s390-ccw.img: Take care of the elf->img transition
[qemu.git] / hw / i386 / kvmvapic.c
blob3a10c0710cb855ee9b5485246094d6cdaf4562ab
1 /*
2 * TPR optimization for 32-bit Windows guests (XP and Server 2003)
4 * Copyright (C) 2007-2008 Qumranet Technologies
5 * Copyright (C) 2012 Jan Kiszka, Siemens AG
7 * This work is licensed under the terms of the GNU GPL version 2, or
8 * (at your option) any later version. See the COPYING file in the
9 * top-level directory.
11 #include "sysemu/sysemu.h"
12 #include "sysemu/cpus.h"
13 #include "sysemu/kvm.h"
14 #include "hw/i386/apic_internal.h"
16 #define VAPIC_IO_PORT 0x7e
18 #define VAPIC_CPU_SHIFT 7
20 #define ROM_BLOCK_SIZE 512
21 #define ROM_BLOCK_MASK (~(ROM_BLOCK_SIZE - 1))
23 typedef enum VAPICMode {
24 VAPIC_INACTIVE = 0,
25 VAPIC_ACTIVE = 1,
26 VAPIC_STANDBY = 2,
27 } VAPICMode;
29 typedef struct VAPICHandlers {
30 uint32_t set_tpr;
31 uint32_t set_tpr_eax;
32 uint32_t get_tpr[8];
33 uint32_t get_tpr_stack;
34 } QEMU_PACKED VAPICHandlers;
36 typedef struct GuestROMState {
37 char signature[8];
38 uint32_t vaddr;
39 uint32_t fixup_start;
40 uint32_t fixup_end;
41 uint32_t vapic_vaddr;
42 uint32_t vapic_size;
43 uint32_t vcpu_shift;
44 uint32_t real_tpr_addr;
45 VAPICHandlers up;
46 VAPICHandlers mp;
47 } QEMU_PACKED GuestROMState;
49 typedef struct VAPICROMState {
50 SysBusDevice busdev;
51 MemoryRegion io;
52 MemoryRegion rom;
53 uint32_t state;
54 uint32_t rom_state_paddr;
55 uint32_t rom_state_vaddr;
56 uint32_t vapic_paddr;
57 uint32_t real_tpr_addr;
58 GuestROMState rom_state;
59 size_t rom_size;
60 bool rom_mapped_writable;
61 } VAPICROMState;
63 #define TYPE_VAPIC "kvmvapic"
64 #define VAPIC(obj) OBJECT_CHECK(VAPICROMState, (obj), TYPE_VAPIC)
66 #define TPR_INSTR_ABS_MODRM 0x1
67 #define TPR_INSTR_MATCH_MODRM_REG 0x2
69 typedef struct TPRInstruction {
70 uint8_t opcode;
71 uint8_t modrm_reg;
72 unsigned int flags;
73 TPRAccess access;
74 size_t length;
75 off_t addr_offset;
76 } TPRInstruction;
78 /* must be sorted by length, shortest first */
79 static const TPRInstruction tpr_instr[] = {
80 { /* mov abs to eax */
81 .opcode = 0xa1,
82 .access = TPR_ACCESS_READ,
83 .length = 5,
84 .addr_offset = 1,
86 { /* mov eax to abs */
87 .opcode = 0xa3,
88 .access = TPR_ACCESS_WRITE,
89 .length = 5,
90 .addr_offset = 1,
92 { /* mov r32 to r/m32 */
93 .opcode = 0x89,
94 .flags = TPR_INSTR_ABS_MODRM,
95 .access = TPR_ACCESS_WRITE,
96 .length = 6,
97 .addr_offset = 2,
99 { /* mov r/m32 to r32 */
100 .opcode = 0x8b,
101 .flags = TPR_INSTR_ABS_MODRM,
102 .access = TPR_ACCESS_READ,
103 .length = 6,
104 .addr_offset = 2,
106 { /* push r/m32 */
107 .opcode = 0xff,
108 .modrm_reg = 6,
109 .flags = TPR_INSTR_ABS_MODRM | TPR_INSTR_MATCH_MODRM_REG,
110 .access = TPR_ACCESS_READ,
111 .length = 6,
112 .addr_offset = 2,
114 { /* mov imm32, r/m32 (c7/0) */
115 .opcode = 0xc7,
116 .modrm_reg = 0,
117 .flags = TPR_INSTR_ABS_MODRM | TPR_INSTR_MATCH_MODRM_REG,
118 .access = TPR_ACCESS_WRITE,
119 .length = 10,
120 .addr_offset = 2,
124 static void read_guest_rom_state(VAPICROMState *s)
126 cpu_physical_memory_rw(s->rom_state_paddr, (void *)&s->rom_state,
127 sizeof(GuestROMState), 0);
130 static void write_guest_rom_state(VAPICROMState *s)
132 cpu_physical_memory_rw(s->rom_state_paddr, (void *)&s->rom_state,
133 sizeof(GuestROMState), 1);
136 static void update_guest_rom_state(VAPICROMState *s)
138 read_guest_rom_state(s);
140 s->rom_state.real_tpr_addr = cpu_to_le32(s->real_tpr_addr);
141 s->rom_state.vcpu_shift = cpu_to_le32(VAPIC_CPU_SHIFT);
143 write_guest_rom_state(s);
146 static int find_real_tpr_addr(VAPICROMState *s, CPUX86State *env)
148 hwaddr paddr;
149 target_ulong addr;
151 if (s->state == VAPIC_ACTIVE) {
152 return 0;
155 * If there is no prior TPR access instruction we could analyze (which is
156 * the case after resume from hibernation), we need to scan the possible
157 * virtual address space for the APIC mapping.
159 for (addr = 0xfffff000; addr >= 0x80000000; addr -= TARGET_PAGE_SIZE) {
160 paddr = cpu_get_phys_page_debug(env, addr);
161 if (paddr != APIC_DEFAULT_ADDRESS) {
162 continue;
164 s->real_tpr_addr = addr + 0x80;
165 update_guest_rom_state(s);
166 return 0;
168 return -1;
171 static uint8_t modrm_reg(uint8_t modrm)
173 return (modrm >> 3) & 7;
176 static bool is_abs_modrm(uint8_t modrm)
178 return (modrm & 0xc7) == 0x05;
181 static bool opcode_matches(uint8_t *opcode, const TPRInstruction *instr)
183 return opcode[0] == instr->opcode &&
184 (!(instr->flags & TPR_INSTR_ABS_MODRM) || is_abs_modrm(opcode[1])) &&
185 (!(instr->flags & TPR_INSTR_MATCH_MODRM_REG) ||
186 modrm_reg(opcode[1]) == instr->modrm_reg);
189 static int evaluate_tpr_instruction(VAPICROMState *s, CPUX86State *env,
190 target_ulong *pip, TPRAccess access)
192 const TPRInstruction *instr;
193 target_ulong ip = *pip;
194 uint8_t opcode[2];
195 uint32_t real_tpr_addr;
196 int i;
198 if ((ip & 0xf0000000ULL) != 0x80000000ULL &&
199 (ip & 0xf0000000ULL) != 0xe0000000ULL) {
200 return -1;
204 * Early Windows 2003 SMP initialization contains a
206 * mov imm32, r/m32
208 * instruction that is patched by TPR optimization. The problem is that
209 * RSP, used by the patched instruction, is zero, so the guest gets a
210 * double fault and dies.
212 if (env->regs[R_ESP] == 0) {
213 return -1;
216 if (kvm_enabled() && !kvm_irqchip_in_kernel()) {
218 * KVM without kernel-based TPR access reporting will pass an IP that
219 * points after the accessing instruction. So we need to look backward
220 * to find the reason.
222 for (i = 0; i < ARRAY_SIZE(tpr_instr); i++) {
223 instr = &tpr_instr[i];
224 if (instr->access != access) {
225 continue;
227 if (cpu_memory_rw_debug(env, ip - instr->length, opcode,
228 sizeof(opcode), 0) < 0) {
229 return -1;
231 if (opcode_matches(opcode, instr)) {
232 ip -= instr->length;
233 goto instruction_ok;
236 return -1;
237 } else {
238 if (cpu_memory_rw_debug(env, ip, opcode, sizeof(opcode), 0) < 0) {
239 return -1;
241 for (i = 0; i < ARRAY_SIZE(tpr_instr); i++) {
242 instr = &tpr_instr[i];
243 if (opcode_matches(opcode, instr)) {
244 goto instruction_ok;
247 return -1;
250 instruction_ok:
252 * Grab the virtual TPR address from the instruction
253 * and update the cached values.
255 if (cpu_memory_rw_debug(env, ip + instr->addr_offset,
256 (void *)&real_tpr_addr,
257 sizeof(real_tpr_addr), 0) < 0) {
258 return -1;
260 real_tpr_addr = le32_to_cpu(real_tpr_addr);
261 if ((real_tpr_addr & 0xfff) != 0x80) {
262 return -1;
264 s->real_tpr_addr = real_tpr_addr;
265 update_guest_rom_state(s);
267 *pip = ip;
268 return 0;
271 static int update_rom_mapping(VAPICROMState *s, CPUX86State *env, target_ulong ip)
273 hwaddr paddr;
274 uint32_t rom_state_vaddr;
275 uint32_t pos, patch, offset;
277 /* nothing to do if already activated */
278 if (s->state == VAPIC_ACTIVE) {
279 return 0;
282 /* bail out if ROM init code was not executed (missing ROM?) */
283 if (s->state == VAPIC_INACTIVE) {
284 return -1;
287 /* find out virtual address of the ROM */
288 rom_state_vaddr = s->rom_state_paddr + (ip & 0xf0000000);
289 paddr = cpu_get_phys_page_debug(env, rom_state_vaddr);
290 if (paddr == -1) {
291 return -1;
293 paddr += rom_state_vaddr & ~TARGET_PAGE_MASK;
294 if (paddr != s->rom_state_paddr) {
295 return -1;
297 read_guest_rom_state(s);
298 if (memcmp(s->rom_state.signature, "kvm aPiC", 8) != 0) {
299 return -1;
301 s->rom_state_vaddr = rom_state_vaddr;
303 /* fixup addresses in ROM if needed */
304 if (rom_state_vaddr == le32_to_cpu(s->rom_state.vaddr)) {
305 return 0;
307 for (pos = le32_to_cpu(s->rom_state.fixup_start);
308 pos < le32_to_cpu(s->rom_state.fixup_end);
309 pos += 4) {
310 cpu_physical_memory_rw(paddr + pos - s->rom_state.vaddr,
311 (void *)&offset, sizeof(offset), 0);
312 offset = le32_to_cpu(offset);
313 cpu_physical_memory_rw(paddr + offset, (void *)&patch,
314 sizeof(patch), 0);
315 patch = le32_to_cpu(patch);
316 patch += rom_state_vaddr - le32_to_cpu(s->rom_state.vaddr);
317 patch = cpu_to_le32(patch);
318 cpu_physical_memory_rw(paddr + offset, (void *)&patch,
319 sizeof(patch), 1);
321 read_guest_rom_state(s);
322 s->vapic_paddr = paddr + le32_to_cpu(s->rom_state.vapic_vaddr) -
323 le32_to_cpu(s->rom_state.vaddr);
325 return 0;
329 * Tries to read the unique processor number from the Kernel Processor Control
330 * Region (KPCR) of 32-bit Windows XP and Server 2003. Returns -1 if the KPCR
331 * cannot be accessed or is considered invalid. This also ensures that we are
332 * not patching the wrong guest.
334 static int get_kpcr_number(CPUX86State *env)
336 struct kpcr {
337 uint8_t fill1[0x1c];
338 uint32_t self;
339 uint8_t fill2[0x31];
340 uint8_t number;
341 } QEMU_PACKED kpcr;
343 if (cpu_memory_rw_debug(env, env->segs[R_FS].base,
344 (void *)&kpcr, sizeof(kpcr), 0) < 0 ||
345 kpcr.self != env->segs[R_FS].base) {
346 return -1;
348 return kpcr.number;
351 static int vapic_enable(VAPICROMState *s, CPUX86State *env)
353 int cpu_number = get_kpcr_number(env);
354 hwaddr vapic_paddr;
355 static const uint8_t enabled = 1;
357 if (cpu_number < 0) {
358 return -1;
360 vapic_paddr = s->vapic_paddr +
361 (((hwaddr)cpu_number) << VAPIC_CPU_SHIFT);
362 cpu_physical_memory_rw(vapic_paddr + offsetof(VAPICState, enabled),
363 (void *)&enabled, sizeof(enabled), 1);
364 apic_enable_vapic(env->apic_state, vapic_paddr);
366 s->state = VAPIC_ACTIVE;
368 return 0;
371 static void patch_byte(CPUX86State *env, target_ulong addr, uint8_t byte)
373 cpu_memory_rw_debug(env, addr, &byte, 1, 1);
376 static void patch_call(VAPICROMState *s, CPUX86State *env, target_ulong ip,
377 uint32_t target)
379 uint32_t offset;
381 offset = cpu_to_le32(target - ip - 5);
382 patch_byte(env, ip, 0xe8); /* call near */
383 cpu_memory_rw_debug(env, ip + 1, (void *)&offset, sizeof(offset), 1);
386 static void patch_instruction(VAPICROMState *s, X86CPU *cpu, target_ulong ip)
388 CPUState *cs = CPU(cpu);
389 CPUX86State *env = &cpu->env;
390 VAPICHandlers *handlers;
391 uint8_t opcode[2];
392 uint32_t imm32;
393 target_ulong current_pc = 0;
394 target_ulong current_cs_base = 0;
395 int current_flags = 0;
397 if (smp_cpus == 1) {
398 handlers = &s->rom_state.up;
399 } else {
400 handlers = &s->rom_state.mp;
403 if (!kvm_enabled()) {
404 cpu_restore_state(env, env->mem_io_pc);
405 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
406 &current_flags);
409 pause_all_vcpus();
411 cpu_memory_rw_debug(env, ip, opcode, sizeof(opcode), 0);
413 switch (opcode[0]) {
414 case 0x89: /* mov r32 to r/m32 */
415 patch_byte(env, ip, 0x50 + modrm_reg(opcode[1])); /* push reg */
416 patch_call(s, env, ip + 1, handlers->set_tpr);
417 break;
418 case 0x8b: /* mov r/m32 to r32 */
419 patch_byte(env, ip, 0x90);
420 patch_call(s, env, ip + 1, handlers->get_tpr[modrm_reg(opcode[1])]);
421 break;
422 case 0xa1: /* mov abs to eax */
423 patch_call(s, env, ip, handlers->get_tpr[0]);
424 break;
425 case 0xa3: /* mov eax to abs */
426 patch_call(s, env, ip, handlers->set_tpr_eax);
427 break;
428 case 0xc7: /* mov imm32, r/m32 (c7/0) */
429 patch_byte(env, ip, 0x68); /* push imm32 */
430 cpu_memory_rw_debug(env, ip + 6, (void *)&imm32, sizeof(imm32), 0);
431 cpu_memory_rw_debug(env, ip + 1, (void *)&imm32, sizeof(imm32), 1);
432 patch_call(s, env, ip + 5, handlers->set_tpr);
433 break;
434 case 0xff: /* push r/m32 */
435 patch_byte(env, ip, 0x50); /* push eax */
436 patch_call(s, env, ip + 1, handlers->get_tpr_stack);
437 break;
438 default:
439 abort();
442 resume_all_vcpus();
444 if (!kvm_enabled()) {
445 cs->current_tb = NULL;
446 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
447 cpu_resume_from_signal(env, NULL);
451 void vapic_report_tpr_access(DeviceState *dev, CPUState *cs, target_ulong ip,
452 TPRAccess access)
454 VAPICROMState *s = DO_UPCAST(VAPICROMState, busdev.qdev, dev);
455 X86CPU *cpu = X86_CPU(cs);
456 CPUX86State *env = &cpu->env;
458 cpu_synchronize_state(env);
460 if (evaluate_tpr_instruction(s, env, &ip, access) < 0) {
461 if (s->state == VAPIC_ACTIVE) {
462 vapic_enable(s, env);
464 return;
466 if (update_rom_mapping(s, env, ip) < 0) {
467 return;
469 if (vapic_enable(s, env) < 0) {
470 return;
472 patch_instruction(s, cpu, ip);
475 typedef struct VAPICEnableTPRReporting {
476 DeviceState *apic;
477 bool enable;
478 } VAPICEnableTPRReporting;
480 static void vapic_do_enable_tpr_reporting(void *data)
482 VAPICEnableTPRReporting *info = data;
484 apic_enable_tpr_access_reporting(info->apic, info->enable);
487 static void vapic_enable_tpr_reporting(bool enable)
489 VAPICEnableTPRReporting info = {
490 .enable = enable,
492 X86CPU *cpu;
493 CPUX86State *env;
495 for (env = first_cpu; env != NULL; env = env->next_cpu) {
496 cpu = x86_env_get_cpu(env);
497 info.apic = env->apic_state;
498 run_on_cpu(CPU(cpu), vapic_do_enable_tpr_reporting, &info);
502 static void vapic_reset(DeviceState *dev)
504 VAPICROMState *s = DO_UPCAST(VAPICROMState, busdev.qdev, dev);
506 if (s->state == VAPIC_ACTIVE) {
507 s->state = VAPIC_STANDBY;
509 vapic_enable_tpr_reporting(false);
513 * Set the IRQ polling hypercalls to the supported variant:
514 * - vmcall if using KVM in-kernel irqchip
515 * - 32-bit VAPIC port write otherwise
517 static int patch_hypercalls(VAPICROMState *s)
519 hwaddr rom_paddr = s->rom_state_paddr & ROM_BLOCK_MASK;
520 static const uint8_t vmcall_pattern[] = { /* vmcall */
521 0xb8, 0x1, 0, 0, 0, 0xf, 0x1, 0xc1
523 static const uint8_t outl_pattern[] = { /* nop; outl %eax,0x7e */
524 0xb8, 0x1, 0, 0, 0, 0x90, 0xe7, 0x7e
526 uint8_t alternates[2];
527 const uint8_t *pattern;
528 const uint8_t *patch;
529 int patches = 0;
530 off_t pos;
531 uint8_t *rom;
533 rom = g_malloc(s->rom_size);
534 cpu_physical_memory_rw(rom_paddr, rom, s->rom_size, 0);
536 for (pos = 0; pos < s->rom_size - sizeof(vmcall_pattern); pos++) {
537 if (kvm_irqchip_in_kernel()) {
538 pattern = outl_pattern;
539 alternates[0] = outl_pattern[7];
540 alternates[1] = outl_pattern[7];
541 patch = &vmcall_pattern[5];
542 } else {
543 pattern = vmcall_pattern;
544 alternates[0] = vmcall_pattern[7];
545 alternates[1] = 0xd9; /* AMD's VMMCALL */
546 patch = &outl_pattern[5];
548 if (memcmp(rom + pos, pattern, 7) == 0 &&
549 (rom[pos + 7] == alternates[0] || rom[pos + 7] == alternates[1])) {
550 cpu_physical_memory_rw(rom_paddr + pos + 5, (uint8_t *)patch,
551 3, 1);
553 * Don't flush the tb here. Under ordinary conditions, the patched
554 * calls are miles away from the current IP. Under malicious
555 * conditions, the guest could trick us to crash.
560 g_free(rom);
562 if (patches != 0 && patches != 2) {
563 return -1;
566 return 0;
570 * For TCG mode or the time KVM honors read-only memory regions, we need to
571 * enable write access to the option ROM so that variables can be updated by
572 * the guest.
574 static void vapic_map_rom_writable(VAPICROMState *s)
576 hwaddr rom_paddr = s->rom_state_paddr & ROM_BLOCK_MASK;
577 MemoryRegionSection section;
578 MemoryRegion *as;
579 size_t rom_size;
580 uint8_t *ram;
582 as = sysbus_address_space(&s->busdev);
584 if (s->rom_mapped_writable) {
585 memory_region_del_subregion(as, &s->rom);
586 memory_region_destroy(&s->rom);
589 /* grab RAM memory region (region @rom_paddr may still be pc.rom) */
590 section = memory_region_find(as, 0, 1);
592 /* read ROM size from RAM region */
593 ram = memory_region_get_ram_ptr(section.mr);
594 rom_size = ram[rom_paddr + 2] * ROM_BLOCK_SIZE;
595 s->rom_size = rom_size;
597 /* We need to round to avoid creating subpages
598 * from which we cannot run code. */
599 rom_size += rom_paddr & ~TARGET_PAGE_MASK;
600 rom_paddr &= TARGET_PAGE_MASK;
601 rom_size = TARGET_PAGE_ALIGN(rom_size);
603 memory_region_init_alias(&s->rom, "kvmvapic-rom", section.mr, rom_paddr,
604 rom_size);
605 memory_region_add_subregion_overlap(as, rom_paddr, &s->rom, 1000);
606 s->rom_mapped_writable = true;
609 static int vapic_prepare(VAPICROMState *s)
611 vapic_map_rom_writable(s);
613 if (patch_hypercalls(s) < 0) {
614 return -1;
617 vapic_enable_tpr_reporting(true);
619 return 0;
622 static void vapic_write(void *opaque, hwaddr addr, uint64_t data,
623 unsigned int size)
625 CPUX86State *env = cpu_single_env;
626 hwaddr rom_paddr;
627 VAPICROMState *s = opaque;
629 cpu_synchronize_state(env);
632 * The VAPIC supports two PIO-based hypercalls, both via port 0x7E.
633 * o 16-bit write access:
634 * Reports the option ROM initialization to the hypervisor. Written
635 * value is the offset of the state structure in the ROM.
636 * o 8-bit write access:
637 * Reactivates the VAPIC after a guest hibernation, i.e. after the
638 * option ROM content has been re-initialized by a guest power cycle.
639 * o 32-bit write access:
640 * Poll for pending IRQs, considering the current VAPIC state.
642 switch (size) {
643 case 2:
644 if (s->state == VAPIC_INACTIVE) {
645 rom_paddr = (env->segs[R_CS].base + env->eip) & ROM_BLOCK_MASK;
646 s->rom_state_paddr = rom_paddr + data;
648 s->state = VAPIC_STANDBY;
650 if (vapic_prepare(s) < 0) {
651 s->state = VAPIC_INACTIVE;
652 break;
654 break;
655 case 1:
656 if (kvm_enabled()) {
658 * Disable triggering instruction in ROM by writing a NOP.
660 * We cannot do this in TCG mode as the reported IP is not
661 * accurate.
663 pause_all_vcpus();
664 patch_byte(env, env->eip - 2, 0x66);
665 patch_byte(env, env->eip - 1, 0x90);
666 resume_all_vcpus();
669 if (s->state == VAPIC_ACTIVE) {
670 break;
672 if (update_rom_mapping(s, env, env->eip) < 0) {
673 break;
675 if (find_real_tpr_addr(s, env) < 0) {
676 break;
678 vapic_enable(s, env);
679 break;
680 default:
681 case 4:
682 if (!kvm_irqchip_in_kernel()) {
683 apic_poll_irq(env->apic_state);
685 break;
689 static const MemoryRegionOps vapic_ops = {
690 .write = vapic_write,
691 .endianness = DEVICE_NATIVE_ENDIAN,
694 static int vapic_init(SysBusDevice *dev)
696 VAPICROMState *s = VAPIC(dev);
698 memory_region_init_io(&s->io, &vapic_ops, s, "kvmvapic", 2);
699 sysbus_add_io(dev, VAPIC_IO_PORT, &s->io);
700 sysbus_init_ioports(dev, VAPIC_IO_PORT, 2);
702 option_rom[nb_option_roms].name = "kvmvapic.bin";
703 option_rom[nb_option_roms].bootindex = -1;
704 nb_option_roms++;
706 return 0;
709 static void do_vapic_enable(void *data)
711 VAPICROMState *s = data;
713 vapic_enable(s, first_cpu);
716 static int vapic_post_load(void *opaque, int version_id)
718 VAPICROMState *s = opaque;
719 uint8_t *zero;
722 * The old implementation of qemu-kvm did not provide the state
723 * VAPIC_STANDBY. Reconstruct it.
725 if (s->state == VAPIC_INACTIVE && s->rom_state_paddr != 0) {
726 s->state = VAPIC_STANDBY;
729 if (s->state != VAPIC_INACTIVE) {
730 if (vapic_prepare(s) < 0) {
731 return -1;
734 if (s->state == VAPIC_ACTIVE) {
735 if (smp_cpus == 1) {
736 run_on_cpu(ENV_GET_CPU(first_cpu), do_vapic_enable, s);
737 } else {
738 zero = g_malloc0(s->rom_state.vapic_size);
739 cpu_physical_memory_rw(s->vapic_paddr, zero,
740 s->rom_state.vapic_size, 1);
741 g_free(zero);
745 return 0;
748 static const VMStateDescription vmstate_handlers = {
749 .name = "kvmvapic-handlers",
750 .version_id = 1,
751 .minimum_version_id = 1,
752 .minimum_version_id_old = 1,
753 .fields = (VMStateField[]) {
754 VMSTATE_UINT32(set_tpr, VAPICHandlers),
755 VMSTATE_UINT32(set_tpr_eax, VAPICHandlers),
756 VMSTATE_UINT32_ARRAY(get_tpr, VAPICHandlers, 8),
757 VMSTATE_UINT32(get_tpr_stack, VAPICHandlers),
758 VMSTATE_END_OF_LIST()
762 static const VMStateDescription vmstate_guest_rom = {
763 .name = "kvmvapic-guest-rom",
764 .version_id = 1,
765 .minimum_version_id = 1,
766 .minimum_version_id_old = 1,
767 .fields = (VMStateField[]) {
768 VMSTATE_UNUSED(8), /* signature */
769 VMSTATE_UINT32(vaddr, GuestROMState),
770 VMSTATE_UINT32(fixup_start, GuestROMState),
771 VMSTATE_UINT32(fixup_end, GuestROMState),
772 VMSTATE_UINT32(vapic_vaddr, GuestROMState),
773 VMSTATE_UINT32(vapic_size, GuestROMState),
774 VMSTATE_UINT32(vcpu_shift, GuestROMState),
775 VMSTATE_UINT32(real_tpr_addr, GuestROMState),
776 VMSTATE_STRUCT(up, GuestROMState, 0, vmstate_handlers, VAPICHandlers),
777 VMSTATE_STRUCT(mp, GuestROMState, 0, vmstate_handlers, VAPICHandlers),
778 VMSTATE_END_OF_LIST()
782 static const VMStateDescription vmstate_vapic = {
783 .name = "kvm-tpr-opt", /* compatible with qemu-kvm VAPIC */
784 .version_id = 1,
785 .minimum_version_id = 1,
786 .minimum_version_id_old = 1,
787 .post_load = vapic_post_load,
788 .fields = (VMStateField[]) {
789 VMSTATE_STRUCT(rom_state, VAPICROMState, 0, vmstate_guest_rom,
790 GuestROMState),
791 VMSTATE_UINT32(state, VAPICROMState),
792 VMSTATE_UINT32(real_tpr_addr, VAPICROMState),
793 VMSTATE_UINT32(rom_state_vaddr, VAPICROMState),
794 VMSTATE_UINT32(vapic_paddr, VAPICROMState),
795 VMSTATE_UINT32(rom_state_paddr, VAPICROMState),
796 VMSTATE_END_OF_LIST()
800 static void vapic_class_init(ObjectClass *klass, void *data)
802 SysBusDeviceClass *sc = SYS_BUS_DEVICE_CLASS(klass);
803 DeviceClass *dc = DEVICE_CLASS(klass);
805 dc->no_user = 1;
806 dc->reset = vapic_reset;
807 dc->vmsd = &vmstate_vapic;
808 sc->init = vapic_init;
811 static const TypeInfo vapic_type = {
812 .name = TYPE_VAPIC,
813 .parent = TYPE_SYS_BUS_DEVICE,
814 .instance_size = sizeof(VAPICROMState),
815 .class_init = vapic_class_init,
818 static void vapic_register(void)
820 type_register_static(&vapic_type);
823 type_init(vapic_register);