2 * PowerPC emulation helpers for qemu.
4 * Copyright (c) 2003-2007 Jocelyn Mayer
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
21 #include "host-utils.h"
24 #include "helper_regs.h"
27 //#define DEBUG_EXCEPTIONS
28 //#define DEBUG_SOFTWARE_TLB
30 #ifdef DEBUG_SOFTWARE_TLB
31 # define LOG_SWTLB(...) qemu_log(__VA_ARGS__)
33 # define LOG_SWTLB(...) do { } while (0)
37 /*****************************************************************************/
38 /* Exceptions processing helpers */
40 void helper_raise_exception_err (uint32_t exception
, uint32_t error_code
)
43 printf("Raise exception %3x code : %d\n", exception
, error_code
);
45 env
->exception_index
= exception
;
46 env
->error_code
= error_code
;
50 void helper_raise_exception (uint32_t exception
)
52 helper_raise_exception_err(exception
, 0);
55 /*****************************************************************************/
57 void helper_load_dump_spr (uint32_t sprn
)
59 qemu_log("Read SPR %d %03x => " TARGET_FMT_lx
"\n", sprn
, sprn
,
63 void helper_store_dump_spr (uint32_t sprn
)
65 qemu_log("Write SPR %d %03x <= " TARGET_FMT_lx
"\n", sprn
, sprn
,
69 target_ulong
helper_load_tbl (void)
71 return (target_ulong
)cpu_ppc_load_tbl(env
);
74 target_ulong
helper_load_tbu (void)
76 return cpu_ppc_load_tbu(env
);
79 target_ulong
helper_load_atbl (void)
81 return (target_ulong
)cpu_ppc_load_atbl(env
);
84 target_ulong
helper_load_atbu (void)
86 return cpu_ppc_load_atbu(env
);
89 target_ulong
helper_load_601_rtcl (void)
91 return cpu_ppc601_load_rtcl(env
);
94 target_ulong
helper_load_601_rtcu (void)
96 return cpu_ppc601_load_rtcu(env
);
99 #if !defined(CONFIG_USER_ONLY)
100 #if defined (TARGET_PPC64)
101 void helper_store_asr (target_ulong val
)
103 ppc_store_asr(env
, val
);
107 void helper_store_sdr1 (target_ulong val
)
109 ppc_store_sdr1(env
, val
);
112 void helper_store_tbl (target_ulong val
)
114 cpu_ppc_store_tbl(env
, val
);
117 void helper_store_tbu (target_ulong val
)
119 cpu_ppc_store_tbu(env
, val
);
122 void helper_store_atbl (target_ulong val
)
124 cpu_ppc_store_atbl(env
, val
);
127 void helper_store_atbu (target_ulong val
)
129 cpu_ppc_store_atbu(env
, val
);
132 void helper_store_601_rtcl (target_ulong val
)
134 cpu_ppc601_store_rtcl(env
, val
);
137 void helper_store_601_rtcu (target_ulong val
)
139 cpu_ppc601_store_rtcu(env
, val
);
142 target_ulong
helper_load_decr (void)
144 return cpu_ppc_load_decr(env
);
147 void helper_store_decr (target_ulong val
)
149 cpu_ppc_store_decr(env
, val
);
152 void helper_store_hid0_601 (target_ulong val
)
156 hid0
= env
->spr
[SPR_HID0
];
157 if ((val
^ hid0
) & 0x00000008) {
158 /* Change current endianness */
159 env
->hflags
&= ~(1 << MSR_LE
);
160 env
->hflags_nmsr
&= ~(1 << MSR_LE
);
161 env
->hflags_nmsr
|= (1 << MSR_LE
) & (((val
>> 3) & 1) << MSR_LE
);
162 env
->hflags
|= env
->hflags_nmsr
;
163 qemu_log("%s: set endianness to %c => " TARGET_FMT_lx
"\n", __func__
,
164 val
& 0x8 ? 'l' : 'b', env
->hflags
);
166 env
->spr
[SPR_HID0
] = (uint32_t)val
;
169 void helper_store_403_pbr (uint32_t num
, target_ulong value
)
171 if (likely(env
->pb
[num
] != value
)) {
172 env
->pb
[num
] = value
;
173 /* Should be optimized */
178 target_ulong
helper_load_40x_pit (void)
180 return load_40x_pit(env
);
183 void helper_store_40x_pit (target_ulong val
)
185 store_40x_pit(env
, val
);
188 void helper_store_40x_dbcr0 (target_ulong val
)
190 store_40x_dbcr0(env
, val
);
193 void helper_store_40x_sler (target_ulong val
)
195 store_40x_sler(env
, val
);
198 void helper_store_booke_tcr (target_ulong val
)
200 store_booke_tcr(env
, val
);
203 void helper_store_booke_tsr (target_ulong val
)
205 store_booke_tsr(env
, val
);
208 void helper_store_ibatu (uint32_t nr
, target_ulong val
)
210 ppc_store_ibatu(env
, nr
, val
);
213 void helper_store_ibatl (uint32_t nr
, target_ulong val
)
215 ppc_store_ibatl(env
, nr
, val
);
218 void helper_store_dbatu (uint32_t nr
, target_ulong val
)
220 ppc_store_dbatu(env
, nr
, val
);
223 void helper_store_dbatl (uint32_t nr
, target_ulong val
)
225 ppc_store_dbatl(env
, nr
, val
);
228 void helper_store_601_batl (uint32_t nr
, target_ulong val
)
230 ppc_store_ibatl_601(env
, nr
, val
);
233 void helper_store_601_batu (uint32_t nr
, target_ulong val
)
235 ppc_store_ibatu_601(env
, nr
, val
);
239 /*****************************************************************************/
240 /* Memory load and stores */
242 static inline target_ulong
addr_add(target_ulong addr
, target_long arg
)
244 #if defined(TARGET_PPC64)
246 return (uint32_t)(addr
+ arg
);
252 void helper_lmw (target_ulong addr
, uint32_t reg
)
254 for (; reg
< 32; reg
++) {
256 env
->gpr
[reg
] = bswap32(ldl(addr
));
258 env
->gpr
[reg
] = ldl(addr
);
259 addr
= addr_add(addr
, 4);
263 void helper_stmw (target_ulong addr
, uint32_t reg
)
265 for (; reg
< 32; reg
++) {
267 stl(addr
, bswap32((uint32_t)env
->gpr
[reg
]));
269 stl(addr
, (uint32_t)env
->gpr
[reg
]);
270 addr
= addr_add(addr
, 4);
274 void helper_lsw(target_ulong addr
, uint32_t nb
, uint32_t reg
)
277 for (; nb
> 3; nb
-= 4) {
278 env
->gpr
[reg
] = ldl(addr
);
279 reg
= (reg
+ 1) % 32;
280 addr
= addr_add(addr
, 4);
282 if (unlikely(nb
> 0)) {
284 for (sh
= 24; nb
> 0; nb
--, sh
-= 8) {
285 env
->gpr
[reg
] |= ldub(addr
) << sh
;
286 addr
= addr_add(addr
, 1);
290 /* PPC32 specification says we must generate an exception if
291 * rA is in the range of registers to be loaded.
292 * In an other hand, IBM says this is valid, but rA won't be loaded.
293 * For now, I'll follow the spec...
295 void helper_lswx(target_ulong addr
, uint32_t reg
, uint32_t ra
, uint32_t rb
)
297 if (likely(xer_bc
!= 0)) {
298 if (unlikely((ra
!= 0 && reg
< ra
&& (reg
+ xer_bc
) > ra
) ||
299 (reg
< rb
&& (reg
+ xer_bc
) > rb
))) {
300 helper_raise_exception_err(POWERPC_EXCP_PROGRAM
,
302 POWERPC_EXCP_INVAL_LSWX
);
304 helper_lsw(addr
, xer_bc
, reg
);
309 void helper_stsw(target_ulong addr
, uint32_t nb
, uint32_t reg
)
312 for (; nb
> 3; nb
-= 4) {
313 stl(addr
, env
->gpr
[reg
]);
314 reg
= (reg
+ 1) % 32;
315 addr
= addr_add(addr
, 4);
317 if (unlikely(nb
> 0)) {
318 for (sh
= 24; nb
> 0; nb
--, sh
-= 8) {
319 stb(addr
, (env
->gpr
[reg
] >> sh
) & 0xFF);
320 addr
= addr_add(addr
, 1);
325 static void do_dcbz(target_ulong addr
, int dcache_line_size
)
327 addr
&= ~(dcache_line_size
- 1);
329 for (i
= 0 ; i
< dcache_line_size
; i
+= 4) {
332 if (env
->reserve_addr
== addr
)
333 env
->reserve_addr
= (target_ulong
)-1ULL;
336 void helper_dcbz(target_ulong addr
)
338 do_dcbz(addr
, env
->dcache_line_size
);
341 void helper_dcbz_970(target_ulong addr
)
343 if (((env
->spr
[SPR_970_HID5
] >> 7) & 0x3) == 1)
346 do_dcbz(addr
, env
->dcache_line_size
);
349 void helper_icbi(target_ulong addr
)
351 addr
&= ~(env
->dcache_line_size
- 1);
352 /* Invalidate one cache line :
353 * PowerPC specification says this is to be treated like a load
354 * (not a fetch) by the MMU. To be sure it will be so,
355 * do the load "by hand".
358 tb_invalidate_page_range(addr
, addr
+ env
->icache_line_size
);
362 target_ulong
helper_lscbx (target_ulong addr
, uint32_t reg
, uint32_t ra
, uint32_t rb
)
366 for (i
= 0; i
< xer_bc
; i
++) {
368 addr
= addr_add(addr
, 1);
369 /* ra (if not 0) and rb are never modified */
370 if (likely(reg
!= rb
&& (ra
== 0 || reg
!= ra
))) {
371 env
->gpr
[reg
] = (env
->gpr
[reg
] & ~(0xFF << d
)) | (c
<< d
);
373 if (unlikely(c
== xer_cmp
))
375 if (likely(d
!= 0)) {
386 /*****************************************************************************/
387 /* Fixed point operations helpers */
388 #if defined(TARGET_PPC64)
390 /* multiply high word */
391 uint64_t helper_mulhd (uint64_t arg1
, uint64_t arg2
)
395 muls64(&tl
, &th
, arg1
, arg2
);
399 /* multiply high word unsigned */
400 uint64_t helper_mulhdu (uint64_t arg1
, uint64_t arg2
)
404 mulu64(&tl
, &th
, arg1
, arg2
);
408 uint64_t helper_mulldo (uint64_t arg1
, uint64_t arg2
)
413 muls64(&tl
, (uint64_t *)&th
, arg1
, arg2
);
414 /* If th != 0 && th != -1, then we had an overflow */
415 if (likely((uint64_t)(th
+ 1) <= 1)) {
416 env
->xer
&= ~(1 << XER_OV
);
418 env
->xer
|= (1 << XER_OV
) | (1 << XER_SO
);
424 target_ulong
helper_cntlzw (target_ulong t
)
429 #if defined(TARGET_PPC64)
430 target_ulong
helper_cntlzd (target_ulong t
)
436 /* shift right arithmetic helper */
437 target_ulong
helper_sraw (target_ulong value
, target_ulong shift
)
441 if (likely(!(shift
& 0x20))) {
442 if (likely((uint32_t)shift
!= 0)) {
444 ret
= (int32_t)value
>> shift
;
445 if (likely(ret
>= 0 || (value
& ((1 << shift
) - 1)) == 0)) {
446 env
->xer
&= ~(1 << XER_CA
);
448 env
->xer
|= (1 << XER_CA
);
451 ret
= (int32_t)value
;
452 env
->xer
&= ~(1 << XER_CA
);
455 ret
= (int32_t)value
>> 31;
457 env
->xer
|= (1 << XER_CA
);
459 env
->xer
&= ~(1 << XER_CA
);
462 return (target_long
)ret
;
465 #if defined(TARGET_PPC64)
466 target_ulong
helper_srad (target_ulong value
, target_ulong shift
)
470 if (likely(!(shift
& 0x40))) {
471 if (likely((uint64_t)shift
!= 0)) {
473 ret
= (int64_t)value
>> shift
;
474 if (likely(ret
>= 0 || (value
& ((1 << shift
) - 1)) == 0)) {
475 env
->xer
&= ~(1 << XER_CA
);
477 env
->xer
|= (1 << XER_CA
);
480 ret
= (int64_t)value
;
481 env
->xer
&= ~(1 << XER_CA
);
484 ret
= (int64_t)value
>> 63;
486 env
->xer
|= (1 << XER_CA
);
488 env
->xer
&= ~(1 << XER_CA
);
495 target_ulong
helper_popcntb (target_ulong val
)
497 val
= (val
& 0x55555555) + ((val
>> 1) & 0x55555555);
498 val
= (val
& 0x33333333) + ((val
>> 2) & 0x33333333);
499 val
= (val
& 0x0f0f0f0f) + ((val
>> 4) & 0x0f0f0f0f);
503 #if defined(TARGET_PPC64)
504 target_ulong
helper_popcntb_64 (target_ulong val
)
506 val
= (val
& 0x5555555555555555ULL
) + ((val
>> 1) & 0x5555555555555555ULL
);
507 val
= (val
& 0x3333333333333333ULL
) + ((val
>> 2) & 0x3333333333333333ULL
);
508 val
= (val
& 0x0f0f0f0f0f0f0f0fULL
) + ((val
>> 4) & 0x0f0f0f0f0f0f0f0fULL
);
513 /*****************************************************************************/
514 /* Floating point operations helpers */
515 uint64_t helper_float32_to_float64(uint32_t arg
)
520 d
.d
= float32_to_float64(f
.f
, &env
->fp_status
);
524 uint32_t helper_float64_to_float32(uint64_t arg
)
529 f
.f
= float64_to_float32(d
.d
, &env
->fp_status
);
533 static inline int isden(float64 d
)
539 return ((u
.ll
>> 52) & 0x7FF) == 0;
542 uint32_t helper_compute_fprf (uint64_t arg
, uint32_t set_fprf
)
548 isneg
= float64_is_neg(farg
.d
);
549 if (unlikely(float64_is_nan(farg
.d
))) {
550 if (float64_is_signaling_nan(farg
.d
)) {
551 /* Signaling NaN: flags are undefined */
557 } else if (unlikely(float64_is_infinity(farg
.d
))) {
564 if (float64_is_zero(farg
.d
)) {
572 /* Denormalized numbers */
575 /* Normalized numbers */
586 /* We update FPSCR_FPRF */
587 env
->fpscr
&= ~(0x1F << FPSCR_FPRF
);
588 env
->fpscr
|= ret
<< FPSCR_FPRF
;
590 /* We just need fpcc to update Rc1 */
594 /* Floating-point invalid operations exception */
595 static inline uint64_t fload_invalid_op_excp(int op
)
602 case POWERPC_EXCP_FP_VXSNAN
:
603 env
->fpscr
|= 1 << FPSCR_VXSNAN
;
605 case POWERPC_EXCP_FP_VXSOFT
:
606 env
->fpscr
|= 1 << FPSCR_VXSOFT
;
608 case POWERPC_EXCP_FP_VXISI
:
609 /* Magnitude subtraction of infinities */
610 env
->fpscr
|= 1 << FPSCR_VXISI
;
612 case POWERPC_EXCP_FP_VXIDI
:
613 /* Division of infinity by infinity */
614 env
->fpscr
|= 1 << FPSCR_VXIDI
;
616 case POWERPC_EXCP_FP_VXZDZ
:
617 /* Division of zero by zero */
618 env
->fpscr
|= 1 << FPSCR_VXZDZ
;
620 case POWERPC_EXCP_FP_VXIMZ
:
621 /* Multiplication of zero by infinity */
622 env
->fpscr
|= 1 << FPSCR_VXIMZ
;
624 case POWERPC_EXCP_FP_VXVC
:
625 /* Ordered comparison of NaN */
626 env
->fpscr
|= 1 << FPSCR_VXVC
;
627 env
->fpscr
&= ~(0xF << FPSCR_FPCC
);
628 env
->fpscr
|= 0x11 << FPSCR_FPCC
;
629 /* We must update the target FPR before raising the exception */
631 env
->exception_index
= POWERPC_EXCP_PROGRAM
;
632 env
->error_code
= POWERPC_EXCP_FP
| POWERPC_EXCP_FP_VXVC
;
633 /* Update the floating-point enabled exception summary */
634 env
->fpscr
|= 1 << FPSCR_FEX
;
635 /* Exception is differed */
639 case POWERPC_EXCP_FP_VXSQRT
:
640 /* Square root of a negative number */
641 env
->fpscr
|= 1 << FPSCR_VXSQRT
;
643 env
->fpscr
&= ~((1 << FPSCR_FR
) | (1 << FPSCR_FI
));
645 /* Set the result to quiet NaN */
646 ret
= 0xFFF8000000000000ULL
;
647 env
->fpscr
&= ~(0xF << FPSCR_FPCC
);
648 env
->fpscr
|= 0x11 << FPSCR_FPCC
;
651 case POWERPC_EXCP_FP_VXCVI
:
652 /* Invalid conversion */
653 env
->fpscr
|= 1 << FPSCR_VXCVI
;
654 env
->fpscr
&= ~((1 << FPSCR_FR
) | (1 << FPSCR_FI
));
656 /* Set the result to quiet NaN */
657 ret
= 0xFFF8000000000000ULL
;
658 env
->fpscr
&= ~(0xF << FPSCR_FPCC
);
659 env
->fpscr
|= 0x11 << FPSCR_FPCC
;
663 /* Update the floating-point invalid operation summary */
664 env
->fpscr
|= 1 << FPSCR_VX
;
665 /* Update the floating-point exception summary */
666 env
->fpscr
|= 1 << FPSCR_FX
;
668 /* Update the floating-point enabled exception summary */
669 env
->fpscr
|= 1 << FPSCR_FEX
;
670 if (msr_fe0
!= 0 || msr_fe1
!= 0)
671 helper_raise_exception_err(POWERPC_EXCP_PROGRAM
, POWERPC_EXCP_FP
| op
);
676 static inline void float_zero_divide_excp(void)
678 env
->fpscr
|= 1 << FPSCR_ZX
;
679 env
->fpscr
&= ~((1 << FPSCR_FR
) | (1 << FPSCR_FI
));
680 /* Update the floating-point exception summary */
681 env
->fpscr
|= 1 << FPSCR_FX
;
683 /* Update the floating-point enabled exception summary */
684 env
->fpscr
|= 1 << FPSCR_FEX
;
685 if (msr_fe0
!= 0 || msr_fe1
!= 0) {
686 helper_raise_exception_err(POWERPC_EXCP_PROGRAM
,
687 POWERPC_EXCP_FP
| POWERPC_EXCP_FP_ZX
);
692 static inline void float_overflow_excp(void)
694 env
->fpscr
|= 1 << FPSCR_OX
;
695 /* Update the floating-point exception summary */
696 env
->fpscr
|= 1 << FPSCR_FX
;
698 /* XXX: should adjust the result */
699 /* Update the floating-point enabled exception summary */
700 env
->fpscr
|= 1 << FPSCR_FEX
;
701 /* We must update the target FPR before raising the exception */
702 env
->exception_index
= POWERPC_EXCP_PROGRAM
;
703 env
->error_code
= POWERPC_EXCP_FP
| POWERPC_EXCP_FP_OX
;
705 env
->fpscr
|= 1 << FPSCR_XX
;
706 env
->fpscr
|= 1 << FPSCR_FI
;
710 static inline void float_underflow_excp(void)
712 env
->fpscr
|= 1 << FPSCR_UX
;
713 /* Update the floating-point exception summary */
714 env
->fpscr
|= 1 << FPSCR_FX
;
716 /* XXX: should adjust the result */
717 /* Update the floating-point enabled exception summary */
718 env
->fpscr
|= 1 << FPSCR_FEX
;
719 /* We must update the target FPR before raising the exception */
720 env
->exception_index
= POWERPC_EXCP_PROGRAM
;
721 env
->error_code
= POWERPC_EXCP_FP
| POWERPC_EXCP_FP_UX
;
725 static inline void float_inexact_excp(void)
727 env
->fpscr
|= 1 << FPSCR_XX
;
728 /* Update the floating-point exception summary */
729 env
->fpscr
|= 1 << FPSCR_FX
;
731 /* Update the floating-point enabled exception summary */
732 env
->fpscr
|= 1 << FPSCR_FEX
;
733 /* We must update the target FPR before raising the exception */
734 env
->exception_index
= POWERPC_EXCP_PROGRAM
;
735 env
->error_code
= POWERPC_EXCP_FP
| POWERPC_EXCP_FP_XX
;
739 static inline void fpscr_set_rounding_mode(void)
743 /* Set rounding mode */
746 /* Best approximation (round to nearest) */
747 rnd_type
= float_round_nearest_even
;
750 /* Smaller magnitude (round toward zero) */
751 rnd_type
= float_round_to_zero
;
754 /* Round toward +infinite */
755 rnd_type
= float_round_up
;
759 /* Round toward -infinite */
760 rnd_type
= float_round_down
;
763 set_float_rounding_mode(rnd_type
, &env
->fp_status
);
766 void helper_fpscr_clrbit (uint32_t bit
)
770 prev
= (env
->fpscr
>> bit
) & 1;
771 env
->fpscr
&= ~(1 << bit
);
776 fpscr_set_rounding_mode();
784 void helper_fpscr_setbit (uint32_t bit
)
788 prev
= (env
->fpscr
>> bit
) & 1;
789 env
->fpscr
|= 1 << bit
;
793 env
->fpscr
|= 1 << FPSCR_FX
;
797 env
->fpscr
|= 1 << FPSCR_FX
;
802 env
->fpscr
|= 1 << FPSCR_FX
;
807 env
->fpscr
|= 1 << FPSCR_FX
;
812 env
->fpscr
|= 1 << FPSCR_FX
;
825 env
->fpscr
|= 1 << FPSCR_VX
;
826 env
->fpscr
|= 1 << FPSCR_FX
;
833 env
->error_code
= POWERPC_EXCP_FP
;
835 env
->error_code
|= POWERPC_EXCP_FP_VXSNAN
;
837 env
->error_code
|= POWERPC_EXCP_FP_VXISI
;
839 env
->error_code
|= POWERPC_EXCP_FP_VXIDI
;
841 env
->error_code
|= POWERPC_EXCP_FP_VXZDZ
;
843 env
->error_code
|= POWERPC_EXCP_FP_VXIMZ
;
845 env
->error_code
|= POWERPC_EXCP_FP_VXVC
;
847 env
->error_code
|= POWERPC_EXCP_FP_VXSOFT
;
849 env
->error_code
|= POWERPC_EXCP_FP_VXSQRT
;
851 env
->error_code
|= POWERPC_EXCP_FP_VXCVI
;
858 env
->error_code
= POWERPC_EXCP_FP
| POWERPC_EXCP_FP_OX
;
865 env
->error_code
= POWERPC_EXCP_FP
| POWERPC_EXCP_FP_UX
;
872 env
->error_code
= POWERPC_EXCP_FP
| POWERPC_EXCP_FP_ZX
;
879 env
->error_code
= POWERPC_EXCP_FP
| POWERPC_EXCP_FP_XX
;
885 fpscr_set_rounding_mode();
890 /* Update the floating-point enabled exception summary */
891 env
->fpscr
|= 1 << FPSCR_FEX
;
892 /* We have to update Rc1 before raising the exception */
893 env
->exception_index
= POWERPC_EXCP_PROGRAM
;
899 void helper_store_fpscr (uint64_t arg
, uint32_t mask
)
902 * We use only the 32 LSB of the incoming fpr
910 new |= prev
& 0x60000000;
911 for (i
= 0; i
< 8; i
++) {
912 if (mask
& (1 << i
)) {
913 env
->fpscr
&= ~(0xF << (4 * i
));
914 env
->fpscr
|= new & (0xF << (4 * i
));
917 /* Update VX and FEX */
919 env
->fpscr
|= 1 << FPSCR_VX
;
921 env
->fpscr
&= ~(1 << FPSCR_VX
);
922 if ((fpscr_ex
& fpscr_eex
) != 0) {
923 env
->fpscr
|= 1 << FPSCR_FEX
;
924 env
->exception_index
= POWERPC_EXCP_PROGRAM
;
925 /* XXX: we should compute it properly */
926 env
->error_code
= POWERPC_EXCP_FP
;
929 env
->fpscr
&= ~(1 << FPSCR_FEX
);
930 fpscr_set_rounding_mode();
933 void helper_float_check_status (void)
935 #ifdef CONFIG_SOFTFLOAT
936 if (env
->exception_index
== POWERPC_EXCP_PROGRAM
&&
937 (env
->error_code
& POWERPC_EXCP_FP
)) {
938 /* Differred floating-point exception after target FPR update */
939 if (msr_fe0
!= 0 || msr_fe1
!= 0)
940 helper_raise_exception_err(env
->exception_index
, env
->error_code
);
942 int status
= get_float_exception_flags(&env
->fp_status
);
943 if (status
& float_flag_divbyzero
) {
944 float_zero_divide_excp();
945 } else if (status
& float_flag_overflow
) {
946 float_overflow_excp();
947 } else if (status
& float_flag_underflow
) {
948 float_underflow_excp();
949 } else if (status
& float_flag_inexact
) {
950 float_inexact_excp();
954 if (env
->exception_index
== POWERPC_EXCP_PROGRAM
&&
955 (env
->error_code
& POWERPC_EXCP_FP
)) {
956 /* Differred floating-point exception after target FPR update */
957 if (msr_fe0
!= 0 || msr_fe1
!= 0)
958 helper_raise_exception_err(env
->exception_index
, env
->error_code
);
963 #ifdef CONFIG_SOFTFLOAT
964 void helper_reset_fpstatus (void)
966 set_float_exception_flags(0, &env
->fp_status
);
971 uint64_t helper_fadd (uint64_t arg1
, uint64_t arg2
)
973 CPU_DoubleU farg1
, farg2
;
977 #if USE_PRECISE_EMULATION
978 if (unlikely(float64_is_signaling_nan(farg1
.d
) ||
979 float64_is_signaling_nan(farg2
.d
))) {
981 farg1
.ll
= fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN
);
982 } else if (unlikely(float64_is_infinity(farg1
.d
) && float64_is_infinity(farg2
.d
) &&
983 float64_is_neg(farg1
.d
) != float64_is_neg(farg2
.d
))) {
984 /* Magnitude subtraction of infinities */
985 farg1
.ll
= fload_invalid_op_excp(POWERPC_EXCP_FP_VXISI
);
987 farg1
.d
= float64_add(farg1
.d
, farg2
.d
, &env
->fp_status
);
990 farg1
.d
= float64_add(farg1
.d
, farg2
.d
, &env
->fp_status
);
996 uint64_t helper_fsub (uint64_t arg1
, uint64_t arg2
)
998 CPU_DoubleU farg1
, farg2
;
1002 #if USE_PRECISE_EMULATION
1004 if (unlikely(float64_is_signaling_nan(farg1
.d
) ||
1005 float64_is_signaling_nan(farg2
.d
))) {
1006 /* sNaN subtraction */
1007 farg1
.ll
= fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN
);
1008 } else if (unlikely(float64_is_infinity(farg1
.d
) && float64_is_infinity(farg2
.d
) &&
1009 float64_is_neg(farg1
.d
) == float64_is_neg(farg2
.d
))) {
1010 /* Magnitude subtraction of infinities */
1011 farg1
.ll
= fload_invalid_op_excp(POWERPC_EXCP_FP_VXISI
);
1013 farg1
.d
= float64_sub(farg1
.d
, farg2
.d
, &env
->fp_status
);
1017 farg1
.d
= float64_sub(farg1
.d
, farg2
.d
, &env
->fp_status
);
1023 uint64_t helper_fmul (uint64_t arg1
, uint64_t arg2
)
1025 CPU_DoubleU farg1
, farg2
;
1029 #if USE_PRECISE_EMULATION
1030 if (unlikely(float64_is_signaling_nan(farg1
.d
) ||
1031 float64_is_signaling_nan(farg2
.d
))) {
1032 /* sNaN multiplication */
1033 farg1
.ll
= fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN
);
1034 } else if (unlikely((float64_is_infinity(farg1
.d
) && float64_is_zero(farg2
.d
)) ||
1035 (float64_is_zero(farg1
.d
) && float64_is_infinity(farg2
.d
)))) {
1036 /* Multiplication of zero by infinity */
1037 farg1
.ll
= fload_invalid_op_excp(POWERPC_EXCP_FP_VXIMZ
);
1039 farg1
.d
= float64_mul(farg1
.d
, farg2
.d
, &env
->fp_status
);
1042 farg1
.d
= float64_mul(farg1
.d
, farg2
.d
, &env
->fp_status
);
1048 uint64_t helper_fdiv (uint64_t arg1
, uint64_t arg2
)
1050 CPU_DoubleU farg1
, farg2
;
1054 #if USE_PRECISE_EMULATION
1055 if (unlikely(float64_is_signaling_nan(farg1
.d
) ||
1056 float64_is_signaling_nan(farg2
.d
))) {
1058 farg1
.ll
= fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN
);
1059 } else if (unlikely(float64_is_infinity(farg1
.d
) && float64_is_infinity(farg2
.d
))) {
1060 /* Division of infinity by infinity */
1061 farg1
.ll
= fload_invalid_op_excp(POWERPC_EXCP_FP_VXIDI
);
1062 } else if (unlikely(float64_is_zero(farg1
.d
) && float64_is_zero(farg2
.d
))) {
1063 /* Division of zero by zero */
1064 farg1
.ll
= fload_invalid_op_excp(POWERPC_EXCP_FP_VXZDZ
);
1066 farg1
.d
= float64_div(farg1
.d
, farg2
.d
, &env
->fp_status
);
1069 farg1
.d
= float64_div(farg1
.d
, farg2
.d
, &env
->fp_status
);
1075 uint64_t helper_fabs (uint64_t arg
)
1080 farg
.d
= float64_abs(farg
.d
);
1085 uint64_t helper_fnabs (uint64_t arg
)
1090 farg
.d
= float64_abs(farg
.d
);
1091 farg
.d
= float64_chs(farg
.d
);
1096 uint64_t helper_fneg (uint64_t arg
)
1101 farg
.d
= float64_chs(farg
.d
);
1105 /* fctiw - fctiw. */
1106 uint64_t helper_fctiw (uint64_t arg
)
1111 if (unlikely(float64_is_signaling_nan(farg
.d
))) {
1112 /* sNaN conversion */
1113 farg
.ll
= fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN
| POWERPC_EXCP_FP_VXCVI
);
1114 } else if (unlikely(float64_is_nan(farg
.d
) || float64_is_infinity(farg
.d
))) {
1115 /* qNan / infinity conversion */
1116 farg
.ll
= fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI
);
1118 farg
.ll
= float64_to_int32(farg
.d
, &env
->fp_status
);
1119 #if USE_PRECISE_EMULATION
1120 /* XXX: higher bits are not supposed to be significant.
1121 * to make tests easier, return the same as a real PowerPC 750
1123 farg
.ll
|= 0xFFF80000ULL
<< 32;
1129 /* fctiwz - fctiwz. */
1130 uint64_t helper_fctiwz (uint64_t arg
)
1135 if (unlikely(float64_is_signaling_nan(farg
.d
))) {
1136 /* sNaN conversion */
1137 farg
.ll
= fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN
| POWERPC_EXCP_FP_VXCVI
);
1138 } else if (unlikely(float64_is_nan(farg
.d
) || float64_is_infinity(farg
.d
))) {
1139 /* qNan / infinity conversion */
1140 farg
.ll
= fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI
);
1142 farg
.ll
= float64_to_int32_round_to_zero(farg
.d
, &env
->fp_status
);
1143 #if USE_PRECISE_EMULATION
1144 /* XXX: higher bits are not supposed to be significant.
1145 * to make tests easier, return the same as a real PowerPC 750
1147 farg
.ll
|= 0xFFF80000ULL
<< 32;
1153 #if defined(TARGET_PPC64)
1154 /* fcfid - fcfid. */
1155 uint64_t helper_fcfid (uint64_t arg
)
1158 farg
.d
= int64_to_float64(arg
, &env
->fp_status
);
1162 /* fctid - fctid. */
1163 uint64_t helper_fctid (uint64_t arg
)
1168 if (unlikely(float64_is_signaling_nan(farg
.d
))) {
1169 /* sNaN conversion */
1170 farg
.ll
= fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN
| POWERPC_EXCP_FP_VXCVI
);
1171 } else if (unlikely(float64_is_nan(farg
.d
) || float64_is_infinity(farg
.d
))) {
1172 /* qNan / infinity conversion */
1173 farg
.ll
= fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI
);
1175 farg
.ll
= float64_to_int64(farg
.d
, &env
->fp_status
);
1180 /* fctidz - fctidz. */
1181 uint64_t helper_fctidz (uint64_t arg
)
1186 if (unlikely(float64_is_signaling_nan(farg
.d
))) {
1187 /* sNaN conversion */
1188 farg
.ll
= fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN
| POWERPC_EXCP_FP_VXCVI
);
1189 } else if (unlikely(float64_is_nan(farg
.d
) || float64_is_infinity(farg
.d
))) {
1190 /* qNan / infinity conversion */
1191 farg
.ll
= fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI
);
1193 farg
.ll
= float64_to_int64_round_to_zero(farg
.d
, &env
->fp_status
);
1200 static inline uint64_t do_fri(uint64_t arg
, int rounding_mode
)
1205 if (unlikely(float64_is_signaling_nan(farg
.d
))) {
1207 farg
.ll
= fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN
| POWERPC_EXCP_FP_VXCVI
);
1208 } else if (unlikely(float64_is_nan(farg
.d
) || float64_is_infinity(farg
.d
))) {
1209 /* qNan / infinity round */
1210 farg
.ll
= fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI
);
1212 set_float_rounding_mode(rounding_mode
, &env
->fp_status
);
1213 farg
.ll
= float64_round_to_int(farg
.d
, &env
->fp_status
);
1214 /* Restore rounding mode from FPSCR */
1215 fpscr_set_rounding_mode();
1220 uint64_t helper_frin (uint64_t arg
)
1222 return do_fri(arg
, float_round_nearest_even
);
1225 uint64_t helper_friz (uint64_t arg
)
1227 return do_fri(arg
, float_round_to_zero
);
1230 uint64_t helper_frip (uint64_t arg
)
1232 return do_fri(arg
, float_round_up
);
1235 uint64_t helper_frim (uint64_t arg
)
1237 return do_fri(arg
, float_round_down
);
1240 /* fmadd - fmadd. */
1241 uint64_t helper_fmadd (uint64_t arg1
, uint64_t arg2
, uint64_t arg3
)
1243 CPU_DoubleU farg1
, farg2
, farg3
;
1248 #if USE_PRECISE_EMULATION
1249 if (unlikely(float64_is_signaling_nan(farg1
.d
) ||
1250 float64_is_signaling_nan(farg2
.d
) ||
1251 float64_is_signaling_nan(farg3
.d
))) {
1252 /* sNaN operation */
1253 farg1
.ll
= fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN
);
1254 } else if (unlikely((float64_is_infinity(farg1
.d
) && float64_is_zero(farg2
.d
)) ||
1255 (float64_is_zero(farg1
.d
) && float64_is_infinity(farg2
.d
)))) {
1256 /* Multiplication of zero by infinity */
1257 farg1
.ll
= fload_invalid_op_excp(POWERPC_EXCP_FP_VXIMZ
);
1260 /* This is the way the PowerPC specification defines it */
1261 float128 ft0_128
, ft1_128
;
1263 ft0_128
= float64_to_float128(farg1
.d
, &env
->fp_status
);
1264 ft1_128
= float64_to_float128(farg2
.d
, &env
->fp_status
);
1265 ft0_128
= float128_mul(ft0_128
, ft1_128
, &env
->fp_status
);
1266 if (unlikely(float128_is_infinity(ft0_128
) && float64_is_infinity(farg3
.d
) &&
1267 float128_is_neg(ft0_128
) != float64_is_neg(farg3
.d
))) {
1268 /* Magnitude subtraction of infinities */
1269 farg1
.ll
= fload_invalid_op_excp(POWERPC_EXCP_FP_VXISI
);
1271 ft1_128
= float64_to_float128(farg3
.d
, &env
->fp_status
);
1272 ft0_128
= float128_add(ft0_128
, ft1_128
, &env
->fp_status
);
1273 farg1
.d
= float128_to_float64(ft0_128
, &env
->fp_status
);
1276 /* This is OK on x86 hosts */
1277 farg1
.d
= (farg1
.d
* farg2
.d
) + farg3
.d
;
1281 farg1
.d
= float64_mul(farg1
.d
, farg2
.d
, &env
->fp_status
);
1282 farg1
.d
= float64_add(farg1
.d
, farg3
.d
, &env
->fp_status
);
1287 /* fmsub - fmsub. */
1288 uint64_t helper_fmsub (uint64_t arg1
, uint64_t arg2
, uint64_t arg3
)
1290 CPU_DoubleU farg1
, farg2
, farg3
;
1295 #if USE_PRECISE_EMULATION
1296 if (unlikely(float64_is_signaling_nan(farg1
.d
) ||
1297 float64_is_signaling_nan(farg2
.d
) ||
1298 float64_is_signaling_nan(farg3
.d
))) {
1299 /* sNaN operation */
1300 farg1
.ll
= fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN
);
1301 } else if (unlikely((float64_is_infinity(farg1
.d
) && float64_is_zero(farg2
.d
)) ||
1302 (float64_is_zero(farg1
.d
) && float64_is_infinity(farg2
.d
)))) {
1303 /* Multiplication of zero by infinity */
1304 farg1
.ll
= fload_invalid_op_excp(POWERPC_EXCP_FP_VXIMZ
);
1307 /* This is the way the PowerPC specification defines it */
1308 float128 ft0_128
, ft1_128
;
1310 ft0_128
= float64_to_float128(farg1
.d
, &env
->fp_status
);
1311 ft1_128
= float64_to_float128(farg2
.d
, &env
->fp_status
);
1312 ft0_128
= float128_mul(ft0_128
, ft1_128
, &env
->fp_status
);
1313 if (unlikely(float128_is_infinity(ft0_128
) && float64_is_infinity(farg3
.d
) &&
1314 float128_is_neg(ft0_128
) == float64_is_neg(farg3
.d
))) {
1315 /* Magnitude subtraction of infinities */
1316 farg1
.ll
= fload_invalid_op_excp(POWERPC_EXCP_FP_VXISI
);
1318 ft1_128
= float64_to_float128(farg3
.d
, &env
->fp_status
);
1319 ft0_128
= float128_sub(ft0_128
, ft1_128
, &env
->fp_status
);
1320 farg1
.d
= float128_to_float64(ft0_128
, &env
->fp_status
);
1323 /* This is OK on x86 hosts */
1324 farg1
.d
= (farg1
.d
* farg2
.d
) - farg3
.d
;
1328 farg1
.d
= float64_mul(farg1
.d
, farg2
.d
, &env
->fp_status
);
1329 farg1
.d
= float64_sub(farg1
.d
, farg3
.d
, &env
->fp_status
);
1334 /* fnmadd - fnmadd. */
1335 uint64_t helper_fnmadd (uint64_t arg1
, uint64_t arg2
, uint64_t arg3
)
1337 CPU_DoubleU farg1
, farg2
, farg3
;
1343 if (unlikely(float64_is_signaling_nan(farg1
.d
) ||
1344 float64_is_signaling_nan(farg2
.d
) ||
1345 float64_is_signaling_nan(farg3
.d
))) {
1346 /* sNaN operation */
1347 farg1
.ll
= fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN
);
1348 } else if (unlikely((float64_is_infinity(farg1
.d
) && float64_is_zero(farg2
.d
)) ||
1349 (float64_is_zero(farg1
.d
) && float64_is_infinity(farg2
.d
)))) {
1350 /* Multiplication of zero by infinity */
1351 farg1
.ll
= fload_invalid_op_excp(POWERPC_EXCP_FP_VXIMZ
);
1353 #if USE_PRECISE_EMULATION
1355 /* This is the way the PowerPC specification defines it */
1356 float128 ft0_128
, ft1_128
;
1358 ft0_128
= float64_to_float128(farg1
.d
, &env
->fp_status
);
1359 ft1_128
= float64_to_float128(farg2
.d
, &env
->fp_status
);
1360 ft0_128
= float128_mul(ft0_128
, ft1_128
, &env
->fp_status
);
1361 if (unlikely(float128_is_infinity(ft0_128
) && float64_is_infinity(farg3
.d
) &&
1362 float128_is_neg(ft0_128
) != float64_is_neg(farg3
.d
))) {
1363 /* Magnitude subtraction of infinities */
1364 farg1
.ll
= fload_invalid_op_excp(POWERPC_EXCP_FP_VXISI
);
1366 ft1_128
= float64_to_float128(farg3
.d
, &env
->fp_status
);
1367 ft0_128
= float128_add(ft0_128
, ft1_128
, &env
->fp_status
);
1368 farg1
.d
= float128_to_float64(ft0_128
, &env
->fp_status
);
1371 /* This is OK on x86 hosts */
1372 farg1
.d
= (farg1
.d
* farg2
.d
) + farg3
.d
;
1375 farg1
.d
= float64_mul(farg1
.d
, farg2
.d
, &env
->fp_status
);
1376 farg1
.d
= float64_add(farg1
.d
, farg3
.d
, &env
->fp_status
);
1378 if (likely(!float64_is_nan(farg1
.d
)))
1379 farg1
.d
= float64_chs(farg1
.d
);
1384 /* fnmsub - fnmsub. */
1385 uint64_t helper_fnmsub (uint64_t arg1
, uint64_t arg2
, uint64_t arg3
)
1387 CPU_DoubleU farg1
, farg2
, farg3
;
1393 if (unlikely(float64_is_signaling_nan(farg1
.d
) ||
1394 float64_is_signaling_nan(farg2
.d
) ||
1395 float64_is_signaling_nan(farg3
.d
))) {
1396 /* sNaN operation */
1397 farg1
.ll
= fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN
);
1398 } else if (unlikely((float64_is_infinity(farg1
.d
) && float64_is_zero(farg2
.d
)) ||
1399 (float64_is_zero(farg1
.d
) && float64_is_infinity(farg2
.d
)))) {
1400 /* Multiplication of zero by infinity */
1401 farg1
.ll
= fload_invalid_op_excp(POWERPC_EXCP_FP_VXIMZ
);
1403 #if USE_PRECISE_EMULATION
1405 /* This is the way the PowerPC specification defines it */
1406 float128 ft0_128
, ft1_128
;
1408 ft0_128
= float64_to_float128(farg1
.d
, &env
->fp_status
);
1409 ft1_128
= float64_to_float128(farg2
.d
, &env
->fp_status
);
1410 ft0_128
= float128_mul(ft0_128
, ft1_128
, &env
->fp_status
);
1411 if (unlikely(float128_is_infinity(ft0_128
) && float64_is_infinity(farg3
.d
) &&
1412 float128_is_neg(ft0_128
) == float64_is_neg(farg3
.d
))) {
1413 /* Magnitude subtraction of infinities */
1414 farg1
.ll
= fload_invalid_op_excp(POWERPC_EXCP_FP_VXISI
);
1416 ft1_128
= float64_to_float128(farg3
.d
, &env
->fp_status
);
1417 ft0_128
= float128_sub(ft0_128
, ft1_128
, &env
->fp_status
);
1418 farg1
.d
= float128_to_float64(ft0_128
, &env
->fp_status
);
1421 /* This is OK on x86 hosts */
1422 farg1
.d
= (farg1
.d
* farg2
.d
) - farg3
.d
;
1425 farg1
.d
= float64_mul(farg1
.d
, farg2
.d
, &env
->fp_status
);
1426 farg1
.d
= float64_sub(farg1
.d
, farg3
.d
, &env
->fp_status
);
1428 if (likely(!float64_is_nan(farg1
.d
)))
1429 farg1
.d
= float64_chs(farg1
.d
);
1435 uint64_t helper_frsp (uint64_t arg
)
1441 #if USE_PRECISE_EMULATION
1442 if (unlikely(float64_is_signaling_nan(farg
.d
))) {
1443 /* sNaN square root */
1444 farg
.ll
= fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN
);
1446 f32
= float64_to_float32(farg
.d
, &env
->fp_status
);
1447 farg
.d
= float32_to_float64(f32
, &env
->fp_status
);
1450 f32
= float64_to_float32(farg
.d
, &env
->fp_status
);
1451 farg
.d
= float32_to_float64(f32
, &env
->fp_status
);
1456 /* fsqrt - fsqrt. */
1457 uint64_t helper_fsqrt (uint64_t arg
)
1462 if (unlikely(float64_is_signaling_nan(farg
.d
))) {
1463 /* sNaN square root */
1464 farg
.ll
= fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN
);
1465 } else if (unlikely(float64_is_neg(farg
.d
) && !float64_is_zero(farg
.d
))) {
1466 /* Square root of a negative nonzero number */
1467 farg
.ll
= fload_invalid_op_excp(POWERPC_EXCP_FP_VXSQRT
);
1469 farg
.d
= float64_sqrt(farg
.d
, &env
->fp_status
);
1475 uint64_t helper_fre (uint64_t arg
)
1480 if (unlikely(float64_is_signaling_nan(farg
.d
))) {
1481 /* sNaN reciprocal */
1482 farg
.ll
= fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN
);
1484 farg
.d
= float64_div(float64_one
, farg
.d
, &env
->fp_status
);
1490 uint64_t helper_fres (uint64_t arg
)
1496 if (unlikely(float64_is_signaling_nan(farg
.d
))) {
1497 /* sNaN reciprocal */
1498 farg
.ll
= fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN
);
1500 farg
.d
= float64_div(float64_one
, farg
.d
, &env
->fp_status
);
1501 f32
= float64_to_float32(farg
.d
, &env
->fp_status
);
1502 farg
.d
= float32_to_float64(f32
, &env
->fp_status
);
1507 /* frsqrte - frsqrte. */
1508 uint64_t helper_frsqrte (uint64_t arg
)
1514 if (unlikely(float64_is_signaling_nan(farg
.d
))) {
1515 /* sNaN reciprocal square root */
1516 farg
.ll
= fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN
);
1517 } else if (unlikely(float64_is_neg(farg
.d
) && !float64_is_zero(farg
.d
))) {
1518 /* Reciprocal square root of a negative nonzero number */
1519 farg
.ll
= fload_invalid_op_excp(POWERPC_EXCP_FP_VXSQRT
);
1521 farg
.d
= float64_sqrt(farg
.d
, &env
->fp_status
);
1522 farg
.d
= float64_div(float64_one
, farg
.d
, &env
->fp_status
);
1523 f32
= float64_to_float32(farg
.d
, &env
->fp_status
);
1524 farg
.d
= float32_to_float64(f32
, &env
->fp_status
);
1530 uint64_t helper_fsel (uint64_t arg1
, uint64_t arg2
, uint64_t arg3
)
1536 if ((!float64_is_neg(farg1
.d
) || float64_is_zero(farg1
.d
)) && !float64_is_nan(farg1
.d
))
1542 void helper_fcmpu (uint64_t arg1
, uint64_t arg2
, uint32_t crfD
)
1544 CPU_DoubleU farg1
, farg2
;
1549 if (unlikely(float64_is_nan(farg1
.d
) ||
1550 float64_is_nan(farg2
.d
))) {
1552 } else if (float64_lt(farg1
.d
, farg2
.d
, &env
->fp_status
)) {
1554 } else if (!float64_le(farg1
.d
, farg2
.d
, &env
->fp_status
)) {
1560 env
->fpscr
&= ~(0x0F << FPSCR_FPRF
);
1561 env
->fpscr
|= ret
<< FPSCR_FPRF
;
1562 env
->crf
[crfD
] = ret
;
1563 if (unlikely(ret
== 0x01UL
1564 && (float64_is_signaling_nan(farg1
.d
) ||
1565 float64_is_signaling_nan(farg2
.d
)))) {
1566 /* sNaN comparison */
1567 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN
);
1571 void helper_fcmpo (uint64_t arg1
, uint64_t arg2
, uint32_t crfD
)
1573 CPU_DoubleU farg1
, farg2
;
1578 if (unlikely(float64_is_nan(farg1
.d
) ||
1579 float64_is_nan(farg2
.d
))) {
1581 } else if (float64_lt(farg1
.d
, farg2
.d
, &env
->fp_status
)) {
1583 } else if (!float64_le(farg1
.d
, farg2
.d
, &env
->fp_status
)) {
1589 env
->fpscr
&= ~(0x0F << FPSCR_FPRF
);
1590 env
->fpscr
|= ret
<< FPSCR_FPRF
;
1591 env
->crf
[crfD
] = ret
;
1592 if (unlikely (ret
== 0x01UL
)) {
1593 if (float64_is_signaling_nan(farg1
.d
) ||
1594 float64_is_signaling_nan(farg2
.d
)) {
1595 /* sNaN comparison */
1596 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN
|
1597 POWERPC_EXCP_FP_VXVC
);
1599 /* qNaN comparison */
1600 fload_invalid_op_excp(POWERPC_EXCP_FP_VXVC
);
1605 #if !defined (CONFIG_USER_ONLY)
1606 void helper_store_msr (target_ulong val
)
1608 val
= hreg_store_msr(env
, val
, 0);
1610 env
->interrupt_request
|= CPU_INTERRUPT_EXITTB
;
1611 helper_raise_exception(val
);
1615 static inline void do_rfi(target_ulong nip
, target_ulong msr
,
1616 target_ulong msrm
, int keep_msrh
)
1618 #if defined(TARGET_PPC64)
1619 if (msr
& (1ULL << MSR_SF
)) {
1620 nip
= (uint64_t)nip
;
1621 msr
&= (uint64_t)msrm
;
1623 nip
= (uint32_t)nip
;
1624 msr
= (uint32_t)(msr
& msrm
);
1626 msr
|= env
->msr
& ~((uint64_t)0xFFFFFFFF);
1629 nip
= (uint32_t)nip
;
1630 msr
&= (uint32_t)msrm
;
1632 /* XXX: beware: this is false if VLE is supported */
1633 env
->nip
= nip
& ~((target_ulong
)0x00000003);
1634 hreg_store_msr(env
, msr
, 1);
1635 #if defined (DEBUG_OP)
1636 cpu_dump_rfi(env
->nip
, env
->msr
);
1638 /* No need to raise an exception here,
1639 * as rfi is always the last insn of a TB
1641 env
->interrupt_request
|= CPU_INTERRUPT_EXITTB
;
1644 void helper_rfi (void)
1646 do_rfi(env
->spr
[SPR_SRR0
], env
->spr
[SPR_SRR1
],
1647 ~((target_ulong
)0x783F0000), 1);
1650 #if defined(TARGET_PPC64)
1651 void helper_rfid (void)
1653 do_rfi(env
->spr
[SPR_SRR0
], env
->spr
[SPR_SRR1
],
1654 ~((target_ulong
)0x783F0000), 0);
1657 void helper_hrfid (void)
1659 do_rfi(env
->spr
[SPR_HSRR0
], env
->spr
[SPR_HSRR1
],
1660 ~((target_ulong
)0x783F0000), 0);
1665 void helper_tw (target_ulong arg1
, target_ulong arg2
, uint32_t flags
)
1667 if (!likely(!(((int32_t)arg1
< (int32_t)arg2
&& (flags
& 0x10)) ||
1668 ((int32_t)arg1
> (int32_t)arg2
&& (flags
& 0x08)) ||
1669 ((int32_t)arg1
== (int32_t)arg2
&& (flags
& 0x04)) ||
1670 ((uint32_t)arg1
< (uint32_t)arg2
&& (flags
& 0x02)) ||
1671 ((uint32_t)arg1
> (uint32_t)arg2
&& (flags
& 0x01))))) {
1672 helper_raise_exception_err(POWERPC_EXCP_PROGRAM
, POWERPC_EXCP_TRAP
);
1676 #if defined(TARGET_PPC64)
1677 void helper_td (target_ulong arg1
, target_ulong arg2
, uint32_t flags
)
1679 if (!likely(!(((int64_t)arg1
< (int64_t)arg2
&& (flags
& 0x10)) ||
1680 ((int64_t)arg1
> (int64_t)arg2
&& (flags
& 0x08)) ||
1681 ((int64_t)arg1
== (int64_t)arg2
&& (flags
& 0x04)) ||
1682 ((uint64_t)arg1
< (uint64_t)arg2
&& (flags
& 0x02)) ||
1683 ((uint64_t)arg1
> (uint64_t)arg2
&& (flags
& 0x01)))))
1684 helper_raise_exception_err(POWERPC_EXCP_PROGRAM
, POWERPC_EXCP_TRAP
);
1688 /*****************************************************************************/
1689 /* PowerPC 601 specific instructions (POWER bridge) */
1691 target_ulong
helper_clcs (uint32_t arg
)
1695 /* Instruction cache line size */
1696 return env
->icache_line_size
;
1699 /* Data cache line size */
1700 return env
->dcache_line_size
;
1703 /* Minimum cache line size */
1704 return (env
->icache_line_size
< env
->dcache_line_size
) ?
1705 env
->icache_line_size
: env
->dcache_line_size
;
1708 /* Maximum cache line size */
1709 return (env
->icache_line_size
> env
->dcache_line_size
) ?
1710 env
->icache_line_size
: env
->dcache_line_size
;
1719 target_ulong
helper_div (target_ulong arg1
, target_ulong arg2
)
1721 uint64_t tmp
= (uint64_t)arg1
<< 32 | env
->spr
[SPR_MQ
];
1723 if (((int32_t)tmp
== INT32_MIN
&& (int32_t)arg2
== (int32_t)-1) ||
1724 (int32_t)arg2
== 0) {
1725 env
->spr
[SPR_MQ
] = 0;
1728 env
->spr
[SPR_MQ
] = tmp
% arg2
;
1729 return tmp
/ (int32_t)arg2
;
1733 target_ulong
helper_divo (target_ulong arg1
, target_ulong arg2
)
1735 uint64_t tmp
= (uint64_t)arg1
<< 32 | env
->spr
[SPR_MQ
];
1737 if (((int32_t)tmp
== INT32_MIN
&& (int32_t)arg2
== (int32_t)-1) ||
1738 (int32_t)arg2
== 0) {
1739 env
->xer
|= (1 << XER_OV
) | (1 << XER_SO
);
1740 env
->spr
[SPR_MQ
] = 0;
1743 env
->spr
[SPR_MQ
] = tmp
% arg2
;
1744 tmp
/= (int32_t)arg2
;
1745 if ((int32_t)tmp
!= tmp
) {
1746 env
->xer
|= (1 << XER_OV
) | (1 << XER_SO
);
1748 env
->xer
&= ~(1 << XER_OV
);
1754 target_ulong
helper_divs (target_ulong arg1
, target_ulong arg2
)
1756 if (((int32_t)arg1
== INT32_MIN
&& (int32_t)arg2
== (int32_t)-1) ||
1757 (int32_t)arg2
== 0) {
1758 env
->spr
[SPR_MQ
] = 0;
1761 env
->spr
[SPR_MQ
] = (int32_t)arg1
% (int32_t)arg2
;
1762 return (int32_t)arg1
/ (int32_t)arg2
;
1766 target_ulong
helper_divso (target_ulong arg1
, target_ulong arg2
)
1768 if (((int32_t)arg1
== INT32_MIN
&& (int32_t)arg2
== (int32_t)-1) ||
1769 (int32_t)arg2
== 0) {
1770 env
->xer
|= (1 << XER_OV
) | (1 << XER_SO
);
1771 env
->spr
[SPR_MQ
] = 0;
1774 env
->xer
&= ~(1 << XER_OV
);
1775 env
->spr
[SPR_MQ
] = (int32_t)arg1
% (int32_t)arg2
;
1776 return (int32_t)arg1
/ (int32_t)arg2
;
1780 #if !defined (CONFIG_USER_ONLY)
1781 target_ulong
helper_rac (target_ulong addr
)
1785 target_ulong ret
= 0;
1787 /* We don't have to generate many instances of this instruction,
1788 * as rac is supervisor only.
1790 /* XXX: FIX THIS: Pretend we have no BAT */
1791 nb_BATs
= env
->nb_BATs
;
1793 if (get_physical_address(env
, &ctx
, addr
, 0, ACCESS_INT
) == 0)
1795 env
->nb_BATs
= nb_BATs
;
1799 void helper_rfsvc (void)
1801 do_rfi(env
->lr
, env
->ctr
, 0x0000FFFF, 0);
1805 /*****************************************************************************/
1806 /* 602 specific instructions */
1807 /* mfrom is the most crazy instruction ever seen, imho ! */
1808 /* Real implementation uses a ROM table. Do the same */
1809 /* Extremly decomposed:
1811 * return 256 * log10(10 + 1.0) + 0.5
1813 #if !defined (CONFIG_USER_ONLY)
1814 target_ulong
helper_602_mfrom (target_ulong arg
)
1816 if (likely(arg
< 602)) {
1817 #include "mfrom_table.c"
1818 return mfrom_ROM_table
[arg
];
1825 /*****************************************************************************/
1826 /* Embedded PowerPC specific helpers */
1828 /* XXX: to be improved to check access rights when in user-mode */
1829 target_ulong
helper_load_dcr (target_ulong dcrn
)
1833 if (unlikely(env
->dcr_env
== NULL
)) {
1834 qemu_log("No DCR environment\n");
1835 helper_raise_exception_err(POWERPC_EXCP_PROGRAM
,
1836 POWERPC_EXCP_INVAL
| POWERPC_EXCP_INVAL_INVAL
);
1837 } else if (unlikely(ppc_dcr_read(env
->dcr_env
, (uint32_t)dcrn
, &val
) != 0)) {
1838 qemu_log("DCR read error %d %03x\n", (uint32_t)dcrn
, (uint32_t)dcrn
);
1839 helper_raise_exception_err(POWERPC_EXCP_PROGRAM
,
1840 POWERPC_EXCP_INVAL
| POWERPC_EXCP_PRIV_REG
);
1845 void helper_store_dcr (target_ulong dcrn
, target_ulong val
)
1847 if (unlikely(env
->dcr_env
== NULL
)) {
1848 qemu_log("No DCR environment\n");
1849 helper_raise_exception_err(POWERPC_EXCP_PROGRAM
,
1850 POWERPC_EXCP_INVAL
| POWERPC_EXCP_INVAL_INVAL
);
1851 } else if (unlikely(ppc_dcr_write(env
->dcr_env
, (uint32_t)dcrn
, (uint32_t)val
) != 0)) {
1852 qemu_log("DCR write error %d %03x\n", (uint32_t)dcrn
, (uint32_t)dcrn
);
1853 helper_raise_exception_err(POWERPC_EXCP_PROGRAM
,
1854 POWERPC_EXCP_INVAL
| POWERPC_EXCP_PRIV_REG
);
1858 #if !defined(CONFIG_USER_ONLY)
1859 void helper_40x_rfci (void)
1861 do_rfi(env
->spr
[SPR_40x_SRR2
], env
->spr
[SPR_40x_SRR3
],
1862 ~((target_ulong
)0xFFFF0000), 0);
1865 void helper_rfci (void)
1867 do_rfi(env
->spr
[SPR_BOOKE_CSRR0
], SPR_BOOKE_CSRR1
,
1868 ~((target_ulong
)0x3FFF0000), 0);
1871 void helper_rfdi (void)
1873 do_rfi(env
->spr
[SPR_BOOKE_DSRR0
], SPR_BOOKE_DSRR1
,
1874 ~((target_ulong
)0x3FFF0000), 0);
1877 void helper_rfmci (void)
1879 do_rfi(env
->spr
[SPR_BOOKE_MCSRR0
], SPR_BOOKE_MCSRR1
,
1880 ~((target_ulong
)0x3FFF0000), 0);
1885 target_ulong
helper_dlmzb (target_ulong high
, target_ulong low
, uint32_t update_Rc
)
1891 for (mask
= 0xFF000000; mask
!= 0; mask
= mask
>> 8) {
1892 if ((high
& mask
) == 0) {
1900 for (mask
= 0xFF000000; mask
!= 0; mask
= mask
>> 8) {
1901 if ((low
& mask
) == 0) {
1913 env
->xer
= (env
->xer
& ~0x7F) | i
;
1915 env
->crf
[0] |= xer_so
;
1920 /*****************************************************************************/
1921 /* Altivec extension helpers */
1922 #if defined(HOST_WORDS_BIGENDIAN)
1930 #if defined(HOST_WORDS_BIGENDIAN)
1931 #define VECTOR_FOR_INORDER_I(index, element) \
1932 for (index = 0; index < ARRAY_SIZE(r->element); index++)
1934 #define VECTOR_FOR_INORDER_I(index, element) \
1935 for (index = ARRAY_SIZE(r->element)-1; index >= 0; index--)
1938 /* If X is a NaN, store the corresponding QNaN into RESULT. Otherwise,
1939 * execute the following block. */
1940 #define DO_HANDLE_NAN(result, x) \
1941 if (float32_is_nan(x) || float32_is_signaling_nan(x)) { \
1944 __f.l = __f.l | (1 << 22); /* Set QNaN bit. */ \
1948 #define HANDLE_NAN1(result, x) \
1949 DO_HANDLE_NAN(result, x)
1950 #define HANDLE_NAN2(result, x, y) \
1951 DO_HANDLE_NAN(result, x) DO_HANDLE_NAN(result, y)
1952 #define HANDLE_NAN3(result, x, y, z) \
1953 DO_HANDLE_NAN(result, x) DO_HANDLE_NAN(result, y) DO_HANDLE_NAN(result, z)
1955 /* Saturating arithmetic helpers. */
1956 #define SATCVT(from, to, from_type, to_type, min, max) \
1957 static inline to_type cvt##from##to(from_type x, int *sat) \
1960 if (x < (from_type)min) { \
1963 } else if (x > (from_type)max) { \
1971 #define SATCVTU(from, to, from_type, to_type, min, max) \
1972 static inline to_type cvt##from##to(from_type x, int *sat) \
1975 if (x > (from_type)max) { \
1983 SATCVT(sh
, sb
, int16_t, int8_t, INT8_MIN
, INT8_MAX
)
1984 SATCVT(sw
, sh
, int32_t, int16_t, INT16_MIN
, INT16_MAX
)
1985 SATCVT(sd
, sw
, int64_t, int32_t, INT32_MIN
, INT32_MAX
)
1987 SATCVTU(uh
, ub
, uint16_t, uint8_t, 0, UINT8_MAX
)
1988 SATCVTU(uw
, uh
, uint32_t, uint16_t, 0, UINT16_MAX
)
1989 SATCVTU(ud
, uw
, uint64_t, uint32_t, 0, UINT32_MAX
)
1990 SATCVT(sh
, ub
, int16_t, uint8_t, 0, UINT8_MAX
)
1991 SATCVT(sw
, uh
, int32_t, uint16_t, 0, UINT16_MAX
)
1992 SATCVT(sd
, uw
, int64_t, uint32_t, 0, UINT32_MAX
)
1996 #define LVE(name, access, swap, element) \
1997 void helper_##name (ppc_avr_t *r, target_ulong addr) \
1999 size_t n_elems = ARRAY_SIZE(r->element); \
2000 int adjust = HI_IDX*(n_elems-1); \
2001 int sh = sizeof(r->element[0]) >> 1; \
2002 int index = (addr & 0xf) >> sh; \
2004 r->element[LO_IDX ? index : (adjust - index)] = swap(access(addr)); \
2006 r->element[LO_IDX ? index : (adjust - index)] = access(addr); \
2010 LVE(lvebx
, ldub
, I
, u8
)
2011 LVE(lvehx
, lduw
, bswap16
, u16
)
2012 LVE(lvewx
, ldl
, bswap32
, u32
)
2016 void helper_lvsl (ppc_avr_t
*r
, target_ulong sh
)
2018 int i
, j
= (sh
& 0xf);
2020 VECTOR_FOR_INORDER_I (i
, u8
) {
2025 void helper_lvsr (ppc_avr_t
*r
, target_ulong sh
)
2027 int i
, j
= 0x10 - (sh
& 0xf);
2029 VECTOR_FOR_INORDER_I (i
, u8
) {
2034 #define STVE(name, access, swap, element) \
2035 void helper_##name (ppc_avr_t *r, target_ulong addr) \
2037 size_t n_elems = ARRAY_SIZE(r->element); \
2038 int adjust = HI_IDX*(n_elems-1); \
2039 int sh = sizeof(r->element[0]) >> 1; \
2040 int index = (addr & 0xf) >> sh; \
2042 access(addr, swap(r->element[LO_IDX ? index : (adjust - index)])); \
2044 access(addr, r->element[LO_IDX ? index : (adjust - index)]); \
2048 STVE(stvebx
, stb
, I
, u8
)
2049 STVE(stvehx
, stw
, bswap16
, u16
)
2050 STVE(stvewx
, stl
, bswap32
, u32
)
2054 void helper_mtvscr (ppc_avr_t
*r
)
2056 #if defined(HOST_WORDS_BIGENDIAN)
2057 env
->vscr
= r
->u32
[3];
2059 env
->vscr
= r
->u32
[0];
2061 set_flush_to_zero(vscr_nj
, &env
->vec_status
);
2064 void helper_vaddcuw (ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
2067 for (i
= 0; i
< ARRAY_SIZE(r
->u32
); i
++) {
2068 r
->u32
[i
] = ~a
->u32
[i
] < b
->u32
[i
];
2072 #define VARITH_DO(name, op, element) \
2073 void helper_v##name (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
2076 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
2077 r->element[i] = a->element[i] op b->element[i]; \
2080 #define VARITH(suffix, element) \
2081 VARITH_DO(add##suffix, +, element) \
2082 VARITH_DO(sub##suffix, -, element)
2089 #define VARITHFP(suffix, func) \
2090 void helper_v##suffix (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
2093 for (i = 0; i < ARRAY_SIZE(r->f); i++) { \
2094 HANDLE_NAN2(r->f[i], a->f[i], b->f[i]) { \
2095 r->f[i] = func(a->f[i], b->f[i], &env->vec_status); \
2099 VARITHFP(addfp
, float32_add
)
2100 VARITHFP(subfp
, float32_sub
)
2103 #define VARITHSAT_CASE(type, op, cvt, element) \
2105 type result = (type)a->element[i] op (type)b->element[i]; \
2106 r->element[i] = cvt(result, &sat); \
2109 #define VARITHSAT_DO(name, op, optype, cvt, element) \
2110 void helper_v##name (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
2114 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
2115 switch (sizeof(r->element[0])) { \
2116 case 1: VARITHSAT_CASE(optype, op, cvt, element); break; \
2117 case 2: VARITHSAT_CASE(optype, op, cvt, element); break; \
2118 case 4: VARITHSAT_CASE(optype, op, cvt, element); break; \
2122 env->vscr |= (1 << VSCR_SAT); \
2125 #define VARITHSAT_SIGNED(suffix, element, optype, cvt) \
2126 VARITHSAT_DO(adds##suffix##s, +, optype, cvt, element) \
2127 VARITHSAT_DO(subs##suffix##s, -, optype, cvt, element)
2128 #define VARITHSAT_UNSIGNED(suffix, element, optype, cvt) \
2129 VARITHSAT_DO(addu##suffix##s, +, optype, cvt, element) \
2130 VARITHSAT_DO(subu##suffix##s, -, optype, cvt, element)
2131 VARITHSAT_SIGNED(b
, s8
, int16_t, cvtshsb
)
2132 VARITHSAT_SIGNED(h
, s16
, int32_t, cvtswsh
)
2133 VARITHSAT_SIGNED(w
, s32
, int64_t, cvtsdsw
)
2134 VARITHSAT_UNSIGNED(b
, u8
, uint16_t, cvtshub
)
2135 VARITHSAT_UNSIGNED(h
, u16
, uint32_t, cvtswuh
)
2136 VARITHSAT_UNSIGNED(w
, u32
, uint64_t, cvtsduw
)
2137 #undef VARITHSAT_CASE
2139 #undef VARITHSAT_SIGNED
2140 #undef VARITHSAT_UNSIGNED
2142 #define VAVG_DO(name, element, etype) \
2143 void helper_v##name (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
2146 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
2147 etype x = (etype)a->element[i] + (etype)b->element[i] + 1; \
2148 r->element[i] = x >> 1; \
2152 #define VAVG(type, signed_element, signed_type, unsigned_element, unsigned_type) \
2153 VAVG_DO(avgs##type, signed_element, signed_type) \
2154 VAVG_DO(avgu##type, unsigned_element, unsigned_type)
2155 VAVG(b
, s8
, int16_t, u8
, uint16_t)
2156 VAVG(h
, s16
, int32_t, u16
, uint32_t)
2157 VAVG(w
, s32
, int64_t, u32
, uint64_t)
2161 #define VCF(suffix, cvt, element) \
2162 void helper_vcf##suffix (ppc_avr_t *r, ppc_avr_t *b, uint32_t uim) \
2165 for (i = 0; i < ARRAY_SIZE(r->f); i++) { \
2166 float32 t = cvt(b->element[i], &env->vec_status); \
2167 r->f[i] = float32_scalbn (t, -uim, &env->vec_status); \
2170 VCF(ux
, uint32_to_float32
, u32
)
2171 VCF(sx
, int32_to_float32
, s32
)
2174 #define VCMP_DO(suffix, compare, element, record) \
2175 void helper_vcmp##suffix (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
2177 uint32_t ones = (uint32_t)-1; \
2178 uint32_t all = ones; \
2179 uint32_t none = 0; \
2181 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
2182 uint32_t result = (a->element[i] compare b->element[i] ? ones : 0x0); \
2183 switch (sizeof (a->element[0])) { \
2184 case 4: r->u32[i] = result; break; \
2185 case 2: r->u16[i] = result; break; \
2186 case 1: r->u8[i] = result; break; \
2192 env->crf[6] = ((all != 0) << 3) | ((none == 0) << 1); \
2195 #define VCMP(suffix, compare, element) \
2196 VCMP_DO(suffix, compare, element, 0) \
2197 VCMP_DO(suffix##_dot, compare, element, 1)
2210 #define VCMPFP_DO(suffix, compare, order, record) \
2211 void helper_vcmp##suffix (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
2213 uint32_t ones = (uint32_t)-1; \
2214 uint32_t all = ones; \
2215 uint32_t none = 0; \
2217 for (i = 0; i < ARRAY_SIZE(r->f); i++) { \
2219 int rel = float32_compare_quiet(a->f[i], b->f[i], &env->vec_status); \
2220 if (rel == float_relation_unordered) { \
2222 } else if (rel compare order) { \
2227 r->u32[i] = result; \
2232 env->crf[6] = ((all != 0) << 3) | ((none == 0) << 1); \
2235 #define VCMPFP(suffix, compare, order) \
2236 VCMPFP_DO(suffix, compare, order, 0) \
2237 VCMPFP_DO(suffix##_dot, compare, order, 1)
2238 VCMPFP(eqfp
, ==, float_relation_equal
)
2239 VCMPFP(gefp
, !=, float_relation_less
)
2240 VCMPFP(gtfp
, ==, float_relation_greater
)
2244 static inline void vcmpbfp_internal(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
,
2249 for (i
= 0; i
< ARRAY_SIZE(r
->f
); i
++) {
2250 int le_rel
= float32_compare_quiet(a
->f
[i
], b
->f
[i
], &env
->vec_status
);
2251 if (le_rel
== float_relation_unordered
) {
2252 r
->u32
[i
] = 0xc0000000;
2253 /* ALL_IN does not need to be updated here. */
2255 float32 bneg
= float32_chs(b
->f
[i
]);
2256 int ge_rel
= float32_compare_quiet(a
->f
[i
], bneg
, &env
->vec_status
);
2257 int le
= le_rel
!= float_relation_greater
;
2258 int ge
= ge_rel
!= float_relation_less
;
2259 r
->u32
[i
] = ((!le
) << 31) | ((!ge
) << 30);
2260 all_in
|= (!le
| !ge
);
2264 env
->crf
[6] = (all_in
== 0) << 1;
2268 void helper_vcmpbfp (ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
2270 vcmpbfp_internal(r
, a
, b
, 0);
2273 void helper_vcmpbfp_dot (ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
2275 vcmpbfp_internal(r
, a
, b
, 1);
2278 #define VCT(suffix, satcvt, element) \
2279 void helper_vct##suffix (ppc_avr_t *r, ppc_avr_t *b, uint32_t uim) \
2283 float_status s = env->vec_status; \
2284 set_float_rounding_mode(float_round_to_zero, &s); \
2285 for (i = 0; i < ARRAY_SIZE(r->f); i++) { \
2286 if (float32_is_nan(b->f[i]) || \
2287 float32_is_signaling_nan(b->f[i])) { \
2288 r->element[i] = 0; \
2290 float64 t = float32_to_float64(b->f[i], &s); \
2292 t = float64_scalbn(t, uim, &s); \
2293 j = float64_to_int64(t, &s); \
2294 r->element[i] = satcvt(j, &sat); \
2298 env->vscr |= (1 << VSCR_SAT); \
2301 VCT(uxs
, cvtsduw
, u32
)
2302 VCT(sxs
, cvtsdsw
, s32
)
2305 void helper_vmaddfp (ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
, ppc_avr_t
*c
)
2308 for (i
= 0; i
< ARRAY_SIZE(r
->f
); i
++) {
2309 HANDLE_NAN3(r
->f
[i
], a
->f
[i
], b
->f
[i
], c
->f
[i
]) {
2310 /* Need to do the computation in higher precision and round
2311 * once at the end. */
2312 float64 af
, bf
, cf
, t
;
2313 af
= float32_to_float64(a
->f
[i
], &env
->vec_status
);
2314 bf
= float32_to_float64(b
->f
[i
], &env
->vec_status
);
2315 cf
= float32_to_float64(c
->f
[i
], &env
->vec_status
);
2316 t
= float64_mul(af
, cf
, &env
->vec_status
);
2317 t
= float64_add(t
, bf
, &env
->vec_status
);
2318 r
->f
[i
] = float64_to_float32(t
, &env
->vec_status
);
2323 void helper_vmhaddshs (ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
, ppc_avr_t
*c
)
2328 for (i
= 0; i
< ARRAY_SIZE(r
->s16
); i
++) {
2329 int32_t prod
= a
->s16
[i
] * b
->s16
[i
];
2330 int32_t t
= (int32_t)c
->s16
[i
] + (prod
>> 15);
2331 r
->s16
[i
] = cvtswsh (t
, &sat
);
2335 env
->vscr
|= (1 << VSCR_SAT
);
2339 void helper_vmhraddshs (ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
, ppc_avr_t
*c
)
2344 for (i
= 0; i
< ARRAY_SIZE(r
->s16
); i
++) {
2345 int32_t prod
= a
->s16
[i
] * b
->s16
[i
] + 0x00004000;
2346 int32_t t
= (int32_t)c
->s16
[i
] + (prod
>> 15);
2347 r
->s16
[i
] = cvtswsh (t
, &sat
);
2351 env
->vscr
|= (1 << VSCR_SAT
);
2355 #define VMINMAX_DO(name, compare, element) \
2356 void helper_v##name (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
2359 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
2360 if (a->element[i] compare b->element[i]) { \
2361 r->element[i] = b->element[i]; \
2363 r->element[i] = a->element[i]; \
2367 #define VMINMAX(suffix, element) \
2368 VMINMAX_DO(min##suffix, >, element) \
2369 VMINMAX_DO(max##suffix, <, element)
2379 #define VMINMAXFP(suffix, rT, rF) \
2380 void helper_v##suffix (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
2383 for (i = 0; i < ARRAY_SIZE(r->f); i++) { \
2384 HANDLE_NAN2(r->f[i], a->f[i], b->f[i]) { \
2385 if (float32_lt_quiet(a->f[i], b->f[i], &env->vec_status)) { \
2386 r->f[i] = rT->f[i]; \
2388 r->f[i] = rF->f[i]; \
2393 VMINMAXFP(minfp
, a
, b
)
2394 VMINMAXFP(maxfp
, b
, a
)
2397 void helper_vmladduhm (ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
, ppc_avr_t
*c
)
2400 for (i
= 0; i
< ARRAY_SIZE(r
->s16
); i
++) {
2401 int32_t prod
= a
->s16
[i
] * b
->s16
[i
];
2402 r
->s16
[i
] = (int16_t) (prod
+ c
->s16
[i
]);
2406 #define VMRG_DO(name, element, highp) \
2407 void helper_v##name (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
2411 size_t n_elems = ARRAY_SIZE(r->element); \
2412 for (i = 0; i < n_elems/2; i++) { \
2414 result.element[i*2+HI_IDX] = a->element[i]; \
2415 result.element[i*2+LO_IDX] = b->element[i]; \
2417 result.element[n_elems - i*2 - (1+HI_IDX)] = b->element[n_elems - i - 1]; \
2418 result.element[n_elems - i*2 - (1+LO_IDX)] = a->element[n_elems - i - 1]; \
2423 #if defined(HOST_WORDS_BIGENDIAN)
2430 #define VMRG(suffix, element) \
2431 VMRG_DO(mrgl##suffix, element, MRGHI) \
2432 VMRG_DO(mrgh##suffix, element, MRGLO)
2441 void helper_vmsummbm (ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
, ppc_avr_t
*c
)
2446 for (i
= 0; i
< ARRAY_SIZE(r
->s8
); i
++) {
2447 prod
[i
] = (int32_t)a
->s8
[i
] * b
->u8
[i
];
2450 VECTOR_FOR_INORDER_I(i
, s32
) {
2451 r
->s32
[i
] = c
->s32
[i
] + prod
[4*i
] + prod
[4*i
+1] + prod
[4*i
+2] + prod
[4*i
+3];
2455 void helper_vmsumshm (ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
, ppc_avr_t
*c
)
2460 for (i
= 0; i
< ARRAY_SIZE(r
->s16
); i
++) {
2461 prod
[i
] = a
->s16
[i
] * b
->s16
[i
];
2464 VECTOR_FOR_INORDER_I(i
, s32
) {
2465 r
->s32
[i
] = c
->s32
[i
] + prod
[2*i
] + prod
[2*i
+1];
2469 void helper_vmsumshs (ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
, ppc_avr_t
*c
)
2475 for (i
= 0; i
< ARRAY_SIZE(r
->s16
); i
++) {
2476 prod
[i
] = (int32_t)a
->s16
[i
] * b
->s16
[i
];
2479 VECTOR_FOR_INORDER_I (i
, s32
) {
2480 int64_t t
= (int64_t)c
->s32
[i
] + prod
[2*i
] + prod
[2*i
+1];
2481 r
->u32
[i
] = cvtsdsw(t
, &sat
);
2485 env
->vscr
|= (1 << VSCR_SAT
);
2489 void helper_vmsumubm (ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
, ppc_avr_t
*c
)
2494 for (i
= 0; i
< ARRAY_SIZE(r
->u8
); i
++) {
2495 prod
[i
] = a
->u8
[i
] * b
->u8
[i
];
2498 VECTOR_FOR_INORDER_I(i
, u32
) {
2499 r
->u32
[i
] = c
->u32
[i
] + prod
[4*i
] + prod
[4*i
+1] + prod
[4*i
+2] + prod
[4*i
+3];
2503 void helper_vmsumuhm (ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
, ppc_avr_t
*c
)
2508 for (i
= 0; i
< ARRAY_SIZE(r
->u16
); i
++) {
2509 prod
[i
] = a
->u16
[i
] * b
->u16
[i
];
2512 VECTOR_FOR_INORDER_I(i
, u32
) {
2513 r
->u32
[i
] = c
->u32
[i
] + prod
[2*i
] + prod
[2*i
+1];
2517 void helper_vmsumuhs (ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
, ppc_avr_t
*c
)
2523 for (i
= 0; i
< ARRAY_SIZE(r
->u16
); i
++) {
2524 prod
[i
] = a
->u16
[i
] * b
->u16
[i
];
2527 VECTOR_FOR_INORDER_I (i
, s32
) {
2528 uint64_t t
= (uint64_t)c
->u32
[i
] + prod
[2*i
] + prod
[2*i
+1];
2529 r
->u32
[i
] = cvtuduw(t
, &sat
);
2533 env
->vscr
|= (1 << VSCR_SAT
);
2537 #define VMUL_DO(name, mul_element, prod_element, evenp) \
2538 void helper_v##name (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
2541 VECTOR_FOR_INORDER_I(i, prod_element) { \
2543 r->prod_element[i] = a->mul_element[i*2+HI_IDX] * b->mul_element[i*2+HI_IDX]; \
2545 r->prod_element[i] = a->mul_element[i*2+LO_IDX] * b->mul_element[i*2+LO_IDX]; \
2549 #define VMUL(suffix, mul_element, prod_element) \
2550 VMUL_DO(mule##suffix, mul_element, prod_element, 1) \
2551 VMUL_DO(mulo##suffix, mul_element, prod_element, 0)
2559 void helper_vnmsubfp (ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
, ppc_avr_t
*c
)
2562 for (i
= 0; i
< ARRAY_SIZE(r
->f
); i
++) {
2563 HANDLE_NAN3(r
->f
[i
], a
->f
[i
], b
->f
[i
], c
->f
[i
]) {
2564 /* Need to do the computation is higher precision and round
2565 * once at the end. */
2566 float64 af
, bf
, cf
, t
;
2567 af
= float32_to_float64(a
->f
[i
], &env
->vec_status
);
2568 bf
= float32_to_float64(b
->f
[i
], &env
->vec_status
);
2569 cf
= float32_to_float64(c
->f
[i
], &env
->vec_status
);
2570 t
= float64_mul(af
, cf
, &env
->vec_status
);
2571 t
= float64_sub(t
, bf
, &env
->vec_status
);
2573 r
->f
[i
] = float64_to_float32(t
, &env
->vec_status
);
2578 void helper_vperm (ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
, ppc_avr_t
*c
)
2582 VECTOR_FOR_INORDER_I (i
, u8
) {
2583 int s
= c
->u8
[i
] & 0x1f;
2584 #if defined(HOST_WORDS_BIGENDIAN)
2585 int index
= s
& 0xf;
2587 int index
= 15 - (s
& 0xf);
2590 result
.u8
[i
] = b
->u8
[index
];
2592 result
.u8
[i
] = a
->u8
[index
];
2598 #if defined(HOST_WORDS_BIGENDIAN)
2603 void helper_vpkpx (ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
2607 #if defined(HOST_WORDS_BIGENDIAN)
2608 const ppc_avr_t
*x
[2] = { a
, b
};
2610 const ppc_avr_t
*x
[2] = { b
, a
};
2613 VECTOR_FOR_INORDER_I (i
, u64
) {
2614 VECTOR_FOR_INORDER_I (j
, u32
){
2615 uint32_t e
= x
[i
]->u32
[j
];
2616 result
.u16
[4*i
+j
] = (((e
>> 9) & 0xfc00) |
2617 ((e
>> 6) & 0x3e0) |
2624 #define VPK(suffix, from, to, cvt, dosat) \
2625 void helper_vpk##suffix (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
2630 ppc_avr_t *a0 = PKBIG ? a : b; \
2631 ppc_avr_t *a1 = PKBIG ? b : a; \
2632 VECTOR_FOR_INORDER_I (i, from) { \
2633 result.to[i] = cvt(a0->from[i], &sat); \
2634 result.to[i+ARRAY_SIZE(r->from)] = cvt(a1->from[i], &sat); \
2637 if (dosat && sat) { \
2638 env->vscr |= (1 << VSCR_SAT); \
2642 VPK(shss
, s16
, s8
, cvtshsb
, 1)
2643 VPK(shus
, s16
, u8
, cvtshub
, 1)
2644 VPK(swss
, s32
, s16
, cvtswsh
, 1)
2645 VPK(swus
, s32
, u16
, cvtswuh
, 1)
2646 VPK(uhus
, u16
, u8
, cvtuhub
, 1)
2647 VPK(uwus
, u32
, u16
, cvtuwuh
, 1)
2648 VPK(uhum
, u16
, u8
, I
, 0)
2649 VPK(uwum
, u32
, u16
, I
, 0)
2654 void helper_vrefp (ppc_avr_t
*r
, ppc_avr_t
*b
)
2657 for (i
= 0; i
< ARRAY_SIZE(r
->f
); i
++) {
2658 HANDLE_NAN1(r
->f
[i
], b
->f
[i
]) {
2659 r
->f
[i
] = float32_div(float32_one
, b
->f
[i
], &env
->vec_status
);
2664 #define VRFI(suffix, rounding) \
2665 void helper_vrfi##suffix (ppc_avr_t *r, ppc_avr_t *b) \
2668 float_status s = env->vec_status; \
2669 set_float_rounding_mode(rounding, &s); \
2670 for (i = 0; i < ARRAY_SIZE(r->f); i++) { \
2671 HANDLE_NAN1(r->f[i], b->f[i]) { \
2672 r->f[i] = float32_round_to_int (b->f[i], &s); \
2676 VRFI(n
, float_round_nearest_even
)
2677 VRFI(m
, float_round_down
)
2678 VRFI(p
, float_round_up
)
2679 VRFI(z
, float_round_to_zero
)
2682 #define VROTATE(suffix, element) \
2683 void helper_vrl##suffix (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
2686 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
2687 unsigned int mask = ((1 << (3 + (sizeof (a->element[0]) >> 1))) - 1); \
2688 unsigned int shift = b->element[i] & mask; \
2689 r->element[i] = (a->element[i] << shift) | (a->element[i] >> (sizeof(a->element[0]) * 8 - shift)); \
2697 void helper_vrsqrtefp (ppc_avr_t
*r
, ppc_avr_t
*b
)
2700 for (i
= 0; i
< ARRAY_SIZE(r
->f
); i
++) {
2701 HANDLE_NAN1(r
->f
[i
], b
->f
[i
]) {
2702 float32 t
= float32_sqrt(b
->f
[i
], &env
->vec_status
);
2703 r
->f
[i
] = float32_div(float32_one
, t
, &env
->vec_status
);
2708 void helper_vsel (ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
, ppc_avr_t
*c
)
2710 r
->u64
[0] = (a
->u64
[0] & ~c
->u64
[0]) | (b
->u64
[0] & c
->u64
[0]);
2711 r
->u64
[1] = (a
->u64
[1] & ~c
->u64
[1]) | (b
->u64
[1] & c
->u64
[1]);
2714 void helper_vexptefp (ppc_avr_t
*r
, ppc_avr_t
*b
)
2717 for (i
= 0; i
< ARRAY_SIZE(r
->f
); i
++) {
2718 HANDLE_NAN1(r
->f
[i
], b
->f
[i
]) {
2719 r
->f
[i
] = float32_exp2(b
->f
[i
], &env
->vec_status
);
2724 void helper_vlogefp (ppc_avr_t
*r
, ppc_avr_t
*b
)
2727 for (i
= 0; i
< ARRAY_SIZE(r
->f
); i
++) {
2728 HANDLE_NAN1(r
->f
[i
], b
->f
[i
]) {
2729 r
->f
[i
] = float32_log2(b
->f
[i
], &env
->vec_status
);
2734 #if defined(HOST_WORDS_BIGENDIAN)
2741 /* The specification says that the results are undefined if all of the
2742 * shift counts are not identical. We check to make sure that they are
2743 * to conform to what real hardware appears to do. */
2744 #define VSHIFT(suffix, leftp) \
2745 void helper_vs##suffix (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
2747 int shift = b->u8[LO_IDX*15] & 0x7; \
2750 for (i = 0; i < ARRAY_SIZE(r->u8); i++) { \
2751 doit = doit && ((b->u8[i] & 0x7) == shift); \
2756 } else if (leftp) { \
2757 uint64_t carry = a->u64[LO_IDX] >> (64 - shift); \
2758 r->u64[HI_IDX] = (a->u64[HI_IDX] << shift) | carry; \
2759 r->u64[LO_IDX] = a->u64[LO_IDX] << shift; \
2761 uint64_t carry = a->u64[HI_IDX] << (64 - shift); \
2762 r->u64[LO_IDX] = (a->u64[LO_IDX] >> shift) | carry; \
2763 r->u64[HI_IDX] = a->u64[HI_IDX] >> shift; \
2773 #define VSL(suffix, element) \
2774 void helper_vsl##suffix (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
2777 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
2778 unsigned int mask = ((1 << (3 + (sizeof (a->element[0]) >> 1))) - 1); \
2779 unsigned int shift = b->element[i] & mask; \
2780 r->element[i] = a->element[i] << shift; \
2788 void helper_vsldoi (ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
, uint32_t shift
)
2790 int sh
= shift
& 0xf;
2794 #if defined(HOST_WORDS_BIGENDIAN)
2795 for (i
= 0; i
< ARRAY_SIZE(r
->u8
); i
++) {
2798 result
.u8
[i
] = b
->u8
[index
-0x10];
2800 result
.u8
[i
] = a
->u8
[index
];
2804 for (i
= 0; i
< ARRAY_SIZE(r
->u8
); i
++) {
2805 int index
= (16 - sh
) + i
;
2807 result
.u8
[i
] = a
->u8
[index
-0x10];
2809 result
.u8
[i
] = b
->u8
[index
];
2816 void helper_vslo (ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
2818 int sh
= (b
->u8
[LO_IDX
*0xf] >> 3) & 0xf;
2820 #if defined (HOST_WORDS_BIGENDIAN)
2821 memmove (&r
->u8
[0], &a
->u8
[sh
], 16-sh
);
2822 memset (&r
->u8
[16-sh
], 0, sh
);
2824 memmove (&r
->u8
[sh
], &a
->u8
[0], 16-sh
);
2825 memset (&r
->u8
[0], 0, sh
);
2829 /* Experimental testing shows that hardware masks the immediate. */
2830 #define _SPLAT_MASKED(element) (splat & (ARRAY_SIZE(r->element) - 1))
2831 #if defined(HOST_WORDS_BIGENDIAN)
2832 #define SPLAT_ELEMENT(element) _SPLAT_MASKED(element)
2834 #define SPLAT_ELEMENT(element) (ARRAY_SIZE(r->element)-1 - _SPLAT_MASKED(element))
2836 #define VSPLT(suffix, element) \
2837 void helper_vsplt##suffix (ppc_avr_t *r, ppc_avr_t *b, uint32_t splat) \
2839 uint32_t s = b->element[SPLAT_ELEMENT(element)]; \
2841 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
2842 r->element[i] = s; \
2849 #undef SPLAT_ELEMENT
2850 #undef _SPLAT_MASKED
2852 #define VSPLTI(suffix, element, splat_type) \
2853 void helper_vspltis##suffix (ppc_avr_t *r, uint32_t splat) \
2855 splat_type x = (int8_t)(splat << 3) >> 3; \
2857 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
2858 r->element[i] = x; \
2861 VSPLTI(b
, s8
, int8_t)
2862 VSPLTI(h
, s16
, int16_t)
2863 VSPLTI(w
, s32
, int32_t)
2866 #define VSR(suffix, element) \
2867 void helper_vsr##suffix (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
2870 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
2871 unsigned int mask = ((1 << (3 + (sizeof (a->element[0]) >> 1))) - 1); \
2872 unsigned int shift = b->element[i] & mask; \
2873 r->element[i] = a->element[i] >> shift; \
2884 void helper_vsro (ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
2886 int sh
= (b
->u8
[LO_IDX
*0xf] >> 3) & 0xf;
2888 #if defined (HOST_WORDS_BIGENDIAN)
2889 memmove (&r
->u8
[sh
], &a
->u8
[0], 16-sh
);
2890 memset (&r
->u8
[0], 0, sh
);
2892 memmove (&r
->u8
[0], &a
->u8
[sh
], 16-sh
);
2893 memset (&r
->u8
[16-sh
], 0, sh
);
2897 void helper_vsubcuw (ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
2900 for (i
= 0; i
< ARRAY_SIZE(r
->u32
); i
++) {
2901 r
->u32
[i
] = a
->u32
[i
] >= b
->u32
[i
];
2905 void helper_vsumsws (ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
2912 #if defined(HOST_WORDS_BIGENDIAN)
2913 upper
= ARRAY_SIZE(r
->s32
)-1;
2917 t
= (int64_t)b
->s32
[upper
];
2918 for (i
= 0; i
< ARRAY_SIZE(r
->s32
); i
++) {
2922 result
.s32
[upper
] = cvtsdsw(t
, &sat
);
2926 env
->vscr
|= (1 << VSCR_SAT
);
2930 void helper_vsum2sws (ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
2936 #if defined(HOST_WORDS_BIGENDIAN)
2941 for (i
= 0; i
< ARRAY_SIZE(r
->u64
); i
++) {
2942 int64_t t
= (int64_t)b
->s32
[upper
+i
*2];
2944 for (j
= 0; j
< ARRAY_SIZE(r
->u64
); j
++) {
2947 result
.s32
[upper
+i
*2] = cvtsdsw(t
, &sat
);
2952 env
->vscr
|= (1 << VSCR_SAT
);
2956 void helper_vsum4sbs (ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
2961 for (i
= 0; i
< ARRAY_SIZE(r
->s32
); i
++) {
2962 int64_t t
= (int64_t)b
->s32
[i
];
2963 for (j
= 0; j
< ARRAY_SIZE(r
->s32
); j
++) {
2966 r
->s32
[i
] = cvtsdsw(t
, &sat
);
2970 env
->vscr
|= (1 << VSCR_SAT
);
2974 void helper_vsum4shs (ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
2979 for (i
= 0; i
< ARRAY_SIZE(r
->s32
); i
++) {
2980 int64_t t
= (int64_t)b
->s32
[i
];
2981 t
+= a
->s16
[2*i
] + a
->s16
[2*i
+1];
2982 r
->s32
[i
] = cvtsdsw(t
, &sat
);
2986 env
->vscr
|= (1 << VSCR_SAT
);
2990 void helper_vsum4ubs (ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
2995 for (i
= 0; i
< ARRAY_SIZE(r
->u32
); i
++) {
2996 uint64_t t
= (uint64_t)b
->u32
[i
];
2997 for (j
= 0; j
< ARRAY_SIZE(r
->u32
); j
++) {
3000 r
->u32
[i
] = cvtuduw(t
, &sat
);
3004 env
->vscr
|= (1 << VSCR_SAT
);
3008 #if defined(HOST_WORDS_BIGENDIAN)
3015 #define VUPKPX(suffix, hi) \
3016 void helper_vupk##suffix (ppc_avr_t *r, ppc_avr_t *b) \
3020 for (i = 0; i < ARRAY_SIZE(r->u32); i++) { \
3021 uint16_t e = b->u16[hi ? i : i+4]; \
3022 uint8_t a = (e >> 15) ? 0xff : 0; \
3023 uint8_t r = (e >> 10) & 0x1f; \
3024 uint8_t g = (e >> 5) & 0x1f; \
3025 uint8_t b = e & 0x1f; \
3026 result.u32[i] = (a << 24) | (r << 16) | (g << 8) | b; \
3034 #define VUPK(suffix, unpacked, packee, hi) \
3035 void helper_vupk##suffix (ppc_avr_t *r, ppc_avr_t *b) \
3040 for (i = 0; i < ARRAY_SIZE(r->unpacked); i++) { \
3041 result.unpacked[i] = b->packee[i]; \
3044 for (i = ARRAY_SIZE(r->unpacked); i < ARRAY_SIZE(r->packee); i++) { \
3045 result.unpacked[i-ARRAY_SIZE(r->unpacked)] = b->packee[i]; \
3050 VUPK(hsb
, s16
, s8
, UPKHI
)
3051 VUPK(hsh
, s32
, s16
, UPKHI
)
3052 VUPK(lsb
, s16
, s8
, UPKLO
)
3053 VUPK(lsh
, s32
, s16
, UPKLO
)
3058 #undef DO_HANDLE_NAN
3062 #undef VECTOR_FOR_INORDER_I
3066 /*****************************************************************************/
3067 /* SPE extension helpers */
3068 /* Use a table to make this quicker */
3069 static uint8_t hbrev
[16] = {
3070 0x0, 0x8, 0x4, 0xC, 0x2, 0xA, 0x6, 0xE,
3071 0x1, 0x9, 0x5, 0xD, 0x3, 0xB, 0x7, 0xF,
3074 static inline uint8_t byte_reverse(uint8_t val
)
3076 return hbrev
[val
>> 4] | (hbrev
[val
& 0xF] << 4);
3079 static inline uint32_t word_reverse(uint32_t val
)
3081 return byte_reverse(val
>> 24) | (byte_reverse(val
>> 16) << 8) |
3082 (byte_reverse(val
>> 8) << 16) | (byte_reverse(val
) << 24);
3085 #define MASKBITS 16 // Random value - to be fixed (implementation dependant)
3086 target_ulong
helper_brinc (target_ulong arg1
, target_ulong arg2
)
3088 uint32_t a
, b
, d
, mask
;
3090 mask
= UINT32_MAX
>> (32 - MASKBITS
);
3093 d
= word_reverse(1 + word_reverse(a
| ~b
));
3094 return (arg1
& ~mask
) | (d
& b
);
3097 uint32_t helper_cntlsw32 (uint32_t val
)
3099 if (val
& 0x80000000)
3105 uint32_t helper_cntlzw32 (uint32_t val
)
3110 /* Single-precision floating-point conversions */
3111 static inline uint32_t efscfsi(uint32_t val
)
3115 u
.f
= int32_to_float32(val
, &env
->vec_status
);
3120 static inline uint32_t efscfui(uint32_t val
)
3124 u
.f
= uint32_to_float32(val
, &env
->vec_status
);
3129 static inline int32_t efsctsi(uint32_t val
)
3134 /* NaN are not treated the same way IEEE 754 does */
3135 if (unlikely(float32_is_nan(u
.f
)))
3138 return float32_to_int32(u
.f
, &env
->vec_status
);
3141 static inline uint32_t efsctui(uint32_t val
)
3146 /* NaN are not treated the same way IEEE 754 does */
3147 if (unlikely(float32_is_nan(u
.f
)))
3150 return float32_to_uint32(u
.f
, &env
->vec_status
);
3153 static inline uint32_t efsctsiz(uint32_t val
)
3158 /* NaN are not treated the same way IEEE 754 does */
3159 if (unlikely(float32_is_nan(u
.f
)))
3162 return float32_to_int32_round_to_zero(u
.f
, &env
->vec_status
);
3165 static inline uint32_t efsctuiz(uint32_t val
)
3170 /* NaN are not treated the same way IEEE 754 does */
3171 if (unlikely(float32_is_nan(u
.f
)))
3174 return float32_to_uint32_round_to_zero(u
.f
, &env
->vec_status
);
3177 static inline uint32_t efscfsf(uint32_t val
)
3182 u
.f
= int32_to_float32(val
, &env
->vec_status
);
3183 tmp
= int64_to_float32(1ULL << 32, &env
->vec_status
);
3184 u
.f
= float32_div(u
.f
, tmp
, &env
->vec_status
);
3189 static inline uint32_t efscfuf(uint32_t val
)
3194 u
.f
= uint32_to_float32(val
, &env
->vec_status
);
3195 tmp
= uint64_to_float32(1ULL << 32, &env
->vec_status
);
3196 u
.f
= float32_div(u
.f
, tmp
, &env
->vec_status
);
3201 static inline uint32_t efsctsf(uint32_t val
)
3207 /* NaN are not treated the same way IEEE 754 does */
3208 if (unlikely(float32_is_nan(u
.f
)))
3210 tmp
= uint64_to_float32(1ULL << 32, &env
->vec_status
);
3211 u
.f
= float32_mul(u
.f
, tmp
, &env
->vec_status
);
3213 return float32_to_int32(u
.f
, &env
->vec_status
);
3216 static inline uint32_t efsctuf(uint32_t val
)
3222 /* NaN are not treated the same way IEEE 754 does */
3223 if (unlikely(float32_is_nan(u
.f
)))
3225 tmp
= uint64_to_float32(1ULL << 32, &env
->vec_status
);
3226 u
.f
= float32_mul(u
.f
, tmp
, &env
->vec_status
);
3228 return float32_to_uint32(u
.f
, &env
->vec_status
);
3231 #define HELPER_SPE_SINGLE_CONV(name) \
3232 uint32_t helper_e##name (uint32_t val) \
3234 return e##name(val); \
3237 HELPER_SPE_SINGLE_CONV(fscfsi
);
3239 HELPER_SPE_SINGLE_CONV(fscfui
);
3241 HELPER_SPE_SINGLE_CONV(fscfuf
);
3243 HELPER_SPE_SINGLE_CONV(fscfsf
);
3245 HELPER_SPE_SINGLE_CONV(fsctsi
);
3247 HELPER_SPE_SINGLE_CONV(fsctui
);
3249 HELPER_SPE_SINGLE_CONV(fsctsiz
);
3251 HELPER_SPE_SINGLE_CONV(fsctuiz
);
3253 HELPER_SPE_SINGLE_CONV(fsctsf
);
3255 HELPER_SPE_SINGLE_CONV(fsctuf
);
3257 #define HELPER_SPE_VECTOR_CONV(name) \
3258 uint64_t helper_ev##name (uint64_t val) \
3260 return ((uint64_t)e##name(val >> 32) << 32) | \
3261 (uint64_t)e##name(val); \
3264 HELPER_SPE_VECTOR_CONV(fscfsi
);
3266 HELPER_SPE_VECTOR_CONV(fscfui
);
3268 HELPER_SPE_VECTOR_CONV(fscfuf
);
3270 HELPER_SPE_VECTOR_CONV(fscfsf
);
3272 HELPER_SPE_VECTOR_CONV(fsctsi
);
3274 HELPER_SPE_VECTOR_CONV(fsctui
);
3276 HELPER_SPE_VECTOR_CONV(fsctsiz
);
3278 HELPER_SPE_VECTOR_CONV(fsctuiz
);
3280 HELPER_SPE_VECTOR_CONV(fsctsf
);
3282 HELPER_SPE_VECTOR_CONV(fsctuf
);
3284 /* Single-precision floating-point arithmetic */
3285 static inline uint32_t efsadd(uint32_t op1
, uint32_t op2
)
3290 u1
.f
= float32_add(u1
.f
, u2
.f
, &env
->vec_status
);
3294 static inline uint32_t efssub(uint32_t op1
, uint32_t op2
)
3299 u1
.f
= float32_sub(u1
.f
, u2
.f
, &env
->vec_status
);
3303 static inline uint32_t efsmul(uint32_t op1
, uint32_t op2
)
3308 u1
.f
= float32_mul(u1
.f
, u2
.f
, &env
->vec_status
);
3312 static inline uint32_t efsdiv(uint32_t op1
, uint32_t op2
)
3317 u1
.f
= float32_div(u1
.f
, u2
.f
, &env
->vec_status
);
3321 #define HELPER_SPE_SINGLE_ARITH(name) \
3322 uint32_t helper_e##name (uint32_t op1, uint32_t op2) \
3324 return e##name(op1, op2); \
3327 HELPER_SPE_SINGLE_ARITH(fsadd
);
3329 HELPER_SPE_SINGLE_ARITH(fssub
);
3331 HELPER_SPE_SINGLE_ARITH(fsmul
);
3333 HELPER_SPE_SINGLE_ARITH(fsdiv
);
3335 #define HELPER_SPE_VECTOR_ARITH(name) \
3336 uint64_t helper_ev##name (uint64_t op1, uint64_t op2) \
3338 return ((uint64_t)e##name(op1 >> 32, op2 >> 32) << 32) | \
3339 (uint64_t)e##name(op1, op2); \
3342 HELPER_SPE_VECTOR_ARITH(fsadd
);
3344 HELPER_SPE_VECTOR_ARITH(fssub
);
3346 HELPER_SPE_VECTOR_ARITH(fsmul
);
3348 HELPER_SPE_VECTOR_ARITH(fsdiv
);
3350 /* Single-precision floating-point comparisons */
3351 static inline uint32_t efststlt(uint32_t op1
, uint32_t op2
)
3356 return float32_lt(u1
.f
, u2
.f
, &env
->vec_status
) ? 4 : 0;
3359 static inline uint32_t efststgt(uint32_t op1
, uint32_t op2
)
3364 return float32_le(u1
.f
, u2
.f
, &env
->vec_status
) ? 0 : 4;
3367 static inline uint32_t efststeq(uint32_t op1
, uint32_t op2
)
3372 return float32_eq(u1
.f
, u2
.f
, &env
->vec_status
) ? 4 : 0;
3375 static inline uint32_t efscmplt(uint32_t op1
, uint32_t op2
)
3377 /* XXX: TODO: test special values (NaN, infinites, ...) */
3378 return efststlt(op1
, op2
);
3381 static inline uint32_t efscmpgt(uint32_t op1
, uint32_t op2
)
3383 /* XXX: TODO: test special values (NaN, infinites, ...) */
3384 return efststgt(op1
, op2
);
3387 static inline uint32_t efscmpeq(uint32_t op1
, uint32_t op2
)
3389 /* XXX: TODO: test special values (NaN, infinites, ...) */
3390 return efststeq(op1
, op2
);
3393 #define HELPER_SINGLE_SPE_CMP(name) \
3394 uint32_t helper_e##name (uint32_t op1, uint32_t op2) \
3396 return e##name(op1, op2) << 2; \
3399 HELPER_SINGLE_SPE_CMP(fststlt
);
3401 HELPER_SINGLE_SPE_CMP(fststgt
);
3403 HELPER_SINGLE_SPE_CMP(fststeq
);
3405 HELPER_SINGLE_SPE_CMP(fscmplt
);
3407 HELPER_SINGLE_SPE_CMP(fscmpgt
);
3409 HELPER_SINGLE_SPE_CMP(fscmpeq
);
3411 static inline uint32_t evcmp_merge(int t0
, int t1
)
3413 return (t0
<< 3) | (t1
<< 2) | ((t0
| t1
) << 1) | (t0
& t1
);
3416 #define HELPER_VECTOR_SPE_CMP(name) \
3417 uint32_t helper_ev##name (uint64_t op1, uint64_t op2) \
3419 return evcmp_merge(e##name(op1 >> 32, op2 >> 32), e##name(op1, op2)); \
3422 HELPER_VECTOR_SPE_CMP(fststlt
);
3424 HELPER_VECTOR_SPE_CMP(fststgt
);
3426 HELPER_VECTOR_SPE_CMP(fststeq
);
3428 HELPER_VECTOR_SPE_CMP(fscmplt
);
3430 HELPER_VECTOR_SPE_CMP(fscmpgt
);
3432 HELPER_VECTOR_SPE_CMP(fscmpeq
);
3434 /* Double-precision floating-point conversion */
3435 uint64_t helper_efdcfsi (uint32_t val
)
3439 u
.d
= int32_to_float64(val
, &env
->vec_status
);
3444 uint64_t helper_efdcfsid (uint64_t val
)
3448 u
.d
= int64_to_float64(val
, &env
->vec_status
);
3453 uint64_t helper_efdcfui (uint32_t val
)
3457 u
.d
= uint32_to_float64(val
, &env
->vec_status
);
3462 uint64_t helper_efdcfuid (uint64_t val
)
3466 u
.d
= uint64_to_float64(val
, &env
->vec_status
);
3471 uint32_t helper_efdctsi (uint64_t val
)
3476 /* NaN are not treated the same way IEEE 754 does */
3477 if (unlikely(float64_is_nan(u
.d
)))
3480 return float64_to_int32(u
.d
, &env
->vec_status
);
3483 uint32_t helper_efdctui (uint64_t val
)
3488 /* NaN are not treated the same way IEEE 754 does */
3489 if (unlikely(float64_is_nan(u
.d
)))
3492 return float64_to_uint32(u
.d
, &env
->vec_status
);
3495 uint32_t helper_efdctsiz (uint64_t val
)
3500 /* NaN are not treated the same way IEEE 754 does */
3501 if (unlikely(float64_is_nan(u
.d
)))
3504 return float64_to_int32_round_to_zero(u
.d
, &env
->vec_status
);
3507 uint64_t helper_efdctsidz (uint64_t val
)
3512 /* NaN are not treated the same way IEEE 754 does */
3513 if (unlikely(float64_is_nan(u
.d
)))
3516 return float64_to_int64_round_to_zero(u
.d
, &env
->vec_status
);
3519 uint32_t helper_efdctuiz (uint64_t val
)
3524 /* NaN are not treated the same way IEEE 754 does */
3525 if (unlikely(float64_is_nan(u
.d
)))
3528 return float64_to_uint32_round_to_zero(u
.d
, &env
->vec_status
);
3531 uint64_t helper_efdctuidz (uint64_t val
)
3536 /* NaN are not treated the same way IEEE 754 does */
3537 if (unlikely(float64_is_nan(u
.d
)))
3540 return float64_to_uint64_round_to_zero(u
.d
, &env
->vec_status
);
3543 uint64_t helper_efdcfsf (uint32_t val
)
3548 u
.d
= int32_to_float64(val
, &env
->vec_status
);
3549 tmp
= int64_to_float64(1ULL << 32, &env
->vec_status
);
3550 u
.d
= float64_div(u
.d
, tmp
, &env
->vec_status
);
3555 uint64_t helper_efdcfuf (uint32_t val
)
3560 u
.d
= uint32_to_float64(val
, &env
->vec_status
);
3561 tmp
= int64_to_float64(1ULL << 32, &env
->vec_status
);
3562 u
.d
= float64_div(u
.d
, tmp
, &env
->vec_status
);
3567 uint32_t helper_efdctsf (uint64_t val
)
3573 /* NaN are not treated the same way IEEE 754 does */
3574 if (unlikely(float64_is_nan(u
.d
)))
3576 tmp
= uint64_to_float64(1ULL << 32, &env
->vec_status
);
3577 u
.d
= float64_mul(u
.d
, tmp
, &env
->vec_status
);
3579 return float64_to_int32(u
.d
, &env
->vec_status
);
3582 uint32_t helper_efdctuf (uint64_t val
)
3588 /* NaN are not treated the same way IEEE 754 does */
3589 if (unlikely(float64_is_nan(u
.d
)))
3591 tmp
= uint64_to_float64(1ULL << 32, &env
->vec_status
);
3592 u
.d
= float64_mul(u
.d
, tmp
, &env
->vec_status
);
3594 return float64_to_uint32(u
.d
, &env
->vec_status
);
3597 uint32_t helper_efscfd (uint64_t val
)
3603 u2
.f
= float64_to_float32(u1
.d
, &env
->vec_status
);
3608 uint64_t helper_efdcfs (uint32_t val
)
3614 u2
.d
= float32_to_float64(u1
.f
, &env
->vec_status
);
3619 /* Double precision fixed-point arithmetic */
3620 uint64_t helper_efdadd (uint64_t op1
, uint64_t op2
)
3625 u1
.d
= float64_add(u1
.d
, u2
.d
, &env
->vec_status
);
3629 uint64_t helper_efdsub (uint64_t op1
, uint64_t op2
)
3634 u1
.d
= float64_sub(u1
.d
, u2
.d
, &env
->vec_status
);
3638 uint64_t helper_efdmul (uint64_t op1
, uint64_t op2
)
3643 u1
.d
= float64_mul(u1
.d
, u2
.d
, &env
->vec_status
);
3647 uint64_t helper_efddiv (uint64_t op1
, uint64_t op2
)
3652 u1
.d
= float64_div(u1
.d
, u2
.d
, &env
->vec_status
);
3656 /* Double precision floating point helpers */
3657 uint32_t helper_efdtstlt (uint64_t op1
, uint64_t op2
)
3662 return float64_lt(u1
.d
, u2
.d
, &env
->vec_status
) ? 4 : 0;
3665 uint32_t helper_efdtstgt (uint64_t op1
, uint64_t op2
)
3670 return float64_le(u1
.d
, u2
.d
, &env
->vec_status
) ? 0 : 4;
3673 uint32_t helper_efdtsteq (uint64_t op1
, uint64_t op2
)
3678 return float64_eq(u1
.d
, u2
.d
, &env
->vec_status
) ? 4 : 0;
3681 uint32_t helper_efdcmplt (uint64_t op1
, uint64_t op2
)
3683 /* XXX: TODO: test special values (NaN, infinites, ...) */
3684 return helper_efdtstlt(op1
, op2
);
3687 uint32_t helper_efdcmpgt (uint64_t op1
, uint64_t op2
)
3689 /* XXX: TODO: test special values (NaN, infinites, ...) */
3690 return helper_efdtstgt(op1
, op2
);
3693 uint32_t helper_efdcmpeq (uint64_t op1
, uint64_t op2
)
3695 /* XXX: TODO: test special values (NaN, infinites, ...) */
3696 return helper_efdtsteq(op1
, op2
);
3699 /*****************************************************************************/
3700 /* Softmmu support */
3701 #if !defined (CONFIG_USER_ONLY)
3703 #define MMUSUFFIX _mmu
3706 #include "softmmu_template.h"
3709 #include "softmmu_template.h"
3712 #include "softmmu_template.h"
3715 #include "softmmu_template.h"
3717 /* try to fill the TLB and return an exception if error. If retaddr is
3718 NULL, it means that the function was called in C code (i.e. not
3719 from generated code or from helper.c) */
3720 /* XXX: fix it to restore all registers */
3721 void tlb_fill (target_ulong addr
, int is_write
, int mmu_idx
, void *retaddr
)
3723 TranslationBlock
*tb
;
3724 CPUState
*saved_env
;
3728 /* XXX: hack to restore env in all cases, even if not called from
3731 env
= cpu_single_env
;
3732 ret
= cpu_ppc_handle_mmu_fault(env
, addr
, is_write
, mmu_idx
, 1);
3733 if (unlikely(ret
!= 0)) {
3734 if (likely(retaddr
)) {
3735 /* now we have a real cpu fault */
3736 pc
= (unsigned long)retaddr
;
3737 tb
= tb_find_pc(pc
);
3739 /* the PC is inside the translated code. It means that we have
3740 a virtual CPU fault */
3741 cpu_restore_state(tb
, env
, pc
, NULL
);
3744 helper_raise_exception_err(env
->exception_index
, env
->error_code
);
3749 /* Segment registers load and store */
3750 target_ulong
helper_load_sr (target_ulong sr_num
)
3752 #if defined(TARGET_PPC64)
3753 if (env
->mmu_model
& POWERPC_MMU_64
)
3754 return ppc_load_sr(env
, sr_num
);
3756 return env
->sr
[sr_num
];
3759 void helper_store_sr (target_ulong sr_num
, target_ulong val
)
3761 ppc_store_sr(env
, sr_num
, val
);
3764 /* SLB management */
3765 #if defined(TARGET_PPC64)
3766 target_ulong
helper_load_slb (target_ulong slb_nr
)
3768 return ppc_load_slb(env
, slb_nr
);
3771 void helper_store_slb (target_ulong rb
, target_ulong rs
)
3773 ppc_store_slb(env
, rb
, rs
);
3776 void helper_slbia (void)
3778 ppc_slb_invalidate_all(env
);
3781 void helper_slbie (target_ulong addr
)
3783 ppc_slb_invalidate_one(env
, addr
);
3786 #endif /* defined(TARGET_PPC64) */
3788 /* TLB management */
3789 void helper_tlbia (void)
3791 ppc_tlb_invalidate_all(env
);
3794 void helper_tlbie (target_ulong addr
)
3796 ppc_tlb_invalidate_one(env
, addr
);
3799 /* Software driven TLBs management */
3800 /* PowerPC 602/603 software TLB load instructions helpers */
3801 static void do_6xx_tlb (target_ulong new_EPN
, int is_code
)
3803 target_ulong RPN
, CMP
, EPN
;
3806 RPN
= env
->spr
[SPR_RPA
];
3808 CMP
= env
->spr
[SPR_ICMP
];
3809 EPN
= env
->spr
[SPR_IMISS
];
3811 CMP
= env
->spr
[SPR_DCMP
];
3812 EPN
= env
->spr
[SPR_DMISS
];
3814 way
= (env
->spr
[SPR_SRR1
] >> 17) & 1;
3815 (void)EPN
; /* avoid a compiler warning */
3816 LOG_SWTLB("%s: EPN " TARGET_FMT_lx
" " TARGET_FMT_lx
" PTE0 " TARGET_FMT_lx
3817 " PTE1 " TARGET_FMT_lx
" way %d\n", __func__
, new_EPN
, EPN
, CMP
,
3819 /* Store this TLB */
3820 ppc6xx_tlb_store(env
, (uint32_t)(new_EPN
& TARGET_PAGE_MASK
),
3821 way
, is_code
, CMP
, RPN
);
3824 void helper_6xx_tlbd (target_ulong EPN
)
3829 void helper_6xx_tlbi (target_ulong EPN
)
3834 /* PowerPC 74xx software TLB load instructions helpers */
3835 static void do_74xx_tlb (target_ulong new_EPN
, int is_code
)
3837 target_ulong RPN
, CMP
, EPN
;
3840 RPN
= env
->spr
[SPR_PTELO
];
3841 CMP
= env
->spr
[SPR_PTEHI
];
3842 EPN
= env
->spr
[SPR_TLBMISS
] & ~0x3;
3843 way
= env
->spr
[SPR_TLBMISS
] & 0x3;
3844 (void)EPN
; /* avoid a compiler warning */
3845 LOG_SWTLB("%s: EPN " TARGET_FMT_lx
" " TARGET_FMT_lx
" PTE0 " TARGET_FMT_lx
3846 " PTE1 " TARGET_FMT_lx
" way %d\n", __func__
, new_EPN
, EPN
, CMP
,
3848 /* Store this TLB */
3849 ppc6xx_tlb_store(env
, (uint32_t)(new_EPN
& TARGET_PAGE_MASK
),
3850 way
, is_code
, CMP
, RPN
);
3853 void helper_74xx_tlbd (target_ulong EPN
)
3855 do_74xx_tlb(EPN
, 0);
3858 void helper_74xx_tlbi (target_ulong EPN
)
3860 do_74xx_tlb(EPN
, 1);
3863 static inline target_ulong
booke_tlb_to_page_size(int size
)
3865 return 1024 << (2 * size
);
3868 static inline int booke_page_size_to_tlb(target_ulong page_size
)
3872 switch (page_size
) {
3906 #if defined (TARGET_PPC64)
3907 case 0x000100000000ULL
:
3910 case 0x000400000000ULL
:
3913 case 0x001000000000ULL
:
3916 case 0x004000000000ULL
:
3919 case 0x010000000000ULL
:
3931 /* Helpers for 4xx TLB management */
3932 #define PPC4XX_TLB_ENTRY_MASK 0x0000003f /* Mask for 64 TLB entries */
3934 #define PPC4XX_TLBHI_V 0x00000040
3935 #define PPC4XX_TLBHI_E 0x00000020
3936 #define PPC4XX_TLBHI_SIZE_MIN 0
3937 #define PPC4XX_TLBHI_SIZE_MAX 7
3938 #define PPC4XX_TLBHI_SIZE_DEFAULT 1
3939 #define PPC4XX_TLBHI_SIZE_SHIFT 7
3940 #define PPC4XX_TLBHI_SIZE_MASK 0x00000007
3942 #define PPC4XX_TLBLO_EX 0x00000200
3943 #define PPC4XX_TLBLO_WR 0x00000100
3944 #define PPC4XX_TLBLO_ATTR_MASK 0x000000FF
3945 #define PPC4XX_TLBLO_RPN_MASK 0xFFFFFC00
3947 target_ulong
helper_4xx_tlbre_hi (target_ulong entry
)
3953 entry
&= PPC4XX_TLB_ENTRY_MASK
;
3954 tlb
= &env
->tlb
[entry
].tlbe
;
3956 if (tlb
->prot
& PAGE_VALID
) {
3957 ret
|= PPC4XX_TLBHI_V
;
3959 size
= booke_page_size_to_tlb(tlb
->size
);
3960 if (size
< PPC4XX_TLBHI_SIZE_MIN
|| size
> PPC4XX_TLBHI_SIZE_MAX
) {
3961 size
= PPC4XX_TLBHI_SIZE_DEFAULT
;
3963 ret
|= size
<< PPC4XX_TLBHI_SIZE_SHIFT
;
3964 env
->spr
[SPR_40x_PID
] = tlb
->PID
;
3968 target_ulong
helper_4xx_tlbre_lo (target_ulong entry
)
3973 entry
&= PPC4XX_TLB_ENTRY_MASK
;
3974 tlb
= &env
->tlb
[entry
].tlbe
;
3976 if (tlb
->prot
& PAGE_EXEC
) {
3977 ret
|= PPC4XX_TLBLO_EX
;
3979 if (tlb
->prot
& PAGE_WRITE
) {
3980 ret
|= PPC4XX_TLBLO_WR
;
3985 void helper_4xx_tlbwe_hi (target_ulong entry
, target_ulong val
)
3988 target_ulong page
, end
;
3990 LOG_SWTLB("%s entry %d val " TARGET_FMT_lx
"\n", __func__
, (int)entry
,
3992 entry
&= PPC4XX_TLB_ENTRY_MASK
;
3993 tlb
= &env
->tlb
[entry
].tlbe
;
3994 /* Invalidate previous TLB (if it's valid) */
3995 if (tlb
->prot
& PAGE_VALID
) {
3996 end
= tlb
->EPN
+ tlb
->size
;
3997 LOG_SWTLB("%s: invalidate old TLB %d start " TARGET_FMT_lx
" end "
3998 TARGET_FMT_lx
"\n", __func__
, (int)entry
, tlb
->EPN
, end
);
3999 for (page
= tlb
->EPN
; page
< end
; page
+= TARGET_PAGE_SIZE
) {
4000 tlb_flush_page(env
, page
);
4003 tlb
->size
= booke_tlb_to_page_size((val
>> PPC4XX_TLBHI_SIZE_SHIFT
)
4004 & PPC4XX_TLBHI_SIZE_MASK
);
4005 /* We cannot handle TLB size < TARGET_PAGE_SIZE.
4006 * If this ever occurs, one should use the ppcemb target instead
4007 * of the ppc or ppc64 one
4009 if ((val
& PPC4XX_TLBHI_V
) && tlb
->size
< TARGET_PAGE_SIZE
) {
4010 cpu_abort(env
, "TLB size " TARGET_FMT_lu
" < %u "
4011 "are not supported (%d)\n",
4012 tlb
->size
, TARGET_PAGE_SIZE
, (int)((val
>> 7) & 0x7));
4014 tlb
->EPN
= val
& ~(tlb
->size
- 1);
4015 if (val
& PPC4XX_TLBHI_V
) {
4016 tlb
->prot
|= PAGE_VALID
;
4017 if (val
& PPC4XX_TLBHI_E
) {
4018 /* XXX: TO BE FIXED */
4020 "Little-endian TLB entries are not supported by now\n");
4023 tlb
->prot
&= ~PAGE_VALID
;
4025 tlb
->PID
= env
->spr
[SPR_40x_PID
]; /* PID */
4026 LOG_SWTLB("%s: set up TLB %d RPN " TARGET_FMT_plx
" EPN " TARGET_FMT_lx
4027 " size " TARGET_FMT_lx
" prot %c%c%c%c PID %d\n", __func__
,
4028 (int)entry
, tlb
->RPN
, tlb
->EPN
, tlb
->size
,
4029 tlb
->prot
& PAGE_READ
? 'r' : '-',
4030 tlb
->prot
& PAGE_WRITE
? 'w' : '-',
4031 tlb
->prot
& PAGE_EXEC
? 'x' : '-',
4032 tlb
->prot
& PAGE_VALID
? 'v' : '-', (int)tlb
->PID
);
4033 /* Invalidate new TLB (if valid) */
4034 if (tlb
->prot
& PAGE_VALID
) {
4035 end
= tlb
->EPN
+ tlb
->size
;
4036 LOG_SWTLB("%s: invalidate TLB %d start " TARGET_FMT_lx
" end "
4037 TARGET_FMT_lx
"\n", __func__
, (int)entry
, tlb
->EPN
, end
);
4038 for (page
= tlb
->EPN
; page
< end
; page
+= TARGET_PAGE_SIZE
) {
4039 tlb_flush_page(env
, page
);
4044 void helper_4xx_tlbwe_lo (target_ulong entry
, target_ulong val
)
4048 LOG_SWTLB("%s entry %i val " TARGET_FMT_lx
"\n", __func__
, (int)entry
,
4050 entry
&= PPC4XX_TLB_ENTRY_MASK
;
4051 tlb
= &env
->tlb
[entry
].tlbe
;
4052 tlb
->attr
= val
& PPC4XX_TLBLO_ATTR_MASK
;
4053 tlb
->RPN
= val
& PPC4XX_TLBLO_RPN_MASK
;
4054 tlb
->prot
= PAGE_READ
;
4055 if (val
& PPC4XX_TLBLO_EX
) {
4056 tlb
->prot
|= PAGE_EXEC
;
4058 if (val
& PPC4XX_TLBLO_WR
) {
4059 tlb
->prot
|= PAGE_WRITE
;
4061 LOG_SWTLB("%s: set up TLB %d RPN " TARGET_FMT_plx
" EPN " TARGET_FMT_lx
4062 " size " TARGET_FMT_lx
" prot %c%c%c%c PID %d\n", __func__
,
4063 (int)entry
, tlb
->RPN
, tlb
->EPN
, tlb
->size
,
4064 tlb
->prot
& PAGE_READ
? 'r' : '-',
4065 tlb
->prot
& PAGE_WRITE
? 'w' : '-',
4066 tlb
->prot
& PAGE_EXEC
? 'x' : '-',
4067 tlb
->prot
& PAGE_VALID
? 'v' : '-', (int)tlb
->PID
);
4070 target_ulong
helper_4xx_tlbsx (target_ulong address
)
4072 return ppcemb_tlb_search(env
, address
, env
->spr
[SPR_40x_PID
]);
4075 /* PowerPC 440 TLB management */
4076 void helper_440_tlbwe (uint32_t word
, target_ulong entry
, target_ulong value
)
4079 target_ulong EPN
, RPN
, size
;
4082 LOG_SWTLB("%s word %d entry %d value " TARGET_FMT_lx
"\n",
4083 __func__
, word
, (int)entry
, value
);
4086 tlb
= &env
->tlb
[entry
].tlbe
;
4089 /* Just here to please gcc */
4091 EPN
= value
& 0xFFFFFC00;
4092 if ((tlb
->prot
& PAGE_VALID
) && EPN
!= tlb
->EPN
)
4095 size
= booke_tlb_to_page_size((value
>> 4) & 0xF);
4096 if ((tlb
->prot
& PAGE_VALID
) && tlb
->size
< size
)
4100 tlb
->attr
|= (value
>> 8) & 1;
4101 if (value
& 0x200) {
4102 tlb
->prot
|= PAGE_VALID
;
4104 if (tlb
->prot
& PAGE_VALID
) {
4105 tlb
->prot
&= ~PAGE_VALID
;
4109 tlb
->PID
= env
->spr
[SPR_440_MMUCR
] & 0x000000FF;
4114 RPN
= value
& 0xFFFFFC0F;
4115 if ((tlb
->prot
& PAGE_VALID
) && tlb
->RPN
!= RPN
)
4120 tlb
->attr
= (tlb
->attr
& 0x1) | (value
& 0x0000FF00);
4121 tlb
->prot
= tlb
->prot
& PAGE_VALID
;
4123 tlb
->prot
|= PAGE_READ
<< 4;
4125 tlb
->prot
|= PAGE_WRITE
<< 4;
4127 tlb
->prot
|= PAGE_EXEC
<< 4;
4129 tlb
->prot
|= PAGE_READ
;
4131 tlb
->prot
|= PAGE_WRITE
;
4133 tlb
->prot
|= PAGE_EXEC
;
4138 target_ulong
helper_440_tlbre (uint32_t word
, target_ulong entry
)
4145 tlb
= &env
->tlb
[entry
].tlbe
;
4148 /* Just here to please gcc */
4151 size
= booke_page_size_to_tlb(tlb
->size
);
4152 if (size
< 0 || size
> 0xF)
4155 if (tlb
->attr
& 0x1)
4157 if (tlb
->prot
& PAGE_VALID
)
4159 env
->spr
[SPR_440_MMUCR
] &= ~0x000000FF;
4160 env
->spr
[SPR_440_MMUCR
] |= tlb
->PID
;
4166 ret
= tlb
->attr
& ~0x1;
4167 if (tlb
->prot
& (PAGE_READ
<< 4))
4169 if (tlb
->prot
& (PAGE_WRITE
<< 4))
4171 if (tlb
->prot
& (PAGE_EXEC
<< 4))
4173 if (tlb
->prot
& PAGE_READ
)
4175 if (tlb
->prot
& PAGE_WRITE
)
4177 if (tlb
->prot
& PAGE_EXEC
)
4184 target_ulong
helper_440_tlbsx (target_ulong address
)
4186 return ppcemb_tlb_search(env
, address
, env
->spr
[SPR_440_MMUCR
] & 0xFF);
4189 #endif /* !CONFIG_USER_ONLY */