hw/arm: gsj add pca9548
[qemu.git] / tcg / region.c
blob00b0c3b0912c54fed12db73d5e9e7f7a57923576
1 /*
2 * Memory region management for Tiny Code Generator for QEMU
4 * Copyright (c) 2008 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
25 #include "qemu/osdep.h"
26 #include "qemu/units.h"
27 #include "qapi/error.h"
28 #include "exec/exec-all.h"
29 #include "tcg/tcg.h"
30 #include "tcg-internal.h"
33 struct tcg_region_tree {
34 QemuMutex lock;
35 GTree *tree;
36 /* padding to avoid false sharing is computed at run-time */
40 * We divide code_gen_buffer into equally-sized "regions" that TCG threads
41 * dynamically allocate from as demand dictates. Given appropriate region
42 * sizing, this minimizes flushes even when some TCG threads generate a lot
43 * more code than others.
45 struct tcg_region_state {
46 QemuMutex lock;
48 /* fields set at init time */
49 void *start_aligned;
50 void *after_prologue;
51 size_t n;
52 size_t size; /* size of one region */
53 size_t stride; /* .size + guard size */
54 size_t total_size; /* size of entire buffer, >= n * stride */
56 /* fields protected by the lock */
57 size_t current; /* current region index */
58 size_t agg_size_full; /* aggregate size of full regions */
61 static struct tcg_region_state region;
64 * This is an array of struct tcg_region_tree's, with padding.
65 * We use void * to simplify the computation of region_trees[i]; each
66 * struct is found every tree_size bytes.
68 static void *region_trees;
69 static size_t tree_size;
71 bool in_code_gen_buffer(const void *p)
74 * Much like it is valid to have a pointer to the byte past the
75 * end of an array (so long as you don't dereference it), allow
76 * a pointer to the byte past the end of the code gen buffer.
78 return (size_t)(p - region.start_aligned) <= region.total_size;
81 #ifdef CONFIG_DEBUG_TCG
82 const void *tcg_splitwx_to_rx(void *rw)
84 /* Pass NULL pointers unchanged. */
85 if (rw) {
86 g_assert(in_code_gen_buffer(rw));
87 rw += tcg_splitwx_diff;
89 return rw;
92 void *tcg_splitwx_to_rw(const void *rx)
94 /* Pass NULL pointers unchanged. */
95 if (rx) {
96 rx -= tcg_splitwx_diff;
97 /* Assert that we end with a pointer in the rw region. */
98 g_assert(in_code_gen_buffer(rx));
100 return (void *)rx;
102 #endif /* CONFIG_DEBUG_TCG */
104 /* compare a pointer @ptr and a tb_tc @s */
105 static int ptr_cmp_tb_tc(const void *ptr, const struct tb_tc *s)
107 if (ptr >= s->ptr + s->size) {
108 return 1;
109 } else if (ptr < s->ptr) {
110 return -1;
112 return 0;
115 static gint tb_tc_cmp(gconstpointer ap, gconstpointer bp)
117 const struct tb_tc *a = ap;
118 const struct tb_tc *b = bp;
121 * When both sizes are set, we know this isn't a lookup.
122 * This is the most likely case: every TB must be inserted; lookups
123 * are a lot less frequent.
125 if (likely(a->size && b->size)) {
126 if (a->ptr > b->ptr) {
127 return 1;
128 } else if (a->ptr < b->ptr) {
129 return -1;
131 /* a->ptr == b->ptr should happen only on deletions */
132 g_assert(a->size == b->size);
133 return 0;
136 * All lookups have either .size field set to 0.
137 * From the glib sources we see that @ap is always the lookup key. However
138 * the docs provide no guarantee, so we just mark this case as likely.
140 if (likely(a->size == 0)) {
141 return ptr_cmp_tb_tc(a->ptr, b);
143 return ptr_cmp_tb_tc(b->ptr, a);
146 static void tcg_region_trees_init(void)
148 size_t i;
150 tree_size = ROUND_UP(sizeof(struct tcg_region_tree), qemu_dcache_linesize);
151 region_trees = qemu_memalign(qemu_dcache_linesize, region.n * tree_size);
152 for (i = 0; i < region.n; i++) {
153 struct tcg_region_tree *rt = region_trees + i * tree_size;
155 qemu_mutex_init(&rt->lock);
156 rt->tree = g_tree_new(tb_tc_cmp);
160 static struct tcg_region_tree *tc_ptr_to_region_tree(const void *p)
162 size_t region_idx;
165 * Like tcg_splitwx_to_rw, with no assert. The pc may come from
166 * a signal handler over which the caller has no control.
168 if (!in_code_gen_buffer(p)) {
169 p -= tcg_splitwx_diff;
170 if (!in_code_gen_buffer(p)) {
171 return NULL;
175 if (p < region.start_aligned) {
176 region_idx = 0;
177 } else {
178 ptrdiff_t offset = p - region.start_aligned;
180 if (offset > region.stride * (region.n - 1)) {
181 region_idx = region.n - 1;
182 } else {
183 region_idx = offset / region.stride;
186 return region_trees + region_idx * tree_size;
189 void tcg_tb_insert(TranslationBlock *tb)
191 struct tcg_region_tree *rt = tc_ptr_to_region_tree(tb->tc.ptr);
193 g_assert(rt != NULL);
194 qemu_mutex_lock(&rt->lock);
195 g_tree_insert(rt->tree, &tb->tc, tb);
196 qemu_mutex_unlock(&rt->lock);
199 void tcg_tb_remove(TranslationBlock *tb)
201 struct tcg_region_tree *rt = tc_ptr_to_region_tree(tb->tc.ptr);
203 g_assert(rt != NULL);
204 qemu_mutex_lock(&rt->lock);
205 g_tree_remove(rt->tree, &tb->tc);
206 qemu_mutex_unlock(&rt->lock);
210 * Find the TB 'tb' such that
211 * tb->tc.ptr <= tc_ptr < tb->tc.ptr + tb->tc.size
212 * Return NULL if not found.
214 TranslationBlock *tcg_tb_lookup(uintptr_t tc_ptr)
216 struct tcg_region_tree *rt = tc_ptr_to_region_tree((void *)tc_ptr);
217 TranslationBlock *tb;
218 struct tb_tc s = { .ptr = (void *)tc_ptr };
220 if (rt == NULL) {
221 return NULL;
224 qemu_mutex_lock(&rt->lock);
225 tb = g_tree_lookup(rt->tree, &s);
226 qemu_mutex_unlock(&rt->lock);
227 return tb;
230 static void tcg_region_tree_lock_all(void)
232 size_t i;
234 for (i = 0; i < region.n; i++) {
235 struct tcg_region_tree *rt = region_trees + i * tree_size;
237 qemu_mutex_lock(&rt->lock);
241 static void tcg_region_tree_unlock_all(void)
243 size_t i;
245 for (i = 0; i < region.n; i++) {
246 struct tcg_region_tree *rt = region_trees + i * tree_size;
248 qemu_mutex_unlock(&rt->lock);
252 void tcg_tb_foreach(GTraverseFunc func, gpointer user_data)
254 size_t i;
256 tcg_region_tree_lock_all();
257 for (i = 0; i < region.n; i++) {
258 struct tcg_region_tree *rt = region_trees + i * tree_size;
260 g_tree_foreach(rt->tree, func, user_data);
262 tcg_region_tree_unlock_all();
265 size_t tcg_nb_tbs(void)
267 size_t nb_tbs = 0;
268 size_t i;
270 tcg_region_tree_lock_all();
271 for (i = 0; i < region.n; i++) {
272 struct tcg_region_tree *rt = region_trees + i * tree_size;
274 nb_tbs += g_tree_nnodes(rt->tree);
276 tcg_region_tree_unlock_all();
277 return nb_tbs;
280 static gboolean tcg_region_tree_traverse(gpointer k, gpointer v, gpointer data)
282 TranslationBlock *tb = v;
284 tb_destroy(tb);
285 return FALSE;
288 static void tcg_region_tree_reset_all(void)
290 size_t i;
292 tcg_region_tree_lock_all();
293 for (i = 0; i < region.n; i++) {
294 struct tcg_region_tree *rt = region_trees + i * tree_size;
296 g_tree_foreach(rt->tree, tcg_region_tree_traverse, NULL);
297 /* Increment the refcount first so that destroy acts as a reset */
298 g_tree_ref(rt->tree);
299 g_tree_destroy(rt->tree);
301 tcg_region_tree_unlock_all();
304 static void tcg_region_bounds(size_t curr_region, void **pstart, void **pend)
306 void *start, *end;
308 start = region.start_aligned + curr_region * region.stride;
309 end = start + region.size;
311 if (curr_region == 0) {
312 start = region.after_prologue;
314 /* The final region may have a few extra pages due to earlier rounding. */
315 if (curr_region == region.n - 1) {
316 end = region.start_aligned + region.total_size;
319 *pstart = start;
320 *pend = end;
323 static void tcg_region_assign(TCGContext *s, size_t curr_region)
325 void *start, *end;
327 tcg_region_bounds(curr_region, &start, &end);
329 s->code_gen_buffer = start;
330 s->code_gen_ptr = start;
331 s->code_gen_buffer_size = end - start;
332 s->code_gen_highwater = end - TCG_HIGHWATER;
335 static bool tcg_region_alloc__locked(TCGContext *s)
337 if (region.current == region.n) {
338 return true;
340 tcg_region_assign(s, region.current);
341 region.current++;
342 return false;
346 * Request a new region once the one in use has filled up.
347 * Returns true on error.
349 bool tcg_region_alloc(TCGContext *s)
351 bool err;
352 /* read the region size now; alloc__locked will overwrite it on success */
353 size_t size_full = s->code_gen_buffer_size;
355 qemu_mutex_lock(&region.lock);
356 err = tcg_region_alloc__locked(s);
357 if (!err) {
358 region.agg_size_full += size_full - TCG_HIGHWATER;
360 qemu_mutex_unlock(&region.lock);
361 return err;
365 * Perform a context's first region allocation.
366 * This function does _not_ increment region.agg_size_full.
368 static void tcg_region_initial_alloc__locked(TCGContext *s)
370 bool err = tcg_region_alloc__locked(s);
371 g_assert(!err);
374 void tcg_region_initial_alloc(TCGContext *s)
376 qemu_mutex_lock(&region.lock);
377 tcg_region_initial_alloc__locked(s);
378 qemu_mutex_unlock(&region.lock);
381 /* Call from a safe-work context */
382 void tcg_region_reset_all(void)
384 unsigned int n_ctxs = qatomic_read(&tcg_cur_ctxs);
385 unsigned int i;
387 qemu_mutex_lock(&region.lock);
388 region.current = 0;
389 region.agg_size_full = 0;
391 for (i = 0; i < n_ctxs; i++) {
392 TCGContext *s = qatomic_read(&tcg_ctxs[i]);
393 tcg_region_initial_alloc__locked(s);
395 qemu_mutex_unlock(&region.lock);
397 tcg_region_tree_reset_all();
400 static size_t tcg_n_regions(size_t tb_size, unsigned max_cpus)
402 #ifdef CONFIG_USER_ONLY
403 return 1;
404 #else
405 size_t n_regions;
408 * It is likely that some vCPUs will translate more code than others,
409 * so we first try to set more regions than max_cpus, with those regions
410 * being of reasonable size. If that's not possible we make do by evenly
411 * dividing the code_gen_buffer among the vCPUs.
413 /* Use a single region if all we have is one vCPU thread */
414 if (max_cpus == 1 || !qemu_tcg_mttcg_enabled()) {
415 return 1;
419 * Try to have more regions than max_cpus, with each region being >= 2 MB.
420 * If we can't, then just allocate one region per vCPU thread.
422 n_regions = tb_size / (2 * MiB);
423 if (n_regions <= max_cpus) {
424 return max_cpus;
426 return MIN(n_regions, max_cpus * 8);
427 #endif
431 * Minimum size of the code gen buffer. This number is randomly chosen,
432 * but not so small that we can't have a fair number of TB's live.
434 * Maximum size, MAX_CODE_GEN_BUFFER_SIZE, is defined in tcg-target.h.
435 * Unless otherwise indicated, this is constrained by the range of
436 * direct branches on the host cpu, as used by the TCG implementation
437 * of goto_tb.
439 #define MIN_CODE_GEN_BUFFER_SIZE (1 * MiB)
441 #if TCG_TARGET_REG_BITS == 32
442 #define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (32 * MiB)
443 #ifdef CONFIG_USER_ONLY
445 * For user mode on smaller 32 bit systems we may run into trouble
446 * allocating big chunks of data in the right place. On these systems
447 * we utilise a static code generation buffer directly in the binary.
449 #define USE_STATIC_CODE_GEN_BUFFER
450 #endif
451 #else /* TCG_TARGET_REG_BITS == 64 */
452 #ifdef CONFIG_USER_ONLY
454 * As user-mode emulation typically means running multiple instances
455 * of the translator don't go too nuts with our default code gen
456 * buffer lest we make things too hard for the OS.
458 #define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (128 * MiB)
459 #else
461 * We expect most system emulation to run one or two guests per host.
462 * Users running large scale system emulation may want to tweak their
463 * runtime setup via the tb-size control on the command line.
465 #define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (1 * GiB)
466 #endif
467 #endif
469 #define DEFAULT_CODE_GEN_BUFFER_SIZE \
470 (DEFAULT_CODE_GEN_BUFFER_SIZE_1 < MAX_CODE_GEN_BUFFER_SIZE \
471 ? DEFAULT_CODE_GEN_BUFFER_SIZE_1 : MAX_CODE_GEN_BUFFER_SIZE)
473 #ifdef __mips__
475 * In order to use J and JAL within the code_gen_buffer, we require
476 * that the buffer not cross a 256MB boundary.
478 static inline bool cross_256mb(void *addr, size_t size)
480 return ((uintptr_t)addr ^ ((uintptr_t)addr + size)) & ~0x0ffffffful;
484 * We weren't able to allocate a buffer without crossing that boundary,
485 * so make do with the larger portion of the buffer that doesn't cross.
486 * Returns the new base and size of the buffer in *obuf and *osize.
488 static inline void split_cross_256mb(void **obuf, size_t *osize,
489 void *buf1, size_t size1)
491 void *buf2 = (void *)(((uintptr_t)buf1 + size1) & ~0x0ffffffful);
492 size_t size2 = buf1 + size1 - buf2;
494 size1 = buf2 - buf1;
495 if (size1 < size2) {
496 size1 = size2;
497 buf1 = buf2;
500 *obuf = buf1;
501 *osize = size1;
503 #endif
505 #ifdef USE_STATIC_CODE_GEN_BUFFER
506 static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
507 __attribute__((aligned(CODE_GEN_ALIGN)));
509 static int alloc_code_gen_buffer(size_t tb_size, int splitwx, Error **errp)
511 void *buf, *end;
512 size_t size;
514 if (splitwx > 0) {
515 error_setg(errp, "jit split-wx not supported");
516 return -1;
519 /* page-align the beginning and end of the buffer */
520 buf = static_code_gen_buffer;
521 end = static_code_gen_buffer + sizeof(static_code_gen_buffer);
522 buf = QEMU_ALIGN_PTR_UP(buf, qemu_real_host_page_size);
523 end = QEMU_ALIGN_PTR_DOWN(end, qemu_real_host_page_size);
525 size = end - buf;
527 /* Honor a command-line option limiting the size of the buffer. */
528 if (size > tb_size) {
529 size = QEMU_ALIGN_DOWN(tb_size, qemu_real_host_page_size);
532 #ifdef __mips__
533 if (cross_256mb(buf, size)) {
534 split_cross_256mb(&buf, &size, buf, size);
536 #endif
538 region.start_aligned = buf;
539 region.total_size = size;
541 return PROT_READ | PROT_WRITE;
543 #elif defined(_WIN32)
544 static int alloc_code_gen_buffer(size_t size, int splitwx, Error **errp)
546 void *buf;
548 if (splitwx > 0) {
549 error_setg(errp, "jit split-wx not supported");
550 return -1;
553 buf = VirtualAlloc(NULL, size, MEM_RESERVE | MEM_COMMIT,
554 PAGE_EXECUTE_READWRITE);
555 if (buf == NULL) {
556 error_setg_win32(errp, GetLastError(),
557 "allocate %zu bytes for jit buffer", size);
558 return false;
561 region.start_aligned = buf;
562 region.total_size = size;
564 return PAGE_READ | PAGE_WRITE | PAGE_EXEC;
566 #else
567 static int alloc_code_gen_buffer_anon(size_t size, int prot,
568 int flags, Error **errp)
570 void *buf;
572 buf = mmap(NULL, size, prot, flags, -1, 0);
573 if (buf == MAP_FAILED) {
574 error_setg_errno(errp, errno,
575 "allocate %zu bytes for jit buffer", size);
576 return -1;
579 #ifdef __mips__
580 if (cross_256mb(buf, size)) {
582 * Try again, with the original still mapped, to avoid re-acquiring
583 * the same 256mb crossing.
585 size_t size2;
586 void *buf2 = mmap(NULL, size, prot, flags, -1, 0);
587 switch ((int)(buf2 != MAP_FAILED)) {
588 case 1:
589 if (!cross_256mb(buf2, size)) {
590 /* Success! Use the new buffer. */
591 munmap(buf, size);
592 break;
594 /* Failure. Work with what we had. */
595 munmap(buf2, size);
596 /* fallthru */
597 default:
598 /* Split the original buffer. Free the smaller half. */
599 split_cross_256mb(&buf2, &size2, buf, size);
600 if (buf == buf2) {
601 munmap(buf + size2, size - size2);
602 } else {
603 munmap(buf, size - size2);
605 size = size2;
606 break;
608 buf = buf2;
610 #endif
612 region.start_aligned = buf;
613 region.total_size = size;
614 return prot;
617 #ifndef CONFIG_TCG_INTERPRETER
618 #ifdef CONFIG_POSIX
619 #include "qemu/memfd.h"
621 static bool alloc_code_gen_buffer_splitwx_memfd(size_t size, Error **errp)
623 void *buf_rw = NULL, *buf_rx = MAP_FAILED;
624 int fd = -1;
626 #ifdef __mips__
627 /* Find space for the RX mapping, vs the 256MiB regions. */
628 if (alloc_code_gen_buffer_anon(size, PROT_NONE,
629 MAP_PRIVATE | MAP_ANONYMOUS |
630 MAP_NORESERVE, errp) < 0) {
631 return false;
633 /* The size of the mapping may have been adjusted. */
634 buf_rx = region.start_aligned;
635 size = region.total_size;
636 #endif
638 buf_rw = qemu_memfd_alloc("tcg-jit", size, 0, &fd, errp);
639 if (buf_rw == NULL) {
640 goto fail;
643 #ifdef __mips__
644 void *tmp = mmap(buf_rx, size, PROT_READ | PROT_EXEC,
645 MAP_SHARED | MAP_FIXED, fd, 0);
646 if (tmp != buf_rx) {
647 goto fail_rx;
649 #else
650 buf_rx = mmap(NULL, size, PROT_READ | PROT_EXEC, MAP_SHARED, fd, 0);
651 if (buf_rx == MAP_FAILED) {
652 goto fail_rx;
654 #endif
656 close(fd);
657 region.start_aligned = buf_rw;
658 region.total_size = size;
659 tcg_splitwx_diff = buf_rx - buf_rw;
661 return PROT_READ | PROT_WRITE;
663 fail_rx:
664 error_setg_errno(errp, errno, "failed to map shared memory for execute");
665 fail:
666 if (buf_rx != MAP_FAILED) {
667 munmap(buf_rx, size);
669 if (buf_rw) {
670 munmap(buf_rw, size);
672 if (fd >= 0) {
673 close(fd);
675 return -1;
677 #endif /* CONFIG_POSIX */
679 #ifdef CONFIG_DARWIN
680 #include <mach/mach.h>
682 extern kern_return_t mach_vm_remap(vm_map_t target_task,
683 mach_vm_address_t *target_address,
684 mach_vm_size_t size,
685 mach_vm_offset_t mask,
686 int flags,
687 vm_map_t src_task,
688 mach_vm_address_t src_address,
689 boolean_t copy,
690 vm_prot_t *cur_protection,
691 vm_prot_t *max_protection,
692 vm_inherit_t inheritance);
694 static int alloc_code_gen_buffer_splitwx_vmremap(size_t size, Error **errp)
696 kern_return_t ret;
697 mach_vm_address_t buf_rw, buf_rx;
698 vm_prot_t cur_prot, max_prot;
700 /* Map the read-write portion via normal anon memory. */
701 if (!alloc_code_gen_buffer_anon(size, PROT_READ | PROT_WRITE,
702 MAP_PRIVATE | MAP_ANONYMOUS, errp)) {
703 return -1;
706 buf_rw = (mach_vm_address_t)region.start_aligned;
707 buf_rx = 0;
708 ret = mach_vm_remap(mach_task_self(),
709 &buf_rx,
710 size,
712 VM_FLAGS_ANYWHERE,
713 mach_task_self(),
714 buf_rw,
715 false,
716 &cur_prot,
717 &max_prot,
718 VM_INHERIT_NONE);
719 if (ret != KERN_SUCCESS) {
720 /* TODO: Convert "ret" to a human readable error message. */
721 error_setg(errp, "vm_remap for jit splitwx failed");
722 munmap((void *)buf_rw, size);
723 return -1;
726 if (mprotect((void *)buf_rx, size, PROT_READ | PROT_EXEC) != 0) {
727 error_setg_errno(errp, errno, "mprotect for jit splitwx");
728 munmap((void *)buf_rx, size);
729 munmap((void *)buf_rw, size);
730 return -1;
733 tcg_splitwx_diff = buf_rx - buf_rw;
734 return PROT_READ | PROT_WRITE;
736 #endif /* CONFIG_DARWIN */
737 #endif /* CONFIG_TCG_INTERPRETER */
739 static int alloc_code_gen_buffer_splitwx(size_t size, Error **errp)
741 #ifndef CONFIG_TCG_INTERPRETER
742 # ifdef CONFIG_DARWIN
743 return alloc_code_gen_buffer_splitwx_vmremap(size, errp);
744 # endif
745 # ifdef CONFIG_POSIX
746 return alloc_code_gen_buffer_splitwx_memfd(size, errp);
747 # endif
748 #endif
749 error_setg(errp, "jit split-wx not supported");
750 return -1;
753 static int alloc_code_gen_buffer(size_t size, int splitwx, Error **errp)
755 ERRP_GUARD();
756 int prot, flags;
758 if (splitwx) {
759 prot = alloc_code_gen_buffer_splitwx(size, errp);
760 if (prot >= 0) {
761 return prot;
764 * If splitwx force-on (1), fail;
765 * if splitwx default-on (-1), fall through to splitwx off.
767 if (splitwx > 0) {
768 return -1;
770 error_free_or_abort(errp);
774 * macOS 11.2 has a bug (Apple Feedback FB8994773) in which mprotect
775 * rejects a permission change from RWX -> NONE when reserving the
776 * guard pages later. We can go the other way with the same number
777 * of syscalls, so always begin with PROT_NONE.
779 prot = PROT_NONE;
780 flags = MAP_PRIVATE | MAP_ANONYMOUS;
781 #ifdef CONFIG_DARWIN
782 /* Applicable to both iOS and macOS (Apple Silicon). */
783 if (!splitwx) {
784 flags |= MAP_JIT;
786 #endif
788 return alloc_code_gen_buffer_anon(size, prot, flags, errp);
790 #endif /* USE_STATIC_CODE_GEN_BUFFER, WIN32, POSIX */
793 * Initializes region partitioning.
795 * Called at init time from the parent thread (i.e. the one calling
796 * tcg_context_init), after the target's TCG globals have been set.
798 * Region partitioning works by splitting code_gen_buffer into separate regions,
799 * and then assigning regions to TCG threads so that the threads can translate
800 * code in parallel without synchronization.
802 * In softmmu the number of TCG threads is bounded by max_cpus, so we use at
803 * least max_cpus regions in MTTCG. In !MTTCG we use a single region.
804 * Note that the TCG options from the command-line (i.e. -accel accel=tcg,[...])
805 * must have been parsed before calling this function, since it calls
806 * qemu_tcg_mttcg_enabled().
808 * In user-mode we use a single region. Having multiple regions in user-mode
809 * is not supported, because the number of vCPU threads (recall that each thread
810 * spawned by the guest corresponds to a vCPU thread) is only bounded by the
811 * OS, and usually this number is huge (tens of thousands is not uncommon).
812 * Thus, given this large bound on the number of vCPU threads and the fact
813 * that code_gen_buffer is allocated at compile-time, we cannot guarantee
814 * that the availability of at least one region per vCPU thread.
816 * However, this user-mode limitation is unlikely to be a significant problem
817 * in practice. Multi-threaded guests share most if not all of their translated
818 * code, which makes parallel code generation less appealing than in softmmu.
820 void tcg_region_init(size_t tb_size, int splitwx, unsigned max_cpus)
822 const size_t page_size = qemu_real_host_page_size;
823 size_t region_size;
824 int have_prot, need_prot;
826 /* Size the buffer. */
827 if (tb_size == 0) {
828 size_t phys_mem = qemu_get_host_physmem();
829 if (phys_mem == 0) {
830 tb_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
831 } else {
832 tb_size = QEMU_ALIGN_DOWN(phys_mem / 8, page_size);
833 tb_size = MIN(DEFAULT_CODE_GEN_BUFFER_SIZE, tb_size);
836 if (tb_size < MIN_CODE_GEN_BUFFER_SIZE) {
837 tb_size = MIN_CODE_GEN_BUFFER_SIZE;
839 if (tb_size > MAX_CODE_GEN_BUFFER_SIZE) {
840 tb_size = MAX_CODE_GEN_BUFFER_SIZE;
843 have_prot = alloc_code_gen_buffer(tb_size, splitwx, &error_fatal);
844 assert(have_prot >= 0);
846 /* Request large pages for the buffer and the splitwx. */
847 qemu_madvise(region.start_aligned, region.total_size, QEMU_MADV_HUGEPAGE);
848 if (tcg_splitwx_diff) {
849 qemu_madvise(region.start_aligned + tcg_splitwx_diff,
850 region.total_size, QEMU_MADV_HUGEPAGE);
854 * Make region_size a multiple of page_size, using aligned as the start.
855 * As a result of this we might end up with a few extra pages at the end of
856 * the buffer; we will assign those to the last region.
858 region.n = tcg_n_regions(tb_size, max_cpus);
859 region_size = tb_size / region.n;
860 region_size = QEMU_ALIGN_DOWN(region_size, page_size);
862 /* A region must have at least 2 pages; one code, one guard */
863 g_assert(region_size >= 2 * page_size);
864 region.stride = region_size;
866 /* Reserve space for guard pages. */
867 region.size = region_size - page_size;
868 region.total_size -= page_size;
871 * The first region will be smaller than the others, via the prologue,
872 * which has yet to be allocated. For now, the first region begins at
873 * the page boundary.
875 region.after_prologue = region.start_aligned;
877 /* init the region struct */
878 qemu_mutex_init(&region.lock);
881 * Set guard pages in the rw buffer, as that's the one into which
882 * buffer overruns could occur. Do not set guard pages in the rx
883 * buffer -- let that one use hugepages throughout.
884 * Work with the page protections set up with the initial mapping.
886 need_prot = PAGE_READ | PAGE_WRITE;
887 #ifndef CONFIG_TCG_INTERPRETER
888 if (tcg_splitwx_diff == 0) {
889 need_prot |= PAGE_EXEC;
891 #endif
892 for (size_t i = 0, n = region.n; i < n; i++) {
893 void *start, *end;
895 tcg_region_bounds(i, &start, &end);
896 if (have_prot != need_prot) {
897 int rc;
899 if (need_prot == (PAGE_READ | PAGE_WRITE | PAGE_EXEC)) {
900 rc = qemu_mprotect_rwx(start, end - start);
901 } else if (need_prot == (PAGE_READ | PAGE_WRITE)) {
902 rc = qemu_mprotect_rw(start, end - start);
903 } else {
904 g_assert_not_reached();
906 if (rc) {
907 error_setg_errno(&error_fatal, errno,
908 "mprotect of jit buffer");
911 if (have_prot != 0) {
912 /* Guard pages are nice for bug detection but are not essential. */
913 (void)qemu_mprotect_none(end, page_size);
917 tcg_region_trees_init();
920 * Leave the initial context initialized to the first region.
921 * This will be the context into which we generate the prologue.
922 * It is also the only context for CONFIG_USER_ONLY.
924 tcg_region_initial_alloc__locked(&tcg_init_ctx);
927 void tcg_region_prologue_set(TCGContext *s)
929 /* Deduct the prologue from the first region. */
930 g_assert(region.start_aligned == s->code_gen_buffer);
931 region.after_prologue = s->code_ptr;
933 /* Recompute boundaries of the first region. */
934 tcg_region_assign(s, 0);
936 /* Register the balance of the buffer with gdb. */
937 tcg_register_jit(tcg_splitwx_to_rx(region.after_prologue),
938 region.start_aligned + region.total_size -
939 region.after_prologue);
943 * Returns the size (in bytes) of all translated code (i.e. from all regions)
944 * currently in the cache.
945 * See also: tcg_code_capacity()
946 * Do not confuse with tcg_current_code_size(); that one applies to a single
947 * TCG context.
949 size_t tcg_code_size(void)
951 unsigned int n_ctxs = qatomic_read(&tcg_cur_ctxs);
952 unsigned int i;
953 size_t total;
955 qemu_mutex_lock(&region.lock);
956 total = region.agg_size_full;
957 for (i = 0; i < n_ctxs; i++) {
958 const TCGContext *s = qatomic_read(&tcg_ctxs[i]);
959 size_t size;
961 size = qatomic_read(&s->code_gen_ptr) - s->code_gen_buffer;
962 g_assert(size <= s->code_gen_buffer_size);
963 total += size;
965 qemu_mutex_unlock(&region.lock);
966 return total;
970 * Returns the code capacity (in bytes) of the entire cache, i.e. including all
971 * regions.
972 * See also: tcg_code_size()
974 size_t tcg_code_capacity(void)
976 size_t guard_size, capacity;
978 /* no need for synchronization; these variables are set at init time */
979 guard_size = region.stride - region.size;
980 capacity = region.total_size;
981 capacity -= (region.n - 1) * guard_size;
982 capacity -= region.n * TCG_HIGHWATER;
984 return capacity;
987 size_t tcg_tb_phys_invalidate_count(void)
989 unsigned int n_ctxs = qatomic_read(&tcg_cur_ctxs);
990 unsigned int i;
991 size_t total = 0;
993 for (i = 0; i < n_ctxs; i++) {
994 const TCGContext *s = qatomic_read(&tcg_ctxs[i]);
996 total += qatomic_read(&s->tb_phys_invalidate_count);
998 return total;