qapi: Use returned bool to check for failure, Coccinelle part
[qemu.git] / hw / ppc / spapr_drc.c
blobd10193f39e772f1d5df03ecd0e2b54c19a13b67f
1 /*
2 * QEMU SPAPR Dynamic Reconfiguration Connector Implementation
4 * Copyright IBM Corp. 2014
6 * Authors:
7 * Michael Roth <mdroth@linux.vnet.ibm.com>
9 * This work is licensed under the terms of the GNU GPL, version 2 or later.
10 * See the COPYING file in the top-level directory.
13 #include "qemu/osdep.h"
14 #include "qapi/error.h"
15 #include "qapi/qmp/qnull.h"
16 #include "cpu.h"
17 #include "qemu/cutils.h"
18 #include "hw/ppc/spapr_drc.h"
19 #include "qom/object.h"
20 #include "migration/vmstate.h"
21 #include "qapi/visitor.h"
22 #include "qemu/error-report.h"
23 #include "hw/ppc/spapr.h" /* for RTAS return codes */
24 #include "hw/pci-host/spapr.h" /* spapr_phb_remove_pci_device_cb callback */
25 #include "hw/ppc/spapr_nvdimm.h"
26 #include "sysemu/device_tree.h"
27 #include "sysemu/reset.h"
28 #include "trace.h"
30 #define DRC_CONTAINER_PATH "/dr-connector"
31 #define DRC_INDEX_TYPE_SHIFT 28
32 #define DRC_INDEX_ID_MASK ((1ULL << DRC_INDEX_TYPE_SHIFT) - 1)
34 SpaprDrcType spapr_drc_type(SpaprDrc *drc)
36 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
38 return 1 << drck->typeshift;
41 uint32_t spapr_drc_index(SpaprDrc *drc)
43 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
45 /* no set format for a drc index: it only needs to be globally
46 * unique. this is how we encode the DRC type on bare-metal
47 * however, so might as well do that here
49 return (drck->typeshift << DRC_INDEX_TYPE_SHIFT)
50 | (drc->id & DRC_INDEX_ID_MASK);
53 static uint32_t drc_isolate_physical(SpaprDrc *drc)
55 switch (drc->state) {
56 case SPAPR_DRC_STATE_PHYSICAL_POWERON:
57 return RTAS_OUT_SUCCESS; /* Nothing to do */
58 case SPAPR_DRC_STATE_PHYSICAL_CONFIGURED:
59 break; /* see below */
60 case SPAPR_DRC_STATE_PHYSICAL_UNISOLATE:
61 return RTAS_OUT_PARAM_ERROR; /* not allowed */
62 default:
63 g_assert_not_reached();
66 drc->state = SPAPR_DRC_STATE_PHYSICAL_POWERON;
68 if (drc->unplug_requested) {
69 uint32_t drc_index = spapr_drc_index(drc);
70 trace_spapr_drc_set_isolation_state_finalizing(drc_index);
71 spapr_drc_detach(drc);
74 return RTAS_OUT_SUCCESS;
77 static uint32_t drc_unisolate_physical(SpaprDrc *drc)
79 switch (drc->state) {
80 case SPAPR_DRC_STATE_PHYSICAL_UNISOLATE:
81 case SPAPR_DRC_STATE_PHYSICAL_CONFIGURED:
82 return RTAS_OUT_SUCCESS; /* Nothing to do */
83 case SPAPR_DRC_STATE_PHYSICAL_POWERON:
84 break; /* see below */
85 default:
86 g_assert_not_reached();
89 /* cannot unisolate a non-existent resource, and, or resources
90 * which are in an 'UNUSABLE' allocation state. (PAPR 2.7,
91 * 13.5.3.5)
93 if (!drc->dev) {
94 return RTAS_OUT_NO_SUCH_INDICATOR;
97 drc->state = SPAPR_DRC_STATE_PHYSICAL_UNISOLATE;
98 drc->ccs_offset = drc->fdt_start_offset;
99 drc->ccs_depth = 0;
101 return RTAS_OUT_SUCCESS;
104 static uint32_t drc_isolate_logical(SpaprDrc *drc)
106 switch (drc->state) {
107 case SPAPR_DRC_STATE_LOGICAL_AVAILABLE:
108 case SPAPR_DRC_STATE_LOGICAL_UNUSABLE:
109 return RTAS_OUT_SUCCESS; /* Nothing to do */
110 case SPAPR_DRC_STATE_LOGICAL_CONFIGURED:
111 break; /* see below */
112 case SPAPR_DRC_STATE_LOGICAL_UNISOLATE:
113 return RTAS_OUT_PARAM_ERROR; /* not allowed */
114 default:
115 g_assert_not_reached();
119 * Fail any requests to ISOLATE the LMB DRC if this LMB doesn't
120 * belong to a DIMM device that is marked for removal.
122 * Currently the guest userspace tool drmgr that drives the memory
123 * hotplug/unplug will just try to remove a set of 'removable' LMBs
124 * in response to a hot unplug request that is based on drc-count.
125 * If the LMB being removed doesn't belong to a DIMM device that is
126 * actually being unplugged, fail the isolation request here.
128 if (spapr_drc_type(drc) == SPAPR_DR_CONNECTOR_TYPE_LMB
129 && !drc->unplug_requested) {
130 return RTAS_OUT_HW_ERROR;
133 drc->state = SPAPR_DRC_STATE_LOGICAL_AVAILABLE;
135 /* if we're awaiting release, but still in an unconfigured state,
136 * it's likely the guest is still in the process of configuring
137 * the device and is transitioning the devices to an ISOLATED
138 * state as a part of that process. so we only complete the
139 * removal when this transition happens for a device in a
140 * configured state, as suggested by the state diagram from PAPR+
141 * 2.7, 13.4
143 if (drc->unplug_requested) {
144 uint32_t drc_index = spapr_drc_index(drc);
145 trace_spapr_drc_set_isolation_state_finalizing(drc_index);
146 spapr_drc_detach(drc);
148 return RTAS_OUT_SUCCESS;
151 static uint32_t drc_unisolate_logical(SpaprDrc *drc)
153 switch (drc->state) {
154 case SPAPR_DRC_STATE_LOGICAL_UNISOLATE:
155 case SPAPR_DRC_STATE_LOGICAL_CONFIGURED:
156 return RTAS_OUT_SUCCESS; /* Nothing to do */
157 case SPAPR_DRC_STATE_LOGICAL_AVAILABLE:
158 break; /* see below */
159 case SPAPR_DRC_STATE_LOGICAL_UNUSABLE:
160 return RTAS_OUT_NO_SUCH_INDICATOR; /* not allowed */
161 default:
162 g_assert_not_reached();
165 /* Move to AVAILABLE state should have ensured device was present */
166 g_assert(drc->dev);
168 drc->state = SPAPR_DRC_STATE_LOGICAL_UNISOLATE;
169 drc->ccs_offset = drc->fdt_start_offset;
170 drc->ccs_depth = 0;
172 return RTAS_OUT_SUCCESS;
175 static uint32_t drc_set_usable(SpaprDrc *drc)
177 switch (drc->state) {
178 case SPAPR_DRC_STATE_LOGICAL_AVAILABLE:
179 case SPAPR_DRC_STATE_LOGICAL_UNISOLATE:
180 case SPAPR_DRC_STATE_LOGICAL_CONFIGURED:
181 return RTAS_OUT_SUCCESS; /* Nothing to do */
182 case SPAPR_DRC_STATE_LOGICAL_UNUSABLE:
183 break; /* see below */
184 default:
185 g_assert_not_reached();
188 /* if there's no resource/device associated with the DRC, there's
189 * no way for us to put it in an allocation state consistent with
190 * being 'USABLE'. PAPR 2.7, 13.5.3.4 documents that this should
191 * result in an RTAS return code of -3 / "no such indicator"
193 if (!drc->dev) {
194 return RTAS_OUT_NO_SUCH_INDICATOR;
196 if (drc->unplug_requested) {
197 /* Don't allow the guest to move a device away from UNUSABLE
198 * state when we want to unplug it */
199 return RTAS_OUT_NO_SUCH_INDICATOR;
202 drc->state = SPAPR_DRC_STATE_LOGICAL_AVAILABLE;
204 return RTAS_OUT_SUCCESS;
207 static uint32_t drc_set_unusable(SpaprDrc *drc)
209 switch (drc->state) {
210 case SPAPR_DRC_STATE_LOGICAL_UNUSABLE:
211 return RTAS_OUT_SUCCESS; /* Nothing to do */
212 case SPAPR_DRC_STATE_LOGICAL_AVAILABLE:
213 break; /* see below */
214 case SPAPR_DRC_STATE_LOGICAL_UNISOLATE:
215 case SPAPR_DRC_STATE_LOGICAL_CONFIGURED:
216 return RTAS_OUT_NO_SUCH_INDICATOR; /* not allowed */
217 default:
218 g_assert_not_reached();
221 drc->state = SPAPR_DRC_STATE_LOGICAL_UNUSABLE;
222 if (drc->unplug_requested) {
223 uint32_t drc_index = spapr_drc_index(drc);
224 trace_spapr_drc_set_allocation_state_finalizing(drc_index);
225 spapr_drc_detach(drc);
228 return RTAS_OUT_SUCCESS;
231 static char *spapr_drc_name(SpaprDrc *drc)
233 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
235 /* human-readable name for a DRC to encode into the DT
236 * description. this is mainly only used within a guest in place
237 * of the unique DRC index.
239 * in the case of VIO/PCI devices, it corresponds to a "location
240 * code" that maps a logical device/function (DRC index) to a
241 * physical (or virtual in the case of VIO) location in the system
242 * by chaining together the "location label" for each
243 * encapsulating component.
245 * since this is more to do with diagnosing physical hardware
246 * issues than guest compatibility, we choose location codes/DRC
247 * names that adhere to the documented format, but avoid encoding
248 * the entire topology information into the label/code, instead
249 * just using the location codes based on the labels for the
250 * endpoints (VIO/PCI adaptor connectors), which is basically just
251 * "C" followed by an integer ID.
253 * DRC names as documented by PAPR+ v2.7, 13.5.2.4
254 * location codes as documented by PAPR+ v2.7, 12.3.1.5
256 return g_strdup_printf("%s%d", drck->drc_name_prefix, drc->id);
260 * dr-entity-sense sensor value
261 * returned via get-sensor-state RTAS calls
262 * as expected by state diagram in PAPR+ 2.7, 13.4
263 * based on the current allocation/indicator/power states
264 * for the DR connector.
266 static SpaprDREntitySense physical_entity_sense(SpaprDrc *drc)
268 /* this assumes all PCI devices are assigned to a 'live insertion'
269 * power domain, where QEMU manages power state automatically as
270 * opposed to the guest. present, non-PCI resources are unaffected
271 * by power state.
273 return drc->dev ? SPAPR_DR_ENTITY_SENSE_PRESENT
274 : SPAPR_DR_ENTITY_SENSE_EMPTY;
277 static SpaprDREntitySense logical_entity_sense(SpaprDrc *drc)
279 switch (drc->state) {
280 case SPAPR_DRC_STATE_LOGICAL_UNUSABLE:
281 return SPAPR_DR_ENTITY_SENSE_UNUSABLE;
282 case SPAPR_DRC_STATE_LOGICAL_AVAILABLE:
283 case SPAPR_DRC_STATE_LOGICAL_UNISOLATE:
284 case SPAPR_DRC_STATE_LOGICAL_CONFIGURED:
285 g_assert(drc->dev);
286 return SPAPR_DR_ENTITY_SENSE_PRESENT;
287 default:
288 g_assert_not_reached();
292 static void prop_get_index(Object *obj, Visitor *v, const char *name,
293 void *opaque, Error **errp)
295 SpaprDrc *drc = SPAPR_DR_CONNECTOR(obj);
296 uint32_t value = spapr_drc_index(drc);
297 visit_type_uint32(v, name, &value, errp);
300 static void prop_get_fdt(Object *obj, Visitor *v, const char *name,
301 void *opaque, Error **errp)
303 SpaprDrc *drc = SPAPR_DR_CONNECTOR(obj);
304 QNull *null = NULL;
305 Error *err = NULL;
306 int fdt_offset_next, fdt_offset, fdt_depth;
307 void *fdt;
309 if (!drc->fdt) {
310 visit_type_null(v, NULL, &null, errp);
311 qobject_unref(null);
312 return;
315 fdt = drc->fdt;
316 fdt_offset = drc->fdt_start_offset;
317 fdt_depth = 0;
319 do {
320 const char *name = NULL;
321 const struct fdt_property *prop = NULL;
322 int prop_len = 0, name_len = 0;
323 uint32_t tag;
325 tag = fdt_next_tag(fdt, fdt_offset, &fdt_offset_next);
326 switch (tag) {
327 case FDT_BEGIN_NODE:
328 fdt_depth++;
329 name = fdt_get_name(fdt, fdt_offset, &name_len);
330 if (!visit_start_struct(v, name, NULL, 0, &err)) {
331 error_propagate(errp, err);
332 return;
334 break;
335 case FDT_END_NODE:
336 /* shouldn't ever see an FDT_END_NODE before FDT_BEGIN_NODE */
337 g_assert(fdt_depth > 0);
338 visit_check_struct(v, &err);
339 visit_end_struct(v, NULL);
340 if (err) {
341 error_propagate(errp, err);
342 return;
344 fdt_depth--;
345 break;
346 case FDT_PROP: {
347 int i;
348 prop = fdt_get_property_by_offset(fdt, fdt_offset, &prop_len);
349 name = fdt_string(fdt, fdt32_to_cpu(prop->nameoff));
350 if (!visit_start_list(v, name, NULL, 0, &err)) {
351 error_propagate(errp, err);
352 return;
354 for (i = 0; i < prop_len; i++) {
355 if (!visit_type_uint8(v, NULL, (uint8_t *)&prop->data[i],
356 &err)) {
357 error_propagate(errp, err);
358 return;
361 visit_check_list(v, &err);
362 visit_end_list(v, NULL);
363 if (err) {
364 error_propagate(errp, err);
365 return;
367 break;
369 default:
370 error_report("device FDT in unexpected state: %d", tag);
371 abort();
373 fdt_offset = fdt_offset_next;
374 } while (fdt_depth != 0);
377 void spapr_drc_attach(SpaprDrc *drc, DeviceState *d, Error **errp)
379 trace_spapr_drc_attach(spapr_drc_index(drc));
381 if (drc->dev) {
382 error_setg(errp, "an attached device is still awaiting release");
383 return;
385 g_assert((drc->state == SPAPR_DRC_STATE_LOGICAL_UNUSABLE)
386 || (drc->state == SPAPR_DRC_STATE_PHYSICAL_POWERON));
388 drc->dev = d;
390 object_property_add_link(OBJECT(drc), "device",
391 object_get_typename(OBJECT(drc->dev)),
392 (Object **)(&drc->dev),
393 NULL, 0);
396 static void spapr_drc_release(SpaprDrc *drc)
398 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
400 drck->release(drc->dev);
402 drc->unplug_requested = false;
403 g_free(drc->fdt);
404 drc->fdt = NULL;
405 drc->fdt_start_offset = 0;
406 object_property_del(OBJECT(drc), "device");
407 drc->dev = NULL;
410 void spapr_drc_detach(SpaprDrc *drc)
412 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
414 trace_spapr_drc_detach(spapr_drc_index(drc));
416 g_assert(drc->dev);
418 drc->unplug_requested = true;
420 if (drc->state != drck->empty_state) {
421 trace_spapr_drc_awaiting_quiesce(spapr_drc_index(drc));
422 return;
425 spapr_drc_release(drc);
428 void spapr_drc_reset(SpaprDrc *drc)
430 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
432 trace_spapr_drc_reset(spapr_drc_index(drc));
434 /* immediately upon reset we can safely assume DRCs whose devices
435 * are pending removal can be safely removed.
437 if (drc->unplug_requested) {
438 spapr_drc_release(drc);
441 if (drc->dev) {
442 /* A device present at reset is ready to go, same as coldplugged */
443 drc->state = drck->ready_state;
445 * Ensure that we are able to send the FDT fragment again
446 * via configure-connector call if the guest requests.
448 drc->ccs_offset = drc->fdt_start_offset;
449 drc->ccs_depth = 0;
450 } else {
451 drc->state = drck->empty_state;
452 drc->ccs_offset = -1;
453 drc->ccs_depth = -1;
457 static bool spapr_drc_unplug_requested_needed(void *opaque)
459 return spapr_drc_unplug_requested(opaque);
462 static const VMStateDescription vmstate_spapr_drc_unplug_requested = {
463 .name = "spapr_drc/unplug_requested",
464 .version_id = 1,
465 .minimum_version_id = 1,
466 .needed = spapr_drc_unplug_requested_needed,
467 .fields = (VMStateField []) {
468 VMSTATE_BOOL(unplug_requested, SpaprDrc),
469 VMSTATE_END_OF_LIST()
473 bool spapr_drc_transient(SpaprDrc *drc)
475 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
478 * If no dev is plugged in there is no need to migrate the DRC state
479 * nor to reset the DRC at CAS.
481 if (!drc->dev) {
482 return false;
486 * We need to reset the DRC at CAS or to migrate the DRC state if it's
487 * not equal to the expected long-term state, which is the same as the
488 * coldplugged initial state, or if an unplug request is pending.
490 return drc->state != drck->ready_state ||
491 spapr_drc_unplug_requested(drc);
494 static bool spapr_drc_needed(void *opaque)
496 return spapr_drc_transient(opaque);
499 static const VMStateDescription vmstate_spapr_drc = {
500 .name = "spapr_drc",
501 .version_id = 1,
502 .minimum_version_id = 1,
503 .needed = spapr_drc_needed,
504 .fields = (VMStateField []) {
505 VMSTATE_UINT32(state, SpaprDrc),
506 VMSTATE_END_OF_LIST()
508 .subsections = (const VMStateDescription * []) {
509 &vmstate_spapr_drc_unplug_requested,
510 NULL
514 static void realize(DeviceState *d, Error **errp)
516 SpaprDrc *drc = SPAPR_DR_CONNECTOR(d);
517 Object *root_container;
518 gchar *link_name;
519 char *child_name;
521 trace_spapr_drc_realize(spapr_drc_index(drc));
522 /* NOTE: we do this as part of realize/unrealize due to the fact
523 * that the guest will communicate with the DRC via RTAS calls
524 * referencing the global DRC index. By unlinking the DRC
525 * from DRC_CONTAINER_PATH/<drc_index> we effectively make it
526 * inaccessible by the guest, since lookups rely on this path
527 * existing in the composition tree
529 root_container = container_get(object_get_root(), DRC_CONTAINER_PATH);
530 link_name = g_strdup_printf("%x", spapr_drc_index(drc));
531 child_name = object_get_canonical_path_component(OBJECT(drc));
532 trace_spapr_drc_realize_child(spapr_drc_index(drc), child_name);
533 object_property_add_alias(root_container, link_name,
534 drc->owner, child_name);
535 g_free(child_name);
536 g_free(link_name);
537 vmstate_register(VMSTATE_IF(drc), spapr_drc_index(drc), &vmstate_spapr_drc,
538 drc);
539 trace_spapr_drc_realize_complete(spapr_drc_index(drc));
542 static void unrealize(DeviceState *d)
544 SpaprDrc *drc = SPAPR_DR_CONNECTOR(d);
545 Object *root_container;
546 gchar *name;
548 trace_spapr_drc_unrealize(spapr_drc_index(drc));
549 vmstate_unregister(VMSTATE_IF(drc), &vmstate_spapr_drc, drc);
550 root_container = container_get(object_get_root(), DRC_CONTAINER_PATH);
551 name = g_strdup_printf("%x", spapr_drc_index(drc));
552 object_property_del(root_container, name);
553 g_free(name);
556 SpaprDrc *spapr_dr_connector_new(Object *owner, const char *type,
557 uint32_t id)
559 SpaprDrc *drc = SPAPR_DR_CONNECTOR(object_new(type));
560 char *prop_name;
562 drc->id = id;
563 drc->owner = owner;
564 prop_name = g_strdup_printf("dr-connector[%"PRIu32"]",
565 spapr_drc_index(drc));
566 object_property_add_child(owner, prop_name, OBJECT(drc));
567 object_unref(OBJECT(drc));
568 qdev_realize(DEVICE(drc), NULL, NULL);
569 g_free(prop_name);
571 return drc;
574 static void spapr_dr_connector_instance_init(Object *obj)
576 SpaprDrc *drc = SPAPR_DR_CONNECTOR(obj);
577 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
579 object_property_add_uint32_ptr(obj, "id", &drc->id, OBJ_PROP_FLAG_READ);
580 object_property_add(obj, "index", "uint32", prop_get_index,
581 NULL, NULL, NULL);
582 object_property_add(obj, "fdt", "struct", prop_get_fdt,
583 NULL, NULL, NULL);
584 drc->state = drck->empty_state;
587 static void spapr_dr_connector_class_init(ObjectClass *k, void *data)
589 DeviceClass *dk = DEVICE_CLASS(k);
591 dk->realize = realize;
592 dk->unrealize = unrealize;
594 * Reason: it crashes FIXME find and document the real reason
596 dk->user_creatable = false;
599 static bool drc_physical_needed(void *opaque)
601 SpaprDrcPhysical *drcp = (SpaprDrcPhysical *)opaque;
602 SpaprDrc *drc = SPAPR_DR_CONNECTOR(drcp);
604 if ((drc->dev && (drcp->dr_indicator == SPAPR_DR_INDICATOR_ACTIVE))
605 || (!drc->dev && (drcp->dr_indicator == SPAPR_DR_INDICATOR_INACTIVE))) {
606 return false;
608 return true;
611 static const VMStateDescription vmstate_spapr_drc_physical = {
612 .name = "spapr_drc/physical",
613 .version_id = 1,
614 .minimum_version_id = 1,
615 .needed = drc_physical_needed,
616 .fields = (VMStateField []) {
617 VMSTATE_UINT32(dr_indicator, SpaprDrcPhysical),
618 VMSTATE_END_OF_LIST()
622 static void drc_physical_reset(void *opaque)
624 SpaprDrc *drc = SPAPR_DR_CONNECTOR(opaque);
625 SpaprDrcPhysical *drcp = SPAPR_DRC_PHYSICAL(drc);
627 if (drc->dev) {
628 drcp->dr_indicator = SPAPR_DR_INDICATOR_ACTIVE;
629 } else {
630 drcp->dr_indicator = SPAPR_DR_INDICATOR_INACTIVE;
634 static void realize_physical(DeviceState *d, Error **errp)
636 SpaprDrcPhysical *drcp = SPAPR_DRC_PHYSICAL(d);
637 Error *local_err = NULL;
639 realize(d, &local_err);
640 if (local_err) {
641 error_propagate(errp, local_err);
642 return;
645 vmstate_register(VMSTATE_IF(drcp),
646 spapr_drc_index(SPAPR_DR_CONNECTOR(drcp)),
647 &vmstate_spapr_drc_physical, drcp);
648 qemu_register_reset(drc_physical_reset, drcp);
651 static void unrealize_physical(DeviceState *d)
653 SpaprDrcPhysical *drcp = SPAPR_DRC_PHYSICAL(d);
655 unrealize(d);
656 vmstate_unregister(VMSTATE_IF(drcp), &vmstate_spapr_drc_physical, drcp);
657 qemu_unregister_reset(drc_physical_reset, drcp);
660 static void spapr_drc_physical_class_init(ObjectClass *k, void *data)
662 DeviceClass *dk = DEVICE_CLASS(k);
663 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
665 dk->realize = realize_physical;
666 dk->unrealize = unrealize_physical;
667 drck->dr_entity_sense = physical_entity_sense;
668 drck->isolate = drc_isolate_physical;
669 drck->unisolate = drc_unisolate_physical;
670 drck->ready_state = SPAPR_DRC_STATE_PHYSICAL_CONFIGURED;
671 drck->empty_state = SPAPR_DRC_STATE_PHYSICAL_POWERON;
674 static void spapr_drc_logical_class_init(ObjectClass *k, void *data)
676 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
678 drck->dr_entity_sense = logical_entity_sense;
679 drck->isolate = drc_isolate_logical;
680 drck->unisolate = drc_unisolate_logical;
681 drck->ready_state = SPAPR_DRC_STATE_LOGICAL_CONFIGURED;
682 drck->empty_state = SPAPR_DRC_STATE_LOGICAL_UNUSABLE;
685 static void spapr_drc_cpu_class_init(ObjectClass *k, void *data)
687 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
689 drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_CPU;
690 drck->typename = "CPU";
691 drck->drc_name_prefix = "CPU ";
692 drck->release = spapr_core_release;
693 drck->dt_populate = spapr_core_dt_populate;
696 static void spapr_drc_pci_class_init(ObjectClass *k, void *data)
698 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
700 drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_PCI;
701 drck->typename = "28";
702 drck->drc_name_prefix = "C";
703 drck->release = spapr_phb_remove_pci_device_cb;
704 drck->dt_populate = spapr_pci_dt_populate;
707 static void spapr_drc_lmb_class_init(ObjectClass *k, void *data)
709 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
711 drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_LMB;
712 drck->typename = "MEM";
713 drck->drc_name_prefix = "LMB ";
714 drck->release = spapr_lmb_release;
715 drck->dt_populate = spapr_lmb_dt_populate;
718 static void spapr_drc_phb_class_init(ObjectClass *k, void *data)
720 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
722 drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_PHB;
723 drck->typename = "PHB";
724 drck->drc_name_prefix = "PHB ";
725 drck->release = spapr_phb_release;
726 drck->dt_populate = spapr_phb_dt_populate;
729 static void spapr_drc_pmem_class_init(ObjectClass *k, void *data)
731 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
733 drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_PMEM;
734 drck->typename = "PMEM";
735 drck->drc_name_prefix = "PMEM ";
736 drck->release = NULL;
737 drck->dt_populate = spapr_pmem_dt_populate;
740 static const TypeInfo spapr_dr_connector_info = {
741 .name = TYPE_SPAPR_DR_CONNECTOR,
742 .parent = TYPE_DEVICE,
743 .instance_size = sizeof(SpaprDrc),
744 .instance_init = spapr_dr_connector_instance_init,
745 .class_size = sizeof(SpaprDrcClass),
746 .class_init = spapr_dr_connector_class_init,
747 .abstract = true,
750 static const TypeInfo spapr_drc_physical_info = {
751 .name = TYPE_SPAPR_DRC_PHYSICAL,
752 .parent = TYPE_SPAPR_DR_CONNECTOR,
753 .instance_size = sizeof(SpaprDrcPhysical),
754 .class_init = spapr_drc_physical_class_init,
755 .abstract = true,
758 static const TypeInfo spapr_drc_logical_info = {
759 .name = TYPE_SPAPR_DRC_LOGICAL,
760 .parent = TYPE_SPAPR_DR_CONNECTOR,
761 .class_init = spapr_drc_logical_class_init,
762 .abstract = true,
765 static const TypeInfo spapr_drc_cpu_info = {
766 .name = TYPE_SPAPR_DRC_CPU,
767 .parent = TYPE_SPAPR_DRC_LOGICAL,
768 .class_init = spapr_drc_cpu_class_init,
771 static const TypeInfo spapr_drc_pci_info = {
772 .name = TYPE_SPAPR_DRC_PCI,
773 .parent = TYPE_SPAPR_DRC_PHYSICAL,
774 .class_init = spapr_drc_pci_class_init,
777 static const TypeInfo spapr_drc_lmb_info = {
778 .name = TYPE_SPAPR_DRC_LMB,
779 .parent = TYPE_SPAPR_DRC_LOGICAL,
780 .class_init = spapr_drc_lmb_class_init,
783 static const TypeInfo spapr_drc_phb_info = {
784 .name = TYPE_SPAPR_DRC_PHB,
785 .parent = TYPE_SPAPR_DRC_LOGICAL,
786 .instance_size = sizeof(SpaprDrc),
787 .class_init = spapr_drc_phb_class_init,
790 static const TypeInfo spapr_drc_pmem_info = {
791 .name = TYPE_SPAPR_DRC_PMEM,
792 .parent = TYPE_SPAPR_DRC_LOGICAL,
793 .class_init = spapr_drc_pmem_class_init,
796 /* helper functions for external users */
798 SpaprDrc *spapr_drc_by_index(uint32_t index)
800 Object *obj;
801 gchar *name;
803 name = g_strdup_printf("%s/%x", DRC_CONTAINER_PATH, index);
804 obj = object_resolve_path(name, NULL);
805 g_free(name);
807 return !obj ? NULL : SPAPR_DR_CONNECTOR(obj);
810 SpaprDrc *spapr_drc_by_id(const char *type, uint32_t id)
812 SpaprDrcClass *drck
813 = SPAPR_DR_CONNECTOR_CLASS(object_class_by_name(type));
815 return spapr_drc_by_index(drck->typeshift << DRC_INDEX_TYPE_SHIFT
816 | (id & DRC_INDEX_ID_MASK));
820 * spapr_dt_drc
822 * @fdt: libfdt device tree
823 * @path: path in the DT to generate properties
824 * @owner: parent Object/DeviceState for which to generate DRC
825 * descriptions for
826 * @drc_type_mask: mask of SpaprDrcType values corresponding
827 * to the types of DRCs to generate entries for
829 * generate OF properties to describe DRC topology/indices to guests
831 * as documented in PAPR+ v2.1, 13.5.2
833 int spapr_dt_drc(void *fdt, int offset, Object *owner, uint32_t drc_type_mask)
835 Object *root_container;
836 ObjectProperty *prop;
837 ObjectPropertyIterator iter;
838 uint32_t drc_count = 0;
839 GArray *drc_indexes, *drc_power_domains;
840 GString *drc_names, *drc_types;
841 int ret;
843 /* the first entry of each properties is a 32-bit integer encoding
844 * the number of elements in the array. we won't know this until
845 * we complete the iteration through all the matching DRCs, but
846 * reserve the space now and set the offsets accordingly so we
847 * can fill them in later.
849 drc_indexes = g_array_new(false, true, sizeof(uint32_t));
850 drc_indexes = g_array_set_size(drc_indexes, 1);
851 drc_power_domains = g_array_new(false, true, sizeof(uint32_t));
852 drc_power_domains = g_array_set_size(drc_power_domains, 1);
853 drc_names = g_string_set_size(g_string_new(NULL), sizeof(uint32_t));
854 drc_types = g_string_set_size(g_string_new(NULL), sizeof(uint32_t));
856 /* aliases for all DRConnector objects will be rooted in QOM
857 * composition tree at DRC_CONTAINER_PATH
859 root_container = container_get(object_get_root(), DRC_CONTAINER_PATH);
861 object_property_iter_init(&iter, root_container);
862 while ((prop = object_property_iter_next(&iter))) {
863 Object *obj;
864 SpaprDrc *drc;
865 SpaprDrcClass *drck;
866 char *drc_name = NULL;
867 uint32_t drc_index, drc_power_domain;
869 if (!strstart(prop->type, "link<", NULL)) {
870 continue;
873 obj = object_property_get_link(root_container, prop->name, NULL);
874 drc = SPAPR_DR_CONNECTOR(obj);
875 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
877 if (owner && (drc->owner != owner)) {
878 continue;
881 if ((spapr_drc_type(drc) & drc_type_mask) == 0) {
882 continue;
885 drc_count++;
887 /* ibm,drc-indexes */
888 drc_index = cpu_to_be32(spapr_drc_index(drc));
889 g_array_append_val(drc_indexes, drc_index);
891 /* ibm,drc-power-domains */
892 drc_power_domain = cpu_to_be32(-1);
893 g_array_append_val(drc_power_domains, drc_power_domain);
895 /* ibm,drc-names */
896 drc_name = spapr_drc_name(drc);
897 drc_names = g_string_append(drc_names, drc_name);
898 drc_names = g_string_insert_len(drc_names, -1, "\0", 1);
899 g_free(drc_name);
901 /* ibm,drc-types */
902 drc_types = g_string_append(drc_types, drck->typename);
903 drc_types = g_string_insert_len(drc_types, -1, "\0", 1);
906 /* now write the drc count into the space we reserved at the
907 * beginning of the arrays previously
909 *(uint32_t *)drc_indexes->data = cpu_to_be32(drc_count);
910 *(uint32_t *)drc_power_domains->data = cpu_to_be32(drc_count);
911 *(uint32_t *)drc_names->str = cpu_to_be32(drc_count);
912 *(uint32_t *)drc_types->str = cpu_to_be32(drc_count);
914 ret = fdt_setprop(fdt, offset, "ibm,drc-indexes",
915 drc_indexes->data,
916 drc_indexes->len * sizeof(uint32_t));
917 if (ret) {
918 error_report("Couldn't create ibm,drc-indexes property");
919 goto out;
922 ret = fdt_setprop(fdt, offset, "ibm,drc-power-domains",
923 drc_power_domains->data,
924 drc_power_domains->len * sizeof(uint32_t));
925 if (ret) {
926 error_report("Couldn't finalize ibm,drc-power-domains property");
927 goto out;
930 ret = fdt_setprop(fdt, offset, "ibm,drc-names",
931 drc_names->str, drc_names->len);
932 if (ret) {
933 error_report("Couldn't finalize ibm,drc-names property");
934 goto out;
937 ret = fdt_setprop(fdt, offset, "ibm,drc-types",
938 drc_types->str, drc_types->len);
939 if (ret) {
940 error_report("Couldn't finalize ibm,drc-types property");
941 goto out;
944 out:
945 g_array_free(drc_indexes, true);
946 g_array_free(drc_power_domains, true);
947 g_string_free(drc_names, true);
948 g_string_free(drc_types, true);
950 return ret;
954 * RTAS calls
957 static uint32_t rtas_set_isolation_state(uint32_t idx, uint32_t state)
959 SpaprDrc *drc = spapr_drc_by_index(idx);
960 SpaprDrcClass *drck;
962 if (!drc) {
963 return RTAS_OUT_NO_SUCH_INDICATOR;
966 trace_spapr_drc_set_isolation_state(spapr_drc_index(drc), state);
968 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
970 switch (state) {
971 case SPAPR_DR_ISOLATION_STATE_ISOLATED:
972 return drck->isolate(drc);
974 case SPAPR_DR_ISOLATION_STATE_UNISOLATED:
975 return drck->unisolate(drc);
977 default:
978 return RTAS_OUT_PARAM_ERROR;
982 static uint32_t rtas_set_allocation_state(uint32_t idx, uint32_t state)
984 SpaprDrc *drc = spapr_drc_by_index(idx);
986 if (!drc || !object_dynamic_cast(OBJECT(drc), TYPE_SPAPR_DRC_LOGICAL)) {
987 return RTAS_OUT_NO_SUCH_INDICATOR;
990 trace_spapr_drc_set_allocation_state(spapr_drc_index(drc), state);
992 switch (state) {
993 case SPAPR_DR_ALLOCATION_STATE_USABLE:
994 return drc_set_usable(drc);
996 case SPAPR_DR_ALLOCATION_STATE_UNUSABLE:
997 return drc_set_unusable(drc);
999 default:
1000 return RTAS_OUT_PARAM_ERROR;
1004 static uint32_t rtas_set_dr_indicator(uint32_t idx, uint32_t state)
1006 SpaprDrc *drc = spapr_drc_by_index(idx);
1008 if (!drc || !object_dynamic_cast(OBJECT(drc), TYPE_SPAPR_DRC_PHYSICAL)) {
1009 return RTAS_OUT_NO_SUCH_INDICATOR;
1011 if ((state != SPAPR_DR_INDICATOR_INACTIVE)
1012 && (state != SPAPR_DR_INDICATOR_ACTIVE)
1013 && (state != SPAPR_DR_INDICATOR_IDENTIFY)
1014 && (state != SPAPR_DR_INDICATOR_ACTION)) {
1015 return RTAS_OUT_PARAM_ERROR; /* bad state parameter */
1018 trace_spapr_drc_set_dr_indicator(idx, state);
1019 SPAPR_DRC_PHYSICAL(drc)->dr_indicator = state;
1020 return RTAS_OUT_SUCCESS;
1023 static void rtas_set_indicator(PowerPCCPU *cpu, SpaprMachineState *spapr,
1024 uint32_t token,
1025 uint32_t nargs, target_ulong args,
1026 uint32_t nret, target_ulong rets)
1028 uint32_t type, idx, state;
1029 uint32_t ret = RTAS_OUT_SUCCESS;
1031 if (nargs != 3 || nret != 1) {
1032 ret = RTAS_OUT_PARAM_ERROR;
1033 goto out;
1036 type = rtas_ld(args, 0);
1037 idx = rtas_ld(args, 1);
1038 state = rtas_ld(args, 2);
1040 switch (type) {
1041 case RTAS_SENSOR_TYPE_ISOLATION_STATE:
1042 ret = rtas_set_isolation_state(idx, state);
1043 break;
1044 case RTAS_SENSOR_TYPE_DR:
1045 ret = rtas_set_dr_indicator(idx, state);
1046 break;
1047 case RTAS_SENSOR_TYPE_ALLOCATION_STATE:
1048 ret = rtas_set_allocation_state(idx, state);
1049 break;
1050 default:
1051 ret = RTAS_OUT_NOT_SUPPORTED;
1054 out:
1055 rtas_st(rets, 0, ret);
1058 static void rtas_get_sensor_state(PowerPCCPU *cpu, SpaprMachineState *spapr,
1059 uint32_t token, uint32_t nargs,
1060 target_ulong args, uint32_t nret,
1061 target_ulong rets)
1063 uint32_t sensor_type;
1064 uint32_t sensor_index;
1065 uint32_t sensor_state = 0;
1066 SpaprDrc *drc;
1067 SpaprDrcClass *drck;
1068 uint32_t ret = RTAS_OUT_SUCCESS;
1070 if (nargs != 2 || nret != 2) {
1071 ret = RTAS_OUT_PARAM_ERROR;
1072 goto out;
1075 sensor_type = rtas_ld(args, 0);
1076 sensor_index = rtas_ld(args, 1);
1078 if (sensor_type != RTAS_SENSOR_TYPE_ENTITY_SENSE) {
1079 /* currently only DR-related sensors are implemented */
1080 trace_spapr_rtas_get_sensor_state_not_supported(sensor_index,
1081 sensor_type);
1082 ret = RTAS_OUT_NOT_SUPPORTED;
1083 goto out;
1086 drc = spapr_drc_by_index(sensor_index);
1087 if (!drc) {
1088 trace_spapr_rtas_get_sensor_state_invalid(sensor_index);
1089 ret = RTAS_OUT_PARAM_ERROR;
1090 goto out;
1092 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
1093 sensor_state = drck->dr_entity_sense(drc);
1095 out:
1096 rtas_st(rets, 0, ret);
1097 rtas_st(rets, 1, sensor_state);
1100 /* configure-connector work area offsets, int32_t units for field
1101 * indexes, bytes for field offset/len values.
1103 * as documented by PAPR+ v2.7, 13.5.3.5
1105 #define CC_IDX_NODE_NAME_OFFSET 2
1106 #define CC_IDX_PROP_NAME_OFFSET 2
1107 #define CC_IDX_PROP_LEN 3
1108 #define CC_IDX_PROP_DATA_OFFSET 4
1109 #define CC_VAL_DATA_OFFSET ((CC_IDX_PROP_DATA_OFFSET + 1) * 4)
1110 #define CC_WA_LEN 4096
1112 static void configure_connector_st(target_ulong addr, target_ulong offset,
1113 const void *buf, size_t len)
1115 cpu_physical_memory_write(ppc64_phys_to_real(addr + offset),
1116 buf, MIN(len, CC_WA_LEN - offset));
1119 static void rtas_ibm_configure_connector(PowerPCCPU *cpu,
1120 SpaprMachineState *spapr,
1121 uint32_t token, uint32_t nargs,
1122 target_ulong args, uint32_t nret,
1123 target_ulong rets)
1125 uint64_t wa_addr;
1126 uint64_t wa_offset;
1127 uint32_t drc_index;
1128 SpaprDrc *drc;
1129 SpaprDrcClass *drck;
1130 SpaprDRCCResponse resp = SPAPR_DR_CC_RESPONSE_CONTINUE;
1131 int rc;
1133 if (nargs != 2 || nret != 1) {
1134 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
1135 return;
1138 wa_addr = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 0);
1140 drc_index = rtas_ld(wa_addr, 0);
1141 drc = spapr_drc_by_index(drc_index);
1142 if (!drc) {
1143 trace_spapr_rtas_ibm_configure_connector_invalid(drc_index);
1144 rc = RTAS_OUT_PARAM_ERROR;
1145 goto out;
1148 if ((drc->state != SPAPR_DRC_STATE_LOGICAL_UNISOLATE)
1149 && (drc->state != SPAPR_DRC_STATE_PHYSICAL_UNISOLATE)
1150 && (drc->state != SPAPR_DRC_STATE_LOGICAL_CONFIGURED)
1151 && (drc->state != SPAPR_DRC_STATE_PHYSICAL_CONFIGURED)) {
1153 * Need to unisolate the device before configuring
1154 * or it should already be in configured state to
1155 * allow configure-connector be called repeatedly.
1157 rc = SPAPR_DR_CC_RESPONSE_NOT_CONFIGURABLE;
1158 goto out;
1161 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
1163 if (!drc->fdt) {
1164 void *fdt;
1165 int fdt_size;
1167 fdt = create_device_tree(&fdt_size);
1169 if (drck->dt_populate(drc, spapr, fdt, &drc->fdt_start_offset,
1170 NULL)) {
1171 g_free(fdt);
1172 rc = SPAPR_DR_CC_RESPONSE_ERROR;
1173 goto out;
1176 drc->fdt = fdt;
1177 drc->ccs_offset = drc->fdt_start_offset;
1178 drc->ccs_depth = 0;
1181 do {
1182 uint32_t tag;
1183 const char *name;
1184 const struct fdt_property *prop;
1185 int fdt_offset_next, prop_len;
1187 tag = fdt_next_tag(drc->fdt, drc->ccs_offset, &fdt_offset_next);
1189 switch (tag) {
1190 case FDT_BEGIN_NODE:
1191 drc->ccs_depth++;
1192 name = fdt_get_name(drc->fdt, drc->ccs_offset, NULL);
1194 /* provide the name of the next OF node */
1195 wa_offset = CC_VAL_DATA_OFFSET;
1196 rtas_st(wa_addr, CC_IDX_NODE_NAME_OFFSET, wa_offset);
1197 configure_connector_st(wa_addr, wa_offset, name, strlen(name) + 1);
1198 resp = SPAPR_DR_CC_RESPONSE_NEXT_CHILD;
1199 break;
1200 case FDT_END_NODE:
1201 drc->ccs_depth--;
1202 if (drc->ccs_depth == 0) {
1203 uint32_t drc_index = spapr_drc_index(drc);
1205 /* done sending the device tree, move to configured state */
1206 trace_spapr_drc_set_configured(drc_index);
1207 drc->state = drck->ready_state;
1209 * Ensure that we are able to send the FDT fragment
1210 * again via configure-connector call if the guest requests.
1212 drc->ccs_offset = drc->fdt_start_offset;
1213 drc->ccs_depth = 0;
1214 fdt_offset_next = drc->fdt_start_offset;
1215 resp = SPAPR_DR_CC_RESPONSE_SUCCESS;
1216 } else {
1217 resp = SPAPR_DR_CC_RESPONSE_PREV_PARENT;
1219 break;
1220 case FDT_PROP:
1221 prop = fdt_get_property_by_offset(drc->fdt, drc->ccs_offset,
1222 &prop_len);
1223 name = fdt_string(drc->fdt, fdt32_to_cpu(prop->nameoff));
1225 /* provide the name of the next OF property */
1226 wa_offset = CC_VAL_DATA_OFFSET;
1227 rtas_st(wa_addr, CC_IDX_PROP_NAME_OFFSET, wa_offset);
1228 configure_connector_st(wa_addr, wa_offset, name, strlen(name) + 1);
1230 /* provide the length and value of the OF property. data gets
1231 * placed immediately after NULL terminator of the OF property's
1232 * name string
1234 wa_offset += strlen(name) + 1,
1235 rtas_st(wa_addr, CC_IDX_PROP_LEN, prop_len);
1236 rtas_st(wa_addr, CC_IDX_PROP_DATA_OFFSET, wa_offset);
1237 configure_connector_st(wa_addr, wa_offset, prop->data, prop_len);
1238 resp = SPAPR_DR_CC_RESPONSE_NEXT_PROPERTY;
1239 break;
1240 case FDT_END:
1241 resp = SPAPR_DR_CC_RESPONSE_ERROR;
1242 default:
1243 /* keep seeking for an actionable tag */
1244 break;
1246 if (drc->ccs_offset >= 0) {
1247 drc->ccs_offset = fdt_offset_next;
1249 } while (resp == SPAPR_DR_CC_RESPONSE_CONTINUE);
1251 rc = resp;
1252 out:
1253 rtas_st(rets, 0, rc);
1256 static void spapr_drc_register_types(void)
1258 type_register_static(&spapr_dr_connector_info);
1259 type_register_static(&spapr_drc_physical_info);
1260 type_register_static(&spapr_drc_logical_info);
1261 type_register_static(&spapr_drc_cpu_info);
1262 type_register_static(&spapr_drc_pci_info);
1263 type_register_static(&spapr_drc_lmb_info);
1264 type_register_static(&spapr_drc_phb_info);
1265 type_register_static(&spapr_drc_pmem_info);
1267 spapr_rtas_register(RTAS_SET_INDICATOR, "set-indicator",
1268 rtas_set_indicator);
1269 spapr_rtas_register(RTAS_GET_SENSOR_STATE, "get-sensor-state",
1270 rtas_get_sensor_state);
1271 spapr_rtas_register(RTAS_IBM_CONFIGURE_CONNECTOR, "ibm,configure-connector",
1272 rtas_ibm_configure_connector);
1274 type_init(spapr_drc_register_types)