s390-ccw.img: Take care of the elf->img transition
[qemu.git] / hw / i386 / pc.c
blob0d6e72b209d76327d6619e3cc5e508ee3e7e4948
1 /*
2 * QEMU PC System Emulator
4 * Copyright (c) 2003-2004 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
24 #include "hw/hw.h"
25 #include "hw/i386/pc.h"
26 #include "hw/char/serial.h"
27 #include "hw/i386/apic.h"
28 #include "hw/block/fdc.h"
29 #include "hw/ide.h"
30 #include "hw/pci/pci.h"
31 #include "monitor/monitor.h"
32 #include "hw/nvram/fw_cfg.h"
33 #include "hw/timer/hpet.h"
34 #include "hw/i386/smbios.h"
35 #include "hw/loader.h"
36 #include "elf.h"
37 #include "multiboot.h"
38 #include "hw/timer/mc146818rtc.h"
39 #include "hw/timer/i8254.h"
40 #include "hw/audio/pcspk.h"
41 #include "hw/pci/msi.h"
42 #include "hw/sysbus.h"
43 #include "sysemu/sysemu.h"
44 #include "sysemu/kvm.h"
45 #include "kvm_i386.h"
46 #include "hw/xen/xen.h"
47 #include "sysemu/blockdev.h"
48 #include "hw/block/block.h"
49 #include "ui/qemu-spice.h"
50 #include "exec/memory.h"
51 #include "exec/address-spaces.h"
52 #include "sysemu/arch_init.h"
53 #include "qemu/bitmap.h"
54 #include "qemu/config-file.h"
55 #include "hw/acpi/acpi.h"
57 /* debug PC/ISA interrupts */
58 //#define DEBUG_IRQ
60 #ifdef DEBUG_IRQ
61 #define DPRINTF(fmt, ...) \
62 do { printf("CPUIRQ: " fmt , ## __VA_ARGS__); } while (0)
63 #else
64 #define DPRINTF(fmt, ...)
65 #endif
67 /* Leave a chunk of memory at the top of RAM for the BIOS ACPI tables. */
68 #define ACPI_DATA_SIZE 0x10000
69 #define BIOS_CFG_IOPORT 0x510
70 #define FW_CFG_ACPI_TABLES (FW_CFG_ARCH_LOCAL + 0)
71 #define FW_CFG_SMBIOS_ENTRIES (FW_CFG_ARCH_LOCAL + 1)
72 #define FW_CFG_IRQ0_OVERRIDE (FW_CFG_ARCH_LOCAL + 2)
73 #define FW_CFG_E820_TABLE (FW_CFG_ARCH_LOCAL + 3)
74 #define FW_CFG_HPET (FW_CFG_ARCH_LOCAL + 4)
76 #define IO_APIC_DEFAULT_ADDRESS 0xfec00000
78 #define E820_NR_ENTRIES 16
80 struct e820_entry {
81 uint64_t address;
82 uint64_t length;
83 uint32_t type;
84 } QEMU_PACKED __attribute((__aligned__(4)));
86 struct e820_table {
87 uint32_t count;
88 struct e820_entry entry[E820_NR_ENTRIES];
89 } QEMU_PACKED __attribute((__aligned__(4)));
91 static struct e820_table e820_table;
92 struct hpet_fw_config hpet_cfg = {.count = UINT8_MAX};
94 void gsi_handler(void *opaque, int n, int level)
96 GSIState *s = opaque;
98 DPRINTF("pc: %s GSI %d\n", level ? "raising" : "lowering", n);
99 if (n < ISA_NUM_IRQS) {
100 qemu_set_irq(s->i8259_irq[n], level);
102 qemu_set_irq(s->ioapic_irq[n], level);
105 static void ioport80_write(void *opaque, hwaddr addr, uint64_t data,
106 unsigned size)
110 static uint64_t ioport80_read(void *opaque, hwaddr addr, unsigned size)
112 return 0xffffffffffffffffULL;
115 /* MSDOS compatibility mode FPU exception support */
116 static qemu_irq ferr_irq;
118 void pc_register_ferr_irq(qemu_irq irq)
120 ferr_irq = irq;
123 /* XXX: add IGNNE support */
124 void cpu_set_ferr(CPUX86State *s)
126 qemu_irq_raise(ferr_irq);
129 static void ioportF0_write(void *opaque, hwaddr addr, uint64_t data,
130 unsigned size)
132 qemu_irq_lower(ferr_irq);
135 static uint64_t ioportF0_read(void *opaque, hwaddr addr, unsigned size)
137 return 0xffffffffffffffffULL;
140 /* TSC handling */
141 uint64_t cpu_get_tsc(CPUX86State *env)
143 return cpu_get_ticks();
146 /* SMM support */
148 static cpu_set_smm_t smm_set;
149 static void *smm_arg;
151 void cpu_smm_register(cpu_set_smm_t callback, void *arg)
153 assert(smm_set == NULL);
154 assert(smm_arg == NULL);
155 smm_set = callback;
156 smm_arg = arg;
159 void cpu_smm_update(CPUX86State *env)
161 if (smm_set && smm_arg && env == first_cpu)
162 smm_set(!!(env->hflags & HF_SMM_MASK), smm_arg);
166 /* IRQ handling */
167 int cpu_get_pic_interrupt(CPUX86State *env)
169 int intno;
171 intno = apic_get_interrupt(env->apic_state);
172 if (intno >= 0) {
173 return intno;
175 /* read the irq from the PIC */
176 if (!apic_accept_pic_intr(env->apic_state)) {
177 return -1;
180 intno = pic_read_irq(isa_pic);
181 return intno;
184 static void pic_irq_request(void *opaque, int irq, int level)
186 CPUX86State *env = first_cpu;
188 DPRINTF("pic_irqs: %s irq %d\n", level? "raise" : "lower", irq);
189 if (env->apic_state) {
190 while (env) {
191 if (apic_accept_pic_intr(env->apic_state)) {
192 apic_deliver_pic_intr(env->apic_state, level);
194 env = env->next_cpu;
196 } else {
197 CPUState *cs = CPU(x86_env_get_cpu(env));
198 if (level) {
199 cpu_interrupt(cs, CPU_INTERRUPT_HARD);
200 } else {
201 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
206 /* PC cmos mappings */
208 #define REG_EQUIPMENT_BYTE 0x14
210 static int cmos_get_fd_drive_type(FDriveType fd0)
212 int val;
214 switch (fd0) {
215 case FDRIVE_DRV_144:
216 /* 1.44 Mb 3"5 drive */
217 val = 4;
218 break;
219 case FDRIVE_DRV_288:
220 /* 2.88 Mb 3"5 drive */
221 val = 5;
222 break;
223 case FDRIVE_DRV_120:
224 /* 1.2 Mb 5"5 drive */
225 val = 2;
226 break;
227 case FDRIVE_DRV_NONE:
228 default:
229 val = 0;
230 break;
232 return val;
235 static void cmos_init_hd(ISADevice *s, int type_ofs, int info_ofs,
236 int16_t cylinders, int8_t heads, int8_t sectors)
238 rtc_set_memory(s, type_ofs, 47);
239 rtc_set_memory(s, info_ofs, cylinders);
240 rtc_set_memory(s, info_ofs + 1, cylinders >> 8);
241 rtc_set_memory(s, info_ofs + 2, heads);
242 rtc_set_memory(s, info_ofs + 3, 0xff);
243 rtc_set_memory(s, info_ofs + 4, 0xff);
244 rtc_set_memory(s, info_ofs + 5, 0xc0 | ((heads > 8) << 3));
245 rtc_set_memory(s, info_ofs + 6, cylinders);
246 rtc_set_memory(s, info_ofs + 7, cylinders >> 8);
247 rtc_set_memory(s, info_ofs + 8, sectors);
250 /* convert boot_device letter to something recognizable by the bios */
251 static int boot_device2nibble(char boot_device)
253 switch(boot_device) {
254 case 'a':
255 case 'b':
256 return 0x01; /* floppy boot */
257 case 'c':
258 return 0x02; /* hard drive boot */
259 case 'd':
260 return 0x03; /* CD-ROM boot */
261 case 'n':
262 return 0x04; /* Network boot */
264 return 0;
267 static int set_boot_dev(ISADevice *s, const char *boot_device, int fd_bootchk)
269 #define PC_MAX_BOOT_DEVICES 3
270 int nbds, bds[3] = { 0, };
271 int i;
273 nbds = strlen(boot_device);
274 if (nbds > PC_MAX_BOOT_DEVICES) {
275 error_report("Too many boot devices for PC");
276 return(1);
278 for (i = 0; i < nbds; i++) {
279 bds[i] = boot_device2nibble(boot_device[i]);
280 if (bds[i] == 0) {
281 error_report("Invalid boot device for PC: '%c'",
282 boot_device[i]);
283 return(1);
286 rtc_set_memory(s, 0x3d, (bds[1] << 4) | bds[0]);
287 rtc_set_memory(s, 0x38, (bds[2] << 4) | (fd_bootchk ? 0x0 : 0x1));
288 return(0);
291 static int pc_boot_set(void *opaque, const char *boot_device)
293 return set_boot_dev(opaque, boot_device, 0);
296 typedef struct pc_cmos_init_late_arg {
297 ISADevice *rtc_state;
298 BusState *idebus[2];
299 } pc_cmos_init_late_arg;
301 static void pc_cmos_init_late(void *opaque)
303 pc_cmos_init_late_arg *arg = opaque;
304 ISADevice *s = arg->rtc_state;
305 int16_t cylinders;
306 int8_t heads, sectors;
307 int val;
308 int i, trans;
310 val = 0;
311 if (ide_get_geometry(arg->idebus[0], 0,
312 &cylinders, &heads, &sectors) >= 0) {
313 cmos_init_hd(s, 0x19, 0x1b, cylinders, heads, sectors);
314 val |= 0xf0;
316 if (ide_get_geometry(arg->idebus[0], 1,
317 &cylinders, &heads, &sectors) >= 0) {
318 cmos_init_hd(s, 0x1a, 0x24, cylinders, heads, sectors);
319 val |= 0x0f;
321 rtc_set_memory(s, 0x12, val);
323 val = 0;
324 for (i = 0; i < 4; i++) {
325 /* NOTE: ide_get_geometry() returns the physical
326 geometry. It is always such that: 1 <= sects <= 63, 1
327 <= heads <= 16, 1 <= cylinders <= 16383. The BIOS
328 geometry can be different if a translation is done. */
329 if (ide_get_geometry(arg->idebus[i / 2], i % 2,
330 &cylinders, &heads, &sectors) >= 0) {
331 trans = ide_get_bios_chs_trans(arg->idebus[i / 2], i % 2) - 1;
332 assert((trans & ~3) == 0);
333 val |= trans << (i * 2);
336 rtc_set_memory(s, 0x39, val);
338 qemu_unregister_reset(pc_cmos_init_late, opaque);
341 void pc_cmos_init(ram_addr_t ram_size, ram_addr_t above_4g_mem_size,
342 const char *boot_device,
343 ISADevice *floppy, BusState *idebus0, BusState *idebus1,
344 ISADevice *s)
346 int val, nb, i;
347 FDriveType fd_type[2] = { FDRIVE_DRV_NONE, FDRIVE_DRV_NONE };
348 static pc_cmos_init_late_arg arg;
350 /* various important CMOS locations needed by PC/Bochs bios */
352 /* memory size */
353 /* base memory (first MiB) */
354 val = MIN(ram_size / 1024, 640);
355 rtc_set_memory(s, 0x15, val);
356 rtc_set_memory(s, 0x16, val >> 8);
357 /* extended memory (next 64MiB) */
358 if (ram_size > 1024 * 1024) {
359 val = (ram_size - 1024 * 1024) / 1024;
360 } else {
361 val = 0;
363 if (val > 65535)
364 val = 65535;
365 rtc_set_memory(s, 0x17, val);
366 rtc_set_memory(s, 0x18, val >> 8);
367 rtc_set_memory(s, 0x30, val);
368 rtc_set_memory(s, 0x31, val >> 8);
369 /* memory between 16MiB and 4GiB */
370 if (ram_size > 16 * 1024 * 1024) {
371 val = (ram_size - 16 * 1024 * 1024) / 65536;
372 } else {
373 val = 0;
375 if (val > 65535)
376 val = 65535;
377 rtc_set_memory(s, 0x34, val);
378 rtc_set_memory(s, 0x35, val >> 8);
379 /* memory above 4GiB */
380 val = above_4g_mem_size / 65536;
381 rtc_set_memory(s, 0x5b, val);
382 rtc_set_memory(s, 0x5c, val >> 8);
383 rtc_set_memory(s, 0x5d, val >> 16);
385 /* set the number of CPU */
386 rtc_set_memory(s, 0x5f, smp_cpus - 1);
388 /* set boot devices, and disable floppy signature check if requested */
389 if (set_boot_dev(s, boot_device, fd_bootchk)) {
390 exit(1);
393 /* floppy type */
394 if (floppy) {
395 for (i = 0; i < 2; i++) {
396 fd_type[i] = isa_fdc_get_drive_type(floppy, i);
399 val = (cmos_get_fd_drive_type(fd_type[0]) << 4) |
400 cmos_get_fd_drive_type(fd_type[1]);
401 rtc_set_memory(s, 0x10, val);
403 val = 0;
404 nb = 0;
405 if (fd_type[0] < FDRIVE_DRV_NONE) {
406 nb++;
408 if (fd_type[1] < FDRIVE_DRV_NONE) {
409 nb++;
411 switch (nb) {
412 case 0:
413 break;
414 case 1:
415 val |= 0x01; /* 1 drive, ready for boot */
416 break;
417 case 2:
418 val |= 0x41; /* 2 drives, ready for boot */
419 break;
421 val |= 0x02; /* FPU is there */
422 val |= 0x04; /* PS/2 mouse installed */
423 rtc_set_memory(s, REG_EQUIPMENT_BYTE, val);
425 /* hard drives */
426 arg.rtc_state = s;
427 arg.idebus[0] = idebus0;
428 arg.idebus[1] = idebus1;
429 qemu_register_reset(pc_cmos_init_late, &arg);
432 /* port 92 stuff: could be split off */
433 typedef struct Port92State {
434 ISADevice dev;
435 MemoryRegion io;
436 uint8_t outport;
437 qemu_irq *a20_out;
438 } Port92State;
440 static void port92_write(void *opaque, hwaddr addr, uint64_t val,
441 unsigned size)
443 Port92State *s = opaque;
445 DPRINTF("port92: write 0x%02x\n", val);
446 s->outport = val;
447 qemu_set_irq(*s->a20_out, (val >> 1) & 1);
448 if (val & 1) {
449 qemu_system_reset_request();
453 static uint64_t port92_read(void *opaque, hwaddr addr,
454 unsigned size)
456 Port92State *s = opaque;
457 uint32_t ret;
459 ret = s->outport;
460 DPRINTF("port92: read 0x%02x\n", ret);
461 return ret;
464 static void port92_init(ISADevice *dev, qemu_irq *a20_out)
466 Port92State *s = DO_UPCAST(Port92State, dev, dev);
468 s->a20_out = a20_out;
471 static const VMStateDescription vmstate_port92_isa = {
472 .name = "port92",
473 .version_id = 1,
474 .minimum_version_id = 1,
475 .minimum_version_id_old = 1,
476 .fields = (VMStateField []) {
477 VMSTATE_UINT8(outport, Port92State),
478 VMSTATE_END_OF_LIST()
482 static void port92_reset(DeviceState *d)
484 Port92State *s = container_of(d, Port92State, dev.qdev);
486 s->outport &= ~1;
489 static const MemoryRegionOps port92_ops = {
490 .read = port92_read,
491 .write = port92_write,
492 .impl = {
493 .min_access_size = 1,
494 .max_access_size = 1,
496 .endianness = DEVICE_LITTLE_ENDIAN,
499 static int port92_initfn(ISADevice *dev)
501 Port92State *s = DO_UPCAST(Port92State, dev, dev);
503 memory_region_init_io(&s->io, &port92_ops, s, "port92", 1);
504 isa_register_ioport(dev, &s->io, 0x92);
506 s->outport = 0;
507 return 0;
510 static void port92_class_initfn(ObjectClass *klass, void *data)
512 DeviceClass *dc = DEVICE_CLASS(klass);
513 ISADeviceClass *ic = ISA_DEVICE_CLASS(klass);
514 ic->init = port92_initfn;
515 dc->no_user = 1;
516 dc->reset = port92_reset;
517 dc->vmsd = &vmstate_port92_isa;
520 static const TypeInfo port92_info = {
521 .name = "port92",
522 .parent = TYPE_ISA_DEVICE,
523 .instance_size = sizeof(Port92State),
524 .class_init = port92_class_initfn,
527 static void port92_register_types(void)
529 type_register_static(&port92_info);
532 type_init(port92_register_types)
534 static void handle_a20_line_change(void *opaque, int irq, int level)
536 X86CPU *cpu = opaque;
538 /* XXX: send to all CPUs ? */
539 /* XXX: add logic to handle multiple A20 line sources */
540 x86_cpu_set_a20(cpu, level);
543 int e820_add_entry(uint64_t address, uint64_t length, uint32_t type)
545 int index = le32_to_cpu(e820_table.count);
546 struct e820_entry *entry;
548 if (index >= E820_NR_ENTRIES)
549 return -EBUSY;
550 entry = &e820_table.entry[index++];
552 entry->address = cpu_to_le64(address);
553 entry->length = cpu_to_le64(length);
554 entry->type = cpu_to_le32(type);
556 e820_table.count = cpu_to_le32(index);
557 return index;
560 /* Calculates the limit to CPU APIC ID values
562 * This function returns the limit for the APIC ID value, so that all
563 * CPU APIC IDs are < pc_apic_id_limit().
565 * This is used for FW_CFG_MAX_CPUS. See comments on bochs_bios_init().
567 static unsigned int pc_apic_id_limit(unsigned int max_cpus)
569 return x86_cpu_apic_id_from_index(max_cpus - 1) + 1;
572 static void *bochs_bios_init(void)
574 void *fw_cfg;
575 uint8_t *smbios_table;
576 size_t smbios_len;
577 uint64_t *numa_fw_cfg;
578 int i, j;
579 unsigned int apic_id_limit = pc_apic_id_limit(max_cpus);
581 fw_cfg = fw_cfg_init(BIOS_CFG_IOPORT, BIOS_CFG_IOPORT + 1, 0, 0);
582 /* FW_CFG_MAX_CPUS is a bit confusing/problematic on x86:
584 * SeaBIOS needs FW_CFG_MAX_CPUS for CPU hotplug, but the CPU hotplug
585 * QEMU<->SeaBIOS interface is not based on the "CPU index", but on the APIC
586 * ID of hotplugged CPUs[1]. This means that FW_CFG_MAX_CPUS is not the
587 * "maximum number of CPUs", but the "limit to the APIC ID values SeaBIOS
588 * may see".
590 * So, this means we must not use max_cpus, here, but the maximum possible
591 * APIC ID value, plus one.
593 * [1] The only kind of "CPU identifier" used between SeaBIOS and QEMU is
594 * the APIC ID, not the "CPU index"
596 fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)apic_id_limit);
597 fw_cfg_add_i32(fw_cfg, FW_CFG_ID, 1);
598 fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size);
599 fw_cfg_add_bytes(fw_cfg, FW_CFG_ACPI_TABLES,
600 acpi_tables, acpi_tables_len);
601 fw_cfg_add_i32(fw_cfg, FW_CFG_IRQ0_OVERRIDE, kvm_allows_irq0_override());
603 smbios_table = smbios_get_table(&smbios_len);
604 if (smbios_table)
605 fw_cfg_add_bytes(fw_cfg, FW_CFG_SMBIOS_ENTRIES,
606 smbios_table, smbios_len);
607 fw_cfg_add_bytes(fw_cfg, FW_CFG_E820_TABLE,
608 &e820_table, sizeof(e820_table));
610 fw_cfg_add_bytes(fw_cfg, FW_CFG_HPET, &hpet_cfg, sizeof(hpet_cfg));
611 /* allocate memory for the NUMA channel: one (64bit) word for the number
612 * of nodes, one word for each VCPU->node and one word for each node to
613 * hold the amount of memory.
615 numa_fw_cfg = g_new0(uint64_t, 1 + apic_id_limit + nb_numa_nodes);
616 numa_fw_cfg[0] = cpu_to_le64(nb_numa_nodes);
617 for (i = 0; i < max_cpus; i++) {
618 unsigned int apic_id = x86_cpu_apic_id_from_index(i);
619 assert(apic_id < apic_id_limit);
620 for (j = 0; j < nb_numa_nodes; j++) {
621 if (test_bit(i, node_cpumask[j])) {
622 numa_fw_cfg[apic_id + 1] = cpu_to_le64(j);
623 break;
627 for (i = 0; i < nb_numa_nodes; i++) {
628 numa_fw_cfg[apic_id_limit + 1 + i] = cpu_to_le64(node_mem[i]);
630 fw_cfg_add_bytes(fw_cfg, FW_CFG_NUMA, numa_fw_cfg,
631 (1 + apic_id_limit + nb_numa_nodes) *
632 sizeof(*numa_fw_cfg));
634 return fw_cfg;
637 static long get_file_size(FILE *f)
639 long where, size;
641 /* XXX: on Unix systems, using fstat() probably makes more sense */
643 where = ftell(f);
644 fseek(f, 0, SEEK_END);
645 size = ftell(f);
646 fseek(f, where, SEEK_SET);
648 return size;
651 static void load_linux(void *fw_cfg,
652 const char *kernel_filename,
653 const char *initrd_filename,
654 const char *kernel_cmdline,
655 hwaddr max_ram_size)
657 uint16_t protocol;
658 int setup_size, kernel_size, initrd_size = 0, cmdline_size;
659 uint32_t initrd_max;
660 uint8_t header[8192], *setup, *kernel, *initrd_data;
661 hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0;
662 FILE *f;
663 char *vmode;
665 /* Align to 16 bytes as a paranoia measure */
666 cmdline_size = (strlen(kernel_cmdline)+16) & ~15;
668 /* load the kernel header */
669 f = fopen(kernel_filename, "rb");
670 if (!f || !(kernel_size = get_file_size(f)) ||
671 fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) !=
672 MIN(ARRAY_SIZE(header), kernel_size)) {
673 fprintf(stderr, "qemu: could not load kernel '%s': %s\n",
674 kernel_filename, strerror(errno));
675 exit(1);
678 /* kernel protocol version */
679 #if 0
680 fprintf(stderr, "header magic: %#x\n", ldl_p(header+0x202));
681 #endif
682 if (ldl_p(header+0x202) == 0x53726448) {
683 protocol = lduw_p(header+0x206);
684 } else {
685 /* This looks like a multiboot kernel. If it is, let's stop
686 treating it like a Linux kernel. */
687 if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename,
688 kernel_cmdline, kernel_size, header)) {
689 return;
691 protocol = 0;
694 if (protocol < 0x200 || !(header[0x211] & 0x01)) {
695 /* Low kernel */
696 real_addr = 0x90000;
697 cmdline_addr = 0x9a000 - cmdline_size;
698 prot_addr = 0x10000;
699 } else if (protocol < 0x202) {
700 /* High but ancient kernel */
701 real_addr = 0x90000;
702 cmdline_addr = 0x9a000 - cmdline_size;
703 prot_addr = 0x100000;
704 } else {
705 /* High and recent kernel */
706 real_addr = 0x10000;
707 cmdline_addr = 0x20000;
708 prot_addr = 0x100000;
711 #if 0
712 fprintf(stderr,
713 "qemu: real_addr = 0x" TARGET_FMT_plx "\n"
714 "qemu: cmdline_addr = 0x" TARGET_FMT_plx "\n"
715 "qemu: prot_addr = 0x" TARGET_FMT_plx "\n",
716 real_addr,
717 cmdline_addr,
718 prot_addr);
719 #endif
721 /* highest address for loading the initrd */
722 if (protocol >= 0x203) {
723 initrd_max = ldl_p(header+0x22c);
724 } else {
725 initrd_max = 0x37ffffff;
728 if (initrd_max >= max_ram_size-ACPI_DATA_SIZE)
729 initrd_max = max_ram_size-ACPI_DATA_SIZE-1;
731 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr);
732 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline)+1);
733 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
735 if (protocol >= 0x202) {
736 stl_p(header+0x228, cmdline_addr);
737 } else {
738 stw_p(header+0x20, 0xA33F);
739 stw_p(header+0x22, cmdline_addr-real_addr);
742 /* handle vga= parameter */
743 vmode = strstr(kernel_cmdline, "vga=");
744 if (vmode) {
745 unsigned int video_mode;
746 /* skip "vga=" */
747 vmode += 4;
748 if (!strncmp(vmode, "normal", 6)) {
749 video_mode = 0xffff;
750 } else if (!strncmp(vmode, "ext", 3)) {
751 video_mode = 0xfffe;
752 } else if (!strncmp(vmode, "ask", 3)) {
753 video_mode = 0xfffd;
754 } else {
755 video_mode = strtol(vmode, NULL, 0);
757 stw_p(header+0x1fa, video_mode);
760 /* loader type */
761 /* High nybble = B reserved for QEMU; low nybble is revision number.
762 If this code is substantially changed, you may want to consider
763 incrementing the revision. */
764 if (protocol >= 0x200) {
765 header[0x210] = 0xB0;
767 /* heap */
768 if (protocol >= 0x201) {
769 header[0x211] |= 0x80; /* CAN_USE_HEAP */
770 stw_p(header+0x224, cmdline_addr-real_addr-0x200);
773 /* load initrd */
774 if (initrd_filename) {
775 if (protocol < 0x200) {
776 fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n");
777 exit(1);
780 initrd_size = get_image_size(initrd_filename);
781 if (initrd_size < 0) {
782 fprintf(stderr, "qemu: error reading initrd %s\n",
783 initrd_filename);
784 exit(1);
787 initrd_addr = (initrd_max-initrd_size) & ~4095;
789 initrd_data = g_malloc(initrd_size);
790 load_image(initrd_filename, initrd_data);
792 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
793 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
794 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size);
796 stl_p(header+0x218, initrd_addr);
797 stl_p(header+0x21c, initrd_size);
800 /* load kernel and setup */
801 setup_size = header[0x1f1];
802 if (setup_size == 0) {
803 setup_size = 4;
805 setup_size = (setup_size+1)*512;
806 kernel_size -= setup_size;
808 setup = g_malloc(setup_size);
809 kernel = g_malloc(kernel_size);
810 fseek(f, 0, SEEK_SET);
811 if (fread(setup, 1, setup_size, f) != setup_size) {
812 fprintf(stderr, "fread() failed\n");
813 exit(1);
815 if (fread(kernel, 1, kernel_size, f) != kernel_size) {
816 fprintf(stderr, "fread() failed\n");
817 exit(1);
819 fclose(f);
820 memcpy(setup, header, MIN(sizeof(header), setup_size));
822 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr);
823 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
824 fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size);
826 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr);
827 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size);
828 fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size);
830 option_rom[nb_option_roms].name = "linuxboot.bin";
831 option_rom[nb_option_roms].bootindex = 0;
832 nb_option_roms++;
835 #define NE2000_NB_MAX 6
837 static const int ne2000_io[NE2000_NB_MAX] = { 0x300, 0x320, 0x340, 0x360,
838 0x280, 0x380 };
839 static const int ne2000_irq[NE2000_NB_MAX] = { 9, 10, 11, 3, 4, 5 };
841 static const int parallel_io[MAX_PARALLEL_PORTS] = { 0x378, 0x278, 0x3bc };
842 static const int parallel_irq[MAX_PARALLEL_PORTS] = { 7, 7, 7 };
844 void pc_init_ne2k_isa(ISABus *bus, NICInfo *nd)
846 static int nb_ne2k = 0;
848 if (nb_ne2k == NE2000_NB_MAX)
849 return;
850 isa_ne2000_init(bus, ne2000_io[nb_ne2k],
851 ne2000_irq[nb_ne2k], nd);
852 nb_ne2k++;
855 DeviceState *cpu_get_current_apic(void)
857 if (cpu_single_env) {
858 return cpu_single_env->apic_state;
859 } else {
860 return NULL;
864 void pc_acpi_smi_interrupt(void *opaque, int irq, int level)
866 X86CPU *cpu = opaque;
868 if (level) {
869 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
873 void pc_cpus_init(const char *cpu_model)
875 int i;
877 /* init CPUs */
878 if (cpu_model == NULL) {
879 #ifdef TARGET_X86_64
880 cpu_model = "qemu64";
881 #else
882 cpu_model = "qemu32";
883 #endif
886 for (i = 0; i < smp_cpus; i++) {
887 if (!cpu_x86_init(cpu_model)) {
888 exit(1);
893 void pc_acpi_init(const char *default_dsdt)
895 char *filename;
897 if (acpi_tables != NULL) {
898 /* manually set via -acpitable, leave it alone */
899 return;
902 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, default_dsdt);
903 if (filename == NULL) {
904 fprintf(stderr, "WARNING: failed to find %s\n", default_dsdt);
905 } else {
906 char *arg;
907 QemuOpts *opts;
908 Error *err = NULL;
910 arg = g_strdup_printf("file=%s", filename);
912 /* creates a deep copy of "arg" */
913 opts = qemu_opts_parse(qemu_find_opts("acpi"), arg, 0);
914 g_assert(opts != NULL);
916 acpi_table_add(opts, &err);
917 if (err) {
918 fprintf(stderr, "WARNING: failed to load %s: %s\n", filename,
919 error_get_pretty(err));
920 error_free(err);
922 g_free(arg);
923 g_free(filename);
927 void *pc_memory_init(MemoryRegion *system_memory,
928 const char *kernel_filename,
929 const char *kernel_cmdline,
930 const char *initrd_filename,
931 ram_addr_t below_4g_mem_size,
932 ram_addr_t above_4g_mem_size,
933 MemoryRegion *rom_memory,
934 MemoryRegion **ram_memory)
936 int linux_boot, i;
937 MemoryRegion *ram, *option_rom_mr;
938 MemoryRegion *ram_below_4g, *ram_above_4g;
939 void *fw_cfg;
941 linux_boot = (kernel_filename != NULL);
943 /* Allocate RAM. We allocate it as a single memory region and use
944 * aliases to address portions of it, mostly for backwards compatibility
945 * with older qemus that used qemu_ram_alloc().
947 ram = g_malloc(sizeof(*ram));
948 memory_region_init_ram(ram, "pc.ram",
949 below_4g_mem_size + above_4g_mem_size);
950 vmstate_register_ram_global(ram);
951 *ram_memory = ram;
952 ram_below_4g = g_malloc(sizeof(*ram_below_4g));
953 memory_region_init_alias(ram_below_4g, "ram-below-4g", ram,
954 0, below_4g_mem_size);
955 memory_region_add_subregion(system_memory, 0, ram_below_4g);
956 if (above_4g_mem_size > 0) {
957 ram_above_4g = g_malloc(sizeof(*ram_above_4g));
958 memory_region_init_alias(ram_above_4g, "ram-above-4g", ram,
959 below_4g_mem_size, above_4g_mem_size);
960 memory_region_add_subregion(system_memory, 0x100000000ULL,
961 ram_above_4g);
965 /* Initialize PC system firmware */
966 pc_system_firmware_init(rom_memory);
968 option_rom_mr = g_malloc(sizeof(*option_rom_mr));
969 memory_region_init_ram(option_rom_mr, "pc.rom", PC_ROM_SIZE);
970 vmstate_register_ram_global(option_rom_mr);
971 memory_region_add_subregion_overlap(rom_memory,
972 PC_ROM_MIN_VGA,
973 option_rom_mr,
976 fw_cfg = bochs_bios_init();
977 rom_set_fw(fw_cfg);
979 if (linux_boot) {
980 load_linux(fw_cfg, kernel_filename, initrd_filename, kernel_cmdline, below_4g_mem_size);
983 for (i = 0; i < nb_option_roms; i++) {
984 rom_add_option(option_rom[i].name, option_rom[i].bootindex);
986 return fw_cfg;
989 qemu_irq *pc_allocate_cpu_irq(void)
991 return qemu_allocate_irqs(pic_irq_request, NULL, 1);
994 DeviceState *pc_vga_init(ISABus *isa_bus, PCIBus *pci_bus)
996 DeviceState *dev = NULL;
998 if (pci_bus) {
999 PCIDevice *pcidev = pci_vga_init(pci_bus);
1000 dev = pcidev ? &pcidev->qdev : NULL;
1001 } else if (isa_bus) {
1002 ISADevice *isadev = isa_vga_init(isa_bus);
1003 dev = isadev ? &isadev->qdev : NULL;
1005 return dev;
1008 static void cpu_request_exit(void *opaque, int irq, int level)
1010 CPUX86State *env = cpu_single_env;
1012 if (env && level) {
1013 cpu_exit(env);
1017 static const MemoryRegionOps ioport80_io_ops = {
1018 .write = ioport80_write,
1019 .read = ioport80_read,
1020 .endianness = DEVICE_NATIVE_ENDIAN,
1021 .impl = {
1022 .min_access_size = 1,
1023 .max_access_size = 1,
1027 static const MemoryRegionOps ioportF0_io_ops = {
1028 .write = ioportF0_write,
1029 .read = ioportF0_read,
1030 .endianness = DEVICE_NATIVE_ENDIAN,
1031 .impl = {
1032 .min_access_size = 1,
1033 .max_access_size = 1,
1037 void pc_basic_device_init(ISABus *isa_bus, qemu_irq *gsi,
1038 ISADevice **rtc_state,
1039 ISADevice **floppy,
1040 bool no_vmport)
1042 int i;
1043 DriveInfo *fd[MAX_FD];
1044 DeviceState *hpet = NULL;
1045 int pit_isa_irq = 0;
1046 qemu_irq pit_alt_irq = NULL;
1047 qemu_irq rtc_irq = NULL;
1048 qemu_irq *a20_line;
1049 ISADevice *i8042, *port92, *vmmouse, *pit = NULL;
1050 qemu_irq *cpu_exit_irq;
1051 MemoryRegion *ioport80_io = g_new(MemoryRegion, 1);
1052 MemoryRegion *ioportF0_io = g_new(MemoryRegion, 1);
1054 memory_region_init_io(ioport80_io, &ioport80_io_ops, NULL, "ioport80", 1);
1055 memory_region_add_subregion(isa_bus->address_space_io, 0x80, ioport80_io);
1057 memory_region_init_io(ioportF0_io, &ioportF0_io_ops, NULL, "ioportF0", 1);
1058 memory_region_add_subregion(isa_bus->address_space_io, 0xf0, ioportF0_io);
1061 * Check if an HPET shall be created.
1063 * Without KVM_CAP_PIT_STATE2, we cannot switch off the in-kernel PIT
1064 * when the HPET wants to take over. Thus we have to disable the latter.
1066 if (!no_hpet && (!kvm_irqchip_in_kernel() || kvm_has_pit_state2())) {
1067 hpet = sysbus_try_create_simple("hpet", HPET_BASE, NULL);
1069 if (hpet) {
1070 for (i = 0; i < GSI_NUM_PINS; i++) {
1071 sysbus_connect_irq(SYS_BUS_DEVICE(hpet), i, gsi[i]);
1073 pit_isa_irq = -1;
1074 pit_alt_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_PIT_INT);
1075 rtc_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_RTC_INT);
1078 *rtc_state = rtc_init(isa_bus, 2000, rtc_irq);
1080 qemu_register_boot_set(pc_boot_set, *rtc_state);
1082 if (!xen_enabled()) {
1083 if (kvm_irqchip_in_kernel()) {
1084 pit = kvm_pit_init(isa_bus, 0x40);
1085 } else {
1086 pit = pit_init(isa_bus, 0x40, pit_isa_irq, pit_alt_irq);
1088 if (hpet) {
1089 /* connect PIT to output control line of the HPET */
1090 qdev_connect_gpio_out(hpet, 0, qdev_get_gpio_in(&pit->qdev, 0));
1092 pcspk_init(isa_bus, pit);
1095 for(i = 0; i < MAX_SERIAL_PORTS; i++) {
1096 if (serial_hds[i]) {
1097 serial_isa_init(isa_bus, i, serial_hds[i]);
1101 for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
1102 if (parallel_hds[i]) {
1103 parallel_init(isa_bus, i, parallel_hds[i]);
1107 a20_line = qemu_allocate_irqs(handle_a20_line_change,
1108 x86_env_get_cpu(first_cpu), 2);
1109 i8042 = isa_create_simple(isa_bus, "i8042");
1110 i8042_setup_a20_line(i8042, &a20_line[0]);
1111 if (!no_vmport) {
1112 vmport_init(isa_bus);
1113 vmmouse = isa_try_create(isa_bus, "vmmouse");
1114 } else {
1115 vmmouse = NULL;
1117 if (vmmouse) {
1118 qdev_prop_set_ptr(&vmmouse->qdev, "ps2_mouse", i8042);
1119 qdev_init_nofail(&vmmouse->qdev);
1121 port92 = isa_create_simple(isa_bus, "port92");
1122 port92_init(port92, &a20_line[1]);
1124 cpu_exit_irq = qemu_allocate_irqs(cpu_request_exit, NULL, 1);
1125 DMA_init(0, cpu_exit_irq);
1127 for(i = 0; i < MAX_FD; i++) {
1128 fd[i] = drive_get(IF_FLOPPY, 0, i);
1130 *floppy = fdctrl_init_isa(isa_bus, fd);
1133 void pc_nic_init(ISABus *isa_bus, PCIBus *pci_bus)
1135 int i;
1137 for (i = 0; i < nb_nics; i++) {
1138 NICInfo *nd = &nd_table[i];
1140 if (!pci_bus || (nd->model && strcmp(nd->model, "ne2k_isa") == 0)) {
1141 pc_init_ne2k_isa(isa_bus, nd);
1142 } else {
1143 pci_nic_init_nofail(nd, "e1000", NULL);
1148 void pc_pci_device_init(PCIBus *pci_bus)
1150 int max_bus;
1151 int bus;
1153 max_bus = drive_get_max_bus(IF_SCSI);
1154 for (bus = 0; bus <= max_bus; bus++) {
1155 pci_create_simple(pci_bus, -1, "lsi53c895a");
1159 void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name)
1161 DeviceState *dev;
1162 SysBusDevice *d;
1163 unsigned int i;
1165 if (kvm_irqchip_in_kernel()) {
1166 dev = qdev_create(NULL, "kvm-ioapic");
1167 } else {
1168 dev = qdev_create(NULL, "ioapic");
1170 if (parent_name) {
1171 object_property_add_child(object_resolve_path(parent_name, NULL),
1172 "ioapic", OBJECT(dev), NULL);
1174 qdev_init_nofail(dev);
1175 d = SYS_BUS_DEVICE(dev);
1176 sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS);
1178 for (i = 0; i < IOAPIC_NUM_PINS; i++) {
1179 gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i);