2794 * MAP_PRIVATE is requested. For mem_prealloc we mmap as MAP_SHARED
2795 * to sidestep this quirk.
2797 flags
= mem_prealloc
? MAP_POPULATE
| MAP_SHARED
: MAP_PRIVATE
;
2798 area
= mmap(0, memory
, PROT_READ
| PROT_WRITE
, flags
, fd
, 0);
2800 area
= mmap(0, memory
, PROT_READ
| PROT_WRITE
, MAP_PRIVATE
, fd
, 0);
2802 if (area
== MAP_FAILED
) {
2803 perror("file_ram_alloc: can't mmap RAM pages");
2812 static ram_addr_t
find_ram_offset(ram_addr_t size
)
2814 RAMBlock
*block
, *next_block
;
2815 ram_addr_t offset
= 0, mingap
= ULONG_MAX
;
2817 if (QLIST_EMPTY(&ram_list
.blocks
))
2820 QLIST_FOREACH(block
, &ram_list
.blocks
, next
) {
2821 ram_addr_t end
, next
= ULONG_MAX
;
2823 end
= block
->offset
+ block
->length
;
2825 QLIST_FOREACH(next_block
, &ram_list
.blocks
, next
) {
2826 if (next_block
->offset
>= end
) {
2827 next
= MIN(next
, next_block
->offset
);
2830 if (next
- end
>= size
&& next
- end
< mingap
) {
2832 mingap
= next
- end
;
2838 static ram_addr_t
last_ram_offset(void)
2841 ram_addr_t last
= 0;
2843 QLIST_FOREACH(block
, &ram_list
.blocks
, next
)
2844 last
= MAX(last
, block
->offset
+ block
->length
);
2849 ram_addr_t
qemu_ram_alloc_from_ptr(DeviceState
*dev
, const char *name
,
2850 ram_addr_t size
, void *host
)
2852 RAMBlock
*new_block
, *block
;
2854 size
= TARGET_PAGE_ALIGN(size
);
2855 new_block
= qemu_mallocz(sizeof(*new_block
));
2857 if (dev
&& dev
->parent_bus
&& dev
->parent_bus
->info
->get_dev_path
) {
2858 char *id
= dev
->parent_bus
->info
->get_dev_path(dev
);
2860 snprintf(new_block
->idstr
, sizeof(new_block
->idstr
), "%s/", id
);
2864 pstrcat(new_block
->idstr
, sizeof(new_block
->idstr
), name
);
2866 QLIST_FOREACH(block
, &ram_list
.blocks
, next
) {
2867 if (!strcmp(block
->idstr
, new_block
->idstr
)) {
2868 fprintf(stderr
, "RAMBlock \"%s\" already registered, abort!\n",
2875 new_block
->host
= host
;
2876 new_block
->flags
|= RAM_PREALLOC_MASK
;
2879 #if defined (__linux__) && !defined(TARGET_S390X)
2880 new_block
->host
= file_ram_alloc(new_block
, size
, mem_path
);
2881 if (!new_block
->host
) {
2882 new_block
->host
= qemu_vmalloc(size
);
2883 qemu_madvise(new_block
->host
, size
, QEMU_MADV_MERGEABLE
);
2886 fprintf(stderr
, "-mem-path option unsupported\n");
2890 #if defined(TARGET_S390X) && defined(CONFIG_KVM)
2891 /* XXX S390 KVM requires the topmost vma of the RAM to be < 256GB */
2892 new_block
->host
= mmap((void*)0x1000000, size
,
2893 PROT_EXEC
|PROT_READ
|PROT_WRITE
,
2894 MAP_SHARED
| MAP_ANONYMOUS
, -1, 0);
2896 new_block
->host
= qemu_vmalloc(size
);
2898 qemu_madvise(new_block
->host
, size
, QEMU_MADV_MERGEABLE
);
2902 new_block
->offset
= find_ram_offset(size
);
2903 new_block
->length
= size
;
2905 QLIST_INSERT_HEAD(&ram_list
.blocks
, new_block
, next
);
2907 ram_list
.phys_dirty
= qemu_realloc(ram_list
.phys_dirty
,
2908 last_ram_offset() >> TARGET_PAGE_BITS
);
2909 memset(ram_list
.phys_dirty
+ (new_block
->offset
>> TARGET_PAGE_BITS
),
2910 0xff, size
>> TARGET_PAGE_BITS
);
2913 kvm_setup_guest_memory(new_block
->host
, size
);
2915 return new_block
->offset
;
2918 ram_addr_t
qemu_ram_alloc(DeviceState
*dev
, const char *name
, ram_addr_t size
)
2920 return qemu_ram_alloc_from_ptr(dev
, name
, size
, NULL
);
2923 void qemu_ram_free(ram_addr_t addr
)
2927 QLIST_FOREACH(block
, &ram_list
.blocks
, next
) {
2928 if (addr
== block
->offset
) {
2929 QLIST_REMOVE(block
, next
);
2930 if (block
->flags
& RAM_PREALLOC_MASK
) {
2932 } else if (mem_path
) {
2933 #if defined (__linux__) && !defined(TARGET_S390X)
2935 munmap(block
->host
, block
->length
);
2938 qemu_vfree(block
->host
);
2944 #if defined(TARGET_S390X) && defined(CONFIG_KVM)
2945 munmap(block
->host
, block
->length
);
2947 qemu_vfree(block
->host
);
2958 void qemu_ram_remap(ram_addr_t addr
, ram_addr_t length
)
2965 QLIST_FOREACH(block
, &ram_list
.blocks
, next
) {
2966 offset
= addr
- block
->offset
;
2967 if (offset
< block
->length
) {
2968 vaddr
= block
->host
+ offset
;
2969 if (block
->flags
& RAM_PREALLOC_MASK
) {
2973 munmap(vaddr
, length
);
2975 #if defined(__linux__) && !defined(TARGET_S390X)
2978 flags
|= mem_prealloc
? MAP_POPULATE
| MAP_SHARED
:
2981 flags
|= MAP_PRIVATE
;
2983 area
= mmap(vaddr
, length
, PROT_READ
| PROT_WRITE
,
2984 flags
, block
->fd
, offset
);
2986 flags
|= MAP_PRIVATE
| MAP_ANONYMOUS
;
2987 area
= mmap(vaddr
, length
, PROT_READ
| PROT_WRITE
,
2994 #if defined(TARGET_S390X) && defined(CONFIG_KVM)
2995 flags
|= MAP_SHARED
| MAP_ANONYMOUS
;
2996 area
= mmap(vaddr
, length
, PROT_EXEC
|PROT_READ
|PROT_WRITE
,
2999 flags
|= MAP_PRIVATE
| MAP_ANONYMOUS
;
3000 area
= mmap(vaddr
, length
, PROT_READ
| PROT_WRITE
,
3004 if (area
!= vaddr
) {
3005 fprintf(stderr
, "Could not remap addr: %lx@%lx\n",
3009 qemu_madvise(vaddr
, length
, QEMU_MADV_MERGEABLE
);
3015 #endif /* !_WIN32 */
3017 /* Return a host pointer to ram allocated with qemu_ram_alloc.
3018 With the exception of the softmmu code in this file, this should
3019 only be used for local memory (e.g. video ram) that the device owns,
3020 and knows it isn't going to access beyond the end of the block.
3022 It should not be used for general purpose DMA.
3023 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
3025 void *qemu_get_ram_ptr(ram_addr_t addr
)
3029 QLIST_FOREACH(block
, &ram_list
.blocks
, next
) {
3030 if (addr
- block
->offset
< block
->length
) {
3031 /* Move this entry to to start of the list. */
3032 if (block
!= QLIST_FIRST(&ram_list
.blocks
)) {
3033 QLIST_REMOVE(block
, next
);
3034 QLIST_INSERT_HEAD(&ram_list
.blocks
, block
, next
);
3036 return block
->host
+ (addr
- block
->offset
);
3040 fprintf(stderr
, "Bad ram offset %" PRIx64
"\n", (uint64_t)addr
);
3046 /* Return a host pointer to ram allocated with qemu_ram_alloc.
3047 * Same as qemu_get_ram_ptr but avoid reordering ramblocks.
3049 void *qemu_safe_ram_ptr(ram_addr_t addr
)
3053 QLIST_FOREACH(block
, &ram_list
.blocks
, next
) {
3054 if (addr
- block
->offset
< block
->length
) {
3055 return block
->host
+ (addr
- block
->offset
);
3059 fprintf(stderr
, "Bad ram offset %" PRIx64
"\n", (uint64_t)addr
);
3065 int qemu_ram_addr_from_host(void *ptr
, ram_addr_t
*ram_addr
)
3068 uint8_t *host
= ptr
;
3070 QLIST_FOREACH(block
, &ram_list
.blocks
, next
) {
3071 if (host
- block
->host
< block
->length
) {
3072 *ram_addr
= block
->offset
+ (host
- block
->host
);
3079 /* Some of the softmmu routines need to translate from a host pointer
3080 (typically a TLB entry) back to a ram offset. */
3081 ram_addr_t
qemu_ram_addr_from_host_nofail(void *ptr
)
3083 ram_addr_t ram_addr
;
3085 if (qemu_ram_addr_from_host(ptr
, &ram_addr
)) {
3086 fprintf(stderr
, "Bad ram pointer %p\n", ptr
);
3092 static uint32_t unassigned_mem_readb(void *opaque
, target_phys_addr_t addr
)
3094 #ifdef DEBUG_UNASSIGNED
3095 printf("Unassigned mem read " TARGET_FMT_plx
"\n", addr
);
3097 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
3098 do_unassigned_access(addr
, 0, 0, 0, 1);
3103 static uint32_t unassigned_mem_readw(void *opaque
, target_phys_addr_t addr
)
3105 #ifdef DEBUG_UNASSIGNED
3106 printf("Unassigned mem read " TARGET_FMT_plx
"\n", addr
);
3108 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
3109 do_unassigned_access(addr
, 0, 0, 0, 2);
3114 static uint32_t unassigned_mem_readl(void *opaque
, target_phys_addr_t addr
)
3116 #ifdef DEBUG_UNASSIGNED
3117 printf("Unassigned mem read " TARGET_FMT_plx
"\n", addr
);
3119 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
3120 do_unassigned_access(addr
, 0, 0, 0, 4);
3125 static void unassigned_mem_writeb(void *opaque
, target_phys_addr_t addr
, uint32_t val
)
3127 #ifdef DEBUG_UNASSIGNED
3128 printf("Unassigned mem write " TARGET_FMT_plx
" = 0x%x\n", addr
, val
);
3130 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
3131 do_unassigned_access(addr
, 1, 0, 0, 1);
3135 static void unassigned_mem_writew(void *opaque
, target_phys_addr_t addr
, uint32_t val
)
3137 #ifdef DEBUG_UNASSIGNED
3138 printf("Unassigned mem write " TARGET_FMT_plx
" = 0x%x\n", addr
, val
);
3140 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
3141 do_unassigned_access(addr
, 1, 0, 0, 2);
3145 static void unassigned_mem_writel(void *opaque
, target_phys_addr_t addr
, uint32_t val
)
3147 #ifdef DEBUG_UNASSIGNED
3148 printf("Unassigned mem write " TARGET_FMT_plx
" = 0x%x\n", addr
, val
);
3150 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
3151 do_unassigned_access(addr
, 1, 0, 0, 4);
3155 static CPUReadMemoryFunc
* const unassigned_mem_read
[3] = {
3156 unassigned_mem_readb
,
3157 unassigned_mem_readw
,
3158 unassigned_mem_readl
,
3161 static CPUWriteMemoryFunc
* const unassigned_mem_write
[3] = {
3162 unassigned_mem_writeb
,
3163 unassigned_mem_writew
,
3164 unassigned_mem_writel
,
3167 static void notdirty_mem_writeb(void *opaque
, target_phys_addr_t ram_addr
,
3171 dirty_flags
= cpu_physical_memory_get_dirty_flags(ram_addr
);
3172 if (!(dirty_flags
& CODE_DIRTY_FLAG
)) {
3173 #if !defined(CONFIG_USER_ONLY)
3174 tb_invalidate_phys_page_fast(ram_addr
, 1);
3175 dirty_flags
= cpu_physical_memory_get_dirty_flags(ram_addr
);
3178 stb_p(qemu_get_ram_ptr(ram_addr
), val
);
3179 dirty_flags
|= (0xff & ~CODE_DIRTY_FLAG
);
3180 cpu_physical_memory_set_dirty_flags(ram_addr
, dirty_flags
);
3181 /* we remove the notdirty callback only if the code has been
3183 if (dirty_flags
== 0xff)
3184 tlb_set_dirty(cpu_single_env
, cpu_single_env
->mem_io_vaddr
);
3187 static void notdirty_mem_writew(void *opaque
, target_phys_addr_t ram_addr
,
3191 dirty_flags
= cpu_physical_memory_get_dirty_flags(ram_addr
);
3192 if (!(dirty_flags
& CODE_DIRTY_FLAG
)) {
3193 #if !defined(CONFIG_USER_ONLY)
3194 tb_invalidate_phys_page_fast(ram_addr
, 2);
3195 dirty_flags
= cpu_physical_memory_get_dirty_flags(ram_addr
);
3198 stw_p(qemu_get_ram_ptr(ram_addr
), val
);
3199 dirty_flags
|= (0xff & ~CODE_DIRTY_FLAG
);
3200 cpu_physical_memory_set_dirty_flags(ram_addr
, dirty_flags
);
3201 /* we remove the notdirty callback only if the code has been
3203 if (dirty_flags
== 0xff)
3204 tlb_set_dirty(cpu_single_env
, cpu_single_env
->mem_io_vaddr
);
3207 static void notdirty_mem_writel(void *opaque
, target_phys_addr_t ram_addr
,
3211 dirty_flags
= cpu_physical_memory_get_dirty_flags(ram_addr
);
3212 if (!(dirty_flags
& CODE_DIRTY_FLAG
)) {
3213 #if !defined(CONFIG_USER_ONLY)
3214 tb_invalidate_phys_page_fast(ram_addr
, 4);
3215 dirty_flags
= cpu_physical_memory_get_dirty_flags(ram_addr
);
3218 stl_p(qemu_get_ram_ptr(ram_addr
), val
);
3219 dirty_flags
|= (0xff & ~CODE_DIRTY_FLAG
);
3220 cpu_physical_memory_set_dirty_flags(ram_addr
, dirty_flags
);
3221 /* we remove the notdirty callback only if the code has been
3223 if (dirty_flags
== 0xff)
3224 tlb_set_dirty(cpu_single_env
, cpu_single_env
->mem_io_vaddr
);
3227 static CPUReadMemoryFunc
* const error_mem_read
[3] = {
3228 NULL
, /* never used */
3229 NULL
, /* never used */
3230 NULL
, /* never used */
3233 static CPUWriteMemoryFunc
* const notdirty_mem_write
[3] = {
3234 notdirty_mem_writeb
,
3235 notdirty_mem_writew
,
3236 notdirty_mem_writel
,
3239 /* Generate a debug exception if a watchpoint has been hit. */
3240 static void check_watchpoint(int offset
, int len_mask
, int flags
)
3242 CPUState
*env
= cpu_single_env
;
3243 target_ulong pc
, cs_base
;
3244 TranslationBlock
*tb
;
3249 if (env
->watchpoint_hit
) {
3250 /* We re-entered the check after replacing the TB. Now raise
3251 * the debug interrupt so that is will trigger after the
3252 * current instruction. */
3253 cpu_interrupt(env
, CPU_INTERRUPT_DEBUG
);
3256 vaddr
= (env
->mem_io_vaddr
& TARGET_PAGE_MASK
) + offset
;
3257 QTAILQ_FOREACH(wp
, &env
->watchpoints
, entry
) {
3258 if ((vaddr
== (wp
->vaddr
& len_mask
) ||
3259 (vaddr
& wp
->len_mask
) == wp
->vaddr
) && (wp
->flags
& flags
)) {
3260 wp
->flags
|= BP_WATCHPOINT_HIT
;
3261 if (!env
->watchpoint_hit
) {
3262 env
->watchpoint_hit
= wp
;
3263 tb
= tb_find_pc(env
->mem_io_pc
);
3265 cpu_abort(env
, "check_watchpoint: could not find TB for "
3266 "pc=%p", (void *)env
->mem_io_pc
);
3268 cpu_restore_state(tb
, env
, env
->mem_io_pc
);
3269 tb_phys_invalidate(tb
, -1);
3270 if (wp
->flags
& BP_STOP_BEFORE_ACCESS
) {
3271 env
->exception_index
= EXCP_DEBUG
;
3273 cpu_get_tb_cpu_state(env
, &pc
, &cs_base
, &cpu_flags
);
3274 tb_gen_code(env
, pc
, cs_base
, cpu_flags
, 1);
3276 cpu_resume_from_signal(env
, NULL
);
3279 wp
->flags
&= ~BP_WATCHPOINT_HIT
;
3284 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
3285 so these check for a hit then pass through to the normal out-of-line
3287 static uint32_t watch_mem_readb(void *opaque
, target_phys_addr_t addr
)
3289 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, ~0x0, BP_MEM_READ
);
3290 return ldub_phys(addr
);
3293 static uint32_t watch_mem_readw(void *opaque
, target_phys_addr_t addr
)
3295 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, ~0x1, BP_MEM_READ
);
3296 return lduw_phys(addr
);
3299 static uint32_t watch_mem_readl(void *opaque
, target_phys_addr_t addr
)
3301 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, ~0x3, BP_MEM_READ
);
3302 return ldl_phys(addr
);
3305 static void watch_mem_writeb(void *opaque
, target_phys_addr_t addr
,
3308 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, ~0x0, BP_MEM_WRITE
);
3309 stb_phys(addr
, val
);
3312 static void watch_mem_writew(void *opaque
, target_phys_addr_t addr
,
3315 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, ~0x1, BP_MEM_WRITE
);
3316 stw_phys(addr
, val
);
3319 static void watch_mem_writel(void *opaque
, target_phys_addr_t addr
,
3322 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, ~0x3, BP_MEM_WRITE
);
3323 stl_phys(addr
, val
);
3326 static CPUReadMemoryFunc
* const watch_mem_read
[3] = {
3332 static CPUWriteMemoryFunc
* const watch_mem_write
[3] = {
3338 static inline uint32_t subpage_readlen (subpage_t
*mmio
,
3339 target_phys_addr_t addr
,
3342 unsigned int idx
= SUBPAGE_IDX(addr
);
3343 #if defined(DEBUG_SUBPAGE)
3344 printf("%s: subpage %p len %d addr " TARGET_FMT_plx
" idx %d\n", __func__
,
3345 mmio
, len
, addr
, idx
);
3348 addr
+= mmio
->region_offset
[idx
];
3349 idx
= mmio
->sub_io_index
[idx
];
3350 return io_mem_read
[idx
][len
](io_mem_opaque
[idx
], addr
);
3353 static inline void subpage_writelen (subpage_t
*mmio
, target_phys_addr_t addr
,
3354 uint32_t value
, unsigned int len
)
3356 unsigned int idx
= SUBPAGE_IDX(addr
);
3357 #if defined(DEBUG_SUBPAGE)
3358 printf("%s: subpage %p len %d addr " TARGET_FMT_plx
" idx %d value %08x\n",
3359 __func__
, mmio
, len
, addr
, idx
, value
);
3362 addr
+= mmio
->region_offset
[idx
];
3363 idx
= mmio
->sub_io_index
[idx
];
3364 io_mem_write
[idx
][len
](io_mem_opaque
[idx
], addr
, value
);
3367 static uint32_t subpage_readb (void *opaque
, target_phys_addr_t addr
)
3369 return subpage_readlen(opaque
, addr
, 0);
3372 static void subpage_writeb (void *opaque
, target_phys_addr_t addr
,
3375 subpage_writelen(opaque
, addr
, value
, 0);
3378 static uint32_t subpage_readw (void *opaque
, target_phys_addr_t addr
)
3380 return subpage_readlen(opaque
, addr
, 1);
3383 static void subpage_writew (void *opaque
, target_phys_addr_t addr
,
3386 subpage_writelen(opaque
, addr
, value
, 1);
3389 static uint32_t subpage_readl (void *opaque
, target_phys_addr_t addr
)
3391 return subpage_readlen(opaque
, addr
, 2);
3394 static void subpage_writel (void *opaque
, target_phys_addr_t addr
,
3397 subpage_writelen(opaque
, addr
, value
, 2);
3400 static CPUReadMemoryFunc
* const subpage_read
[] = {
3406 static CPUWriteMemoryFunc
* const subpage_write
[] = {
3412 static int subpage_register (subpage_t
*mmio
, uint32_t start
, uint32_t end
,
3413 ram_addr_t memory
, ram_addr_t region_offset
)
3417 if (start
>= TARGET_PAGE_SIZE
|| end
>= TARGET_PAGE_SIZE
)
3419 idx
= SUBPAGE_IDX(start
);
3420 eidx
= SUBPAGE_IDX(end
);
3421 #if defined(DEBUG_SUBPAGE)
3422 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__
,
3423 mmio
, start
, end
, idx
, eidx
, memory
);
3425 if ((memory
& ~TARGET_PAGE_MASK
) == IO_MEM_RAM
)
3426 memory
= IO_MEM_UNASSIGNED
;
3427 memory
= (memory
>> IO_MEM_SHIFT
) & (IO_MEM_NB_ENTRIES
- 1);
3428 for (; idx
<= eidx
; idx
++) {
3429 mmio
->sub_io_index
[idx
] = memory
;
3430 mmio
->region_offset
[idx
] = region_offset
;
3436 static subpage_t
*subpage_init (target_phys_addr_t base
, ram_addr_t
*phys
,
3437 ram_addr_t orig_memory
,
3438 ram_addr_t region_offset
)
3443 mmio
= qemu_mallocz(sizeof(subpage_t
));
3446 subpage_memory
= cpu_register_io_memory(subpage_read
, subpage_write
, mmio
,
3447 DEVICE_NATIVE_ENDIAN
);
3448 #if defined(DEBUG_SUBPAGE)
3449 printf("%s: %p base " TARGET_FMT_plx
" len %08x %d\n", __func__
,
3450 mmio
, base
, TARGET_PAGE_SIZE
, subpage_memory
);
3452 *phys
= subpage_memory
| IO_MEM_SUBPAGE
;
3453 subpage_register(mmio
, 0, TARGET_PAGE_SIZE
-1, orig_memory
, region_offset
);
3458 static int get_free_io_mem_idx(void)
3462 for (i
= 0; i
<IO_MEM_NB_ENTRIES
; i
++)
3463 if (!io_mem_used
[i
]) {
3467 fprintf(stderr
, "RAN out out io_mem_idx, max %d !\n", IO_MEM_NB_ENTRIES
);
3472 * Usually, devices operate in little endian mode. There are devices out
3473 * there that operate in big endian too. Each device gets byte swapped
3474 * mmio if plugged onto a CPU that does the other endianness.
3484 typedef struct SwapEndianContainer
{
3485 CPUReadMemoryFunc
*read
[3];
3486 CPUWriteMemoryFunc
*write
[3];
3488 } SwapEndianContainer
;
3490 static uint32_t swapendian_mem_readb (void *opaque
, target_phys_addr_t addr
)
3493 SwapEndianContainer
*c
= opaque
;
3494 val
= c
->read
[0](c
->opaque
, addr
);
3498 static uint32_t swapendian_mem_readw(void *opaque
, target_phys_addr_t addr
)
3501 SwapEndianContainer
*c
= opaque
;
3502 val
= bswap16(c
->read
[1](c
->opaque
, addr
));
3506 static uint32_t swapendian_mem_readl(void *opaque
, target_phys_addr_t addr
)
3509 SwapEndianContainer
*c
= opaque
;
3510 val
= bswap32(c
->read
[2](c
->opaque
, addr
));
3514 static CPUReadMemoryFunc
* const swapendian_readfn
[3]={
3515 swapendian_mem_readb
,
3516 swapendian_mem_readw
,
3517 swapendian_mem_readl
3520 static void swapendian_mem_writeb(void *opaque
, target_phys_addr_t addr
,
3523 SwapEndianContainer
*c
= opaque
;
3524 c
->write
[0](c
->opaque
, addr
, val
);
3527 static void swapendian_mem_writew(void *opaque
, target_phys_addr_t addr
,
3530 SwapEndianContainer
*c
= opaque
;
3531 c
->write
[1](c
->opaque
, addr
, bswap16(val
));
3534 static void swapendian_mem_writel(void *opaque
, target_phys_addr_t addr
,
3537 SwapEndianContainer
*c
= opaque
;
3538 c
->write
[2](c
->opaque
, addr
, bswap32(val
));
3541 static CPUWriteMemoryFunc
* const swapendian_writefn
[3]={
3542 swapendian_mem_writeb
,
3543 swapendian_mem_writew
,
3544 swapendian_mem_writel
3547 static void swapendian_init(int io_index
)
3549 SwapEndianContainer
*c
= qemu_malloc(sizeof(SwapEndianContainer
));
3552 /* Swap mmio for big endian targets */
3553 c
->opaque
= io_mem_opaque
[io_index
];
3554 for (i
= 0; i
< 3; i
++) {
3555 c
->read
[i
] = io_mem_read
[io_index
][i
];
3556 c
->write
[i
] = io_mem_write
[io_index
][i
];
3558 io_mem_read
[io_index
][i
] = swapendian_readfn
[i
];
3559 io_mem_write
[io_index
][i
] = swapendian_writefn
[i
];
3561 io_mem_opaque
[io_index
] = c
;
3564 static void swapendian_del(int io_index
)
3566 if (io_mem_read
[io_index
][0] == swapendian_readfn
[0]) {
3567 qemu_free(io_mem_opaque
[io_index
]);
3571 /* mem_read and mem_write are arrays of functions containing the
3572 function to access byte (index 0), word (index 1) and dword (index
3573 2). Functions can be omitted with a NULL function pointer.
3574 If io_index is non zero, the corresponding io zone is
3575 modified. If it is zero, a new io zone is allocated. The return
3576 value can be used with cpu_register_physical_memory(). (-1) is
3577 returned if error. */
3578 static int cpu_register_io_memory_fixed(int io_index
,
3579 CPUReadMemoryFunc
* const *mem_read
,
3580 CPUWriteMemoryFunc
* const *mem_write
,
3581 void *opaque
, enum device_endian endian
)
3585 if (io_index
<= 0) {
3586 io_index
= get_free_io_mem_idx();
3590 io_index
>>= IO_MEM_SHIFT
;
3591 if (io_index
>= IO_MEM_NB_ENTRIES
)
3595 for (i
= 0; i
< 3; ++i
) {
3596 io_mem_read
[io_index
][i
]
3597 = (mem_read
[i
] ? mem_read
[i
] : unassigned_mem_read
[i
]);
3599 for (i
= 0; i
< 3; ++i
) {
3600 io_mem_write
[io_index
][i
]
3601 = (mem_write
[i
] ? mem_write
[i
] : unassigned_mem_write
[i
]);
3603 io_mem_opaque
[io_index
] = opaque
;
3606 case DEVICE_BIG_ENDIAN
:
3607 #ifndef TARGET_WORDS_BIGENDIAN
3608 swapendian_init(io_index
);
3611 case DEVICE_LITTLE_ENDIAN
:
3612 #ifdef TARGET_WORDS_BIGENDIAN
3613 swapendian_init(io_index
);
3616 case DEVICE_NATIVE_ENDIAN
:
3621 return (io_index
<< IO_MEM_SHIFT
);
3624 int cpu_register_io_memory(CPUReadMemoryFunc
* const *mem_read
,
3625 CPUWriteMemoryFunc
* const *mem_write
,
3626 void *opaque
, enum device_endian endian
)
3628 return cpu_register_io_memory_fixed(0, mem_read
, mem_write
, opaque
, endian
);
3631 void cpu_unregister_io_memory(int io_table_address
)
3634 int io_index
= io_table_address
>> IO_MEM_SHIFT
;
3636 swapendian_del(io_index
);
3638 for (i
=0;i
< 3; i
++) {
3639 io_mem_read
[io_index
][i
] = unassigned_mem_read
[i
];
3640 io_mem_write
[io_index
][i
] = unassigned_mem_write
[i
];
3642 io_mem_opaque
[io_index
] = NULL
;
3643 io_mem_used
[io_index
] = 0;
3646 static void io_mem_init(void)
3650 cpu_register_io_memory_fixed(IO_MEM_ROM
, error_mem_read
,
3651 unassigned_mem_write
, NULL
,
3652 DEVICE_NATIVE_ENDIAN
);
3653 cpu_register_io_memory_fixed(IO_MEM_UNASSIGNED
, unassigned_mem_read
,
3654 unassigned_mem_write
, NULL
,
3655 DEVICE_NATIVE_ENDIAN
);
3656 cpu_register_io_memory_fixed(IO_MEM_NOTDIRTY
, error_mem_read
,
3657 notdirty_mem_write
, NULL
,
3658 DEVICE_NATIVE_ENDIAN
);
3662 io_mem_watch
= cpu_register_io_memory(watch_mem_read
,
3663 watch_mem_write
, NULL
,
3664 DEVICE_NATIVE_ENDIAN
);
3667 #endif /* !defined(CONFIG_USER_ONLY) */
3669 /* physical memory access (slow version, mainly for debug) */
3670 #if defined(CONFIG_USER_ONLY)
3671 int cpu_memory_rw_debug(CPUState
*env
, target_ulong addr
,
3672 uint8_t *buf
, int len
, int is_write
)
3679 page
= addr
& TARGET_PAGE_MASK
;
3680 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
3683 flags
= page_get_flags(page
);
3684 if (!(flags
& PAGE_VALID
))
3687 if (!(flags
& PAGE_WRITE
))
3689 /* XXX: this code should not depend on lock_user */
3690 if (!(p
= lock_user(VERIFY_WRITE
, addr
, l
, 0)))
3693 unlock_user(p
, addr
, l
);
3695 if (!(flags
& PAGE_READ
))
3697 /* XXX: this code should not depend on lock_user */
3698 if (!(p
= lock_user(VERIFY_READ
, addr
, l
, 1)))
3701 unlock_user(p
, addr
, 0);
3711 void cpu_physical_memory_rw(target_phys_addr_t addr
, uint8_t *buf
,
3712 int len
, int is_write
)
3717 target_phys_addr_t page
;
3722 page
= addr
& TARGET_PAGE_MASK
;
3723 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
3726 p
= phys_page_find(page
>> TARGET_PAGE_BITS
);
3728 pd
= IO_MEM_UNASSIGNED
;
3730 pd
= p
->phys_offset
;
3734 if ((pd
& ~TARGET_PAGE_MASK
) != IO_MEM_RAM
) {
3735 target_phys_addr_t addr1
= addr
;
3736 io_index
= (pd
>> IO_MEM_SHIFT
) & (IO_MEM_NB_ENTRIES
- 1);
3738 addr1
= (addr
& ~TARGET_PAGE_MASK
) + p
->region_offset
;
3739 /* XXX: could force cpu_single_env to NULL to avoid
3741 if (l
>= 4 && ((addr1
& 3) == 0)) {
3742 /* 32 bit write access */
3744 io_mem_write
[io_index
][2](io_mem_opaque
[io_index
], addr1
, val
);
3746 } else if (l
>= 2 && ((addr1
& 1) == 0)) {
3747 /* 16 bit write access */
3749 io_mem_write
[io_index
][1](io_mem_opaque
[io_index
], addr1
, val
);
3752 /* 8 bit write access */
3754 io_mem_write
[io_index
][0](io_mem_opaque
[io_index
], addr1
, val
);
3758 unsigned long addr1
;
3759 addr1
= (pd
& TARGET_PAGE_MASK
) + (addr
& ~TARGET_PAGE_MASK
);
3761 ptr
= qemu_get_ram_ptr(addr1
);
3762 memcpy(ptr
, buf
, l
);
3763 if (!cpu_physical_memory_is_dirty(addr1
)) {
3764 /* invalidate code */
3765 tb_invalidate_phys_page_range(addr1
, addr1
+ l
, 0);
3767 cpu_physical_memory_set_dirty_flags(
3768 addr1
, (0xff & ~CODE_DIRTY_FLAG
));
3772 if ((pd
& ~TARGET_PAGE_MASK
) > IO_MEM_ROM
&&
3773 !(pd
& IO_MEM_ROMD
)) {
3774 target_phys_addr_t addr1
= addr
;
3776 io_index
= (pd
>> IO_MEM_SHIFT
) & (IO_MEM_NB_ENTRIES
- 1);
3778 addr1
= (addr
& ~TARGET_PAGE_MASK
) + p
->region_offset
;
3779 if (l
>= 4 && ((addr1
& 3) == 0)) {
3780 /* 32 bit read access */
3781 val
= io_mem_read
[io_index
][2](io_mem_opaque
[io_index
], addr1
);
3784 } else if (l
>= 2 && ((addr1
& 1) == 0)) {
3785 /* 16 bit read access */
3786 val
= io_mem_read
[io_index
][1](io_mem_opaque
[io_index
], addr1
);
3790 /* 8 bit read access */
3791 val
= io_mem_read
[io_index
][0](io_mem_opaque
[io_index
], addr1
);
3797 ptr
= qemu_get_ram_ptr(pd
& TARGET_PAGE_MASK
) +
3798 (addr
& ~TARGET_PAGE_MASK
);
3799 memcpy(buf
, ptr
, l
);
3808 /* used for ROM loading : can write in RAM and ROM */
3809 void cpu_physical_memory_write_rom(target_phys_addr_t addr
,
3810 const uint8_t *buf
, int len
)
3814 target_phys_addr_t page
;
3819 page
= addr
& TARGET_PAGE_MASK
;
3820 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
3823 p
= phys_page_find(page
>> TARGET_PAGE_BITS
);
3825 pd
= IO_MEM_UNASSIGNED
;
3827 pd
= p
->phys_offset
;
3830 if ((pd
& ~TARGET_PAGE_MASK
) != IO_MEM_RAM
&&
3831 (pd
& ~TARGET_PAGE_MASK
) != IO_MEM_ROM
&&
3832 !(pd
& IO_MEM_ROMD
)) {
3835 unsigned long addr1
;
3836 addr1
= (pd
& TARGET_PAGE_MASK
) + (addr
& ~TARGET_PAGE_MASK
);
3838 ptr
= qemu_get_ram_ptr(addr1
);
3839 memcpy(ptr
, buf
, l
);
3849 target_phys_addr_t addr
;
3850 target_phys_addr_t len
;
3853 static BounceBuffer bounce
;
3855 typedef struct MapClient
{
3857 void (*callback
)(void *opaque
);
3858 QLIST_ENTRY(MapClient
) link
;
3861 static QLIST_HEAD(map_client_list
, MapClient
) map_client_list
3862 = QLIST_HEAD_INITIALIZER(map_client_list
);
3864 void *cpu_register_map_client(void *opaque
, void (*callback
)(void *opaque
))
3866 MapClient
*client
= qemu_malloc(sizeof(*client
));
3868 client
->opaque
= opaque
;
3869 client
->callback
= callback
;
3870 QLIST_INSERT_HEAD(&map_client_list
, client
, link
);
3874 void cpu_unregister_map_client(void *_client
)
3876 MapClient
*client
= (MapClient
*)_client
;
3878 QLIST_REMOVE(client
, link
);
3882 static void cpu_notify_map_clients(void)
3886 while (!QLIST_EMPTY(&map_client_list
)) {
3887 client
= QLIST_FIRST(&map_client_list
);
3888 client
->callback(client
->opaque
);
3889 cpu_unregister_map_client(client
);
3893 /* Map a physical memory region into a host virtual address.
3894 * May map a subset of the requested range, given by and returned in *plen.
3895 * May return NULL if resources needed to perform the mapping are exhausted.
3896 * Use only for reads OR writes - not for read-modify-write operations.
3897 * Use cpu_register_map_client() to know when retrying the map operation is
3898 * likely to succeed.
3900 void *cpu_physical_memory_map(target_phys_addr_t addr
,
3901 target_phys_addr_t
*plen
,
3904 target_phys_addr_t len
= *plen
;
3905 target_phys_addr_t done
= 0;
3907 uint8_t *ret
= NULL
;
3909 target_phys_addr_t page
;
3912 unsigned long addr1
;
3915 page
= addr
& TARGET_PAGE_MASK
;
3916 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
3919 p
= phys_page_find(page
>> TARGET_PAGE_BITS
);
3921 pd
= IO_MEM_UNASSIGNED
;
3923 pd
= p
->phys_offset
;
3926 if ((pd
& ~TARGET_PAGE_MASK
) != IO_MEM_RAM
) {
3927 if (done
|| bounce
.buffer
) {
3930 bounce
.buffer
= qemu_memalign(TARGET_PAGE_SIZE
, TARGET_PAGE_SIZE
);
3934 cpu_physical_memory_read(addr
, bounce
.buffer
, l
);
3936 ptr
= bounce
.buffer
;
3938 addr1
= (pd
& TARGET_PAGE_MASK
) + (addr
& ~TARGET_PAGE_MASK
);
3939 ptr
= qemu_get_ram_ptr(addr1
);
3943 } else if (ret
+ done
!= ptr
) {
3955 /* Unmaps a memory region previously mapped by cpu_physical_memory_map().
3956 * Will also mark the memory as dirty if is_write == 1. access_len gives
3957 * the amount of memory that was actually read or written by the caller.
3959 void cpu_physical_memory_unmap(void *buffer
, target_phys_addr_t len
,
3960 int is_write
, target_phys_addr_t access_len
)
3962 if (buffer
!= bounce
.buffer
) {
3964 ram_addr_t addr1
= qemu_ram_addr_from_host_nofail(buffer
);
3965 while (access_len
) {
3967 l
= TARGET_PAGE_SIZE
;
3970 if (!cpu_physical_memory_is_dirty(addr1
)) {
3971 /* invalidate code */
3972 tb_invalidate_phys_page_range(addr1
, addr1
+ l
, 0);
3974 cpu_physical_memory_set_dirty_flags(
3975 addr1
, (0xff & ~CODE_DIRTY_FLAG
));
3984 cpu_physical_memory_write(bounce
.addr
, bounce
.buffer
, access_len
);
3986 qemu_vfree(bounce
.buffer
);
3987 bounce
.buffer
= NULL
;
3988 cpu_notify_map_clients();
3991 /* warning: addr must be aligned */
3992 uint32_t ldl_phys(target_phys_addr_t addr
)
4000 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
4002 pd
= IO_MEM_UNASSIGNED
;
4004 pd
= p
->phys_offset
;
4007 if ((pd
& ~TARGET_PAGE_MASK
) > IO_MEM_ROM
&&
4008 !(pd
& IO_MEM_ROMD
)) {
4010 io_index
= (pd
>> IO_MEM_SHIFT
) & (IO_MEM_NB_ENTRIES
- 1);
4012 addr
= (addr
& ~TARGET_PAGE_MASK
) + p
->region_offset
;
4013 val
= io_mem_read
[io_index
][2](io_mem_opaque
[io_index
], addr
);
4016 ptr
= qemu_get_ram_ptr(pd
& TARGET_PAGE_MASK
) +
4017 (addr
& ~TARGET_PAGE_MASK
);
4023 /* warning: addr must be aligned */
4024 uint64_t ldq_phys(target_phys_addr_t addr
)
4032 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
4034 pd
= IO_MEM_UNASSIGNED
;
4036 pd
= p
->phys_offset
;
4039 if ((pd
& ~TARGET_PAGE_MASK
) > IO_MEM_ROM
&&
4040 !(pd
& IO_MEM_ROMD
)) {
4042 io_index
= (pd
>> IO_MEM_SHIFT
) & (IO_MEM_NB_ENTRIES
- 1);
4044 addr
= (addr
& ~TARGET_PAGE_MASK
) + p
->region_offset
;
4045 #ifdef TARGET_WORDS_BIGENDIAN
4046 val
= (uint64_t)io_mem_read
[io_index
][2](io_mem_opaque
[io_index
], addr
) << 32;
4047 val
|= io_mem_read
[io_index
][2](io_mem_opaque
[io_index
], addr
+ 4);
4049 val
= io_mem_read
[io_index
][2](io_mem_opaque
[io_index
], addr
);
4050 val
|= (uint64_t)io_mem_read
[io_index
][2](io_mem_opaque
[io_index
], addr
+ 4) << 32;
4054 ptr
= qemu_get_ram_ptr(pd
& TARGET_PAGE_MASK
) +
4055 (addr
& ~TARGET_PAGE_MASK
);
4062 uint32_t ldub_phys(target_phys_addr_t addr
)
4065 cpu_physical_memory_read(addr
, &val
, 1);
4069 /* warning: addr must be aligned */
4070 uint32_t lduw_phys(target_phys_addr_t addr
)
4078 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
4080 pd
= IO_MEM_UNASSIGNED
;
4082 pd
= p
->phys_offset
;
4085 if ((pd
& ~TARGET_PAGE_MASK
) > IO_MEM_ROM
&&
4086 !(pd
& IO_MEM_ROMD
)) {
4088 io_index
= (pd
>> IO_MEM_SHIFT
) & (IO_MEM_NB_ENTRIES
- 1);
4090 addr
= (addr
& ~TARGET_PAGE_MASK
) + p
->region_offset
;
4091 val
= io_mem_read
[io_index
][1](io_mem_opaque
[io_index
], addr
);
4094 ptr
= qemu_get_ram_ptr(pd
& TARGET_PAGE_MASK
) +
4095 (addr
& ~TARGET_PAGE_MASK
);
4101 /* warning: addr must be aligned. The ram page is not masked as dirty
4102 and the code inside is not invalidated. It is useful if the dirty
4103 bits are used to track modified PTEs */
4104 void stl_phys_notdirty(target_phys_addr_t addr
, uint32_t val
)
4111 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
4113 pd
= IO_MEM_UNASSIGNED
;
4115 pd
= p
->phys_offset
;
4118 if ((pd
& ~TARGET_PAGE_MASK
) != IO_MEM_RAM
) {
4119 io_index
= (pd
>> IO_MEM_SHIFT
) & (IO_MEM_NB_ENTRIES
- 1);
4121 addr
= (addr
& ~TARGET_PAGE_MASK
) + p
->region_offset
;
4122 io_mem_write
[io_index
][2](io_mem_opaque
[io_index
], addr
, val
);
4124 unsigned long addr1
= (pd
& TARGET_PAGE_MASK
) + (addr
& ~TARGET_PAGE_MASK
);
4125 ptr
= qemu_get_ram_ptr(addr1
);
4128 if (unlikely(in_migration
)) {
4129 if (!cpu_physical_memory_is_dirty(addr1
)) {
4130 /* invalidate code */
4131 tb_invalidate_phys_page_range(addr1
, addr1
+ 4, 0);
4133 cpu_physical_memory_set_dirty_flags(
4134 addr1
, (0xff & ~CODE_DIRTY_FLAG
));
4140 void stq_phys_notdirty(target_phys_addr_t addr
, uint64_t val
)
4147 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
4149 pd
= IO_MEM_UNASSIGNED
;
4151 pd
= p
->phys_offset
;
4154 if ((pd
& ~TARGET_PAGE_MASK
) != IO_MEM_RAM
) {
4155 io_index
= (pd
>> IO_MEM_SHIFT
) & (IO_MEM_NB_ENTRIES
- 1);
4157 addr
= (addr
& ~TARGET_PAGE_MASK
) + p
->region_offset
;
4158 #ifdef TARGET_WORDS_BIGENDIAN
4159 io_mem_write
[io_index
][2](io_mem_opaque
[io_index
], addr
, val
>> 32);
4160 io_mem_write
[io_index
][2](io_mem_opaque
[io_index
], addr
+ 4, val
);
4162 io_mem_write
[io_index
][2](io_mem_opaque
[io_index
], addr
, val
);
4163 io_mem_write
[io_index
][2](io_mem_opaque
[io_index
], addr
+ 4, val
>> 32);
4166 ptr
= qemu_get_ram_ptr(pd
& TARGET_PAGE_MASK
) +
4167 (addr
& ~TARGET_PAGE_MASK
);
4172 /* warning: addr must be aligned */
4173 void stl_phys(target_phys_addr_t addr
, uint32_t val
)
4180 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
4182 pd
= IO_MEM_UNASSIGNED
;
4184 pd
= p
->phys_offset
;
4187 if ((pd
& ~TARGET_PAGE_MASK
) != IO_MEM_RAM
) {
4188 io_index
= (pd
>> IO_MEM_SHIFT
) & (IO_MEM_NB_ENTRIES
- 1);
4190 addr
= (addr
& ~TARGET_PAGE_MASK
) + p
->region_offset
;
4191 io_mem_write
[io_index
][2](io_mem_opaque
[io_index
], addr
, val
);
4193 unsigned long addr1
;
4194 addr1
= (pd
& TARGET_PAGE_MASK
) + (addr
& ~TARGET_PAGE_MASK
);
4196 ptr
= qemu_get_ram_ptr(addr1
);
4198 if (!cpu_physical_memory_is_dirty(addr1
)) {
4199 /* invalidate code */
4200 tb_invalidate_phys_page_range(addr1
, addr1
+ 4, 0);
4202 cpu_physical_memory_set_dirty_flags(addr1
,
4203 (0xff & ~CODE_DIRTY_FLAG
));
4209 void stb_phys(target_phys_addr_t addr
, uint32_t val
)
4212 cpu_physical_memory_write(addr
, &v
, 1);
4215 /* warning: addr must be aligned */
4216 void stw_phys(target_phys_addr_t addr
, uint32_t val
)
4223 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
4225 pd
= IO_MEM_UNASSIGNED
;
4227 pd
= p
->phys_offset
;
4230 if ((pd
& ~TARGET_PAGE_MASK
) != IO_MEM_RAM
) {
4231 io_index
= (pd
>> IO_MEM_SHIFT
) & (IO_MEM_NB_ENTRIES
- 1);
4233 addr
= (addr
& ~TARGET_PAGE_MASK
) + p
->region_offset
;
4234 io_mem_write
[io_index
][1](io_mem_opaque
[io_index
], addr
, val
);
4236 unsigned long addr1
;
4237 addr1
= (pd
& TARGET_PAGE_MASK
) + (addr
& ~TARGET_PAGE_MASK
);
4239 ptr
= qemu_get_ram_ptr(addr1
);
4241 if (!cpu_physical_memory_is_dirty(addr1
)) {
4242 /* invalidate code */
4243 tb_invalidate_phys_page_range(addr1
, addr1
+ 2, 0);
4245 cpu_physical_memory_set_dirty_flags(addr1
,
4246 (0xff & ~CODE_DIRTY_FLAG
));
4252 void stq_phys(target_phys_addr_t addr
, uint64_t val
)
4255 cpu_physical_memory_write(addr
, &val
, 8);
4258 /* virtual memory access for debug (includes writing to ROM) */
4259 int cpu_memory_rw_debug(CPUState
*env
, target_ulong addr
,
4260 uint8_t *buf
, int len
, int is_write
)
4263 target_phys_addr_t phys_addr
;
4267 page
= addr
& TARGET_PAGE_MASK
;
4268 phys_addr
= cpu_get_phys_page_debug(env
, page
);
4269 /* if no physical page mapped, return an error */
4270 if (phys_addr
== -1)
4272 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
4275 phys_addr
+= (addr
& ~TARGET_PAGE_MASK
);
4277 cpu_physical_memory_write_rom(phys_addr
, buf
, l
);
4279 cpu_physical_memory_rw(phys_addr
, buf
, l
, is_write
);
4288 /* in deterministic execution mode, instructions doing device I/Os
4289 must be at the end of the TB */
4290 void cpu_io_recompile(CPUState
*env
, void *retaddr
)
4292 TranslationBlock
*tb
;
4294 target_ulong pc
, cs_base
;
4297 tb
= tb_find_pc((unsigned long)retaddr
);
4299 cpu_abort(env
, "cpu_io_recompile: could not find TB for pc=%p",
4302 n
= env
->icount_decr
.u16
.low
+ tb
->icount
;
4303 cpu_restore_state(tb
, env
, (unsigned long)retaddr
);
4304 /* Calculate how many instructions had been executed before the fault
4306 n
= n
- env
->icount_decr
.u16
.low
;
4307 /* Generate a new TB ending on the I/O insn. */
4309 /* On MIPS and SH, delay slot instructions can only be restarted if
4310 they were already the first instruction in the TB. If this is not
4311 the first instruction in a TB then re-execute the preceding
4313 #if defined(TARGET_MIPS)
4314 if ((env
->hflags
& MIPS_HFLAG_BMASK
) != 0 && n
> 1) {
4315 env
->active_tc
.PC
-= 4;
4316 env
->icount_decr
.u16
.low
++;
4317 env
->hflags
&= ~MIPS_HFLAG_BMASK
;
4319 #elif defined(TARGET_SH4)
4320 if ((env
->flags
& ((DELAY_SLOT
| DELAY_SLOT_CONDITIONAL
))) != 0
4323 env
->icount_decr
.u16
.low
++;
4324 env
->flags
&= ~(DELAY_SLOT
| DELAY_SLOT_CONDITIONAL
);
4327 /* This should never happen. */
4328 if (n
> CF_COUNT_MASK
)
4329 cpu_abort(env
, "TB too big during recompile");
4331 cflags
= n
| CF_LAST_IO
;
4333 cs_base
= tb
->cs_base
;
4335 tb_phys_invalidate(tb
, -1);
4336 /* FIXME: In theory this could raise an exception. In practice
4337 we have already translated the block once so it's probably ok. */
4338 tb_gen_code(env
, pc
, cs_base
, flags
, cflags
);
4339 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
4340 the first in the TB) then we end up generating a whole new TB and
4341 repeating the fault, which is horribly inefficient.
4342 Better would be to execute just this insn uncached, or generate a
4344 cpu_resume_from_signal(env
, NULL
);
4347 #if !defined(CONFIG_USER_ONLY)
4349 void dump_exec_info(FILE *f
, fprintf_function cpu_fprintf
)
4351 int i
, target_code_size
, max_target_code_size
;
4352 int direct_jmp_count
, direct_jmp2_count
, cross_page
;
4353 TranslationBlock
*tb
;
4355 target_code_size
= 0;
4356 max_target_code_size
= 0;
4358 direct_jmp_count
= 0;
4359 direct_jmp2_count
= 0;
4360 for(i
= 0; i
< nb_tbs
; i
++) {
4362 target_code_size
+= tb
->size
;
4363 if (tb
->size
> max_target_code_size
)
4364 max_target_code_size
= tb
->size
;
4365 if (tb
->page_addr
[1] != -1)
4367 if (tb
->tb_next_offset
[0] != 0xffff) {
4369 if (tb
->tb_next_offset
[1] != 0xffff) {
4370 direct_jmp2_count
++;
4374 /* XXX: avoid using doubles ? */
4375 cpu_fprintf(f
, "Translation buffer state:\n");
4376 cpu_fprintf(f
, "gen code size %td/%ld\n",
4377 code_gen_ptr
- code_gen_buffer
, code_gen_buffer_max_size
);
4378 cpu_fprintf(f
, "TB count %d/%d\n",
4379 nb_tbs
, code_gen_max_blocks
);
4380 cpu_fprintf(f
, "TB avg target size %d max=%d bytes\n",
4381 nb_tbs
? target_code_size
/ nb_tbs
: 0,
4382 max_target_code_size
);
4383 cpu_fprintf(f
, "TB avg host size %td bytes (expansion ratio: %0.1f)\n",
4384 nb_tbs
? (code_gen_ptr
- code_gen_buffer
) / nb_tbs
: 0,
4385 target_code_size
? (double) (code_gen_ptr
- code_gen_buffer
) / target_code_size
: 0);
4386 cpu_fprintf(f
, "cross page TB count %d (%d%%)\n",
4388 nb_tbs
? (cross_page
* 100) / nb_tbs
: 0);
4389 cpu_fprintf(f
, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
4391 nb_tbs
? (direct_jmp_count
* 100) / nb_tbs
: 0,
4393 nb_tbs
? (direct_jmp2_count
* 100) / nb_tbs
: 0);
4394 cpu_fprintf(f
, "\nStatistics:\n");
4395 cpu_fprintf(f
, "TB flush count %d\n", tb_flush_count
);
4396 cpu_fprintf(f
, "TB invalidate count %d\n", tb_phys_invalidate_count
);
4397 cpu_fprintf(f
, "TLB flush count %d\n", tlb_flush_count
);
4398 tcg_dump_info(f
, cpu_fprintf
);
4401 #define MMUSUFFIX _cmmu
4402 #define GETPC() NULL
4403 #define env cpu_single_env
4404 #define SOFTMMU_CODE_ACCESS
4407 #include "softmmu_template.h"
4410 #include "softmmu_template.h"
4413 #include "softmmu_template.h"
4416 #include "softmmu_template.h"