2 * Alpha emulation cpu definitions for qemu.
4 * Copyright (c) 2007 Jocelyn Mayer
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
23 #include "qemu-common.h"
26 #define TARGET_LONG_BITS 64
29 #define CPUArchState struct CPUAlphaState
31 /* Alpha processors have a weak memory model */
32 #define TCG_GUEST_DEFAULT_MO (0)
34 #include "exec/cpu-defs.h"
36 #define ICACHE_LINE_SIZE 32
37 #define DCACHE_LINE_SIZE 32
39 #define TARGET_PAGE_BITS 13
41 #ifdef CONFIG_USER_ONLY
42 /* ??? The kernel likes to give addresses in high memory. If the host has
43 more virtual address space than the guest, this can lead to impossible
44 allocations. Honor the long-standing assumption that only kernel addrs
45 are negative, but otherwise allow allocations anywhere. This could lead
46 to tricky emulation problems for programs doing tagged addressing, but
47 that's far fewer than encounter the impossible allocation problem. */
48 #define TARGET_PHYS_ADDR_SPACE_BITS 63
49 #define TARGET_VIRT_ADDR_SPACE_BITS 63
51 /* ??? EV4 has 34 phys addr bits, EV5 has 40, EV6 has 44. */
52 #define TARGET_PHYS_ADDR_SPACE_BITS 44
53 #define TARGET_VIRT_ADDR_SPACE_BITS (30 + TARGET_PAGE_BITS)
56 /* Alpha major type */
62 ALPHA_EV5
= 5, /* 21164 */
63 ALPHA_EV45
= 6, /* 21064A */
64 ALPHA_EV56
= 7, /* 21164A */
75 ALPHA_LCA_1
= 1, /* 21066 */
76 ALPHA_LCA_2
= 2, /* 20166 */
77 ALPHA_LCA_3
= 3, /* 21068 */
78 ALPHA_LCA_4
= 4, /* 21068 */
79 ALPHA_LCA_5
= 5, /* 21066A */
80 ALPHA_LCA_6
= 6, /* 21068A */
85 ALPHA_EV5_1
= 1, /* Rev BA, CA */
86 ALPHA_EV5_2
= 2, /* Rev DA, EA */
87 ALPHA_EV5_3
= 3, /* Pass 3 */
88 ALPHA_EV5_4
= 4, /* Pass 3.2 */
89 ALPHA_EV5_5
= 5, /* Pass 4 */
94 ALPHA_EV45_1
= 1, /* Pass 1 */
95 ALPHA_EV45_2
= 2, /* Pass 1.1 */
96 ALPHA_EV45_3
= 3, /* Pass 2 */
101 ALPHA_EV56_1
= 1, /* Pass 1 */
102 ALPHA_EV56_2
= 2, /* Pass 2 */
106 IMPLVER_2106x
= 0, /* EV4, EV45 & LCA45 */
107 IMPLVER_21164
= 1, /* EV5, EV56 & PCA45 */
108 IMPLVER_21264
= 2, /* EV6, EV67 & EV68x */
109 IMPLVER_21364
= 3, /* EV7 & EV79 */
113 AMASK_BWX
= 0x00000001,
114 AMASK_FIX
= 0x00000002,
115 AMASK_CIX
= 0x00000004,
116 AMASK_MVI
= 0x00000100,
117 AMASK_TRAP
= 0x00000200,
118 AMASK_PREFETCH
= 0x00001000,
122 VAX_ROUND_NORMAL
= 0,
127 IEEE_ROUND_NORMAL
= 0,
134 /* IEEE floating-point operations encoding */
146 FP_ROUND_CHOPPED
= 0x0,
147 FP_ROUND_MINUS
= 0x1,
148 FP_ROUND_NORMAL
= 0x2,
149 FP_ROUND_DYNAMIC
= 0x3,
152 /* FPCR bits -- right-shifted 32 so we can use a uint32_t. */
153 #define FPCR_SUM (1U << (63 - 32))
154 #define FPCR_INED (1U << (62 - 32))
155 #define FPCR_UNFD (1U << (61 - 32))
156 #define FPCR_UNDZ (1U << (60 - 32))
157 #define FPCR_DYN_SHIFT (58 - 32)
158 #define FPCR_DYN_CHOPPED (0U << FPCR_DYN_SHIFT)
159 #define FPCR_DYN_MINUS (1U << FPCR_DYN_SHIFT)
160 #define FPCR_DYN_NORMAL (2U << FPCR_DYN_SHIFT)
161 #define FPCR_DYN_PLUS (3U << FPCR_DYN_SHIFT)
162 #define FPCR_DYN_MASK (3U << FPCR_DYN_SHIFT)
163 #define FPCR_IOV (1U << (57 - 32))
164 #define FPCR_INE (1U << (56 - 32))
165 #define FPCR_UNF (1U << (55 - 32))
166 #define FPCR_OVF (1U << (54 - 32))
167 #define FPCR_DZE (1U << (53 - 32))
168 #define FPCR_INV (1U << (52 - 32))
169 #define FPCR_OVFD (1U << (51 - 32))
170 #define FPCR_DZED (1U << (50 - 32))
171 #define FPCR_INVD (1U << (49 - 32))
172 #define FPCR_DNZ (1U << (48 - 32))
173 #define FPCR_DNOD (1U << (47 - 32))
174 #define FPCR_STATUS_MASK (FPCR_IOV | FPCR_INE | FPCR_UNF \
175 | FPCR_OVF | FPCR_DZE | FPCR_INV)
177 /* The silly software trap enables implemented by the kernel emulation.
178 These are more or less architecturally required, since the real hardware
179 has read-as-zero bits in the FPCR when the features aren't implemented.
180 For the purposes of QEMU, we pretend the FPCR can hold everything. */
181 #define SWCR_TRAP_ENABLE_INV (1U << 1)
182 #define SWCR_TRAP_ENABLE_DZE (1U << 2)
183 #define SWCR_TRAP_ENABLE_OVF (1U << 3)
184 #define SWCR_TRAP_ENABLE_UNF (1U << 4)
185 #define SWCR_TRAP_ENABLE_INE (1U << 5)
186 #define SWCR_TRAP_ENABLE_DNO (1U << 6)
187 #define SWCR_TRAP_ENABLE_MASK ((1U << 7) - (1U << 1))
189 #define SWCR_MAP_DMZ (1U << 12)
190 #define SWCR_MAP_UMZ (1U << 13)
191 #define SWCR_MAP_MASK (SWCR_MAP_DMZ | SWCR_MAP_UMZ)
193 #define SWCR_STATUS_INV (1U << 17)
194 #define SWCR_STATUS_DZE (1U << 18)
195 #define SWCR_STATUS_OVF (1U << 19)
196 #define SWCR_STATUS_UNF (1U << 20)
197 #define SWCR_STATUS_INE (1U << 21)
198 #define SWCR_STATUS_DNO (1U << 22)
199 #define SWCR_STATUS_MASK ((1U << 23) - (1U << 17))
201 #define SWCR_MASK (SWCR_TRAP_ENABLE_MASK | SWCR_MAP_MASK | SWCR_STATUS_MASK)
203 /* MMU modes definitions */
205 /* Alpha has 5 MMU modes: PALcode, Kernel, Executive, Supervisor, and User.
206 The Unix PALcode only exposes the kernel and user modes; presumably
207 executive and supervisor are used by VMS.
209 PALcode itself uses physical mode for code and kernel mode for data;
210 there are PALmode instructions that can access data via physical mode
211 or via an os-installed "alternate mode", which is one of the 4 above.
213 That said, we're only emulating Unix PALcode, and not attempting VMS,
214 so we don't need to implement Executive and Supervisor. QEMU's own
215 PALcode cheats and usees the KSEG mapping for its code+data rather than
216 physical addresses. */
218 #define NB_MMU_MODES 3
220 #define MMU_MODE0_SUFFIX _kernel
221 #define MMU_MODE1_SUFFIX _user
222 #define MMU_KERNEL_IDX 0
223 #define MMU_USER_IDX 1
224 #define MMU_PHYS_IDX 2
226 typedef struct CPUAlphaState CPUAlphaState
;
228 struct CPUAlphaState
{
236 /* The FPCR, and disassembled portions thereof. */
238 uint32_t fpcr_exc_enable
;
239 float_status fp_status
;
240 uint8_t fpcr_dyn_round
;
241 uint8_t fpcr_flush_to_zero
;
243 /* Mask of PALmode, Processor State et al. Most of this gets copied
244 into the TranslatorBlock flags and controls code generation. */
247 /* The high 32-bits of the processor cycle counter. */
250 /* These pass data from the exception logic in the translator and
251 helpers to the OS entry point. This is used for both system
252 emulation and user-mode. */
257 #if !defined(CONFIG_USER_ONLY)
258 /* The internal data required by our emulation of the Unix PALcode. */
266 uint64_t scratch
[24];
269 /* This alarm doesn't exist in real hardware; we wish it did. */
270 uint64_t alarm_expire
;
272 /* Those resources are used only in QEMU core */
284 * @env: #CPUAlphaState
295 /* This alarm doesn't exist in real hardware; we wish it did. */
296 QEMUTimer
*alarm_timer
;
299 static inline AlphaCPU
*alpha_env_get_cpu(CPUAlphaState
*env
)
301 return container_of(env
, AlphaCPU
, env
);
304 #define ENV_GET_CPU(e) CPU(alpha_env_get_cpu(e))
306 #define ENV_OFFSET offsetof(AlphaCPU, env)
308 #ifndef CONFIG_USER_ONLY
309 extern const struct VMStateDescription vmstate_alpha_cpu
;
312 void alpha_cpu_do_interrupt(CPUState
*cpu
);
313 bool alpha_cpu_exec_interrupt(CPUState
*cpu
, int int_req
);
314 void alpha_cpu_dump_state(CPUState
*cs
, FILE *f
, fprintf_function cpu_fprintf
,
316 hwaddr
alpha_cpu_get_phys_page_debug(CPUState
*cpu
, vaddr addr
);
317 int alpha_cpu_gdb_read_register(CPUState
*cpu
, uint8_t *buf
, int reg
);
318 int alpha_cpu_gdb_write_register(CPUState
*cpu
, uint8_t *buf
, int reg
);
319 void alpha_cpu_do_unaligned_access(CPUState
*cpu
, vaddr addr
,
320 MMUAccessType access_type
,
321 int mmu_idx
, uintptr_t retaddr
);
323 #define cpu_list alpha_cpu_list
324 #define cpu_signal_handler cpu_alpha_signal_handler
326 #include "exec/cpu-all.h"
329 FEATURE_ASN
= 0x00000001,
330 FEATURE_SPS
= 0x00000002,
331 FEATURE_VIRBND
= 0x00000004,
332 FEATURE_TBCHK
= 0x00000008,
349 /* Alpha-specific interrupt pending bits. */
350 #define CPU_INTERRUPT_TIMER CPU_INTERRUPT_TGT_EXT_0
351 #define CPU_INTERRUPT_SMP CPU_INTERRUPT_TGT_EXT_1
352 #define CPU_INTERRUPT_MCHK CPU_INTERRUPT_TGT_EXT_2
354 /* OSF/1 Page table bits. */
357 PTE_FOR
= 0x0002, /* used for page protection (fault on read) */
358 PTE_FOW
= 0x0004, /* used for page protection (fault on write) */
359 PTE_FOE
= 0x0008, /* used for page protection (fault on exec) */
367 /* Hardware interrupt (entInt) constants. */
376 /* Memory management (entMM) constants. */
385 /* Arithmetic exception (entArith) constants. */
387 EXC_M_SWC
= 1, /* Software completion */
388 EXC_M_INV
= 2, /* Invalid operation */
389 EXC_M_DZE
= 4, /* Division by zero */
390 EXC_M_FOV
= 8, /* Overflow */
391 EXC_M_UNF
= 16, /* Underflow */
392 EXC_M_INE
= 32, /* Inexact result */
393 EXC_M_IOV
= 64 /* Integer Overflow */
396 /* Processor status constants. */
397 /* Low 3 bits are interrupt mask level. */
398 #define PS_INT_MASK 7u
400 /* Bits 4 and 5 are the mmu mode. The VMS PALcode uses all 4 modes;
401 The Unix PALcode only uses bit 4. */
402 #define PS_USER_MODE 8u
404 /* CPUAlphaState->flags constants. These are layed out so that we
405 can set or reset the pieces individually by assigning to the byte,
406 or manipulated as a whole. */
408 #define ENV_FLAG_PAL_SHIFT 0
409 #define ENV_FLAG_PS_SHIFT 8
410 #define ENV_FLAG_RX_SHIFT 16
411 #define ENV_FLAG_FEN_SHIFT 24
413 #define ENV_FLAG_PAL_MODE (1u << ENV_FLAG_PAL_SHIFT)
414 #define ENV_FLAG_PS_USER (PS_USER_MODE << ENV_FLAG_PS_SHIFT)
415 #define ENV_FLAG_RX_FLAG (1u << ENV_FLAG_RX_SHIFT)
416 #define ENV_FLAG_FEN (1u << ENV_FLAG_FEN_SHIFT)
418 #define ENV_FLAG_TB_MASK \
419 (ENV_FLAG_PAL_MODE | ENV_FLAG_PS_USER | ENV_FLAG_FEN)
421 static inline int cpu_mmu_index(CPUAlphaState
*env
, bool ifetch
)
423 int ret
= env
->flags
& ENV_FLAG_PS_USER
? MMU_USER_IDX
: MMU_KERNEL_IDX
;
424 if (env
->flags
& ENV_FLAG_PAL_MODE
) {
425 ret
= MMU_KERNEL_IDX
;
467 void alpha_translate_init(void);
469 #define ALPHA_CPU_TYPE_SUFFIX "-" TYPE_ALPHA_CPU
470 #define ALPHA_CPU_TYPE_NAME(model) model ALPHA_CPU_TYPE_SUFFIX
471 #define CPU_RESOLVING_TYPE TYPE_ALPHA_CPU
473 void alpha_cpu_list(FILE *f
, fprintf_function cpu_fprintf
);
474 /* you can call this signal handler from your SIGBUS and SIGSEGV
475 signal handlers to inform the virtual CPU of exceptions. non zero
476 is returned if the signal was handled by the virtual CPU. */
477 int cpu_alpha_signal_handler(int host_signum
, void *pinfo
,
479 int alpha_cpu_handle_mmu_fault(CPUState
*cpu
, vaddr address
, int size
, int rw
,
481 void QEMU_NORETURN
dynamic_excp(CPUAlphaState
*, uintptr_t, int, int);
482 void QEMU_NORETURN
arith_excp(CPUAlphaState
*, uintptr_t, int, uint64_t);
484 uint64_t cpu_alpha_load_fpcr (CPUAlphaState
*env
);
485 void cpu_alpha_store_fpcr (CPUAlphaState
*env
, uint64_t val
);
486 uint64_t cpu_alpha_load_gr(CPUAlphaState
*env
, unsigned reg
);
487 void cpu_alpha_store_gr(CPUAlphaState
*env
, unsigned reg
, uint64_t val
);
488 #ifndef CONFIG_USER_ONLY
489 void alpha_cpu_do_transaction_failed(CPUState
*cs
, hwaddr physaddr
,
490 vaddr addr
, unsigned size
,
491 MMUAccessType access_type
,
492 int mmu_idx
, MemTxAttrs attrs
,
493 MemTxResult response
, uintptr_t retaddr
);
496 static inline void cpu_get_tb_cpu_state(CPUAlphaState
*env
, target_ulong
*pc
,
497 target_ulong
*cs_base
, uint32_t *pflags
)
501 *pflags
= env
->flags
& ENV_FLAG_TB_MASK
;
504 #endif /* ALPHA_CPU_H */