suspend: make rtc alarm wakeup the guest.
[qemu.git] / target-xtensa / helper.c
blob2a0cb1a562f24be809662765a14a2ec84d2f778a
1 /*
2 * Copyright (c) 2011, Max Filippov, Open Source and Linux Lab.
3 * All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are met:
7 * * Redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer.
9 * * Redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution.
12 * * Neither the name of the Open Source and Linux Lab nor the
13 * names of its contributors may be used to endorse or promote products
14 * derived from this software without specific prior written permission.
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
17 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
20 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
23 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
25 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 #include "cpu.h"
29 #include "exec-all.h"
30 #include "gdbstub.h"
31 #include "qemu-common.h"
32 #include "host-utils.h"
33 #if !defined(CONFIG_USER_ONLY)
34 #include "hw/loader.h"
35 #endif
37 static void reset_mmu(CPUState *env);
39 void cpu_reset(CPUXtensaState *env)
41 env->exception_taken = 0;
42 env->pc = env->config->exception_vector[EXC_RESET];
43 env->sregs[LITBASE] &= ~1;
44 env->sregs[PS] = xtensa_option_enabled(env->config,
45 XTENSA_OPTION_INTERRUPT) ? 0x1f : 0x10;
46 env->sregs[VECBASE] = env->config->vecbase;
48 env->pending_irq_level = 0;
49 reset_mmu(env);
52 static struct XtensaConfigList *xtensa_cores;
54 void xtensa_register_core(XtensaConfigList *node)
56 node->next = xtensa_cores;
57 xtensa_cores = node;
60 CPUXtensaState *cpu_xtensa_init(const char *cpu_model)
62 static int tcg_inited;
63 CPUXtensaState *env;
64 const XtensaConfig *config = NULL;
65 XtensaConfigList *core = xtensa_cores;
67 for (; core; core = core->next)
68 if (strcmp(core->config->name, cpu_model) == 0) {
69 config = core->config;
70 break;
73 if (config == NULL) {
74 return NULL;
77 env = g_malloc0(sizeof(*env));
78 env->config = config;
79 cpu_exec_init(env);
81 if (!tcg_inited) {
82 tcg_inited = 1;
83 xtensa_translate_init();
86 xtensa_irq_init(env);
87 qemu_init_vcpu(env);
88 return env;
92 void xtensa_cpu_list(FILE *f, fprintf_function cpu_fprintf)
94 XtensaConfigList *core = xtensa_cores;
95 cpu_fprintf(f, "Available CPUs:\n");
96 for (; core; core = core->next) {
97 cpu_fprintf(f, " %s\n", core->config->name);
101 target_phys_addr_t cpu_get_phys_page_debug(CPUState *env, target_ulong addr)
103 uint32_t paddr;
104 uint32_t page_size;
105 unsigned access;
107 if (xtensa_get_physical_addr(env, addr, 0, 0,
108 &paddr, &page_size, &access) == 0) {
109 return paddr;
111 if (xtensa_get_physical_addr(env, addr, 2, 0,
112 &paddr, &page_size, &access) == 0) {
113 return paddr;
115 return ~0;
118 static uint32_t relocated_vector(CPUState *env, uint32_t vector)
120 if (xtensa_option_enabled(env->config,
121 XTENSA_OPTION_RELOCATABLE_VECTOR)) {
122 return vector - env->config->vecbase + env->sregs[VECBASE];
123 } else {
124 return vector;
129 * Handle penging IRQ.
130 * For the high priority interrupt jump to the corresponding interrupt vector.
131 * For the level-1 interrupt convert it to either user, kernel or double
132 * exception with the 'level-1 interrupt' exception cause.
134 static void handle_interrupt(CPUState *env)
136 int level = env->pending_irq_level;
138 if (level > xtensa_get_cintlevel(env) &&
139 level <= env->config->nlevel &&
140 (env->config->level_mask[level] &
141 env->sregs[INTSET] &
142 env->sregs[INTENABLE])) {
143 if (level > 1) {
144 env->sregs[EPC1 + level - 1] = env->pc;
145 env->sregs[EPS2 + level - 2] = env->sregs[PS];
146 env->sregs[PS] =
147 (env->sregs[PS] & ~PS_INTLEVEL) | level | PS_EXCM;
148 env->pc = relocated_vector(env,
149 env->config->interrupt_vector[level]);
150 } else {
151 env->sregs[EXCCAUSE] = LEVEL1_INTERRUPT_CAUSE;
153 if (env->sregs[PS] & PS_EXCM) {
154 if (env->config->ndepc) {
155 env->sregs[DEPC] = env->pc;
156 } else {
157 env->sregs[EPC1] = env->pc;
159 env->exception_index = EXC_DOUBLE;
160 } else {
161 env->sregs[EPC1] = env->pc;
162 env->exception_index =
163 (env->sregs[PS] & PS_UM) ? EXC_USER : EXC_KERNEL;
165 env->sregs[PS] |= PS_EXCM;
167 env->exception_taken = 1;
171 void do_interrupt(CPUState *env)
173 if (env->exception_index == EXC_IRQ) {
174 qemu_log_mask(CPU_LOG_INT,
175 "%s(EXC_IRQ) level = %d, cintlevel = %d, "
176 "pc = %08x, a0 = %08x, ps = %08x, "
177 "intset = %08x, intenable = %08x, "
178 "ccount = %08x\n",
179 __func__, env->pending_irq_level, xtensa_get_cintlevel(env),
180 env->pc, env->regs[0], env->sregs[PS],
181 env->sregs[INTSET], env->sregs[INTENABLE],
182 env->sregs[CCOUNT]);
183 handle_interrupt(env);
186 switch (env->exception_index) {
187 case EXC_WINDOW_OVERFLOW4:
188 case EXC_WINDOW_UNDERFLOW4:
189 case EXC_WINDOW_OVERFLOW8:
190 case EXC_WINDOW_UNDERFLOW8:
191 case EXC_WINDOW_OVERFLOW12:
192 case EXC_WINDOW_UNDERFLOW12:
193 case EXC_KERNEL:
194 case EXC_USER:
195 case EXC_DOUBLE:
196 qemu_log_mask(CPU_LOG_INT, "%s(%d) "
197 "pc = %08x, a0 = %08x, ps = %08x, ccount = %08x\n",
198 __func__, env->exception_index,
199 env->pc, env->regs[0], env->sregs[PS], env->sregs[CCOUNT]);
200 if (env->config->exception_vector[env->exception_index]) {
201 env->pc = relocated_vector(env,
202 env->config->exception_vector[env->exception_index]);
203 env->exception_taken = 1;
204 } else {
205 qemu_log("%s(pc = %08x) bad exception_index: %d\n",
206 __func__, env->pc, env->exception_index);
208 break;
210 case EXC_IRQ:
211 break;
213 default:
214 qemu_log("%s(pc = %08x) unknown exception_index: %d\n",
215 __func__, env->pc, env->exception_index);
216 break;
218 check_interrupts(env);
221 static void reset_tlb_mmu_all_ways(CPUState *env,
222 const xtensa_tlb *tlb, xtensa_tlb_entry entry[][MAX_TLB_WAY_SIZE])
224 unsigned wi, ei;
226 for (wi = 0; wi < tlb->nways; ++wi) {
227 for (ei = 0; ei < tlb->way_size[wi]; ++ei) {
228 entry[wi][ei].asid = 0;
229 entry[wi][ei].variable = true;
234 static void reset_tlb_mmu_ways56(CPUState *env,
235 const xtensa_tlb *tlb, xtensa_tlb_entry entry[][MAX_TLB_WAY_SIZE])
237 if (!tlb->varway56) {
238 static const xtensa_tlb_entry way5[] = {
240 .vaddr = 0xd0000000,
241 .paddr = 0,
242 .asid = 1,
243 .attr = 7,
244 .variable = false,
245 }, {
246 .vaddr = 0xd8000000,
247 .paddr = 0,
248 .asid = 1,
249 .attr = 3,
250 .variable = false,
253 static const xtensa_tlb_entry way6[] = {
255 .vaddr = 0xe0000000,
256 .paddr = 0xf0000000,
257 .asid = 1,
258 .attr = 7,
259 .variable = false,
260 }, {
261 .vaddr = 0xf0000000,
262 .paddr = 0xf0000000,
263 .asid = 1,
264 .attr = 3,
265 .variable = false,
268 memcpy(entry[5], way5, sizeof(way5));
269 memcpy(entry[6], way6, sizeof(way6));
270 } else {
271 uint32_t ei;
272 for (ei = 0; ei < 8; ++ei) {
273 entry[6][ei].vaddr = ei << 29;
274 entry[6][ei].paddr = ei << 29;
275 entry[6][ei].asid = 1;
276 entry[6][ei].attr = 3;
281 static void reset_tlb_region_way0(CPUState *env,
282 xtensa_tlb_entry entry[][MAX_TLB_WAY_SIZE])
284 unsigned ei;
286 for (ei = 0; ei < 8; ++ei) {
287 entry[0][ei].vaddr = ei << 29;
288 entry[0][ei].paddr = ei << 29;
289 entry[0][ei].asid = 1;
290 entry[0][ei].attr = 2;
291 entry[0][ei].variable = true;
295 static void reset_mmu(CPUState *env)
297 if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
298 env->sregs[RASID] = 0x04030201;
299 env->sregs[ITLBCFG] = 0;
300 env->sregs[DTLBCFG] = 0;
301 env->autorefill_idx = 0;
302 reset_tlb_mmu_all_ways(env, &env->config->itlb, env->itlb);
303 reset_tlb_mmu_all_ways(env, &env->config->dtlb, env->dtlb);
304 reset_tlb_mmu_ways56(env, &env->config->itlb, env->itlb);
305 reset_tlb_mmu_ways56(env, &env->config->dtlb, env->dtlb);
306 } else {
307 reset_tlb_region_way0(env, env->itlb);
308 reset_tlb_region_way0(env, env->dtlb);
312 static unsigned get_ring(const CPUState *env, uint8_t asid)
314 unsigned i;
315 for (i = 0; i < 4; ++i) {
316 if (((env->sregs[RASID] >> i * 8) & 0xff) == asid) {
317 return i;
320 return 0xff;
324 * Lookup xtensa TLB for the given virtual address.
325 * See ISA, 4.6.2.2
327 * \param pwi: [out] way index
328 * \param pei: [out] entry index
329 * \param pring: [out] access ring
330 * \return 0 if ok, exception cause code otherwise
332 int xtensa_tlb_lookup(const CPUState *env, uint32_t addr, bool dtlb,
333 uint32_t *pwi, uint32_t *pei, uint8_t *pring)
335 const xtensa_tlb *tlb = dtlb ?
336 &env->config->dtlb : &env->config->itlb;
337 const xtensa_tlb_entry (*entry)[MAX_TLB_WAY_SIZE] = dtlb ?
338 env->dtlb : env->itlb;
340 int nhits = 0;
341 unsigned wi;
343 for (wi = 0; wi < tlb->nways; ++wi) {
344 uint32_t vpn;
345 uint32_t ei;
346 split_tlb_entry_spec_way(env, addr, dtlb, &vpn, wi, &ei);
347 if (entry[wi][ei].vaddr == vpn && entry[wi][ei].asid) {
348 unsigned ring = get_ring(env, entry[wi][ei].asid);
349 if (ring < 4) {
350 if (++nhits > 1) {
351 return dtlb ?
352 LOAD_STORE_TLB_MULTI_HIT_CAUSE :
353 INST_TLB_MULTI_HIT_CAUSE;
355 *pwi = wi;
356 *pei = ei;
357 *pring = ring;
361 return nhits ? 0 :
362 (dtlb ? LOAD_STORE_TLB_MISS_CAUSE : INST_TLB_MISS_CAUSE);
366 * Convert MMU ATTR to PAGE_{READ,WRITE,EXEC} mask.
367 * See ISA, 4.6.5.10
369 static unsigned mmu_attr_to_access(uint32_t attr)
371 unsigned access = 0;
372 if (attr < 12) {
373 access |= PAGE_READ;
374 if (attr & 0x1) {
375 access |= PAGE_EXEC;
377 if (attr & 0x2) {
378 access |= PAGE_WRITE;
380 } else if (attr == 13) {
381 access |= PAGE_READ | PAGE_WRITE;
383 return access;
387 * Convert region protection ATTR to PAGE_{READ,WRITE,EXEC} mask.
388 * See ISA, 4.6.3.3
390 static unsigned region_attr_to_access(uint32_t attr)
392 unsigned access = 0;
393 if ((attr < 6 && attr != 3) || attr == 14) {
394 access |= PAGE_READ | PAGE_WRITE;
396 if (attr > 0 && attr < 6) {
397 access |= PAGE_EXEC;
399 return access;
402 static bool is_access_granted(unsigned access, int is_write)
404 switch (is_write) {
405 case 0:
406 return access & PAGE_READ;
408 case 1:
409 return access & PAGE_WRITE;
411 case 2:
412 return access & PAGE_EXEC;
414 default:
415 return 0;
419 static int autorefill_mmu(CPUState *env, uint32_t vaddr, bool dtlb,
420 uint32_t *wi, uint32_t *ei, uint8_t *ring);
422 static int get_physical_addr_mmu(CPUState *env,
423 uint32_t vaddr, int is_write, int mmu_idx,
424 uint32_t *paddr, uint32_t *page_size, unsigned *access)
426 bool dtlb = is_write != 2;
427 uint32_t wi;
428 uint32_t ei;
429 uint8_t ring;
430 int ret = xtensa_tlb_lookup(env, vaddr, dtlb, &wi, &ei, &ring);
432 if ((ret == INST_TLB_MISS_CAUSE || ret == LOAD_STORE_TLB_MISS_CAUSE) &&
433 (mmu_idx != 0 || ((vaddr ^ env->sregs[PTEVADDR]) & 0xffc00000)) &&
434 autorefill_mmu(env, vaddr, dtlb, &wi, &ei, &ring) == 0) {
435 ret = 0;
437 if (ret != 0) {
438 return ret;
441 const xtensa_tlb_entry *entry =
442 xtensa_tlb_get_entry(env, dtlb, wi, ei);
444 if (ring < mmu_idx) {
445 return dtlb ?
446 LOAD_STORE_PRIVILEGE_CAUSE :
447 INST_FETCH_PRIVILEGE_CAUSE;
450 *access = mmu_attr_to_access(entry->attr);
451 if (!is_access_granted(*access, is_write)) {
452 return dtlb ?
453 (is_write ?
454 STORE_PROHIBITED_CAUSE :
455 LOAD_PROHIBITED_CAUSE) :
456 INST_FETCH_PROHIBITED_CAUSE;
459 *paddr = entry->paddr | (vaddr & ~xtensa_tlb_get_addr_mask(env, dtlb, wi));
460 *page_size = ~xtensa_tlb_get_addr_mask(env, dtlb, wi) + 1;
462 return 0;
465 static int autorefill_mmu(CPUState *env, uint32_t vaddr, bool dtlb,
466 uint32_t *wi, uint32_t *ei, uint8_t *ring)
468 uint32_t paddr;
469 uint32_t page_size;
470 unsigned access;
471 uint32_t pt_vaddr =
472 (env->sregs[PTEVADDR] | (vaddr >> 10)) & 0xfffffffc;
473 int ret = get_physical_addr_mmu(env, pt_vaddr, 0, 0,
474 &paddr, &page_size, &access);
476 qemu_log("%s: trying autorefill(%08x) -> %08x\n", __func__,
477 vaddr, ret ? ~0 : paddr);
479 if (ret == 0) {
480 uint32_t vpn;
481 uint32_t pte = ldl_phys(paddr);
483 *ring = (pte >> 4) & 0x3;
484 *wi = (++env->autorefill_idx) & 0x3;
485 split_tlb_entry_spec_way(env, vaddr, dtlb, &vpn, *wi, ei);
486 xtensa_tlb_set_entry(env, dtlb, *wi, *ei, vpn, pte);
487 qemu_log("%s: autorefill(%08x): %08x -> %08x\n",
488 __func__, vaddr, vpn, pte);
490 return ret;
493 static int get_physical_addr_region(CPUState *env,
494 uint32_t vaddr, int is_write, int mmu_idx,
495 uint32_t *paddr, uint32_t *page_size, unsigned *access)
497 bool dtlb = is_write != 2;
498 uint32_t wi = 0;
499 uint32_t ei = (vaddr >> 29) & 0x7;
500 const xtensa_tlb_entry *entry =
501 xtensa_tlb_get_entry(env, dtlb, wi, ei);
503 *access = region_attr_to_access(entry->attr);
504 if (!is_access_granted(*access, is_write)) {
505 return dtlb ?
506 (is_write ?
507 STORE_PROHIBITED_CAUSE :
508 LOAD_PROHIBITED_CAUSE) :
509 INST_FETCH_PROHIBITED_CAUSE;
512 *paddr = entry->paddr | (vaddr & ~REGION_PAGE_MASK);
513 *page_size = ~REGION_PAGE_MASK + 1;
515 return 0;
519 * Convert virtual address to physical addr.
520 * MMU may issue pagewalk and change xtensa autorefill TLB way entry.
522 * \return 0 if ok, exception cause code otherwise
524 int xtensa_get_physical_addr(CPUState *env,
525 uint32_t vaddr, int is_write, int mmu_idx,
526 uint32_t *paddr, uint32_t *page_size, unsigned *access)
528 if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
529 return get_physical_addr_mmu(env, vaddr, is_write, mmu_idx,
530 paddr, page_size, access);
531 } else if (xtensa_option_bits_enabled(env->config,
532 XTENSA_OPTION_BIT(XTENSA_OPTION_REGION_PROTECTION) |
533 XTENSA_OPTION_BIT(XTENSA_OPTION_REGION_TRANSLATION))) {
534 return get_physical_addr_region(env, vaddr, is_write, mmu_idx,
535 paddr, page_size, access);
536 } else {
537 *paddr = vaddr;
538 *page_size = TARGET_PAGE_SIZE;
539 *access = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
540 return 0;