2 * Emulation of Linux signals
4 * Copyright (c) 2003 Fabrice Bellard
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
20 #include "qemu/bitops.h"
21 #include "exec/gdbstub.h"
22 #include "hw/core/tcg-cpu-ops.h"
24 #include <sys/ucontext.h>
25 #include <sys/resource.h>
28 #include "user-internals.h"
32 #include "signal-common.h"
33 #include "host-signal.h"
34 #include "user/safe-syscall.h"
36 static struct target_sigaction sigact_table
[TARGET_NSIG
];
38 static void host_signal_handler(int host_signum
, siginfo_t
*info
,
41 /* Fallback addresses into sigtramp page. */
42 abi_ulong default_sigreturn
;
43 abi_ulong default_rt_sigreturn
;
46 * System includes define _NSIG as SIGRTMAX + 1,
47 * but qemu (like the kernel) defines TARGET_NSIG as TARGET_SIGRTMAX
48 * and the first signal is SIGHUP defined as 1
49 * Signal number 0 is reserved for use as kill(pid, 0), to test whether
50 * a process exists without sending it a signal.
53 QEMU_BUILD_BUG_ON(__SIGRTMAX
+ 1 != _NSIG
);
55 static uint8_t host_to_target_signal_table
[_NSIG
] = {
56 [SIGHUP
] = TARGET_SIGHUP
,
57 [SIGINT
] = TARGET_SIGINT
,
58 [SIGQUIT
] = TARGET_SIGQUIT
,
59 [SIGILL
] = TARGET_SIGILL
,
60 [SIGTRAP
] = TARGET_SIGTRAP
,
61 [SIGABRT
] = TARGET_SIGABRT
,
62 /* [SIGIOT] = TARGET_SIGIOT,*/
63 [SIGBUS
] = TARGET_SIGBUS
,
64 [SIGFPE
] = TARGET_SIGFPE
,
65 [SIGKILL
] = TARGET_SIGKILL
,
66 [SIGUSR1
] = TARGET_SIGUSR1
,
67 [SIGSEGV
] = TARGET_SIGSEGV
,
68 [SIGUSR2
] = TARGET_SIGUSR2
,
69 [SIGPIPE
] = TARGET_SIGPIPE
,
70 [SIGALRM
] = TARGET_SIGALRM
,
71 [SIGTERM
] = TARGET_SIGTERM
,
73 [SIGSTKFLT
] = TARGET_SIGSTKFLT
,
75 [SIGCHLD
] = TARGET_SIGCHLD
,
76 [SIGCONT
] = TARGET_SIGCONT
,
77 [SIGSTOP
] = TARGET_SIGSTOP
,
78 [SIGTSTP
] = TARGET_SIGTSTP
,
79 [SIGTTIN
] = TARGET_SIGTTIN
,
80 [SIGTTOU
] = TARGET_SIGTTOU
,
81 [SIGURG
] = TARGET_SIGURG
,
82 [SIGXCPU
] = TARGET_SIGXCPU
,
83 [SIGXFSZ
] = TARGET_SIGXFSZ
,
84 [SIGVTALRM
] = TARGET_SIGVTALRM
,
85 [SIGPROF
] = TARGET_SIGPROF
,
86 [SIGWINCH
] = TARGET_SIGWINCH
,
87 [SIGIO
] = TARGET_SIGIO
,
88 [SIGPWR
] = TARGET_SIGPWR
,
89 [SIGSYS
] = TARGET_SIGSYS
,
90 /* next signals stay the same */
93 static uint8_t target_to_host_signal_table
[TARGET_NSIG
+ 1];
95 /* valid sig is between 1 and _NSIG - 1 */
96 int host_to_target_signal(int sig
)
98 if (sig
< 1 || sig
>= _NSIG
) {
101 return host_to_target_signal_table
[sig
];
104 /* valid sig is between 1 and TARGET_NSIG */
105 int target_to_host_signal(int sig
)
107 if (sig
< 1 || sig
> TARGET_NSIG
) {
110 return target_to_host_signal_table
[sig
];
113 static inline void target_sigaddset(target_sigset_t
*set
, int signum
)
116 abi_ulong mask
= (abi_ulong
)1 << (signum
% TARGET_NSIG_BPW
);
117 set
->sig
[signum
/ TARGET_NSIG_BPW
] |= mask
;
120 static inline int target_sigismember(const target_sigset_t
*set
, int signum
)
123 abi_ulong mask
= (abi_ulong
)1 << (signum
% TARGET_NSIG_BPW
);
124 return ((set
->sig
[signum
/ TARGET_NSIG_BPW
] & mask
) != 0);
127 void host_to_target_sigset_internal(target_sigset_t
*d
,
130 int host_sig
, target_sig
;
131 target_sigemptyset(d
);
132 for (host_sig
= 1; host_sig
< _NSIG
; host_sig
++) {
133 target_sig
= host_to_target_signal(host_sig
);
134 if (target_sig
< 1 || target_sig
> TARGET_NSIG
) {
137 if (sigismember(s
, host_sig
)) {
138 target_sigaddset(d
, target_sig
);
143 void host_to_target_sigset(target_sigset_t
*d
, const sigset_t
*s
)
148 host_to_target_sigset_internal(&d1
, s
);
149 for(i
= 0;i
< TARGET_NSIG_WORDS
; i
++)
150 d
->sig
[i
] = tswapal(d1
.sig
[i
]);
153 void target_to_host_sigset_internal(sigset_t
*d
,
154 const target_sigset_t
*s
)
156 int host_sig
, target_sig
;
158 for (target_sig
= 1; target_sig
<= TARGET_NSIG
; target_sig
++) {
159 host_sig
= target_to_host_signal(target_sig
);
160 if (host_sig
< 1 || host_sig
>= _NSIG
) {
163 if (target_sigismember(s
, target_sig
)) {
164 sigaddset(d
, host_sig
);
169 void target_to_host_sigset(sigset_t
*d
, const target_sigset_t
*s
)
174 for(i
= 0;i
< TARGET_NSIG_WORDS
; i
++)
175 s1
.sig
[i
] = tswapal(s
->sig
[i
]);
176 target_to_host_sigset_internal(d
, &s1
);
179 void host_to_target_old_sigset(abi_ulong
*old_sigset
,
180 const sigset_t
*sigset
)
183 host_to_target_sigset(&d
, sigset
);
184 *old_sigset
= d
.sig
[0];
187 void target_to_host_old_sigset(sigset_t
*sigset
,
188 const abi_ulong
*old_sigset
)
193 d
.sig
[0] = *old_sigset
;
194 for(i
= 1;i
< TARGET_NSIG_WORDS
; i
++)
196 target_to_host_sigset(sigset
, &d
);
199 int block_signals(void)
201 TaskState
*ts
= (TaskState
*)thread_cpu
->opaque
;
204 /* It's OK to block everything including SIGSEGV, because we won't
205 * run any further guest code before unblocking signals in
206 * process_pending_signals().
209 sigprocmask(SIG_SETMASK
, &set
, 0);
211 return qatomic_xchg(&ts
->signal_pending
, 1);
214 /* Wrapper for sigprocmask function
215 * Emulates a sigprocmask in a safe way for the guest. Note that set and oldset
216 * are host signal set, not guest ones. Returns -QEMU_ERESTARTSYS if
217 * a signal was already pending and the syscall must be restarted, or
219 * If set is NULL, this is guaranteed not to fail.
221 int do_sigprocmask(int how
, const sigset_t
*set
, sigset_t
*oldset
)
223 TaskState
*ts
= (TaskState
*)thread_cpu
->opaque
;
226 *oldset
= ts
->signal_mask
;
232 if (block_signals()) {
233 return -QEMU_ERESTARTSYS
;
238 sigorset(&ts
->signal_mask
, &ts
->signal_mask
, set
);
241 for (i
= 1; i
<= NSIG
; ++i
) {
242 if (sigismember(set
, i
)) {
243 sigdelset(&ts
->signal_mask
, i
);
248 ts
->signal_mask
= *set
;
251 g_assert_not_reached();
254 /* Silently ignore attempts to change blocking status of KILL or STOP */
255 sigdelset(&ts
->signal_mask
, SIGKILL
);
256 sigdelset(&ts
->signal_mask
, SIGSTOP
);
261 /* Just set the guest's signal mask to the specified value; the
262 * caller is assumed to have called block_signals() already.
264 void set_sigmask(const sigset_t
*set
)
266 TaskState
*ts
= (TaskState
*)thread_cpu
->opaque
;
268 ts
->signal_mask
= *set
;
271 /* sigaltstack management */
273 int on_sig_stack(unsigned long sp
)
275 TaskState
*ts
= (TaskState
*)thread_cpu
->opaque
;
277 return (sp
- ts
->sigaltstack_used
.ss_sp
278 < ts
->sigaltstack_used
.ss_size
);
281 int sas_ss_flags(unsigned long sp
)
283 TaskState
*ts
= (TaskState
*)thread_cpu
->opaque
;
285 return (ts
->sigaltstack_used
.ss_size
== 0 ? SS_DISABLE
286 : on_sig_stack(sp
) ? SS_ONSTACK
: 0);
289 abi_ulong
target_sigsp(abi_ulong sp
, struct target_sigaction
*ka
)
292 * This is the X/Open sanctioned signal stack switching.
294 TaskState
*ts
= (TaskState
*)thread_cpu
->opaque
;
296 if ((ka
->sa_flags
& TARGET_SA_ONSTACK
) && !sas_ss_flags(sp
)) {
297 return ts
->sigaltstack_used
.ss_sp
+ ts
->sigaltstack_used
.ss_size
;
302 void target_save_altstack(target_stack_t
*uss
, CPUArchState
*env
)
304 TaskState
*ts
= (TaskState
*)thread_cpu
->opaque
;
306 __put_user(ts
->sigaltstack_used
.ss_sp
, &uss
->ss_sp
);
307 __put_user(sas_ss_flags(get_sp_from_cpustate(env
)), &uss
->ss_flags
);
308 __put_user(ts
->sigaltstack_used
.ss_size
, &uss
->ss_size
);
311 abi_long
target_restore_altstack(target_stack_t
*uss
, CPUArchState
*env
)
313 TaskState
*ts
= (TaskState
*)thread_cpu
->opaque
;
314 size_t minstacksize
= TARGET_MINSIGSTKSZ
;
317 #if defined(TARGET_PPC64)
318 /* ELF V2 for PPC64 has a 4K minimum stack size for signal handlers */
319 struct image_info
*image
= ts
->info
;
320 if (get_ppc64_abi(image
) > 1) {
325 __get_user(ss
.ss_sp
, &uss
->ss_sp
);
326 __get_user(ss
.ss_size
, &uss
->ss_size
);
327 __get_user(ss
.ss_flags
, &uss
->ss_flags
);
329 if (on_sig_stack(get_sp_from_cpustate(env
))) {
330 return -TARGET_EPERM
;
333 switch (ss
.ss_flags
) {
335 return -TARGET_EINVAL
;
337 case TARGET_SS_DISABLE
:
342 case TARGET_SS_ONSTACK
:
344 if (ss
.ss_size
< minstacksize
) {
345 return -TARGET_ENOMEM
;
350 ts
->sigaltstack_used
.ss_sp
= ss
.ss_sp
;
351 ts
->sigaltstack_used
.ss_size
= ss
.ss_size
;
355 /* siginfo conversion */
357 static inline void host_to_target_siginfo_noswap(target_siginfo_t
*tinfo
,
358 const siginfo_t
*info
)
360 int sig
= host_to_target_signal(info
->si_signo
);
361 int si_code
= info
->si_code
;
363 tinfo
->si_signo
= sig
;
365 tinfo
->si_code
= info
->si_code
;
367 /* This memset serves two purposes:
368 * (1) ensure we don't leak random junk to the guest later
369 * (2) placate false positives from gcc about fields
370 * being used uninitialized if it chooses to inline both this
371 * function and tswap_siginfo() into host_to_target_siginfo().
373 memset(tinfo
->_sifields
._pad
, 0, sizeof(tinfo
->_sifields
._pad
));
375 /* This is awkward, because we have to use a combination of
376 * the si_code and si_signo to figure out which of the union's
377 * members are valid. (Within the host kernel it is always possible
378 * to tell, but the kernel carefully avoids giving userspace the
379 * high 16 bits of si_code, so we don't have the information to
380 * do this the easy way...) We therefore make our best guess,
381 * bearing in mind that a guest can spoof most of the si_codes
382 * via rt_sigqueueinfo() if it likes.
384 * Once we have made our guess, we record it in the top 16 bits of
385 * the si_code, so that tswap_siginfo() later can use it.
386 * tswap_siginfo() will strip these top bits out before writing
387 * si_code to the guest (sign-extending the lower bits).
394 /* Sent via kill(), tkill() or tgkill(), or direct from the kernel.
395 * These are the only unspoofable si_code values.
397 tinfo
->_sifields
._kill
._pid
= info
->si_pid
;
398 tinfo
->_sifields
._kill
._uid
= info
->si_uid
;
399 si_type
= QEMU_SI_KILL
;
402 /* Everything else is spoofable. Make best guess based on signal */
405 tinfo
->_sifields
._sigchld
._pid
= info
->si_pid
;
406 tinfo
->_sifields
._sigchld
._uid
= info
->si_uid
;
407 if (si_code
== CLD_EXITED
)
408 tinfo
->_sifields
._sigchld
._status
= info
->si_status
;
410 tinfo
->_sifields
._sigchld
._status
411 = host_to_target_signal(info
->si_status
& 0x7f)
412 | (info
->si_status
& ~0x7f);
413 tinfo
->_sifields
._sigchld
._utime
= info
->si_utime
;
414 tinfo
->_sifields
._sigchld
._stime
= info
->si_stime
;
415 si_type
= QEMU_SI_CHLD
;
418 tinfo
->_sifields
._sigpoll
._band
= info
->si_band
;
419 tinfo
->_sifields
._sigpoll
._fd
= info
->si_fd
;
420 si_type
= QEMU_SI_POLL
;
423 /* Assume a sigqueue()/mq_notify()/rt_sigqueueinfo() source. */
424 tinfo
->_sifields
._rt
._pid
= info
->si_pid
;
425 tinfo
->_sifields
._rt
._uid
= info
->si_uid
;
426 /* XXX: potential problem if 64 bit */
427 tinfo
->_sifields
._rt
._sigval
.sival_ptr
428 = (abi_ulong
)(unsigned long)info
->si_value
.sival_ptr
;
429 si_type
= QEMU_SI_RT
;
435 tinfo
->si_code
= deposit32(si_code
, 16, 16, si_type
);
438 void tswap_siginfo(target_siginfo_t
*tinfo
,
439 const target_siginfo_t
*info
)
441 int si_type
= extract32(info
->si_code
, 16, 16);
442 int si_code
= sextract32(info
->si_code
, 0, 16);
444 __put_user(info
->si_signo
, &tinfo
->si_signo
);
445 __put_user(info
->si_errno
, &tinfo
->si_errno
);
446 __put_user(si_code
, &tinfo
->si_code
);
448 /* We can use our internal marker of which fields in the structure
449 * are valid, rather than duplicating the guesswork of
450 * host_to_target_siginfo_noswap() here.
454 __put_user(info
->_sifields
._kill
._pid
, &tinfo
->_sifields
._kill
._pid
);
455 __put_user(info
->_sifields
._kill
._uid
, &tinfo
->_sifields
._kill
._uid
);
458 __put_user(info
->_sifields
._timer
._timer1
,
459 &tinfo
->_sifields
._timer
._timer1
);
460 __put_user(info
->_sifields
._timer
._timer2
,
461 &tinfo
->_sifields
._timer
._timer2
);
464 __put_user(info
->_sifields
._sigpoll
._band
,
465 &tinfo
->_sifields
._sigpoll
._band
);
466 __put_user(info
->_sifields
._sigpoll
._fd
,
467 &tinfo
->_sifields
._sigpoll
._fd
);
470 __put_user(info
->_sifields
._sigfault
._addr
,
471 &tinfo
->_sifields
._sigfault
._addr
);
474 __put_user(info
->_sifields
._sigchld
._pid
,
475 &tinfo
->_sifields
._sigchld
._pid
);
476 __put_user(info
->_sifields
._sigchld
._uid
,
477 &tinfo
->_sifields
._sigchld
._uid
);
478 __put_user(info
->_sifields
._sigchld
._status
,
479 &tinfo
->_sifields
._sigchld
._status
);
480 __put_user(info
->_sifields
._sigchld
._utime
,
481 &tinfo
->_sifields
._sigchld
._utime
);
482 __put_user(info
->_sifields
._sigchld
._stime
,
483 &tinfo
->_sifields
._sigchld
._stime
);
486 __put_user(info
->_sifields
._rt
._pid
, &tinfo
->_sifields
._rt
._pid
);
487 __put_user(info
->_sifields
._rt
._uid
, &tinfo
->_sifields
._rt
._uid
);
488 __put_user(info
->_sifields
._rt
._sigval
.sival_ptr
,
489 &tinfo
->_sifields
._rt
._sigval
.sival_ptr
);
492 g_assert_not_reached();
496 void host_to_target_siginfo(target_siginfo_t
*tinfo
, const siginfo_t
*info
)
498 target_siginfo_t tgt_tmp
;
499 host_to_target_siginfo_noswap(&tgt_tmp
, info
);
500 tswap_siginfo(tinfo
, &tgt_tmp
);
503 /* XXX: we support only POSIX RT signals are used. */
504 /* XXX: find a solution for 64 bit (additional malloced data is needed) */
505 void target_to_host_siginfo(siginfo_t
*info
, const target_siginfo_t
*tinfo
)
507 /* This conversion is used only for the rt_sigqueueinfo syscall,
508 * and so we know that the _rt fields are the valid ones.
512 __get_user(info
->si_signo
, &tinfo
->si_signo
);
513 __get_user(info
->si_errno
, &tinfo
->si_errno
);
514 __get_user(info
->si_code
, &tinfo
->si_code
);
515 __get_user(info
->si_pid
, &tinfo
->_sifields
._rt
._pid
);
516 __get_user(info
->si_uid
, &tinfo
->_sifields
._rt
._uid
);
517 __get_user(sival_ptr
, &tinfo
->_sifields
._rt
._sigval
.sival_ptr
);
518 info
->si_value
.sival_ptr
= (void *)(long)sival_ptr
;
521 static int fatal_signal (int sig
)
526 case TARGET_SIGWINCH
:
527 /* Ignored by default. */
534 /* Job control signals. */
541 /* returns 1 if given signal should dump core if not handled */
542 static int core_dump_signal(int sig
)
558 static void signal_table_init(void)
560 int host_sig
, target_sig
, count
;
563 * Signals are supported starting from TARGET_SIGRTMIN and going up
564 * until we run out of host realtime signals.
565 * glibc at least uses only the lower 2 rt signals and probably
566 * nobody's using the upper ones.
567 * it's why SIGRTMIN (34) is generally greater than __SIGRTMIN (32)
568 * To fix this properly we need to do manual signal delivery multiplexed
569 * over a single host signal.
570 * Attempts for configure "missing" signals via sigaction will be
573 for (host_sig
= SIGRTMIN
; host_sig
<= SIGRTMAX
; host_sig
++) {
574 target_sig
= host_sig
- SIGRTMIN
+ TARGET_SIGRTMIN
;
575 if (target_sig
<= TARGET_NSIG
) {
576 host_to_target_signal_table
[host_sig
] = target_sig
;
580 /* generate signal conversion tables */
581 for (target_sig
= 1; target_sig
<= TARGET_NSIG
; target_sig
++) {
582 target_to_host_signal_table
[target_sig
] = _NSIG
; /* poison */
584 for (host_sig
= 1; host_sig
< _NSIG
; host_sig
++) {
585 if (host_to_target_signal_table
[host_sig
] == 0) {
586 host_to_target_signal_table
[host_sig
] = host_sig
;
588 target_sig
= host_to_target_signal_table
[host_sig
];
589 if (target_sig
<= TARGET_NSIG
) {
590 target_to_host_signal_table
[target_sig
] = host_sig
;
594 if (trace_event_get_state_backends(TRACE_SIGNAL_TABLE_INIT
)) {
595 for (target_sig
= 1, count
= 0; target_sig
<= TARGET_NSIG
; target_sig
++) {
596 if (target_to_host_signal_table
[target_sig
] == _NSIG
) {
600 trace_signal_table_init(count
);
604 void signal_init(void)
606 TaskState
*ts
= (TaskState
*)thread_cpu
->opaque
;
607 struct sigaction act
;
608 struct sigaction oact
;
612 /* initialize signal conversion tables */
615 /* Set the signal mask from the host mask. */
616 sigprocmask(0, 0, &ts
->signal_mask
);
618 sigfillset(&act
.sa_mask
);
619 act
.sa_flags
= SA_SIGINFO
;
620 act
.sa_sigaction
= host_signal_handler
;
621 for(i
= 1; i
<= TARGET_NSIG
; i
++) {
623 if (i
== TARGET_SIGPROF
) {
627 host_sig
= target_to_host_signal(i
);
628 sigaction(host_sig
, NULL
, &oact
);
629 if (oact
.sa_sigaction
== (void *)SIG_IGN
) {
630 sigact_table
[i
- 1]._sa_handler
= TARGET_SIG_IGN
;
631 } else if (oact
.sa_sigaction
== (void *)SIG_DFL
) {
632 sigact_table
[i
- 1]._sa_handler
= TARGET_SIG_DFL
;
634 /* If there's already a handler installed then something has
635 gone horribly wrong, so don't even try to handle that case. */
636 /* Install some handlers for our own use. We need at least
637 SIGSEGV and SIGBUS, to detect exceptions. We can not just
638 trap all signals because it affects syscall interrupt
639 behavior. But do trap all default-fatal signals. */
640 if (fatal_signal (i
))
641 sigaction(host_sig
, &act
, NULL
);
645 /* Force a synchronously taken signal. The kernel force_sig() function
646 * also forces the signal to "not blocked, not ignored", but for QEMU
647 * that work is done in process_pending_signals().
649 void force_sig(int sig
)
651 CPUState
*cpu
= thread_cpu
;
652 CPUArchState
*env
= cpu
->env_ptr
;
653 target_siginfo_t info
= {};
657 info
.si_code
= TARGET_SI_KERNEL
;
658 info
._sifields
._kill
._pid
= 0;
659 info
._sifields
._kill
._uid
= 0;
660 queue_signal(env
, info
.si_signo
, QEMU_SI_KILL
, &info
);
664 * Force a synchronously taken QEMU_SI_FAULT signal. For QEMU the
665 * 'force' part is handled in process_pending_signals().
667 void force_sig_fault(int sig
, int code
, abi_ulong addr
)
669 CPUState
*cpu
= thread_cpu
;
670 CPUArchState
*env
= cpu
->env_ptr
;
671 target_siginfo_t info
= {};
676 info
._sifields
._sigfault
._addr
= addr
;
677 queue_signal(env
, sig
, QEMU_SI_FAULT
, &info
);
680 /* Force a SIGSEGV if we couldn't write to memory trying to set
681 * up the signal frame. oldsig is the signal we were trying to handle
682 * at the point of failure.
684 #if !defined(TARGET_RISCV)
685 void force_sigsegv(int oldsig
)
687 if (oldsig
== SIGSEGV
) {
688 /* Make sure we don't try to deliver the signal again; this will
689 * end up with handle_pending_signal() calling dump_core_and_abort().
691 sigact_table
[oldsig
- 1]._sa_handler
= TARGET_SIG_DFL
;
693 force_sig(TARGET_SIGSEGV
);
697 void cpu_loop_exit_sigsegv(CPUState
*cpu
, target_ulong addr
,
698 MMUAccessType access_type
, bool maperr
, uintptr_t ra
)
700 const struct TCGCPUOps
*tcg_ops
= CPU_GET_CLASS(cpu
)->tcg_ops
;
702 if (tcg_ops
->record_sigsegv
) {
703 tcg_ops
->record_sigsegv(cpu
, addr
, access_type
, maperr
, ra
);
706 force_sig_fault(TARGET_SIGSEGV
,
707 maperr
? TARGET_SEGV_MAPERR
: TARGET_SEGV_ACCERR
,
709 cpu
->exception_index
= EXCP_INTERRUPT
;
710 cpu_loop_exit_restore(cpu
, ra
);
713 void cpu_loop_exit_sigbus(CPUState
*cpu
, target_ulong addr
,
714 MMUAccessType access_type
, uintptr_t ra
)
716 const struct TCGCPUOps
*tcg_ops
= CPU_GET_CLASS(cpu
)->tcg_ops
;
718 if (tcg_ops
->record_sigbus
) {
719 tcg_ops
->record_sigbus(cpu
, addr
, access_type
, ra
);
722 force_sig_fault(TARGET_SIGBUS
, TARGET_BUS_ADRALN
, addr
);
723 cpu
->exception_index
= EXCP_INTERRUPT
;
724 cpu_loop_exit_restore(cpu
, ra
);
727 /* abort execution with signal */
728 static void QEMU_NORETURN
dump_core_and_abort(int target_sig
)
730 CPUState
*cpu
= thread_cpu
;
731 CPUArchState
*env
= cpu
->env_ptr
;
732 TaskState
*ts
= (TaskState
*)cpu
->opaque
;
733 int host_sig
, core_dumped
= 0;
734 struct sigaction act
;
736 host_sig
= target_to_host_signal(target_sig
);
737 trace_user_dump_core_and_abort(env
, target_sig
, host_sig
);
738 gdb_signalled(env
, target_sig
);
740 /* dump core if supported by target binary format */
741 if (core_dump_signal(target_sig
) && (ts
->bprm
->core_dump
!= NULL
)) {
744 ((*ts
->bprm
->core_dump
)(target_sig
, env
) == 0);
747 /* we already dumped the core of target process, we don't want
748 * a coredump of qemu itself */
749 struct rlimit nodump
;
750 getrlimit(RLIMIT_CORE
, &nodump
);
752 setrlimit(RLIMIT_CORE
, &nodump
);
753 (void) fprintf(stderr
, "qemu: uncaught target signal %d (%s) - %s\n",
754 target_sig
, strsignal(host_sig
), "core dumped" );
757 /* The proper exit code for dying from an uncaught signal is
758 * -<signal>. The kernel doesn't allow exit() or _exit() to pass
759 * a negative value. To get the proper exit code we need to
760 * actually die from an uncaught signal. Here the default signal
761 * handler is installed, we send ourself a signal and we wait for
763 sigfillset(&act
.sa_mask
);
764 act
.sa_handler
= SIG_DFL
;
766 sigaction(host_sig
, &act
, NULL
);
768 /* For some reason raise(host_sig) doesn't send the signal when
769 * statically linked on x86-64. */
770 kill(getpid(), host_sig
);
772 /* Make sure the signal isn't masked (just reuse the mask inside
774 sigdelset(&act
.sa_mask
, host_sig
);
775 sigsuspend(&act
.sa_mask
);
781 /* queue a signal so that it will be send to the virtual CPU as soon
783 void queue_signal(CPUArchState
*env
, int sig
, int si_type
,
784 target_siginfo_t
*info
)
786 CPUState
*cpu
= env_cpu(env
);
787 TaskState
*ts
= cpu
->opaque
;
789 trace_user_queue_signal(env
, sig
);
791 info
->si_code
= deposit32(info
->si_code
, 16, 16, si_type
);
793 ts
->sync_signal
.info
= *info
;
794 ts
->sync_signal
.pending
= sig
;
795 /* signal that a new signal is pending */
796 qatomic_set(&ts
->signal_pending
, 1);
800 /* Adjust the signal context to rewind out of safe-syscall if we're in it */
801 static inline void rewind_if_in_safe_syscall(void *puc
)
803 ucontext_t
*uc
= (ucontext_t
*)puc
;
804 uintptr_t pcreg
= host_signal_pc(uc
);
806 if (pcreg
> (uintptr_t)safe_syscall_start
807 && pcreg
< (uintptr_t)safe_syscall_end
) {
808 host_signal_set_pc(uc
, (uintptr_t)safe_syscall_start
);
812 static void host_signal_handler(int host_sig
, siginfo_t
*info
, void *puc
)
814 CPUArchState
*env
= thread_cpu
->env_ptr
;
815 CPUState
*cpu
= env_cpu(env
);
816 TaskState
*ts
= cpu
->opaque
;
817 target_siginfo_t tinfo
;
818 ucontext_t
*uc
= puc
;
819 struct emulated_sigtable
*k
;
822 bool sync_sig
= false;
825 * Non-spoofed SIGSEGV and SIGBUS are synchronous, and need special
826 * handling wrt signal blocking and unwinding.
828 if ((host_sig
== SIGSEGV
|| host_sig
== SIGBUS
) && info
->si_code
> 0) {
829 MMUAccessType access_type
;
834 host_addr
= (uintptr_t)info
->si_addr
;
837 * Convert forcefully to guest address space: addresses outside
838 * reserved_va are still valid to report via SEGV_MAPERR.
840 guest_addr
= h2g_nocheck(host_addr
);
842 pc
= host_signal_pc(uc
);
843 is_write
= host_signal_write(info
, uc
);
844 access_type
= adjust_signal_pc(&pc
, is_write
);
846 if (host_sig
== SIGSEGV
) {
849 if (info
->si_code
== SEGV_ACCERR
&& h2g_valid(host_addr
)) {
850 /* If this was a write to a TB protected page, restart. */
852 handle_sigsegv_accerr_write(cpu
, &uc
->uc_sigmask
,
858 * With reserved_va, the whole address space is PROT_NONE,
859 * which means that we may get ACCERR when we want MAPERR.
861 if (page_get_flags(guest_addr
) & PAGE_VALID
) {
864 info
->si_code
= SEGV_MAPERR
;
868 sigprocmask(SIG_SETMASK
, &uc
->uc_sigmask
, NULL
);
869 cpu_loop_exit_sigsegv(cpu
, guest_addr
, access_type
, maperr
, pc
);
871 sigprocmask(SIG_SETMASK
, &uc
->uc_sigmask
, NULL
);
872 if (info
->si_code
== BUS_ADRALN
) {
873 cpu_loop_exit_sigbus(cpu
, guest_addr
, access_type
, pc
);
880 /* get target signal number */
881 guest_sig
= host_to_target_signal(host_sig
);
882 if (guest_sig
< 1 || guest_sig
> TARGET_NSIG
) {
885 trace_user_host_signal(env
, host_sig
, guest_sig
);
887 host_to_target_siginfo_noswap(&tinfo
, info
);
888 k
= &ts
->sigtab
[guest_sig
- 1];
890 k
->pending
= guest_sig
;
891 ts
->signal_pending
= 1;
894 * For synchronous signals, unwind the cpu state to the faulting
895 * insn and then exit back to the main loop so that the signal
896 * is delivered immediately.
899 cpu
->exception_index
= EXCP_INTERRUPT
;
900 cpu_loop_exit_restore(cpu
, pc
);
903 rewind_if_in_safe_syscall(puc
);
906 * Block host signals until target signal handler entered. We
907 * can't block SIGSEGV or SIGBUS while we're executing guest
908 * code in case the guest code provokes one in the window between
909 * now and it getting out to the main loop. Signals will be
910 * unblocked again in process_pending_signals().
912 * WARNING: we cannot use sigfillset() here because the uc_sigmask
913 * field is a kernel sigset_t, which is much smaller than the
914 * libc sigset_t which sigfillset() operates on. Using sigfillset()
915 * would write 0xff bytes off the end of the structure and trash
916 * data on the struct.
917 * We can't use sizeof(uc->uc_sigmask) either, because the libc
918 * headers define the struct field with the wrong (too large) type.
920 memset(&uc
->uc_sigmask
, 0xff, SIGSET_T_SIZE
);
921 sigdelset(&uc
->uc_sigmask
, SIGSEGV
);
922 sigdelset(&uc
->uc_sigmask
, SIGBUS
);
924 /* interrupt the virtual CPU as soon as possible */
925 cpu_exit(thread_cpu
);
928 /* do_sigaltstack() returns target values and errnos. */
929 /* compare linux/kernel/signal.c:do_sigaltstack() */
930 abi_long
do_sigaltstack(abi_ulong uss_addr
, abi_ulong uoss_addr
,
933 target_stack_t oss
, *uoss
= NULL
;
934 abi_long ret
= -TARGET_EFAULT
;
937 /* Verify writability now, but do not alter user memory yet. */
938 if (!lock_user_struct(VERIFY_WRITE
, uoss
, uoss_addr
, 0)) {
941 target_save_altstack(&oss
, env
);
947 if (!lock_user_struct(VERIFY_READ
, uss
, uss_addr
, 1)) {
950 ret
= target_restore_altstack(uss
, env
);
957 memcpy(uoss
, &oss
, sizeof(oss
));
958 unlock_user_struct(uoss
, uoss_addr
, 1);
965 unlock_user_struct(uoss
, uoss_addr
, 0);
970 /* do_sigaction() return target values and host errnos */
971 int do_sigaction(int sig
, const struct target_sigaction
*act
,
972 struct target_sigaction
*oact
, abi_ulong ka_restorer
)
974 struct target_sigaction
*k
;
975 struct sigaction act1
;
979 trace_signal_do_sigaction_guest(sig
, TARGET_NSIG
);
981 if (sig
< 1 || sig
> TARGET_NSIG
) {
982 return -TARGET_EINVAL
;
985 if (act
&& (sig
== TARGET_SIGKILL
|| sig
== TARGET_SIGSTOP
)) {
986 return -TARGET_EINVAL
;
989 if (block_signals()) {
990 return -QEMU_ERESTARTSYS
;
993 k
= &sigact_table
[sig
- 1];
995 __put_user(k
->_sa_handler
, &oact
->_sa_handler
);
996 __put_user(k
->sa_flags
, &oact
->sa_flags
);
997 #ifdef TARGET_ARCH_HAS_SA_RESTORER
998 __put_user(k
->sa_restorer
, &oact
->sa_restorer
);
1001 oact
->sa_mask
= k
->sa_mask
;
1004 /* FIXME: This is not threadsafe. */
1005 __get_user(k
->_sa_handler
, &act
->_sa_handler
);
1006 __get_user(k
->sa_flags
, &act
->sa_flags
);
1007 #ifdef TARGET_ARCH_HAS_SA_RESTORER
1008 __get_user(k
->sa_restorer
, &act
->sa_restorer
);
1010 #ifdef TARGET_ARCH_HAS_KA_RESTORER
1011 k
->ka_restorer
= ka_restorer
;
1013 /* To be swapped in target_to_host_sigset. */
1014 k
->sa_mask
= act
->sa_mask
;
1016 /* we update the host linux signal state */
1017 host_sig
= target_to_host_signal(sig
);
1018 trace_signal_do_sigaction_host(host_sig
, TARGET_NSIG
);
1019 if (host_sig
> SIGRTMAX
) {
1020 /* we don't have enough host signals to map all target signals */
1021 qemu_log_mask(LOG_UNIMP
, "Unsupported target signal #%d, ignored\n",
1024 * we don't return an error here because some programs try to
1025 * register an handler for all possible rt signals even if they
1027 * An error here can abort them whereas there can be no problem
1028 * to not have the signal available later.
1029 * This is the case for golang,
1030 * See https://github.com/golang/go/issues/33746
1031 * So we silently ignore the error.
1035 if (host_sig
!= SIGSEGV
&& host_sig
!= SIGBUS
) {
1036 sigfillset(&act1
.sa_mask
);
1037 act1
.sa_flags
= SA_SIGINFO
;
1038 if (k
->sa_flags
& TARGET_SA_RESTART
)
1039 act1
.sa_flags
|= SA_RESTART
;
1040 /* NOTE: it is important to update the host kernel signal
1041 ignore state to avoid getting unexpected interrupted
1043 if (k
->_sa_handler
== TARGET_SIG_IGN
) {
1044 act1
.sa_sigaction
= (void *)SIG_IGN
;
1045 } else if (k
->_sa_handler
== TARGET_SIG_DFL
) {
1046 if (fatal_signal (sig
))
1047 act1
.sa_sigaction
= host_signal_handler
;
1049 act1
.sa_sigaction
= (void *)SIG_DFL
;
1051 act1
.sa_sigaction
= host_signal_handler
;
1053 ret
= sigaction(host_sig
, &act1
, NULL
);
1059 static void handle_pending_signal(CPUArchState
*cpu_env
, int sig
,
1060 struct emulated_sigtable
*k
)
1062 CPUState
*cpu
= env_cpu(cpu_env
);
1065 target_sigset_t target_old_set
;
1066 struct target_sigaction
*sa
;
1067 TaskState
*ts
= cpu
->opaque
;
1069 trace_user_handle_signal(cpu_env
, sig
);
1070 /* dequeue signal */
1073 sig
= gdb_handlesig(cpu
, sig
);
1076 handler
= TARGET_SIG_IGN
;
1078 sa
= &sigact_table
[sig
- 1];
1079 handler
= sa
->_sa_handler
;
1082 if (unlikely(qemu_loglevel_mask(LOG_STRACE
))) {
1083 print_taken_signal(sig
, &k
->info
);
1086 if (handler
== TARGET_SIG_DFL
) {
1087 /* default handler : ignore some signal. The other are job control or fatal */
1088 if (sig
== TARGET_SIGTSTP
|| sig
== TARGET_SIGTTIN
|| sig
== TARGET_SIGTTOU
) {
1089 kill(getpid(),SIGSTOP
);
1090 } else if (sig
!= TARGET_SIGCHLD
&&
1091 sig
!= TARGET_SIGURG
&&
1092 sig
!= TARGET_SIGWINCH
&&
1093 sig
!= TARGET_SIGCONT
) {
1094 dump_core_and_abort(sig
);
1096 } else if (handler
== TARGET_SIG_IGN
) {
1098 } else if (handler
== TARGET_SIG_ERR
) {
1099 dump_core_and_abort(sig
);
1101 /* compute the blocked signals during the handler execution */
1102 sigset_t
*blocked_set
;
1104 target_to_host_sigset(&set
, &sa
->sa_mask
);
1105 /* SA_NODEFER indicates that the current signal should not be
1106 blocked during the handler */
1107 if (!(sa
->sa_flags
& TARGET_SA_NODEFER
))
1108 sigaddset(&set
, target_to_host_signal(sig
));
1110 /* save the previous blocked signal state to restore it at the
1111 end of the signal execution (see do_sigreturn) */
1112 host_to_target_sigset_internal(&target_old_set
, &ts
->signal_mask
);
1114 /* block signals in the handler */
1115 blocked_set
= ts
->in_sigsuspend
?
1116 &ts
->sigsuspend_mask
: &ts
->signal_mask
;
1117 sigorset(&ts
->signal_mask
, blocked_set
, &set
);
1118 ts
->in_sigsuspend
= 0;
1120 /* if the CPU is in VM86 mode, we restore the 32 bit values */
1121 #if defined(TARGET_I386) && !defined(TARGET_X86_64)
1123 CPUX86State
*env
= cpu_env
;
1124 if (env
->eflags
& VM_MASK
)
1125 save_v86_state(env
);
1128 /* prepare the stack frame of the virtual CPU */
1129 #if defined(TARGET_ARCH_HAS_SETUP_FRAME)
1130 if (sa
->sa_flags
& TARGET_SA_SIGINFO
) {
1131 setup_rt_frame(sig
, sa
, &k
->info
, &target_old_set
, cpu_env
);
1133 setup_frame(sig
, sa
, &target_old_set
, cpu_env
);
1136 /* These targets do not have traditional signals. */
1137 setup_rt_frame(sig
, sa
, &k
->info
, &target_old_set
, cpu_env
);
1139 if (sa
->sa_flags
& TARGET_SA_RESETHAND
) {
1140 sa
->_sa_handler
= TARGET_SIG_DFL
;
1145 void process_pending_signals(CPUArchState
*cpu_env
)
1147 CPUState
*cpu
= env_cpu(cpu_env
);
1149 TaskState
*ts
= cpu
->opaque
;
1151 sigset_t
*blocked_set
;
1153 while (qatomic_read(&ts
->signal_pending
)) {
1154 /* FIXME: This is not threadsafe. */
1156 sigprocmask(SIG_SETMASK
, &set
, 0);
1159 sig
= ts
->sync_signal
.pending
;
1161 /* Synchronous signals are forced,
1162 * see force_sig_info() and callers in Linux
1163 * Note that not all of our queue_signal() calls in QEMU correspond
1164 * to force_sig_info() calls in Linux (some are send_sig_info()).
1165 * However it seems like a kernel bug to me to allow the process
1166 * to block a synchronous signal since it could then just end up
1167 * looping round and round indefinitely.
1169 if (sigismember(&ts
->signal_mask
, target_to_host_signal_table
[sig
])
1170 || sigact_table
[sig
- 1]._sa_handler
== TARGET_SIG_IGN
) {
1171 sigdelset(&ts
->signal_mask
, target_to_host_signal_table
[sig
]);
1172 sigact_table
[sig
- 1]._sa_handler
= TARGET_SIG_DFL
;
1175 handle_pending_signal(cpu_env
, sig
, &ts
->sync_signal
);
1178 for (sig
= 1; sig
<= TARGET_NSIG
; sig
++) {
1179 blocked_set
= ts
->in_sigsuspend
?
1180 &ts
->sigsuspend_mask
: &ts
->signal_mask
;
1182 if (ts
->sigtab
[sig
- 1].pending
&&
1183 (!sigismember(blocked_set
,
1184 target_to_host_signal_table
[sig
]))) {
1185 handle_pending_signal(cpu_env
, sig
, &ts
->sigtab
[sig
- 1]);
1186 /* Restart scan from the beginning, as handle_pending_signal
1187 * might have resulted in a new synchronous signal (eg SIGSEGV).
1193 /* if no signal is pending, unblock signals and recheck (the act
1194 * of unblocking might cause us to take another host signal which
1195 * will set signal_pending again).
1197 qatomic_set(&ts
->signal_pending
, 0);
1198 ts
->in_sigsuspend
= 0;
1199 set
= ts
->signal_mask
;
1200 sigdelset(&set
, SIGSEGV
);
1201 sigdelset(&set
, SIGBUS
);
1202 sigprocmask(SIG_SETMASK
, &set
, 0);
1204 ts
->in_sigsuspend
= 0;