aspeed: add support for the witherspoon-bmc board
[qemu.git] / target / xtensa / op_helper.c
blob8a8c763c63155a7c4d472245c697fcaaec1dffd5
1 /*
2 * Copyright (c) 2011, Max Filippov, Open Source and Linux Lab.
3 * All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are met:
7 * * Redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer.
9 * * Redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution.
12 * * Neither the name of the Open Source and Linux Lab nor the
13 * names of its contributors may be used to endorse or promote products
14 * derived from this software without specific prior written permission.
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
17 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
20 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
23 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
25 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 #include "qemu/osdep.h"
29 #include "qemu/main-loop.h"
30 #include "cpu.h"
31 #include "exec/helper-proto.h"
32 #include "qemu/host-utils.h"
33 #include "exec/exec-all.h"
34 #include "exec/cpu_ldst.h"
35 #include "exec/address-spaces.h"
36 #include "qemu/timer.h"
37 #include "fpu/softfloat.h"
39 #ifdef CONFIG_USER_ONLY
40 /* tb_invalidate_phys_range */
41 #include "accel/tcg/translate-all.h"
42 #endif
44 #ifndef CONFIG_USER_ONLY
46 void xtensa_cpu_do_unaligned_access(CPUState *cs,
47 vaddr addr, MMUAccessType access_type,
48 int mmu_idx, uintptr_t retaddr)
50 XtensaCPU *cpu = XTENSA_CPU(cs);
51 CPUXtensaState *env = &cpu->env;
53 if (xtensa_option_enabled(env->config, XTENSA_OPTION_UNALIGNED_EXCEPTION) &&
54 !xtensa_option_enabled(env->config, XTENSA_OPTION_HW_ALIGNMENT)) {
55 cpu_restore_state(CPU(cpu), retaddr, true);
56 HELPER(exception_cause_vaddr)(env,
57 env->pc, LOAD_STORE_ALIGNMENT_CAUSE, addr);
61 void tlb_fill(CPUState *cs, target_ulong vaddr, int size,
62 MMUAccessType access_type, int mmu_idx, uintptr_t retaddr)
64 XtensaCPU *cpu = XTENSA_CPU(cs);
65 CPUXtensaState *env = &cpu->env;
66 uint32_t paddr;
67 uint32_t page_size;
68 unsigned access;
69 int ret = xtensa_get_physical_addr(env, true, vaddr, access_type, mmu_idx,
70 &paddr, &page_size, &access);
72 qemu_log_mask(CPU_LOG_MMU, "%s(%08x, %d, %d) -> %08x, ret = %d\n",
73 __func__, vaddr, access_type, mmu_idx, paddr, ret);
75 if (ret == 0) {
76 tlb_set_page(cs,
77 vaddr & TARGET_PAGE_MASK,
78 paddr & TARGET_PAGE_MASK,
79 access, mmu_idx, page_size);
80 } else {
81 cpu_restore_state(cs, retaddr, true);
82 HELPER(exception_cause_vaddr)(env, env->pc, ret, vaddr);
86 void xtensa_cpu_do_unassigned_access(CPUState *cs, hwaddr addr,
87 bool is_write, bool is_exec, int opaque,
88 unsigned size)
90 XtensaCPU *cpu = XTENSA_CPU(cs);
91 CPUXtensaState *env = &cpu->env;
93 HELPER(exception_cause_vaddr)(env, env->pc,
94 is_exec ?
95 INSTR_PIF_ADDR_ERROR_CAUSE :
96 LOAD_STORE_PIF_ADDR_ERROR_CAUSE,
97 is_exec ? addr : cs->mem_io_vaddr);
100 static void tb_invalidate_virtual_addr(CPUXtensaState *env, uint32_t vaddr)
102 uint32_t paddr;
103 uint32_t page_size;
104 unsigned access;
105 int ret = xtensa_get_physical_addr(env, false, vaddr, 2, 0,
106 &paddr, &page_size, &access);
107 if (ret == 0) {
108 tb_invalidate_phys_addr(&address_space_memory, paddr,
109 MEMTXATTRS_UNSPECIFIED);
113 #else
115 static void tb_invalidate_virtual_addr(CPUXtensaState *env, uint32_t vaddr)
117 mmap_lock();
118 tb_invalidate_phys_range(vaddr, vaddr + 1);
119 mmap_unlock();
122 #endif
124 void HELPER(exception)(CPUXtensaState *env, uint32_t excp)
126 CPUState *cs = CPU(xtensa_env_get_cpu(env));
128 cs->exception_index = excp;
129 if (excp == EXCP_YIELD) {
130 env->yield_needed = 0;
132 if (excp == EXCP_DEBUG) {
133 env->exception_taken = 0;
135 cpu_loop_exit(cs);
138 void HELPER(exception_cause)(CPUXtensaState *env, uint32_t pc, uint32_t cause)
140 uint32_t vector;
142 env->pc = pc;
143 if (env->sregs[PS] & PS_EXCM) {
144 if (env->config->ndepc) {
145 env->sregs[DEPC] = pc;
146 } else {
147 env->sregs[EPC1] = pc;
149 vector = EXC_DOUBLE;
150 } else {
151 env->sregs[EPC1] = pc;
152 vector = (env->sregs[PS] & PS_UM) ? EXC_USER : EXC_KERNEL;
155 env->sregs[EXCCAUSE] = cause;
156 env->sregs[PS] |= PS_EXCM;
158 HELPER(exception)(env, vector);
161 void HELPER(exception_cause_vaddr)(CPUXtensaState *env,
162 uint32_t pc, uint32_t cause, uint32_t vaddr)
164 env->sregs[EXCVADDR] = vaddr;
165 HELPER(exception_cause)(env, pc, cause);
168 void debug_exception_env(CPUXtensaState *env, uint32_t cause)
170 if (xtensa_get_cintlevel(env) < env->config->debug_level) {
171 HELPER(debug_exception)(env, env->pc, cause);
175 void HELPER(debug_exception)(CPUXtensaState *env, uint32_t pc, uint32_t cause)
177 unsigned level = env->config->debug_level;
179 env->pc = pc;
180 env->sregs[DEBUGCAUSE] = cause;
181 env->sregs[EPC1 + level - 1] = pc;
182 env->sregs[EPS2 + level - 2] = env->sregs[PS];
183 env->sregs[PS] = (env->sregs[PS] & ~PS_INTLEVEL) | PS_EXCM |
184 (level << PS_INTLEVEL_SHIFT);
185 HELPER(exception)(env, EXC_DEBUG);
188 static void copy_window_from_phys(CPUXtensaState *env,
189 uint32_t window, uint32_t phys, uint32_t n)
191 assert(phys < env->config->nareg);
192 if (phys + n <= env->config->nareg) {
193 memcpy(env->regs + window, env->phys_regs + phys,
194 n * sizeof(uint32_t));
195 } else {
196 uint32_t n1 = env->config->nareg - phys;
197 memcpy(env->regs + window, env->phys_regs + phys,
198 n1 * sizeof(uint32_t));
199 memcpy(env->regs + window + n1, env->phys_regs,
200 (n - n1) * sizeof(uint32_t));
204 static void copy_phys_from_window(CPUXtensaState *env,
205 uint32_t phys, uint32_t window, uint32_t n)
207 assert(phys < env->config->nareg);
208 if (phys + n <= env->config->nareg) {
209 memcpy(env->phys_regs + phys, env->regs + window,
210 n * sizeof(uint32_t));
211 } else {
212 uint32_t n1 = env->config->nareg - phys;
213 memcpy(env->phys_regs + phys, env->regs + window,
214 n1 * sizeof(uint32_t));
215 memcpy(env->phys_regs, env->regs + window + n1,
216 (n - n1) * sizeof(uint32_t));
221 static inline unsigned windowbase_bound(unsigned a, const CPUXtensaState *env)
223 return a & (env->config->nareg / 4 - 1);
226 static inline unsigned windowstart_bit(unsigned a, const CPUXtensaState *env)
228 return 1 << windowbase_bound(a, env);
231 void xtensa_sync_window_from_phys(CPUXtensaState *env)
233 copy_window_from_phys(env, 0, env->sregs[WINDOW_BASE] * 4, 16);
236 void xtensa_sync_phys_from_window(CPUXtensaState *env)
238 copy_phys_from_window(env, env->sregs[WINDOW_BASE] * 4, 0, 16);
241 static void xtensa_rotate_window_abs(CPUXtensaState *env, uint32_t position)
243 xtensa_sync_phys_from_window(env);
244 env->sregs[WINDOW_BASE] = windowbase_bound(position, env);
245 xtensa_sync_window_from_phys(env);
248 void xtensa_rotate_window(CPUXtensaState *env, uint32_t delta)
250 xtensa_rotate_window_abs(env, env->sregs[WINDOW_BASE] + delta);
253 void HELPER(wsr_windowbase)(CPUXtensaState *env, uint32_t v)
255 xtensa_rotate_window_abs(env, v);
258 void HELPER(entry)(CPUXtensaState *env, uint32_t pc, uint32_t s, uint32_t imm)
260 int callinc = (env->sregs[PS] & PS_CALLINC) >> PS_CALLINC_SHIFT;
261 if (s > 3 || ((env->sregs[PS] & (PS_WOE | PS_EXCM)) ^ PS_WOE) != 0) {
262 qemu_log_mask(LOG_GUEST_ERROR, "Illegal entry instruction(pc = %08x), PS = %08x\n",
263 pc, env->sregs[PS]);
264 HELPER(exception_cause)(env, pc, ILLEGAL_INSTRUCTION_CAUSE);
265 } else {
266 uint32_t windowstart = xtensa_replicate_windowstart(env) >>
267 (env->sregs[WINDOW_BASE] + 1);
269 if (windowstart & ((1 << callinc) - 1)) {
270 HELPER(window_check)(env, pc, callinc);
272 env->regs[(callinc << 2) | (s & 3)] = env->regs[s] - imm;
273 xtensa_rotate_window(env, callinc);
274 env->sregs[WINDOW_START] |=
275 windowstart_bit(env->sregs[WINDOW_BASE], env);
279 void HELPER(window_check)(CPUXtensaState *env, uint32_t pc, uint32_t w)
281 uint32_t windowbase = windowbase_bound(env->sregs[WINDOW_BASE], env);
282 uint32_t windowstart = xtensa_replicate_windowstart(env) >>
283 (env->sregs[WINDOW_BASE] + 1);
284 uint32_t n = ctz32(windowstart) + 1;
286 assert(n <= w);
288 xtensa_rotate_window(env, n);
289 env->sregs[PS] = (env->sregs[PS] & ~PS_OWB) |
290 (windowbase << PS_OWB_SHIFT) | PS_EXCM;
291 env->sregs[EPC1] = env->pc = pc;
293 switch (ctz32(windowstart >> n)) {
294 case 0:
295 HELPER(exception)(env, EXC_WINDOW_OVERFLOW4);
296 break;
297 case 1:
298 HELPER(exception)(env, EXC_WINDOW_OVERFLOW8);
299 break;
300 default:
301 HELPER(exception)(env, EXC_WINDOW_OVERFLOW12);
302 break;
306 uint32_t HELPER(retw)(CPUXtensaState *env, uint32_t pc)
308 int n = (env->regs[0] >> 30) & 0x3;
309 int m = 0;
310 uint32_t windowbase = windowbase_bound(env->sregs[WINDOW_BASE], env);
311 uint32_t windowstart = env->sregs[WINDOW_START];
312 uint32_t ret_pc = 0;
314 if (windowstart & windowstart_bit(windowbase - 1, env)) {
315 m = 1;
316 } else if (windowstart & windowstart_bit(windowbase - 2, env)) {
317 m = 2;
318 } else if (windowstart & windowstart_bit(windowbase - 3, env)) {
319 m = 3;
322 if (n == 0 || (m != 0 && m != n) ||
323 ((env->sregs[PS] & (PS_WOE | PS_EXCM)) ^ PS_WOE) != 0) {
324 qemu_log_mask(LOG_GUEST_ERROR, "Illegal retw instruction(pc = %08x), "
325 "PS = %08x, m = %d, n = %d\n",
326 pc, env->sregs[PS], m, n);
327 HELPER(exception_cause)(env, pc, ILLEGAL_INSTRUCTION_CAUSE);
328 } else {
329 int owb = windowbase;
331 ret_pc = (pc & 0xc0000000) | (env->regs[0] & 0x3fffffff);
333 xtensa_rotate_window(env, -n);
334 if (windowstart & windowstart_bit(env->sregs[WINDOW_BASE], env)) {
335 env->sregs[WINDOW_START] &= ~windowstart_bit(owb, env);
336 } else {
337 /* window underflow */
338 env->sregs[PS] = (env->sregs[PS] & ~PS_OWB) |
339 (windowbase << PS_OWB_SHIFT) | PS_EXCM;
340 env->sregs[EPC1] = env->pc = pc;
342 if (n == 1) {
343 HELPER(exception)(env, EXC_WINDOW_UNDERFLOW4);
344 } else if (n == 2) {
345 HELPER(exception)(env, EXC_WINDOW_UNDERFLOW8);
346 } else if (n == 3) {
347 HELPER(exception)(env, EXC_WINDOW_UNDERFLOW12);
351 return ret_pc;
354 void HELPER(rotw)(CPUXtensaState *env, uint32_t imm4)
356 xtensa_rotate_window(env, imm4);
359 void xtensa_restore_owb(CPUXtensaState *env)
361 xtensa_rotate_window_abs(env, (env->sregs[PS] & PS_OWB) >> PS_OWB_SHIFT);
364 void HELPER(restore_owb)(CPUXtensaState *env)
366 xtensa_restore_owb(env);
369 void HELPER(movsp)(CPUXtensaState *env, uint32_t pc)
371 if ((env->sregs[WINDOW_START] &
372 (windowstart_bit(env->sregs[WINDOW_BASE] - 3, env) |
373 windowstart_bit(env->sregs[WINDOW_BASE] - 2, env) |
374 windowstart_bit(env->sregs[WINDOW_BASE] - 1, env))) == 0) {
375 HELPER(exception_cause)(env, pc, ALLOCA_CAUSE);
379 void HELPER(wsr_lbeg)(CPUXtensaState *env, uint32_t v)
381 if (env->sregs[LBEG] != v) {
382 tb_invalidate_virtual_addr(env, env->sregs[LEND] - 1);
383 env->sregs[LBEG] = v;
387 void HELPER(wsr_lend)(CPUXtensaState *env, uint32_t v)
389 if (env->sregs[LEND] != v) {
390 tb_invalidate_virtual_addr(env, env->sregs[LEND] - 1);
391 env->sregs[LEND] = v;
392 tb_invalidate_virtual_addr(env, env->sregs[LEND] - 1);
396 void HELPER(dump_state)(CPUXtensaState *env)
398 XtensaCPU *cpu = xtensa_env_get_cpu(env);
400 cpu_dump_state(CPU(cpu), stderr, fprintf, 0);
403 #ifndef CONFIG_USER_ONLY
405 void HELPER(waiti)(CPUXtensaState *env, uint32_t pc, uint32_t intlevel)
407 CPUState *cpu;
409 env->pc = pc;
410 env->sregs[PS] = (env->sregs[PS] & ~PS_INTLEVEL) |
411 (intlevel << PS_INTLEVEL_SHIFT);
413 qemu_mutex_lock_iothread();
414 check_interrupts(env);
415 qemu_mutex_unlock_iothread();
417 if (env->pending_irq_level) {
418 cpu_loop_exit(CPU(xtensa_env_get_cpu(env)));
419 return;
422 cpu = CPU(xtensa_env_get_cpu(env));
423 cpu->halted = 1;
424 HELPER(exception)(env, EXCP_HLT);
427 void HELPER(update_ccount)(CPUXtensaState *env)
429 uint64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
431 env->ccount_time = now;
432 env->sregs[CCOUNT] = env->ccount_base +
433 (uint32_t)((now - env->time_base) *
434 env->config->clock_freq_khz / 1000000);
437 void HELPER(wsr_ccount)(CPUXtensaState *env, uint32_t v)
439 int i;
441 HELPER(update_ccount)(env);
442 env->ccount_base += v - env->sregs[CCOUNT];
443 for (i = 0; i < env->config->nccompare; ++i) {
444 HELPER(update_ccompare)(env, i);
448 void HELPER(update_ccompare)(CPUXtensaState *env, uint32_t i)
450 uint64_t dcc;
452 HELPER(update_ccount)(env);
453 dcc = (uint64_t)(env->sregs[CCOMPARE + i] - env->sregs[CCOUNT] - 1) + 1;
454 timer_mod(env->ccompare[i].timer,
455 env->ccount_time + (dcc * 1000000) / env->config->clock_freq_khz);
456 env->yield_needed = 1;
459 void HELPER(check_interrupts)(CPUXtensaState *env)
461 qemu_mutex_lock_iothread();
462 check_interrupts(env);
463 qemu_mutex_unlock_iothread();
466 void HELPER(itlb_hit_test)(CPUXtensaState *env, uint32_t vaddr)
468 get_page_addr_code(env, vaddr);
472 * Check vaddr accessibility/cache attributes and raise an exception if
473 * specified by the ATOMCTL SR.
475 * Note: local memory exclusion is not implemented
477 void HELPER(check_atomctl)(CPUXtensaState *env, uint32_t pc, uint32_t vaddr)
479 uint32_t paddr, page_size, access;
480 uint32_t atomctl = env->sregs[ATOMCTL];
481 int rc = xtensa_get_physical_addr(env, true, vaddr, 1,
482 xtensa_get_cring(env), &paddr, &page_size, &access);
485 * s32c1i never causes LOAD_PROHIBITED_CAUSE exceptions,
486 * see opcode description in the ISA
488 if (rc == 0 &&
489 (access & (PAGE_READ | PAGE_WRITE)) != (PAGE_READ | PAGE_WRITE)) {
490 rc = STORE_PROHIBITED_CAUSE;
493 if (rc) {
494 HELPER(exception_cause_vaddr)(env, pc, rc, vaddr);
498 * When data cache is not configured use ATOMCTL bypass field.
499 * See ISA, 4.3.12.4 The Atomic Operation Control Register (ATOMCTL)
500 * under the Conditional Store Option.
502 if (!xtensa_option_enabled(env->config, XTENSA_OPTION_DCACHE)) {
503 access = PAGE_CACHE_BYPASS;
506 switch (access & PAGE_CACHE_MASK) {
507 case PAGE_CACHE_WB:
508 atomctl >>= 2;
509 /* fall through */
510 case PAGE_CACHE_WT:
511 atomctl >>= 2;
512 /* fall through */
513 case PAGE_CACHE_BYPASS:
514 if ((atomctl & 0x3) == 0) {
515 HELPER(exception_cause_vaddr)(env, pc,
516 LOAD_STORE_ERROR_CAUSE, vaddr);
518 break;
520 case PAGE_CACHE_ISOLATE:
521 HELPER(exception_cause_vaddr)(env, pc,
522 LOAD_STORE_ERROR_CAUSE, vaddr);
523 break;
525 default:
526 break;
530 void HELPER(wsr_memctl)(CPUXtensaState *env, uint32_t v)
532 if (xtensa_option_enabled(env->config, XTENSA_OPTION_ICACHE)) {
533 if (extract32(v, MEMCTL_IUSEWAYS_SHIFT, MEMCTL_IUSEWAYS_LEN) >
534 env->config->icache_ways) {
535 deposit32(v, MEMCTL_IUSEWAYS_SHIFT, MEMCTL_IUSEWAYS_LEN,
536 env->config->icache_ways);
539 if (xtensa_option_enabled(env->config, XTENSA_OPTION_DCACHE)) {
540 if (extract32(v, MEMCTL_DUSEWAYS_SHIFT, MEMCTL_DUSEWAYS_LEN) >
541 env->config->dcache_ways) {
542 deposit32(v, MEMCTL_DUSEWAYS_SHIFT, MEMCTL_DUSEWAYS_LEN,
543 env->config->dcache_ways);
545 if (extract32(v, MEMCTL_DALLOCWAYS_SHIFT, MEMCTL_DALLOCWAYS_LEN) >
546 env->config->dcache_ways) {
547 deposit32(v, MEMCTL_DALLOCWAYS_SHIFT, MEMCTL_DALLOCWAYS_LEN,
548 env->config->dcache_ways);
551 env->sregs[MEMCTL] = v & env->config->memctl_mask;
554 void HELPER(wsr_rasid)(CPUXtensaState *env, uint32_t v)
556 XtensaCPU *cpu = xtensa_env_get_cpu(env);
558 v = (v & 0xffffff00) | 0x1;
559 if (v != env->sregs[RASID]) {
560 env->sregs[RASID] = v;
561 tlb_flush(CPU(cpu));
565 static uint32_t get_page_size(const CPUXtensaState *env, bool dtlb, uint32_t way)
567 uint32_t tlbcfg = env->sregs[dtlb ? DTLBCFG : ITLBCFG];
569 switch (way) {
570 case 4:
571 return (tlbcfg >> 16) & 0x3;
573 case 5:
574 return (tlbcfg >> 20) & 0x1;
576 case 6:
577 return (tlbcfg >> 24) & 0x1;
579 default:
580 return 0;
585 * Get bit mask for the virtual address bits translated by the TLB way
587 uint32_t xtensa_tlb_get_addr_mask(const CPUXtensaState *env, bool dtlb, uint32_t way)
589 if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
590 bool varway56 = dtlb ?
591 env->config->dtlb.varway56 :
592 env->config->itlb.varway56;
594 switch (way) {
595 case 4:
596 return 0xfff00000 << get_page_size(env, dtlb, way) * 2;
598 case 5:
599 if (varway56) {
600 return 0xf8000000 << get_page_size(env, dtlb, way);
601 } else {
602 return 0xf8000000;
605 case 6:
606 if (varway56) {
607 return 0xf0000000 << (1 - get_page_size(env, dtlb, way));
608 } else {
609 return 0xf0000000;
612 default:
613 return 0xfffff000;
615 } else {
616 return REGION_PAGE_MASK;
621 * Get bit mask for the 'VPN without index' field.
622 * See ISA, 4.6.5.6, data format for RxTLB0
624 static uint32_t get_vpn_mask(const CPUXtensaState *env, bool dtlb, uint32_t way)
626 if (way < 4) {
627 bool is32 = (dtlb ?
628 env->config->dtlb.nrefillentries :
629 env->config->itlb.nrefillentries) == 32;
630 return is32 ? 0xffff8000 : 0xffffc000;
631 } else if (way == 4) {
632 return xtensa_tlb_get_addr_mask(env, dtlb, way) << 2;
633 } else if (way <= 6) {
634 uint32_t mask = xtensa_tlb_get_addr_mask(env, dtlb, way);
635 bool varway56 = dtlb ?
636 env->config->dtlb.varway56 :
637 env->config->itlb.varway56;
639 if (varway56) {
640 return mask << (way == 5 ? 2 : 3);
641 } else {
642 return mask << 1;
644 } else {
645 return 0xfffff000;
650 * Split virtual address into VPN (with index) and entry index
651 * for the given TLB way
653 void split_tlb_entry_spec_way(const CPUXtensaState *env, uint32_t v, bool dtlb,
654 uint32_t *vpn, uint32_t wi, uint32_t *ei)
656 bool varway56 = dtlb ?
657 env->config->dtlb.varway56 :
658 env->config->itlb.varway56;
660 if (!dtlb) {
661 wi &= 7;
664 if (wi < 4) {
665 bool is32 = (dtlb ?
666 env->config->dtlb.nrefillentries :
667 env->config->itlb.nrefillentries) == 32;
668 *ei = (v >> 12) & (is32 ? 0x7 : 0x3);
669 } else {
670 switch (wi) {
671 case 4:
673 uint32_t eibase = 20 + get_page_size(env, dtlb, wi) * 2;
674 *ei = (v >> eibase) & 0x3;
676 break;
678 case 5:
679 if (varway56) {
680 uint32_t eibase = 27 + get_page_size(env, dtlb, wi);
681 *ei = (v >> eibase) & 0x3;
682 } else {
683 *ei = (v >> 27) & 0x1;
685 break;
687 case 6:
688 if (varway56) {
689 uint32_t eibase = 29 - get_page_size(env, dtlb, wi);
690 *ei = (v >> eibase) & 0x7;
691 } else {
692 *ei = (v >> 28) & 0x1;
694 break;
696 default:
697 *ei = 0;
698 break;
701 *vpn = v & xtensa_tlb_get_addr_mask(env, dtlb, wi);
705 * Split TLB address into TLB way, entry index and VPN (with index).
706 * See ISA, 4.6.5.5 - 4.6.5.8 for the TLB addressing format
708 static void split_tlb_entry_spec(CPUXtensaState *env, uint32_t v, bool dtlb,
709 uint32_t *vpn, uint32_t *wi, uint32_t *ei)
711 if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
712 *wi = v & (dtlb ? 0xf : 0x7);
713 split_tlb_entry_spec_way(env, v, dtlb, vpn, *wi, ei);
714 } else {
715 *vpn = v & REGION_PAGE_MASK;
716 *wi = 0;
717 *ei = (v >> 29) & 0x7;
721 static xtensa_tlb_entry *get_tlb_entry(CPUXtensaState *env,
722 uint32_t v, bool dtlb, uint32_t *pwi)
724 uint32_t vpn;
725 uint32_t wi;
726 uint32_t ei;
728 split_tlb_entry_spec(env, v, dtlb, &vpn, &wi, &ei);
729 if (pwi) {
730 *pwi = wi;
732 return xtensa_tlb_get_entry(env, dtlb, wi, ei);
735 uint32_t HELPER(rtlb0)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
737 if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
738 uint32_t wi;
739 const xtensa_tlb_entry *entry = get_tlb_entry(env, v, dtlb, &wi);
740 return (entry->vaddr & get_vpn_mask(env, dtlb, wi)) | entry->asid;
741 } else {
742 return v & REGION_PAGE_MASK;
746 uint32_t HELPER(rtlb1)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
748 const xtensa_tlb_entry *entry = get_tlb_entry(env, v, dtlb, NULL);
749 return entry->paddr | entry->attr;
752 void HELPER(itlb)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
754 if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
755 uint32_t wi;
756 xtensa_tlb_entry *entry = get_tlb_entry(env, v, dtlb, &wi);
757 if (entry->variable && entry->asid) {
758 tlb_flush_page(CPU(xtensa_env_get_cpu(env)), entry->vaddr);
759 entry->asid = 0;
764 uint32_t HELPER(ptlb)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
766 if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
767 uint32_t wi;
768 uint32_t ei;
769 uint8_t ring;
770 int res = xtensa_tlb_lookup(env, v, dtlb, &wi, &ei, &ring);
772 switch (res) {
773 case 0:
774 if (ring >= xtensa_get_ring(env)) {
775 return (v & 0xfffff000) | wi | (dtlb ? 0x10 : 0x8);
777 break;
779 case INST_TLB_MULTI_HIT_CAUSE:
780 case LOAD_STORE_TLB_MULTI_HIT_CAUSE:
781 HELPER(exception_cause_vaddr)(env, env->pc, res, v);
782 break;
784 return 0;
785 } else {
786 return (v & REGION_PAGE_MASK) | 0x1;
790 void xtensa_tlb_set_entry_mmu(const CPUXtensaState *env,
791 xtensa_tlb_entry *entry, bool dtlb,
792 unsigned wi, unsigned ei, uint32_t vpn, uint32_t pte)
794 entry->vaddr = vpn;
795 entry->paddr = pte & xtensa_tlb_get_addr_mask(env, dtlb, wi);
796 entry->asid = (env->sregs[RASID] >> ((pte >> 1) & 0x18)) & 0xff;
797 entry->attr = pte & 0xf;
800 void xtensa_tlb_set_entry(CPUXtensaState *env, bool dtlb,
801 unsigned wi, unsigned ei, uint32_t vpn, uint32_t pte)
803 XtensaCPU *cpu = xtensa_env_get_cpu(env);
804 CPUState *cs = CPU(cpu);
805 xtensa_tlb_entry *entry = xtensa_tlb_get_entry(env, dtlb, wi, ei);
807 if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
808 if (entry->variable) {
809 if (entry->asid) {
810 tlb_flush_page(cs, entry->vaddr);
812 xtensa_tlb_set_entry_mmu(env, entry, dtlb, wi, ei, vpn, pte);
813 tlb_flush_page(cs, entry->vaddr);
814 } else {
815 qemu_log_mask(LOG_GUEST_ERROR, "%s %d, %d, %d trying to set immutable entry\n",
816 __func__, dtlb, wi, ei);
818 } else {
819 tlb_flush_page(cs, entry->vaddr);
820 if (xtensa_option_enabled(env->config,
821 XTENSA_OPTION_REGION_TRANSLATION)) {
822 entry->paddr = pte & REGION_PAGE_MASK;
824 entry->attr = pte & 0xf;
828 void HELPER(wtlb)(CPUXtensaState *env, uint32_t p, uint32_t v, uint32_t dtlb)
830 uint32_t vpn;
831 uint32_t wi;
832 uint32_t ei;
833 split_tlb_entry_spec(env, v, dtlb, &vpn, &wi, &ei);
834 xtensa_tlb_set_entry(env, dtlb, wi, ei, vpn, p);
838 void HELPER(wsr_ibreakenable)(CPUXtensaState *env, uint32_t v)
840 uint32_t change = v ^ env->sregs[IBREAKENABLE];
841 unsigned i;
843 for (i = 0; i < env->config->nibreak; ++i) {
844 if (change & (1 << i)) {
845 tb_invalidate_virtual_addr(env, env->sregs[IBREAKA + i]);
848 env->sregs[IBREAKENABLE] = v & ((1 << env->config->nibreak) - 1);
851 void HELPER(wsr_ibreaka)(CPUXtensaState *env, uint32_t i, uint32_t v)
853 if (env->sregs[IBREAKENABLE] & (1 << i) && env->sregs[IBREAKA + i] != v) {
854 tb_invalidate_virtual_addr(env, env->sregs[IBREAKA + i]);
855 tb_invalidate_virtual_addr(env, v);
857 env->sregs[IBREAKA + i] = v;
860 static void set_dbreak(CPUXtensaState *env, unsigned i, uint32_t dbreaka,
861 uint32_t dbreakc)
863 CPUState *cs = CPU(xtensa_env_get_cpu(env));
864 int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;
865 uint32_t mask = dbreakc | ~DBREAKC_MASK;
867 if (env->cpu_watchpoint[i]) {
868 cpu_watchpoint_remove_by_ref(cs, env->cpu_watchpoint[i]);
870 if (dbreakc & DBREAKC_SB) {
871 flags |= BP_MEM_WRITE;
873 if (dbreakc & DBREAKC_LB) {
874 flags |= BP_MEM_READ;
876 /* contiguous mask after inversion is one less than some power of 2 */
877 if ((~mask + 1) & ~mask) {
878 qemu_log_mask(LOG_GUEST_ERROR, "DBREAKC mask is not contiguous: 0x%08x\n", dbreakc);
879 /* cut mask after the first zero bit */
880 mask = 0xffffffff << (32 - clo32(mask));
882 if (cpu_watchpoint_insert(cs, dbreaka & mask, ~mask + 1,
883 flags, &env->cpu_watchpoint[i])) {
884 env->cpu_watchpoint[i] = NULL;
885 qemu_log_mask(LOG_GUEST_ERROR, "Failed to set data breakpoint at 0x%08x/%d\n",
886 dbreaka & mask, ~mask + 1);
890 void HELPER(wsr_dbreaka)(CPUXtensaState *env, uint32_t i, uint32_t v)
892 uint32_t dbreakc = env->sregs[DBREAKC + i];
894 if ((dbreakc & DBREAKC_SB_LB) &&
895 env->sregs[DBREAKA + i] != v) {
896 set_dbreak(env, i, v, dbreakc);
898 env->sregs[DBREAKA + i] = v;
901 void HELPER(wsr_dbreakc)(CPUXtensaState *env, uint32_t i, uint32_t v)
903 if ((env->sregs[DBREAKC + i] ^ v) & (DBREAKC_SB_LB | DBREAKC_MASK)) {
904 if (v & DBREAKC_SB_LB) {
905 set_dbreak(env, i, env->sregs[DBREAKA + i], v);
906 } else {
907 if (env->cpu_watchpoint[i]) {
908 CPUState *cs = CPU(xtensa_env_get_cpu(env));
910 cpu_watchpoint_remove_by_ref(cs, env->cpu_watchpoint[i]);
911 env->cpu_watchpoint[i] = NULL;
915 env->sregs[DBREAKC + i] = v;
917 #endif
919 void HELPER(wur_fcr)(CPUXtensaState *env, uint32_t v)
921 static const int rounding_mode[] = {
922 float_round_nearest_even,
923 float_round_to_zero,
924 float_round_up,
925 float_round_down,
928 env->uregs[FCR] = v & 0xfffff07f;
929 set_float_rounding_mode(rounding_mode[v & 3], &env->fp_status);
932 float32 HELPER(abs_s)(float32 v)
934 return float32_abs(v);
937 float32 HELPER(neg_s)(float32 v)
939 return float32_chs(v);
942 float32 HELPER(add_s)(CPUXtensaState *env, float32 a, float32 b)
944 return float32_add(a, b, &env->fp_status);
947 float32 HELPER(sub_s)(CPUXtensaState *env, float32 a, float32 b)
949 return float32_sub(a, b, &env->fp_status);
952 float32 HELPER(mul_s)(CPUXtensaState *env, float32 a, float32 b)
954 return float32_mul(a, b, &env->fp_status);
957 float32 HELPER(madd_s)(CPUXtensaState *env, float32 a, float32 b, float32 c)
959 return float32_muladd(b, c, a, 0,
960 &env->fp_status);
963 float32 HELPER(msub_s)(CPUXtensaState *env, float32 a, float32 b, float32 c)
965 return float32_muladd(b, c, a, float_muladd_negate_product,
966 &env->fp_status);
969 uint32_t HELPER(ftoi)(float32 v, uint32_t rounding_mode, uint32_t scale)
971 float_status fp_status = {0};
973 set_float_rounding_mode(rounding_mode, &fp_status);
974 return float32_to_int32(
975 float32_scalbn(v, scale, &fp_status), &fp_status);
978 uint32_t HELPER(ftoui)(float32 v, uint32_t rounding_mode, uint32_t scale)
980 float_status fp_status = {0};
981 float32 res;
983 set_float_rounding_mode(rounding_mode, &fp_status);
985 res = float32_scalbn(v, scale, &fp_status);
987 if (float32_is_neg(v) && !float32_is_any_nan(v)) {
988 return float32_to_int32(res, &fp_status);
989 } else {
990 return float32_to_uint32(res, &fp_status);
994 float32 HELPER(itof)(CPUXtensaState *env, uint32_t v, uint32_t scale)
996 return float32_scalbn(int32_to_float32(v, &env->fp_status),
997 (int32_t)scale, &env->fp_status);
1000 float32 HELPER(uitof)(CPUXtensaState *env, uint32_t v, uint32_t scale)
1002 return float32_scalbn(uint32_to_float32(v, &env->fp_status),
1003 (int32_t)scale, &env->fp_status);
1006 static inline void set_br(CPUXtensaState *env, bool v, uint32_t br)
1008 if (v) {
1009 env->sregs[BR] |= br;
1010 } else {
1011 env->sregs[BR] &= ~br;
1015 void HELPER(un_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
1017 set_br(env, float32_unordered_quiet(a, b, &env->fp_status), br);
1020 void HELPER(oeq_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
1022 set_br(env, float32_eq_quiet(a, b, &env->fp_status), br);
1025 void HELPER(ueq_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
1027 int v = float32_compare_quiet(a, b, &env->fp_status);
1028 set_br(env, v == float_relation_equal || v == float_relation_unordered, br);
1031 void HELPER(olt_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
1033 set_br(env, float32_lt_quiet(a, b, &env->fp_status), br);
1036 void HELPER(ult_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
1038 int v = float32_compare_quiet(a, b, &env->fp_status);
1039 set_br(env, v == float_relation_less || v == float_relation_unordered, br);
1042 void HELPER(ole_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
1044 set_br(env, float32_le_quiet(a, b, &env->fp_status), br);
1047 void HELPER(ule_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
1049 int v = float32_compare_quiet(a, b, &env->fp_status);
1050 set_br(env, v != float_relation_greater, br);
1053 uint32_t HELPER(rer)(CPUXtensaState *env, uint32_t addr)
1055 #ifndef CONFIG_USER_ONLY
1056 return address_space_ldl(env->address_space_er, addr,
1057 MEMTXATTRS_UNSPECIFIED, NULL);
1058 #else
1059 return 0;
1060 #endif
1063 void HELPER(wer)(CPUXtensaState *env, uint32_t data, uint32_t addr)
1065 #ifndef CONFIG_USER_ONLY
1066 address_space_stl(env->address_space_er, addr, data,
1067 MEMTXATTRS_UNSPECIFIED, NULL);
1068 #endif