2 * RDMA protocol and interfaces
4 * Copyright IBM, Corp. 2010-2013
5 * Copyright Red Hat, Inc. 2015-2016
8 * Michael R. Hines <mrhines@us.ibm.com>
9 * Jiuxing Liu <jl@us.ibm.com>
10 * Daniel P. Berrange <berrange@redhat.com>
12 * This work is licensed under the terms of the GNU GPL, version 2 or
13 * later. See the COPYING file in the top-level directory.
17 #include "qemu/osdep.h"
18 #include "qapi/error.h"
19 #include "qemu/cutils.h"
21 #include "migration.h"
22 #include "qemu-file.h"
24 #include "qemu-file-channel.h"
25 #include "qemu/error-report.h"
26 #include "qemu/main-loop.h"
27 #include "qemu/module.h"
29 #include "qemu/sockets.h"
30 #include "qemu/bitmap.h"
31 #include "qemu/coroutine.h"
32 #include "exec/memory.h"
33 #include <sys/socket.h>
35 #include <arpa/inet.h>
36 #include <rdma/rdma_cma.h>
38 #include "qom/object.h"
42 * Print and error on both the Monitor and the Log file.
44 #define ERROR(errp, fmt, ...) \
46 fprintf(stderr, "RDMA ERROR: " fmt "\n", ## __VA_ARGS__); \
47 if (errp && (*(errp) == NULL)) { \
48 error_setg(errp, "RDMA ERROR: " fmt, ## __VA_ARGS__); \
52 #define RDMA_RESOLVE_TIMEOUT_MS 10000
54 /* Do not merge data if larger than this. */
55 #define RDMA_MERGE_MAX (2 * 1024 * 1024)
56 #define RDMA_SIGNALED_SEND_MAX (RDMA_MERGE_MAX / 4096)
58 #define RDMA_REG_CHUNK_SHIFT 20 /* 1 MB */
61 * This is only for non-live state being migrated.
62 * Instead of RDMA_WRITE messages, we use RDMA_SEND
63 * messages for that state, which requires a different
64 * delivery design than main memory.
66 #define RDMA_SEND_INCREMENT 32768
69 * Maximum size infiniband SEND message
71 #define RDMA_CONTROL_MAX_BUFFER (512 * 1024)
72 #define RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE 4096
74 #define RDMA_CONTROL_VERSION_CURRENT 1
76 * Capabilities for negotiation.
78 #define RDMA_CAPABILITY_PIN_ALL 0x01
81 * Add the other flags above to this list of known capabilities
82 * as they are introduced.
84 static uint32_t known_capabilities
= RDMA_CAPABILITY_PIN_ALL
;
86 #define CHECK_ERROR_STATE() \
88 if (rdma->error_state) { \
89 if (!rdma->error_reported) { \
90 error_report("RDMA is in an error state waiting migration" \
92 rdma->error_reported = 1; \
94 return rdma->error_state; \
99 * A work request ID is 64-bits and we split up these bits
102 * bits 0-15 : type of control message, 2^16
103 * bits 16-29: ram block index, 2^14
104 * bits 30-63: ram block chunk number, 2^34
106 * The last two bit ranges are only used for RDMA writes,
107 * in order to track their completion and potentially
108 * also track unregistration status of the message.
110 #define RDMA_WRID_TYPE_SHIFT 0UL
111 #define RDMA_WRID_BLOCK_SHIFT 16UL
112 #define RDMA_WRID_CHUNK_SHIFT 30UL
114 #define RDMA_WRID_TYPE_MASK \
115 ((1UL << RDMA_WRID_BLOCK_SHIFT) - 1UL)
117 #define RDMA_WRID_BLOCK_MASK \
118 (~RDMA_WRID_TYPE_MASK & ((1UL << RDMA_WRID_CHUNK_SHIFT) - 1UL))
120 #define RDMA_WRID_CHUNK_MASK (~RDMA_WRID_BLOCK_MASK & ~RDMA_WRID_TYPE_MASK)
123 * RDMA migration protocol:
124 * 1. RDMA Writes (data messages, i.e. RAM)
125 * 2. IB Send/Recv (control channel messages)
129 RDMA_WRID_RDMA_WRITE
= 1,
130 RDMA_WRID_SEND_CONTROL
= 2000,
131 RDMA_WRID_RECV_CONTROL
= 4000,
134 static const char *wrid_desc
[] = {
135 [RDMA_WRID_NONE
] = "NONE",
136 [RDMA_WRID_RDMA_WRITE
] = "WRITE RDMA",
137 [RDMA_WRID_SEND_CONTROL
] = "CONTROL SEND",
138 [RDMA_WRID_RECV_CONTROL
] = "CONTROL RECV",
142 * Work request IDs for IB SEND messages only (not RDMA writes).
143 * This is used by the migration protocol to transmit
144 * control messages (such as device state and registration commands)
146 * We could use more WRs, but we have enough for now.
156 * SEND/RECV IB Control Messages.
159 RDMA_CONTROL_NONE
= 0,
161 RDMA_CONTROL_READY
, /* ready to receive */
162 RDMA_CONTROL_QEMU_FILE
, /* QEMUFile-transmitted bytes */
163 RDMA_CONTROL_RAM_BLOCKS_REQUEST
, /* RAMBlock synchronization */
164 RDMA_CONTROL_RAM_BLOCKS_RESULT
, /* RAMBlock synchronization */
165 RDMA_CONTROL_COMPRESS
, /* page contains repeat values */
166 RDMA_CONTROL_REGISTER_REQUEST
, /* dynamic page registration */
167 RDMA_CONTROL_REGISTER_RESULT
, /* key to use after registration */
168 RDMA_CONTROL_REGISTER_FINISHED
, /* current iteration finished */
169 RDMA_CONTROL_UNREGISTER_REQUEST
, /* dynamic UN-registration */
170 RDMA_CONTROL_UNREGISTER_FINISHED
, /* unpinning finished */
175 * Memory and MR structures used to represent an IB Send/Recv work request.
176 * This is *not* used for RDMA writes, only IB Send/Recv.
179 uint8_t control
[RDMA_CONTROL_MAX_BUFFER
]; /* actual buffer to register */
180 struct ibv_mr
*control_mr
; /* registration metadata */
181 size_t control_len
; /* length of the message */
182 uint8_t *control_curr
; /* start of unconsumed bytes */
183 } RDMAWorkRequestData
;
186 * Negotiate RDMA capabilities during connection-setup time.
193 static void caps_to_network(RDMACapabilities
*cap
)
195 cap
->version
= htonl(cap
->version
);
196 cap
->flags
= htonl(cap
->flags
);
199 static void network_to_caps(RDMACapabilities
*cap
)
201 cap
->version
= ntohl(cap
->version
);
202 cap
->flags
= ntohl(cap
->flags
);
206 * Representation of a RAMBlock from an RDMA perspective.
207 * This is not transmitted, only local.
208 * This and subsequent structures cannot be linked lists
209 * because we're using a single IB message to transmit
210 * the information. It's small anyway, so a list is overkill.
212 typedef struct RDMALocalBlock
{
214 uint8_t *local_host_addr
; /* local virtual address */
215 uint64_t remote_host_addr
; /* remote virtual address */
218 struct ibv_mr
**pmr
; /* MRs for chunk-level registration */
219 struct ibv_mr
*mr
; /* MR for non-chunk-level registration */
220 uint32_t *remote_keys
; /* rkeys for chunk-level registration */
221 uint32_t remote_rkey
; /* rkeys for non-chunk-level registration */
222 int index
; /* which block are we */
223 unsigned int src_index
; /* (Only used on dest) */
226 unsigned long *transit_bitmap
;
227 unsigned long *unregister_bitmap
;
231 * Also represents a RAMblock, but only on the dest.
232 * This gets transmitted by the dest during connection-time
233 * to the source VM and then is used to populate the
234 * corresponding RDMALocalBlock with
235 * the information needed to perform the actual RDMA.
237 typedef struct QEMU_PACKED RDMADestBlock
{
238 uint64_t remote_host_addr
;
241 uint32_t remote_rkey
;
245 static const char *control_desc(unsigned int rdma_control
)
247 static const char *strs
[] = {
248 [RDMA_CONTROL_NONE
] = "NONE",
249 [RDMA_CONTROL_ERROR
] = "ERROR",
250 [RDMA_CONTROL_READY
] = "READY",
251 [RDMA_CONTROL_QEMU_FILE
] = "QEMU FILE",
252 [RDMA_CONTROL_RAM_BLOCKS_REQUEST
] = "RAM BLOCKS REQUEST",
253 [RDMA_CONTROL_RAM_BLOCKS_RESULT
] = "RAM BLOCKS RESULT",
254 [RDMA_CONTROL_COMPRESS
] = "COMPRESS",
255 [RDMA_CONTROL_REGISTER_REQUEST
] = "REGISTER REQUEST",
256 [RDMA_CONTROL_REGISTER_RESULT
] = "REGISTER RESULT",
257 [RDMA_CONTROL_REGISTER_FINISHED
] = "REGISTER FINISHED",
258 [RDMA_CONTROL_UNREGISTER_REQUEST
] = "UNREGISTER REQUEST",
259 [RDMA_CONTROL_UNREGISTER_FINISHED
] = "UNREGISTER FINISHED",
262 if (rdma_control
> RDMA_CONTROL_UNREGISTER_FINISHED
) {
263 return "??BAD CONTROL VALUE??";
266 return strs
[rdma_control
];
269 static uint64_t htonll(uint64_t v
)
271 union { uint32_t lv
[2]; uint64_t llv
; } u
;
272 u
.lv
[0] = htonl(v
>> 32);
273 u
.lv
[1] = htonl(v
& 0xFFFFFFFFULL
);
277 static uint64_t ntohll(uint64_t v
)
279 union { uint32_t lv
[2]; uint64_t llv
; } u
;
281 return ((uint64_t)ntohl(u
.lv
[0]) << 32) | (uint64_t) ntohl(u
.lv
[1]);
284 static void dest_block_to_network(RDMADestBlock
*db
)
286 db
->remote_host_addr
= htonll(db
->remote_host_addr
);
287 db
->offset
= htonll(db
->offset
);
288 db
->length
= htonll(db
->length
);
289 db
->remote_rkey
= htonl(db
->remote_rkey
);
292 static void network_to_dest_block(RDMADestBlock
*db
)
294 db
->remote_host_addr
= ntohll(db
->remote_host_addr
);
295 db
->offset
= ntohll(db
->offset
);
296 db
->length
= ntohll(db
->length
);
297 db
->remote_rkey
= ntohl(db
->remote_rkey
);
301 * Virtual address of the above structures used for transmitting
302 * the RAMBlock descriptions at connection-time.
303 * This structure is *not* transmitted.
305 typedef struct RDMALocalBlocks
{
307 bool init
; /* main memory init complete */
308 RDMALocalBlock
*block
;
312 * Main data structure for RDMA state.
313 * While there is only one copy of this structure being allocated right now,
314 * this is the place where one would start if you wanted to consider
315 * having more than one RDMA connection open at the same time.
317 typedef struct RDMAContext
{
322 RDMAWorkRequestData wr_data
[RDMA_WRID_MAX
];
325 * This is used by *_exchange_send() to figure out whether or not
326 * the initial "READY" message has already been received or not.
327 * This is because other functions may potentially poll() and detect
328 * the READY message before send() does, in which case we need to
329 * know if it completed.
331 int control_ready_expected
;
333 /* number of outstanding writes */
336 /* store info about current buffer so that we can
337 merge it with future sends */
338 uint64_t current_addr
;
339 uint64_t current_length
;
340 /* index of ram block the current buffer belongs to */
342 /* index of the chunk in the current ram block */
348 * infiniband-specific variables for opening the device
349 * and maintaining connection state and so forth.
351 * cm_id also has ibv_context, rdma_event_channel, and ibv_qp in
352 * cm_id->verbs, cm_id->channel, and cm_id->qp.
354 struct rdma_cm_id
*cm_id
; /* connection manager ID */
355 struct rdma_cm_id
*listen_id
;
358 struct ibv_context
*verbs
;
359 struct rdma_event_channel
*channel
;
360 struct ibv_qp
*qp
; /* queue pair */
361 struct ibv_comp_channel
*comp_channel
; /* completion channel */
362 struct ibv_pd
*pd
; /* protection domain */
363 struct ibv_cq
*cq
; /* completion queue */
366 * If a previous write failed (perhaps because of a failed
367 * memory registration, then do not attempt any future work
368 * and remember the error state.
375 * Description of ram blocks used throughout the code.
377 RDMALocalBlocks local_ram_blocks
;
378 RDMADestBlock
*dest_blocks
;
380 /* Index of the next RAMBlock received during block registration */
381 unsigned int next_src_index
;
384 * Migration on *destination* started.
385 * Then use coroutine yield function.
386 * Source runs in a thread, so we don't care.
388 int migration_started_on_destination
;
390 int total_registrations
;
393 int unregister_current
, unregister_next
;
394 uint64_t unregistrations
[RDMA_SIGNALED_SEND_MAX
];
396 GHashTable
*blockmap
;
398 /* the RDMAContext for return path */
399 struct RDMAContext
*return_path
;
403 #define TYPE_QIO_CHANNEL_RDMA "qio-channel-rdma"
404 OBJECT_DECLARE_SIMPLE_TYPE(QIOChannelRDMA
, QIO_CHANNEL_RDMA
)
408 struct QIOChannelRDMA
{
411 RDMAContext
*rdmaout
;
413 bool blocking
; /* XXX we don't actually honour this yet */
417 * Main structure for IB Send/Recv control messages.
418 * This gets prepended at the beginning of every Send/Recv.
420 typedef struct QEMU_PACKED
{
421 uint32_t len
; /* Total length of data portion */
422 uint32_t type
; /* which control command to perform */
423 uint32_t repeat
; /* number of commands in data portion of same type */
427 static void control_to_network(RDMAControlHeader
*control
)
429 control
->type
= htonl(control
->type
);
430 control
->len
= htonl(control
->len
);
431 control
->repeat
= htonl(control
->repeat
);
434 static void network_to_control(RDMAControlHeader
*control
)
436 control
->type
= ntohl(control
->type
);
437 control
->len
= ntohl(control
->len
);
438 control
->repeat
= ntohl(control
->repeat
);
442 * Register a single Chunk.
443 * Information sent by the source VM to inform the dest
444 * to register an single chunk of memory before we can perform
445 * the actual RDMA operation.
447 typedef struct QEMU_PACKED
{
449 uint64_t current_addr
; /* offset into the ram_addr_t space */
450 uint64_t chunk
; /* chunk to lookup if unregistering */
452 uint32_t current_index
; /* which ramblock the chunk belongs to */
454 uint64_t chunks
; /* how many sequential chunks to register */
457 static void register_to_network(RDMAContext
*rdma
, RDMARegister
*reg
)
459 RDMALocalBlock
*local_block
;
460 local_block
= &rdma
->local_ram_blocks
.block
[reg
->current_index
];
462 if (local_block
->is_ram_block
) {
464 * current_addr as passed in is an address in the local ram_addr_t
465 * space, we need to translate this for the destination
467 reg
->key
.current_addr
-= local_block
->offset
;
468 reg
->key
.current_addr
+= rdma
->dest_blocks
[reg
->current_index
].offset
;
470 reg
->key
.current_addr
= htonll(reg
->key
.current_addr
);
471 reg
->current_index
= htonl(reg
->current_index
);
472 reg
->chunks
= htonll(reg
->chunks
);
475 static void network_to_register(RDMARegister
*reg
)
477 reg
->key
.current_addr
= ntohll(reg
->key
.current_addr
);
478 reg
->current_index
= ntohl(reg
->current_index
);
479 reg
->chunks
= ntohll(reg
->chunks
);
482 typedef struct QEMU_PACKED
{
483 uint32_t value
; /* if zero, we will madvise() */
484 uint32_t block_idx
; /* which ram block index */
485 uint64_t offset
; /* Address in remote ram_addr_t space */
486 uint64_t length
; /* length of the chunk */
489 static void compress_to_network(RDMAContext
*rdma
, RDMACompress
*comp
)
491 comp
->value
= htonl(comp
->value
);
493 * comp->offset as passed in is an address in the local ram_addr_t
494 * space, we need to translate this for the destination
496 comp
->offset
-= rdma
->local_ram_blocks
.block
[comp
->block_idx
].offset
;
497 comp
->offset
+= rdma
->dest_blocks
[comp
->block_idx
].offset
;
498 comp
->block_idx
= htonl(comp
->block_idx
);
499 comp
->offset
= htonll(comp
->offset
);
500 comp
->length
= htonll(comp
->length
);
503 static void network_to_compress(RDMACompress
*comp
)
505 comp
->value
= ntohl(comp
->value
);
506 comp
->block_idx
= ntohl(comp
->block_idx
);
507 comp
->offset
= ntohll(comp
->offset
);
508 comp
->length
= ntohll(comp
->length
);
512 * The result of the dest's memory registration produces an "rkey"
513 * which the source VM must reference in order to perform
514 * the RDMA operation.
516 typedef struct QEMU_PACKED
{
520 } RDMARegisterResult
;
522 static void result_to_network(RDMARegisterResult
*result
)
524 result
->rkey
= htonl(result
->rkey
);
525 result
->host_addr
= htonll(result
->host_addr
);
528 static void network_to_result(RDMARegisterResult
*result
)
530 result
->rkey
= ntohl(result
->rkey
);
531 result
->host_addr
= ntohll(result
->host_addr
);
534 const char *print_wrid(int wrid
);
535 static int qemu_rdma_exchange_send(RDMAContext
*rdma
, RDMAControlHeader
*head
,
536 uint8_t *data
, RDMAControlHeader
*resp
,
538 int (*callback
)(RDMAContext
*rdma
));
540 static inline uint64_t ram_chunk_index(const uint8_t *start
,
543 return ((uintptr_t) host
- (uintptr_t) start
) >> RDMA_REG_CHUNK_SHIFT
;
546 static inline uint8_t *ram_chunk_start(const RDMALocalBlock
*rdma_ram_block
,
549 return (uint8_t *)(uintptr_t)(rdma_ram_block
->local_host_addr
+
550 (i
<< RDMA_REG_CHUNK_SHIFT
));
553 static inline uint8_t *ram_chunk_end(const RDMALocalBlock
*rdma_ram_block
,
556 uint8_t *result
= ram_chunk_start(rdma_ram_block
, i
) +
557 (1UL << RDMA_REG_CHUNK_SHIFT
);
559 if (result
> (rdma_ram_block
->local_host_addr
+ rdma_ram_block
->length
)) {
560 result
= rdma_ram_block
->local_host_addr
+ rdma_ram_block
->length
;
566 static int rdma_add_block(RDMAContext
*rdma
, const char *block_name
,
568 ram_addr_t block_offset
, uint64_t length
)
570 RDMALocalBlocks
*local
= &rdma
->local_ram_blocks
;
571 RDMALocalBlock
*block
;
572 RDMALocalBlock
*old
= local
->block
;
574 local
->block
= g_new0(RDMALocalBlock
, local
->nb_blocks
+ 1);
576 if (local
->nb_blocks
) {
579 if (rdma
->blockmap
) {
580 for (x
= 0; x
< local
->nb_blocks
; x
++) {
581 g_hash_table_remove(rdma
->blockmap
,
582 (void *)(uintptr_t)old
[x
].offset
);
583 g_hash_table_insert(rdma
->blockmap
,
584 (void *)(uintptr_t)old
[x
].offset
,
588 memcpy(local
->block
, old
, sizeof(RDMALocalBlock
) * local
->nb_blocks
);
592 block
= &local
->block
[local
->nb_blocks
];
594 block
->block_name
= g_strdup(block_name
);
595 block
->local_host_addr
= host_addr
;
596 block
->offset
= block_offset
;
597 block
->length
= length
;
598 block
->index
= local
->nb_blocks
;
599 block
->src_index
= ~0U; /* Filled in by the receipt of the block list */
600 block
->nb_chunks
= ram_chunk_index(host_addr
, host_addr
+ length
) + 1UL;
601 block
->transit_bitmap
= bitmap_new(block
->nb_chunks
);
602 bitmap_clear(block
->transit_bitmap
, 0, block
->nb_chunks
);
603 block
->unregister_bitmap
= bitmap_new(block
->nb_chunks
);
604 bitmap_clear(block
->unregister_bitmap
, 0, block
->nb_chunks
);
605 block
->remote_keys
= g_new0(uint32_t, block
->nb_chunks
);
607 block
->is_ram_block
= local
->init
? false : true;
609 if (rdma
->blockmap
) {
610 g_hash_table_insert(rdma
->blockmap
, (void *)(uintptr_t)block_offset
, block
);
613 trace_rdma_add_block(block_name
, local
->nb_blocks
,
614 (uintptr_t) block
->local_host_addr
,
615 block
->offset
, block
->length
,
616 (uintptr_t) (block
->local_host_addr
+ block
->length
),
617 BITS_TO_LONGS(block
->nb_chunks
) *
618 sizeof(unsigned long) * 8,
627 * Memory regions need to be registered with the device and queue pairs setup
628 * in advanced before the migration starts. This tells us where the RAM blocks
629 * are so that we can register them individually.
631 static int qemu_rdma_init_one_block(RAMBlock
*rb
, void *opaque
)
633 const char *block_name
= qemu_ram_get_idstr(rb
);
634 void *host_addr
= qemu_ram_get_host_addr(rb
);
635 ram_addr_t block_offset
= qemu_ram_get_offset(rb
);
636 ram_addr_t length
= qemu_ram_get_used_length(rb
);
637 return rdma_add_block(opaque
, block_name
, host_addr
, block_offset
, length
);
641 * Identify the RAMBlocks and their quantity. They will be references to
642 * identify chunk boundaries inside each RAMBlock and also be referenced
643 * during dynamic page registration.
645 static int qemu_rdma_init_ram_blocks(RDMAContext
*rdma
)
647 RDMALocalBlocks
*local
= &rdma
->local_ram_blocks
;
650 assert(rdma
->blockmap
== NULL
);
651 memset(local
, 0, sizeof *local
);
652 ret
= foreach_not_ignored_block(qemu_rdma_init_one_block
, rdma
);
656 trace_qemu_rdma_init_ram_blocks(local
->nb_blocks
);
657 rdma
->dest_blocks
= g_new0(RDMADestBlock
,
658 rdma
->local_ram_blocks
.nb_blocks
);
664 * Note: If used outside of cleanup, the caller must ensure that the destination
665 * block structures are also updated
667 static int rdma_delete_block(RDMAContext
*rdma
, RDMALocalBlock
*block
)
669 RDMALocalBlocks
*local
= &rdma
->local_ram_blocks
;
670 RDMALocalBlock
*old
= local
->block
;
673 if (rdma
->blockmap
) {
674 g_hash_table_remove(rdma
->blockmap
, (void *)(uintptr_t)block
->offset
);
679 for (j
= 0; j
< block
->nb_chunks
; j
++) {
680 if (!block
->pmr
[j
]) {
683 ibv_dereg_mr(block
->pmr
[j
]);
684 rdma
->total_registrations
--;
691 ibv_dereg_mr(block
->mr
);
692 rdma
->total_registrations
--;
696 g_free(block
->transit_bitmap
);
697 block
->transit_bitmap
= NULL
;
699 g_free(block
->unregister_bitmap
);
700 block
->unregister_bitmap
= NULL
;
702 g_free(block
->remote_keys
);
703 block
->remote_keys
= NULL
;
705 g_free(block
->block_name
);
706 block
->block_name
= NULL
;
708 if (rdma
->blockmap
) {
709 for (x
= 0; x
< local
->nb_blocks
; x
++) {
710 g_hash_table_remove(rdma
->blockmap
,
711 (void *)(uintptr_t)old
[x
].offset
);
715 if (local
->nb_blocks
> 1) {
717 local
->block
= g_new0(RDMALocalBlock
, local
->nb_blocks
- 1);
720 memcpy(local
->block
, old
, sizeof(RDMALocalBlock
) * block
->index
);
723 if (block
->index
< (local
->nb_blocks
- 1)) {
724 memcpy(local
->block
+ block
->index
, old
+ (block
->index
+ 1),
725 sizeof(RDMALocalBlock
) *
726 (local
->nb_blocks
- (block
->index
+ 1)));
727 for (x
= block
->index
; x
< local
->nb_blocks
- 1; x
++) {
728 local
->block
[x
].index
--;
732 assert(block
== local
->block
);
736 trace_rdma_delete_block(block
, (uintptr_t)block
->local_host_addr
,
737 block
->offset
, block
->length
,
738 (uintptr_t)(block
->local_host_addr
+ block
->length
),
739 BITS_TO_LONGS(block
->nb_chunks
) *
740 sizeof(unsigned long) * 8, block
->nb_chunks
);
746 if (local
->nb_blocks
&& rdma
->blockmap
) {
747 for (x
= 0; x
< local
->nb_blocks
; x
++) {
748 g_hash_table_insert(rdma
->blockmap
,
749 (void *)(uintptr_t)local
->block
[x
].offset
,
758 * Put in the log file which RDMA device was opened and the details
759 * associated with that device.
761 static void qemu_rdma_dump_id(const char *who
, struct ibv_context
*verbs
)
763 struct ibv_port_attr port
;
765 if (ibv_query_port(verbs
, 1, &port
)) {
766 error_report("Failed to query port information");
770 printf("%s RDMA Device opened: kernel name %s "
771 "uverbs device name %s, "
772 "infiniband_verbs class device path %s, "
773 "infiniband class device path %s, "
774 "transport: (%d) %s\n",
777 verbs
->device
->dev_name
,
778 verbs
->device
->dev_path
,
779 verbs
->device
->ibdev_path
,
781 (port
.link_layer
== IBV_LINK_LAYER_INFINIBAND
) ? "Infiniband" :
782 ((port
.link_layer
== IBV_LINK_LAYER_ETHERNET
)
783 ? "Ethernet" : "Unknown"));
787 * Put in the log file the RDMA gid addressing information,
788 * useful for folks who have trouble understanding the
789 * RDMA device hierarchy in the kernel.
791 static void qemu_rdma_dump_gid(const char *who
, struct rdma_cm_id
*id
)
795 inet_ntop(AF_INET6
, &id
->route
.addr
.addr
.ibaddr
.sgid
, sgid
, sizeof sgid
);
796 inet_ntop(AF_INET6
, &id
->route
.addr
.addr
.ibaddr
.dgid
, dgid
, sizeof dgid
);
797 trace_qemu_rdma_dump_gid(who
, sgid
, dgid
);
801 * As of now, IPv6 over RoCE / iWARP is not supported by linux.
802 * We will try the next addrinfo struct, and fail if there are
803 * no other valid addresses to bind against.
805 * If user is listening on '[::]', then we will not have a opened a device
806 * yet and have no way of verifying if the device is RoCE or not.
808 * In this case, the source VM will throw an error for ALL types of
809 * connections (both IPv4 and IPv6) if the destination machine does not have
810 * a regular infiniband network available for use.
812 * The only way to guarantee that an error is thrown for broken kernels is
813 * for the management software to choose a *specific* interface at bind time
814 * and validate what time of hardware it is.
816 * Unfortunately, this puts the user in a fix:
818 * If the source VM connects with an IPv4 address without knowing that the
819 * destination has bound to '[::]' the migration will unconditionally fail
820 * unless the management software is explicitly listening on the IPv4
821 * address while using a RoCE-based device.
823 * If the source VM connects with an IPv6 address, then we're OK because we can
824 * throw an error on the source (and similarly on the destination).
826 * But in mixed environments, this will be broken for a while until it is fixed
829 * We do provide a *tiny* bit of help in this function: We can list all of the
830 * devices in the system and check to see if all the devices are RoCE or
833 * If we detect that we have a *pure* RoCE environment, then we can safely
834 * thrown an error even if the management software has specified '[::]' as the
837 * However, if there is are multiple hetergeneous devices, then we cannot make
838 * this assumption and the user just has to be sure they know what they are
841 * Patches are being reviewed on linux-rdma.
843 static int qemu_rdma_broken_ipv6_kernel(struct ibv_context
*verbs
, Error
**errp
)
845 /* This bug only exists in linux, to our knowledge. */
847 struct ibv_port_attr port_attr
;
850 * Verbs are only NULL if management has bound to '[::]'.
852 * Let's iterate through all the devices and see if there any pure IB
853 * devices (non-ethernet).
855 * If not, then we can safely proceed with the migration.
856 * Otherwise, there are no guarantees until the bug is fixed in linux.
860 struct ibv_device
**dev_list
= ibv_get_device_list(&num_devices
);
861 bool roce_found
= false;
862 bool ib_found
= false;
864 for (x
= 0; x
< num_devices
; x
++) {
865 verbs
= ibv_open_device(dev_list
[x
]);
867 if (errno
== EPERM
) {
874 if (ibv_query_port(verbs
, 1, &port_attr
)) {
875 ibv_close_device(verbs
);
876 ERROR(errp
, "Could not query initial IB port");
880 if (port_attr
.link_layer
== IBV_LINK_LAYER_INFINIBAND
) {
882 } else if (port_attr
.link_layer
== IBV_LINK_LAYER_ETHERNET
) {
886 ibv_close_device(verbs
);
892 fprintf(stderr
, "WARN: migrations may fail:"
893 " IPv6 over RoCE / iWARP in linux"
894 " is broken. But since you appear to have a"
895 " mixed RoCE / IB environment, be sure to only"
896 " migrate over the IB fabric until the kernel "
897 " fixes the bug.\n");
899 ERROR(errp
, "You only have RoCE / iWARP devices in your systems"
900 " and your management software has specified '[::]'"
901 ", but IPv6 over RoCE / iWARP is not supported in Linux.");
910 * If we have a verbs context, that means that some other than '[::]' was
911 * used by the management software for binding. In which case we can
912 * actually warn the user about a potentially broken kernel.
915 /* IB ports start with 1, not 0 */
916 if (ibv_query_port(verbs
, 1, &port_attr
)) {
917 ERROR(errp
, "Could not query initial IB port");
921 if (port_attr
.link_layer
== IBV_LINK_LAYER_ETHERNET
) {
922 ERROR(errp
, "Linux kernel's RoCE / iWARP does not support IPv6 "
923 "(but patches on linux-rdma in progress)");
933 * Figure out which RDMA device corresponds to the requested IP hostname
934 * Also create the initial connection manager identifiers for opening
937 static int qemu_rdma_resolve_host(RDMAContext
*rdma
, Error
**errp
)
940 struct rdma_addrinfo
*res
;
942 struct rdma_cm_event
*cm_event
;
943 char ip
[40] = "unknown";
944 struct rdma_addrinfo
*e
;
946 if (rdma
->host
== NULL
|| !strcmp(rdma
->host
, "")) {
947 ERROR(errp
, "RDMA hostname has not been set");
951 /* create CM channel */
952 rdma
->channel
= rdma_create_event_channel();
953 if (!rdma
->channel
) {
954 ERROR(errp
, "could not create CM channel");
959 ret
= rdma_create_id(rdma
->channel
, &rdma
->cm_id
, NULL
, RDMA_PS_TCP
);
961 ERROR(errp
, "could not create channel id");
962 goto err_resolve_create_id
;
965 snprintf(port_str
, 16, "%d", rdma
->port
);
968 ret
= rdma_getaddrinfo(rdma
->host
, port_str
, NULL
, &res
);
970 ERROR(errp
, "could not rdma_getaddrinfo address %s", rdma
->host
);
971 goto err_resolve_get_addr
;
974 for (e
= res
; e
!= NULL
; e
= e
->ai_next
) {
975 inet_ntop(e
->ai_family
,
976 &((struct sockaddr_in
*) e
->ai_dst_addr
)->sin_addr
, ip
, sizeof ip
);
977 trace_qemu_rdma_resolve_host_trying(rdma
->host
, ip
);
979 ret
= rdma_resolve_addr(rdma
->cm_id
, NULL
, e
->ai_dst_addr
,
980 RDMA_RESOLVE_TIMEOUT_MS
);
982 if (e
->ai_family
== AF_INET6
) {
983 ret
= qemu_rdma_broken_ipv6_kernel(rdma
->cm_id
->verbs
, errp
);
992 rdma_freeaddrinfo(res
);
993 ERROR(errp
, "could not resolve address %s", rdma
->host
);
994 goto err_resolve_get_addr
;
997 rdma_freeaddrinfo(res
);
998 qemu_rdma_dump_gid("source_resolve_addr", rdma
->cm_id
);
1000 ret
= rdma_get_cm_event(rdma
->channel
, &cm_event
);
1002 ERROR(errp
, "could not perform event_addr_resolved");
1003 goto err_resolve_get_addr
;
1006 if (cm_event
->event
!= RDMA_CM_EVENT_ADDR_RESOLVED
) {
1007 ERROR(errp
, "result not equal to event_addr_resolved %s",
1008 rdma_event_str(cm_event
->event
));
1009 perror("rdma_resolve_addr");
1010 rdma_ack_cm_event(cm_event
);
1012 goto err_resolve_get_addr
;
1014 rdma_ack_cm_event(cm_event
);
1017 ret
= rdma_resolve_route(rdma
->cm_id
, RDMA_RESOLVE_TIMEOUT_MS
);
1019 ERROR(errp
, "could not resolve rdma route");
1020 goto err_resolve_get_addr
;
1023 ret
= rdma_get_cm_event(rdma
->channel
, &cm_event
);
1025 ERROR(errp
, "could not perform event_route_resolved");
1026 goto err_resolve_get_addr
;
1028 if (cm_event
->event
!= RDMA_CM_EVENT_ROUTE_RESOLVED
) {
1029 ERROR(errp
, "result not equal to event_route_resolved: %s",
1030 rdma_event_str(cm_event
->event
));
1031 rdma_ack_cm_event(cm_event
);
1033 goto err_resolve_get_addr
;
1035 rdma_ack_cm_event(cm_event
);
1036 rdma
->verbs
= rdma
->cm_id
->verbs
;
1037 qemu_rdma_dump_id("source_resolve_host", rdma
->cm_id
->verbs
);
1038 qemu_rdma_dump_gid("source_resolve_host", rdma
->cm_id
);
1041 err_resolve_get_addr
:
1042 rdma_destroy_id(rdma
->cm_id
);
1044 err_resolve_create_id
:
1045 rdma_destroy_event_channel(rdma
->channel
);
1046 rdma
->channel
= NULL
;
1051 * Create protection domain and completion queues
1053 static int qemu_rdma_alloc_pd_cq(RDMAContext
*rdma
)
1056 rdma
->pd
= ibv_alloc_pd(rdma
->verbs
);
1058 error_report("failed to allocate protection domain");
1062 /* create completion channel */
1063 rdma
->comp_channel
= ibv_create_comp_channel(rdma
->verbs
);
1064 if (!rdma
->comp_channel
) {
1065 error_report("failed to allocate completion channel");
1066 goto err_alloc_pd_cq
;
1070 * Completion queue can be filled by both read and write work requests,
1071 * so must reflect the sum of both possible queue sizes.
1073 rdma
->cq
= ibv_create_cq(rdma
->verbs
, (RDMA_SIGNALED_SEND_MAX
* 3),
1074 NULL
, rdma
->comp_channel
, 0);
1076 error_report("failed to allocate completion queue");
1077 goto err_alloc_pd_cq
;
1084 ibv_dealloc_pd(rdma
->pd
);
1086 if (rdma
->comp_channel
) {
1087 ibv_destroy_comp_channel(rdma
->comp_channel
);
1090 rdma
->comp_channel
= NULL
;
1096 * Create queue pairs.
1098 static int qemu_rdma_alloc_qp(RDMAContext
*rdma
)
1100 struct ibv_qp_init_attr attr
= { 0 };
1103 attr
.cap
.max_send_wr
= RDMA_SIGNALED_SEND_MAX
;
1104 attr
.cap
.max_recv_wr
= 3;
1105 attr
.cap
.max_send_sge
= 1;
1106 attr
.cap
.max_recv_sge
= 1;
1107 attr
.send_cq
= rdma
->cq
;
1108 attr
.recv_cq
= rdma
->cq
;
1109 attr
.qp_type
= IBV_QPT_RC
;
1111 ret
= rdma_create_qp(rdma
->cm_id
, rdma
->pd
, &attr
);
1116 rdma
->qp
= rdma
->cm_id
->qp
;
1120 static int qemu_rdma_reg_whole_ram_blocks(RDMAContext
*rdma
)
1123 RDMALocalBlocks
*local
= &rdma
->local_ram_blocks
;
1125 for (i
= 0; i
< local
->nb_blocks
; i
++) {
1126 local
->block
[i
].mr
=
1127 ibv_reg_mr(rdma
->pd
,
1128 local
->block
[i
].local_host_addr
,
1129 local
->block
[i
].length
,
1130 IBV_ACCESS_LOCAL_WRITE
|
1131 IBV_ACCESS_REMOTE_WRITE
1133 if (!local
->block
[i
].mr
) {
1134 perror("Failed to register local dest ram block!\n");
1137 rdma
->total_registrations
++;
1140 if (i
>= local
->nb_blocks
) {
1144 for (i
--; i
>= 0; i
--) {
1145 ibv_dereg_mr(local
->block
[i
].mr
);
1146 rdma
->total_registrations
--;
1154 * Find the ram block that corresponds to the page requested to be
1155 * transmitted by QEMU.
1157 * Once the block is found, also identify which 'chunk' within that
1158 * block that the page belongs to.
1160 * This search cannot fail or the migration will fail.
1162 static int qemu_rdma_search_ram_block(RDMAContext
*rdma
,
1163 uintptr_t block_offset
,
1166 uint64_t *block_index
,
1167 uint64_t *chunk_index
)
1169 uint64_t current_addr
= block_offset
+ offset
;
1170 RDMALocalBlock
*block
= g_hash_table_lookup(rdma
->blockmap
,
1171 (void *) block_offset
);
1173 assert(current_addr
>= block
->offset
);
1174 assert((current_addr
+ length
) <= (block
->offset
+ block
->length
));
1176 *block_index
= block
->index
;
1177 *chunk_index
= ram_chunk_index(block
->local_host_addr
,
1178 block
->local_host_addr
+ (current_addr
- block
->offset
));
1184 * Register a chunk with IB. If the chunk was already registered
1185 * previously, then skip.
1187 * Also return the keys associated with the registration needed
1188 * to perform the actual RDMA operation.
1190 static int qemu_rdma_register_and_get_keys(RDMAContext
*rdma
,
1191 RDMALocalBlock
*block
, uintptr_t host_addr
,
1192 uint32_t *lkey
, uint32_t *rkey
, int chunk
,
1193 uint8_t *chunk_start
, uint8_t *chunk_end
)
1197 *lkey
= block
->mr
->lkey
;
1200 *rkey
= block
->mr
->rkey
;
1205 /* allocate memory to store chunk MRs */
1207 block
->pmr
= g_new0(struct ibv_mr
*, block
->nb_chunks
);
1211 * If 'rkey', then we're the destination, so grant access to the source.
1213 * If 'lkey', then we're the source VM, so grant access only to ourselves.
1215 if (!block
->pmr
[chunk
]) {
1216 uint64_t len
= chunk_end
- chunk_start
;
1218 trace_qemu_rdma_register_and_get_keys(len
, chunk_start
);
1220 block
->pmr
[chunk
] = ibv_reg_mr(rdma
->pd
,
1222 (rkey
? (IBV_ACCESS_LOCAL_WRITE
|
1223 IBV_ACCESS_REMOTE_WRITE
) : 0));
1225 if (!block
->pmr
[chunk
]) {
1226 perror("Failed to register chunk!");
1227 fprintf(stderr
, "Chunk details: block: %d chunk index %d"
1228 " start %" PRIuPTR
" end %" PRIuPTR
1230 " local %" PRIuPTR
" registrations: %d\n",
1231 block
->index
, chunk
, (uintptr_t)chunk_start
,
1232 (uintptr_t)chunk_end
, host_addr
,
1233 (uintptr_t)block
->local_host_addr
,
1234 rdma
->total_registrations
);
1237 rdma
->total_registrations
++;
1241 *lkey
= block
->pmr
[chunk
]->lkey
;
1244 *rkey
= block
->pmr
[chunk
]->rkey
;
1250 * Register (at connection time) the memory used for control
1253 static int qemu_rdma_reg_control(RDMAContext
*rdma
, int idx
)
1255 rdma
->wr_data
[idx
].control_mr
= ibv_reg_mr(rdma
->pd
,
1256 rdma
->wr_data
[idx
].control
, RDMA_CONTROL_MAX_BUFFER
,
1257 IBV_ACCESS_LOCAL_WRITE
| IBV_ACCESS_REMOTE_WRITE
);
1258 if (rdma
->wr_data
[idx
].control_mr
) {
1259 rdma
->total_registrations
++;
1262 error_report("qemu_rdma_reg_control failed");
1266 const char *print_wrid(int wrid
)
1268 if (wrid
>= RDMA_WRID_RECV_CONTROL
) {
1269 return wrid_desc
[RDMA_WRID_RECV_CONTROL
];
1271 return wrid_desc
[wrid
];
1275 * RDMA requires memory registration (mlock/pinning), but this is not good for
1278 * In preparation for the future where LRU information or workload-specific
1279 * writable writable working set memory access behavior is available to QEMU
1280 * it would be nice to have in place the ability to UN-register/UN-pin
1281 * particular memory regions from the RDMA hardware when it is determine that
1282 * those regions of memory will likely not be accessed again in the near future.
1284 * While we do not yet have such information right now, the following
1285 * compile-time option allows us to perform a non-optimized version of this
1288 * By uncommenting this option, you will cause *all* RDMA transfers to be
1289 * unregistered immediately after the transfer completes on both sides of the
1290 * connection. This has no effect in 'rdma-pin-all' mode, only regular mode.
1292 * This will have a terrible impact on migration performance, so until future
1293 * workload information or LRU information is available, do not attempt to use
1294 * this feature except for basic testing.
1296 /* #define RDMA_UNREGISTRATION_EXAMPLE */
1299 * Perform a non-optimized memory unregistration after every transfer
1300 * for demonstration purposes, only if pin-all is not requested.
1302 * Potential optimizations:
1303 * 1. Start a new thread to run this function continuously
1305 - and for receipt of unregister messages
1307 * 3. Use workload hints.
1309 static int qemu_rdma_unregister_waiting(RDMAContext
*rdma
)
1311 while (rdma
->unregistrations
[rdma
->unregister_current
]) {
1313 uint64_t wr_id
= rdma
->unregistrations
[rdma
->unregister_current
];
1315 (wr_id
& RDMA_WRID_CHUNK_MASK
) >> RDMA_WRID_CHUNK_SHIFT
;
1317 (wr_id
& RDMA_WRID_BLOCK_MASK
) >> RDMA_WRID_BLOCK_SHIFT
;
1318 RDMALocalBlock
*block
=
1319 &(rdma
->local_ram_blocks
.block
[index
]);
1320 RDMARegister reg
= { .current_index
= index
};
1321 RDMAControlHeader resp
= { .type
= RDMA_CONTROL_UNREGISTER_FINISHED
,
1323 RDMAControlHeader head
= { .len
= sizeof(RDMARegister
),
1324 .type
= RDMA_CONTROL_UNREGISTER_REQUEST
,
1328 trace_qemu_rdma_unregister_waiting_proc(chunk
,
1329 rdma
->unregister_current
);
1331 rdma
->unregistrations
[rdma
->unregister_current
] = 0;
1332 rdma
->unregister_current
++;
1334 if (rdma
->unregister_current
== RDMA_SIGNALED_SEND_MAX
) {
1335 rdma
->unregister_current
= 0;
1340 * Unregistration is speculative (because migration is single-threaded
1341 * and we cannot break the protocol's inifinband message ordering).
1342 * Thus, if the memory is currently being used for transmission,
1343 * then abort the attempt to unregister and try again
1344 * later the next time a completion is received for this memory.
1346 clear_bit(chunk
, block
->unregister_bitmap
);
1348 if (test_bit(chunk
, block
->transit_bitmap
)) {
1349 trace_qemu_rdma_unregister_waiting_inflight(chunk
);
1353 trace_qemu_rdma_unregister_waiting_send(chunk
);
1355 ret
= ibv_dereg_mr(block
->pmr
[chunk
]);
1356 block
->pmr
[chunk
] = NULL
;
1357 block
->remote_keys
[chunk
] = 0;
1360 perror("unregistration chunk failed");
1363 rdma
->total_registrations
--;
1365 reg
.key
.chunk
= chunk
;
1366 register_to_network(rdma
, ®
);
1367 ret
= qemu_rdma_exchange_send(rdma
, &head
, (uint8_t *) ®
,
1373 trace_qemu_rdma_unregister_waiting_complete(chunk
);
1379 static uint64_t qemu_rdma_make_wrid(uint64_t wr_id
, uint64_t index
,
1382 uint64_t result
= wr_id
& RDMA_WRID_TYPE_MASK
;
1384 result
|= (index
<< RDMA_WRID_BLOCK_SHIFT
);
1385 result
|= (chunk
<< RDMA_WRID_CHUNK_SHIFT
);
1391 * Set bit for unregistration in the next iteration.
1392 * We cannot transmit right here, but will unpin later.
1394 static void qemu_rdma_signal_unregister(RDMAContext
*rdma
, uint64_t index
,
1395 uint64_t chunk
, uint64_t wr_id
)
1397 if (rdma
->unregistrations
[rdma
->unregister_next
] != 0) {
1398 error_report("rdma migration: queue is full");
1400 RDMALocalBlock
*block
= &(rdma
->local_ram_blocks
.block
[index
]);
1402 if (!test_and_set_bit(chunk
, block
->unregister_bitmap
)) {
1403 trace_qemu_rdma_signal_unregister_append(chunk
,
1404 rdma
->unregister_next
);
1406 rdma
->unregistrations
[rdma
->unregister_next
++] =
1407 qemu_rdma_make_wrid(wr_id
, index
, chunk
);
1409 if (rdma
->unregister_next
== RDMA_SIGNALED_SEND_MAX
) {
1410 rdma
->unregister_next
= 0;
1413 trace_qemu_rdma_signal_unregister_already(chunk
);
1419 * Consult the connection manager to see a work request
1420 * (of any kind) has completed.
1421 * Return the work request ID that completed.
1423 static uint64_t qemu_rdma_poll(RDMAContext
*rdma
, uint64_t *wr_id_out
,
1430 ret
= ibv_poll_cq(rdma
->cq
, 1, &wc
);
1433 *wr_id_out
= RDMA_WRID_NONE
;
1438 error_report("ibv_poll_cq return %d", ret
);
1442 wr_id
= wc
.wr_id
& RDMA_WRID_TYPE_MASK
;
1444 if (wc
.status
!= IBV_WC_SUCCESS
) {
1445 fprintf(stderr
, "ibv_poll_cq wc.status=%d %s!\n",
1446 wc
.status
, ibv_wc_status_str(wc
.status
));
1447 fprintf(stderr
, "ibv_poll_cq wrid=%s!\n", wrid_desc
[wr_id
]);
1452 if (rdma
->control_ready_expected
&&
1453 (wr_id
>= RDMA_WRID_RECV_CONTROL
)) {
1454 trace_qemu_rdma_poll_recv(wrid_desc
[RDMA_WRID_RECV_CONTROL
],
1455 wr_id
- RDMA_WRID_RECV_CONTROL
, wr_id
, rdma
->nb_sent
);
1456 rdma
->control_ready_expected
= 0;
1459 if (wr_id
== RDMA_WRID_RDMA_WRITE
) {
1461 (wc
.wr_id
& RDMA_WRID_CHUNK_MASK
) >> RDMA_WRID_CHUNK_SHIFT
;
1463 (wc
.wr_id
& RDMA_WRID_BLOCK_MASK
) >> RDMA_WRID_BLOCK_SHIFT
;
1464 RDMALocalBlock
*block
= &(rdma
->local_ram_blocks
.block
[index
]);
1466 trace_qemu_rdma_poll_write(print_wrid(wr_id
), wr_id
, rdma
->nb_sent
,
1467 index
, chunk
, block
->local_host_addr
,
1468 (void *)(uintptr_t)block
->remote_host_addr
);
1470 clear_bit(chunk
, block
->transit_bitmap
);
1472 if (rdma
->nb_sent
> 0) {
1476 if (!rdma
->pin_all
) {
1478 * FYI: If one wanted to signal a specific chunk to be unregistered
1479 * using LRU or workload-specific information, this is the function
1480 * you would call to do so. That chunk would then get asynchronously
1481 * unregistered later.
1483 #ifdef RDMA_UNREGISTRATION_EXAMPLE
1484 qemu_rdma_signal_unregister(rdma
, index
, chunk
, wc
.wr_id
);
1488 trace_qemu_rdma_poll_other(print_wrid(wr_id
), wr_id
, rdma
->nb_sent
);
1491 *wr_id_out
= wc
.wr_id
;
1493 *byte_len
= wc
.byte_len
;
1499 /* Wait for activity on the completion channel.
1500 * Returns 0 on success, none-0 on error.
1502 static int qemu_rdma_wait_comp_channel(RDMAContext
*rdma
)
1504 struct rdma_cm_event
*cm_event
;
1508 * Coroutine doesn't start until migration_fd_process_incoming()
1509 * so don't yield unless we know we're running inside of a coroutine.
1511 if (rdma
->migration_started_on_destination
&&
1512 migration_incoming_get_current()->state
== MIGRATION_STATUS_ACTIVE
) {
1513 yield_until_fd_readable(rdma
->comp_channel
->fd
);
1515 /* This is the source side, we're in a separate thread
1516 * or destination prior to migration_fd_process_incoming()
1517 * after postcopy, the destination also in a separate thread.
1518 * we can't yield; so we have to poll the fd.
1519 * But we need to be able to handle 'cancel' or an error
1520 * without hanging forever.
1522 while (!rdma
->error_state
&& !rdma
->received_error
) {
1524 pfds
[0].fd
= rdma
->comp_channel
->fd
;
1525 pfds
[0].events
= G_IO_IN
| G_IO_HUP
| G_IO_ERR
;
1526 pfds
[0].revents
= 0;
1528 pfds
[1].fd
= rdma
->channel
->fd
;
1529 pfds
[1].events
= G_IO_IN
| G_IO_HUP
| G_IO_ERR
;
1530 pfds
[1].revents
= 0;
1532 /* 0.1s timeout, should be fine for a 'cancel' */
1533 switch (qemu_poll_ns(pfds
, 2, 100 * 1000 * 1000)) {
1535 case 1: /* fd active */
1536 if (pfds
[0].revents
) {
1540 if (pfds
[1].revents
) {
1541 ret
= rdma_get_cm_event(rdma
->channel
, &cm_event
);
1543 error_report("failed to get cm event while wait "
1544 "completion channel");
1548 error_report("receive cm event while wait comp channel,"
1549 "cm event is %d", cm_event
->event
);
1550 if (cm_event
->event
== RDMA_CM_EVENT_DISCONNECTED
||
1551 cm_event
->event
== RDMA_CM_EVENT_DEVICE_REMOVAL
) {
1552 rdma_ack_cm_event(cm_event
);
1555 rdma_ack_cm_event(cm_event
);
1559 case 0: /* Timeout, go around again */
1562 default: /* Error of some type -
1563 * I don't trust errno from qemu_poll_ns
1565 error_report("%s: poll failed", __func__
);
1569 if (migrate_get_current()->state
== MIGRATION_STATUS_CANCELLING
) {
1570 /* Bail out and let the cancellation happen */
1576 if (rdma
->received_error
) {
1579 return rdma
->error_state
;
1583 * Block until the next work request has completed.
1585 * First poll to see if a work request has already completed,
1588 * If we encounter completed work requests for IDs other than
1589 * the one we're interested in, then that's generally an error.
1591 * The only exception is actual RDMA Write completions. These
1592 * completions only need to be recorded, but do not actually
1593 * need further processing.
1595 static int qemu_rdma_block_for_wrid(RDMAContext
*rdma
, int wrid_requested
,
1598 int num_cq_events
= 0, ret
= 0;
1601 uint64_t wr_id
= RDMA_WRID_NONE
, wr_id_in
;
1603 if (ibv_req_notify_cq(rdma
->cq
, 0)) {
1607 while (wr_id
!= wrid_requested
) {
1608 ret
= qemu_rdma_poll(rdma
, &wr_id_in
, byte_len
);
1613 wr_id
= wr_id_in
& RDMA_WRID_TYPE_MASK
;
1615 if (wr_id
== RDMA_WRID_NONE
) {
1618 if (wr_id
!= wrid_requested
) {
1619 trace_qemu_rdma_block_for_wrid_miss(print_wrid(wrid_requested
),
1620 wrid_requested
, print_wrid(wr_id
), wr_id
);
1624 if (wr_id
== wrid_requested
) {
1629 ret
= qemu_rdma_wait_comp_channel(rdma
);
1631 goto err_block_for_wrid
;
1634 ret
= ibv_get_cq_event(rdma
->comp_channel
, &cq
, &cq_ctx
);
1636 perror("ibv_get_cq_event");
1637 goto err_block_for_wrid
;
1642 ret
= -ibv_req_notify_cq(cq
, 0);
1644 goto err_block_for_wrid
;
1647 while (wr_id
!= wrid_requested
) {
1648 ret
= qemu_rdma_poll(rdma
, &wr_id_in
, byte_len
);
1650 goto err_block_for_wrid
;
1653 wr_id
= wr_id_in
& RDMA_WRID_TYPE_MASK
;
1655 if (wr_id
== RDMA_WRID_NONE
) {
1658 if (wr_id
!= wrid_requested
) {
1659 trace_qemu_rdma_block_for_wrid_miss(print_wrid(wrid_requested
),
1660 wrid_requested
, print_wrid(wr_id
), wr_id
);
1664 if (wr_id
== wrid_requested
) {
1665 goto success_block_for_wrid
;
1669 success_block_for_wrid
:
1670 if (num_cq_events
) {
1671 ibv_ack_cq_events(cq
, num_cq_events
);
1676 if (num_cq_events
) {
1677 ibv_ack_cq_events(cq
, num_cq_events
);
1680 rdma
->error_state
= ret
;
1685 * Post a SEND message work request for the control channel
1686 * containing some data and block until the post completes.
1688 static int qemu_rdma_post_send_control(RDMAContext
*rdma
, uint8_t *buf
,
1689 RDMAControlHeader
*head
)
1692 RDMAWorkRequestData
*wr
= &rdma
->wr_data
[RDMA_WRID_CONTROL
];
1693 struct ibv_send_wr
*bad_wr
;
1694 struct ibv_sge sge
= {
1695 .addr
= (uintptr_t)(wr
->control
),
1696 .length
= head
->len
+ sizeof(RDMAControlHeader
),
1697 .lkey
= wr
->control_mr
->lkey
,
1699 struct ibv_send_wr send_wr
= {
1700 .wr_id
= RDMA_WRID_SEND_CONTROL
,
1701 .opcode
= IBV_WR_SEND
,
1702 .send_flags
= IBV_SEND_SIGNALED
,
1707 trace_qemu_rdma_post_send_control(control_desc(head
->type
));
1710 * We don't actually need to do a memcpy() in here if we used
1711 * the "sge" properly, but since we're only sending control messages
1712 * (not RAM in a performance-critical path), then its OK for now.
1714 * The copy makes the RDMAControlHeader simpler to manipulate
1715 * for the time being.
1717 assert(head
->len
<= RDMA_CONTROL_MAX_BUFFER
- sizeof(*head
));
1718 memcpy(wr
->control
, head
, sizeof(RDMAControlHeader
));
1719 control_to_network((void *) wr
->control
);
1722 memcpy(wr
->control
+ sizeof(RDMAControlHeader
), buf
, head
->len
);
1726 ret
= ibv_post_send(rdma
->qp
, &send_wr
, &bad_wr
);
1729 error_report("Failed to use post IB SEND for control");
1733 ret
= qemu_rdma_block_for_wrid(rdma
, RDMA_WRID_SEND_CONTROL
, NULL
);
1735 error_report("rdma migration: send polling control error");
1742 * Post a RECV work request in anticipation of some future receipt
1743 * of data on the control channel.
1745 static int qemu_rdma_post_recv_control(RDMAContext
*rdma
, int idx
)
1747 struct ibv_recv_wr
*bad_wr
;
1748 struct ibv_sge sge
= {
1749 .addr
= (uintptr_t)(rdma
->wr_data
[idx
].control
),
1750 .length
= RDMA_CONTROL_MAX_BUFFER
,
1751 .lkey
= rdma
->wr_data
[idx
].control_mr
->lkey
,
1754 struct ibv_recv_wr recv_wr
= {
1755 .wr_id
= RDMA_WRID_RECV_CONTROL
+ idx
,
1761 if (ibv_post_recv(rdma
->qp
, &recv_wr
, &bad_wr
)) {
1769 * Block and wait for a RECV control channel message to arrive.
1771 static int qemu_rdma_exchange_get_response(RDMAContext
*rdma
,
1772 RDMAControlHeader
*head
, int expecting
, int idx
)
1775 int ret
= qemu_rdma_block_for_wrid(rdma
, RDMA_WRID_RECV_CONTROL
+ idx
,
1779 error_report("rdma migration: recv polling control error!");
1783 network_to_control((void *) rdma
->wr_data
[idx
].control
);
1784 memcpy(head
, rdma
->wr_data
[idx
].control
, sizeof(RDMAControlHeader
));
1786 trace_qemu_rdma_exchange_get_response_start(control_desc(expecting
));
1788 if (expecting
== RDMA_CONTROL_NONE
) {
1789 trace_qemu_rdma_exchange_get_response_none(control_desc(head
->type
),
1791 } else if (head
->type
!= expecting
|| head
->type
== RDMA_CONTROL_ERROR
) {
1792 error_report("Was expecting a %s (%d) control message"
1793 ", but got: %s (%d), length: %d",
1794 control_desc(expecting
), expecting
,
1795 control_desc(head
->type
), head
->type
, head
->len
);
1796 if (head
->type
== RDMA_CONTROL_ERROR
) {
1797 rdma
->received_error
= true;
1801 if (head
->len
> RDMA_CONTROL_MAX_BUFFER
- sizeof(*head
)) {
1802 error_report("too long length: %d", head
->len
);
1805 if (sizeof(*head
) + head
->len
!= byte_len
) {
1806 error_report("Malformed length: %d byte_len %d", head
->len
, byte_len
);
1814 * When a RECV work request has completed, the work request's
1815 * buffer is pointed at the header.
1817 * This will advance the pointer to the data portion
1818 * of the control message of the work request's buffer that
1819 * was populated after the work request finished.
1821 static void qemu_rdma_move_header(RDMAContext
*rdma
, int idx
,
1822 RDMAControlHeader
*head
)
1824 rdma
->wr_data
[idx
].control_len
= head
->len
;
1825 rdma
->wr_data
[idx
].control_curr
=
1826 rdma
->wr_data
[idx
].control
+ sizeof(RDMAControlHeader
);
1830 * This is an 'atomic' high-level operation to deliver a single, unified
1831 * control-channel message.
1833 * Additionally, if the user is expecting some kind of reply to this message,
1834 * they can request a 'resp' response message be filled in by posting an
1835 * additional work request on behalf of the user and waiting for an additional
1838 * The extra (optional) response is used during registration to us from having
1839 * to perform an *additional* exchange of message just to provide a response by
1840 * instead piggy-backing on the acknowledgement.
1842 static int qemu_rdma_exchange_send(RDMAContext
*rdma
, RDMAControlHeader
*head
,
1843 uint8_t *data
, RDMAControlHeader
*resp
,
1845 int (*callback
)(RDMAContext
*rdma
))
1850 * Wait until the dest is ready before attempting to deliver the message
1851 * by waiting for a READY message.
1853 if (rdma
->control_ready_expected
) {
1854 RDMAControlHeader resp
;
1855 ret
= qemu_rdma_exchange_get_response(rdma
,
1856 &resp
, RDMA_CONTROL_READY
, RDMA_WRID_READY
);
1863 * If the user is expecting a response, post a WR in anticipation of it.
1866 ret
= qemu_rdma_post_recv_control(rdma
, RDMA_WRID_DATA
);
1868 error_report("rdma migration: error posting"
1869 " extra control recv for anticipated result!");
1875 * Post a WR to replace the one we just consumed for the READY message.
1877 ret
= qemu_rdma_post_recv_control(rdma
, RDMA_WRID_READY
);
1879 error_report("rdma migration: error posting first control recv!");
1884 * Deliver the control message that was requested.
1886 ret
= qemu_rdma_post_send_control(rdma
, data
, head
);
1889 error_report("Failed to send control buffer!");
1894 * If we're expecting a response, block and wait for it.
1898 trace_qemu_rdma_exchange_send_issue_callback();
1899 ret
= callback(rdma
);
1905 trace_qemu_rdma_exchange_send_waiting(control_desc(resp
->type
));
1906 ret
= qemu_rdma_exchange_get_response(rdma
, resp
,
1907 resp
->type
, RDMA_WRID_DATA
);
1913 qemu_rdma_move_header(rdma
, RDMA_WRID_DATA
, resp
);
1915 *resp_idx
= RDMA_WRID_DATA
;
1917 trace_qemu_rdma_exchange_send_received(control_desc(resp
->type
));
1920 rdma
->control_ready_expected
= 1;
1926 * This is an 'atomic' high-level operation to receive a single, unified
1927 * control-channel message.
1929 static int qemu_rdma_exchange_recv(RDMAContext
*rdma
, RDMAControlHeader
*head
,
1932 RDMAControlHeader ready
= {
1934 .type
= RDMA_CONTROL_READY
,
1940 * Inform the source that we're ready to receive a message.
1942 ret
= qemu_rdma_post_send_control(rdma
, NULL
, &ready
);
1945 error_report("Failed to send control buffer!");
1950 * Block and wait for the message.
1952 ret
= qemu_rdma_exchange_get_response(rdma
, head
,
1953 expecting
, RDMA_WRID_READY
);
1959 qemu_rdma_move_header(rdma
, RDMA_WRID_READY
, head
);
1962 * Post a new RECV work request to replace the one we just consumed.
1964 ret
= qemu_rdma_post_recv_control(rdma
, RDMA_WRID_READY
);
1966 error_report("rdma migration: error posting second control recv!");
1974 * Write an actual chunk of memory using RDMA.
1976 * If we're using dynamic registration on the dest-side, we have to
1977 * send a registration command first.
1979 static int qemu_rdma_write_one(QEMUFile
*f
, RDMAContext
*rdma
,
1980 int current_index
, uint64_t current_addr
,
1984 struct ibv_send_wr send_wr
= { 0 };
1985 struct ibv_send_wr
*bad_wr
;
1986 int reg_result_idx
, ret
, count
= 0;
1987 uint64_t chunk
, chunks
;
1988 uint8_t *chunk_start
, *chunk_end
;
1989 RDMALocalBlock
*block
= &(rdma
->local_ram_blocks
.block
[current_index
]);
1991 RDMARegisterResult
*reg_result
;
1992 RDMAControlHeader resp
= { .type
= RDMA_CONTROL_REGISTER_RESULT
};
1993 RDMAControlHeader head
= { .len
= sizeof(RDMARegister
),
1994 .type
= RDMA_CONTROL_REGISTER_REQUEST
,
1999 sge
.addr
= (uintptr_t)(block
->local_host_addr
+
2000 (current_addr
- block
->offset
));
2001 sge
.length
= length
;
2003 chunk
= ram_chunk_index(block
->local_host_addr
,
2004 (uint8_t *)(uintptr_t)sge
.addr
);
2005 chunk_start
= ram_chunk_start(block
, chunk
);
2007 if (block
->is_ram_block
) {
2008 chunks
= length
/ (1UL << RDMA_REG_CHUNK_SHIFT
);
2010 if (chunks
&& ((length
% (1UL << RDMA_REG_CHUNK_SHIFT
)) == 0)) {
2014 chunks
= block
->length
/ (1UL << RDMA_REG_CHUNK_SHIFT
);
2016 if (chunks
&& ((block
->length
% (1UL << RDMA_REG_CHUNK_SHIFT
)) == 0)) {
2021 trace_qemu_rdma_write_one_top(chunks
+ 1,
2023 (1UL << RDMA_REG_CHUNK_SHIFT
) / 1024 / 1024);
2025 chunk_end
= ram_chunk_end(block
, chunk
+ chunks
);
2027 if (!rdma
->pin_all
) {
2028 #ifdef RDMA_UNREGISTRATION_EXAMPLE
2029 qemu_rdma_unregister_waiting(rdma
);
2033 while (test_bit(chunk
, block
->transit_bitmap
)) {
2035 trace_qemu_rdma_write_one_block(count
++, current_index
, chunk
,
2036 sge
.addr
, length
, rdma
->nb_sent
, block
->nb_chunks
);
2038 ret
= qemu_rdma_block_for_wrid(rdma
, RDMA_WRID_RDMA_WRITE
, NULL
);
2041 error_report("Failed to Wait for previous write to complete "
2042 "block %d chunk %" PRIu64
2043 " current %" PRIu64
" len %" PRIu64
" %d",
2044 current_index
, chunk
, sge
.addr
, length
, rdma
->nb_sent
);
2049 if (!rdma
->pin_all
|| !block
->is_ram_block
) {
2050 if (!block
->remote_keys
[chunk
]) {
2052 * This chunk has not yet been registered, so first check to see
2053 * if the entire chunk is zero. If so, tell the other size to
2054 * memset() + madvise() the entire chunk without RDMA.
2057 if (buffer_is_zero((void *)(uintptr_t)sge
.addr
, length
)) {
2058 RDMACompress comp
= {
2059 .offset
= current_addr
,
2061 .block_idx
= current_index
,
2065 head
.len
= sizeof(comp
);
2066 head
.type
= RDMA_CONTROL_COMPRESS
;
2068 trace_qemu_rdma_write_one_zero(chunk
, sge
.length
,
2069 current_index
, current_addr
);
2071 compress_to_network(rdma
, &comp
);
2072 ret
= qemu_rdma_exchange_send(rdma
, &head
,
2073 (uint8_t *) &comp
, NULL
, NULL
, NULL
);
2079 acct_update_position(f
, sge
.length
, true);
2085 * Otherwise, tell other side to register.
2087 reg
.current_index
= current_index
;
2088 if (block
->is_ram_block
) {
2089 reg
.key
.current_addr
= current_addr
;
2091 reg
.key
.chunk
= chunk
;
2093 reg
.chunks
= chunks
;
2095 trace_qemu_rdma_write_one_sendreg(chunk
, sge
.length
, current_index
,
2098 register_to_network(rdma
, ®
);
2099 ret
= qemu_rdma_exchange_send(rdma
, &head
, (uint8_t *) ®
,
2100 &resp
, ®_result_idx
, NULL
);
2105 /* try to overlap this single registration with the one we sent. */
2106 if (qemu_rdma_register_and_get_keys(rdma
, block
, sge
.addr
,
2107 &sge
.lkey
, NULL
, chunk
,
2108 chunk_start
, chunk_end
)) {
2109 error_report("cannot get lkey");
2113 reg_result
= (RDMARegisterResult
*)
2114 rdma
->wr_data
[reg_result_idx
].control_curr
;
2116 network_to_result(reg_result
);
2118 trace_qemu_rdma_write_one_recvregres(block
->remote_keys
[chunk
],
2119 reg_result
->rkey
, chunk
);
2121 block
->remote_keys
[chunk
] = reg_result
->rkey
;
2122 block
->remote_host_addr
= reg_result
->host_addr
;
2124 /* already registered before */
2125 if (qemu_rdma_register_and_get_keys(rdma
, block
, sge
.addr
,
2126 &sge
.lkey
, NULL
, chunk
,
2127 chunk_start
, chunk_end
)) {
2128 error_report("cannot get lkey!");
2133 send_wr
.wr
.rdma
.rkey
= block
->remote_keys
[chunk
];
2135 send_wr
.wr
.rdma
.rkey
= block
->remote_rkey
;
2137 if (qemu_rdma_register_and_get_keys(rdma
, block
, sge
.addr
,
2138 &sge
.lkey
, NULL
, chunk
,
2139 chunk_start
, chunk_end
)) {
2140 error_report("cannot get lkey!");
2146 * Encode the ram block index and chunk within this wrid.
2147 * We will use this information at the time of completion
2148 * to figure out which bitmap to check against and then which
2149 * chunk in the bitmap to look for.
2151 send_wr
.wr_id
= qemu_rdma_make_wrid(RDMA_WRID_RDMA_WRITE
,
2152 current_index
, chunk
);
2154 send_wr
.opcode
= IBV_WR_RDMA_WRITE
;
2155 send_wr
.send_flags
= IBV_SEND_SIGNALED
;
2156 send_wr
.sg_list
= &sge
;
2157 send_wr
.num_sge
= 1;
2158 send_wr
.wr
.rdma
.remote_addr
= block
->remote_host_addr
+
2159 (current_addr
- block
->offset
);
2161 trace_qemu_rdma_write_one_post(chunk
, sge
.addr
, send_wr
.wr
.rdma
.remote_addr
,
2165 * ibv_post_send() does not return negative error numbers,
2166 * per the specification they are positive - no idea why.
2168 ret
= ibv_post_send(rdma
->qp
, &send_wr
, &bad_wr
);
2170 if (ret
== ENOMEM
) {
2171 trace_qemu_rdma_write_one_queue_full();
2172 ret
= qemu_rdma_block_for_wrid(rdma
, RDMA_WRID_RDMA_WRITE
, NULL
);
2174 error_report("rdma migration: failed to make "
2175 "room in full send queue! %d", ret
);
2181 } else if (ret
> 0) {
2182 perror("rdma migration: post rdma write failed");
2186 set_bit(chunk
, block
->transit_bitmap
);
2187 acct_update_position(f
, sge
.length
, false);
2188 rdma
->total_writes
++;
2194 * Push out any unwritten RDMA operations.
2196 * We support sending out multiple chunks at the same time.
2197 * Not all of them need to get signaled in the completion queue.
2199 static int qemu_rdma_write_flush(QEMUFile
*f
, RDMAContext
*rdma
)
2203 if (!rdma
->current_length
) {
2207 ret
= qemu_rdma_write_one(f
, rdma
,
2208 rdma
->current_index
, rdma
->current_addr
, rdma
->current_length
);
2216 trace_qemu_rdma_write_flush(rdma
->nb_sent
);
2219 rdma
->current_length
= 0;
2220 rdma
->current_addr
= 0;
2225 static inline int qemu_rdma_buffer_mergable(RDMAContext
*rdma
,
2226 uint64_t offset
, uint64_t len
)
2228 RDMALocalBlock
*block
;
2232 if (rdma
->current_index
< 0) {
2236 if (rdma
->current_chunk
< 0) {
2240 block
= &(rdma
->local_ram_blocks
.block
[rdma
->current_index
]);
2241 host_addr
= block
->local_host_addr
+ (offset
- block
->offset
);
2242 chunk_end
= ram_chunk_end(block
, rdma
->current_chunk
);
2244 if (rdma
->current_length
== 0) {
2249 * Only merge into chunk sequentially.
2251 if (offset
!= (rdma
->current_addr
+ rdma
->current_length
)) {
2255 if (offset
< block
->offset
) {
2259 if ((offset
+ len
) > (block
->offset
+ block
->length
)) {
2263 if ((host_addr
+ len
) > chunk_end
) {
2271 * We're not actually writing here, but doing three things:
2273 * 1. Identify the chunk the buffer belongs to.
2274 * 2. If the chunk is full or the buffer doesn't belong to the current
2275 * chunk, then start a new chunk and flush() the old chunk.
2276 * 3. To keep the hardware busy, we also group chunks into batches
2277 * and only require that a batch gets acknowledged in the completion
2278 * queue instead of each individual chunk.
2280 static int qemu_rdma_write(QEMUFile
*f
, RDMAContext
*rdma
,
2281 uint64_t block_offset
, uint64_t offset
,
2284 uint64_t current_addr
= block_offset
+ offset
;
2285 uint64_t index
= rdma
->current_index
;
2286 uint64_t chunk
= rdma
->current_chunk
;
2289 /* If we cannot merge it, we flush the current buffer first. */
2290 if (!qemu_rdma_buffer_mergable(rdma
, current_addr
, len
)) {
2291 ret
= qemu_rdma_write_flush(f
, rdma
);
2295 rdma
->current_length
= 0;
2296 rdma
->current_addr
= current_addr
;
2298 ret
= qemu_rdma_search_ram_block(rdma
, block_offset
,
2299 offset
, len
, &index
, &chunk
);
2301 error_report("ram block search failed");
2304 rdma
->current_index
= index
;
2305 rdma
->current_chunk
= chunk
;
2309 rdma
->current_length
+= len
;
2311 /* flush it if buffer is too large */
2312 if (rdma
->current_length
>= RDMA_MERGE_MAX
) {
2313 return qemu_rdma_write_flush(f
, rdma
);
2319 static void qemu_rdma_cleanup(RDMAContext
*rdma
)
2323 if (rdma
->cm_id
&& rdma
->connected
) {
2324 if ((rdma
->error_state
||
2325 migrate_get_current()->state
== MIGRATION_STATUS_CANCELLING
) &&
2326 !rdma
->received_error
) {
2327 RDMAControlHeader head
= { .len
= 0,
2328 .type
= RDMA_CONTROL_ERROR
,
2331 error_report("Early error. Sending error.");
2332 qemu_rdma_post_send_control(rdma
, NULL
, &head
);
2335 rdma_disconnect(rdma
->cm_id
);
2336 trace_qemu_rdma_cleanup_disconnect();
2337 rdma
->connected
= false;
2340 if (rdma
->channel
) {
2341 qemu_set_fd_handler(rdma
->channel
->fd
, NULL
, NULL
, NULL
);
2343 g_free(rdma
->dest_blocks
);
2344 rdma
->dest_blocks
= NULL
;
2346 for (idx
= 0; idx
< RDMA_WRID_MAX
; idx
++) {
2347 if (rdma
->wr_data
[idx
].control_mr
) {
2348 rdma
->total_registrations
--;
2349 ibv_dereg_mr(rdma
->wr_data
[idx
].control_mr
);
2351 rdma
->wr_data
[idx
].control_mr
= NULL
;
2354 if (rdma
->local_ram_blocks
.block
) {
2355 while (rdma
->local_ram_blocks
.nb_blocks
) {
2356 rdma_delete_block(rdma
, &rdma
->local_ram_blocks
.block
[0]);
2361 rdma_destroy_qp(rdma
->cm_id
);
2365 ibv_destroy_cq(rdma
->cq
);
2368 if (rdma
->comp_channel
) {
2369 ibv_destroy_comp_channel(rdma
->comp_channel
);
2370 rdma
->comp_channel
= NULL
;
2373 ibv_dealloc_pd(rdma
->pd
);
2377 rdma_destroy_id(rdma
->cm_id
);
2381 /* the destination side, listen_id and channel is shared */
2382 if (rdma
->listen_id
) {
2383 if (!rdma
->is_return_path
) {
2384 rdma_destroy_id(rdma
->listen_id
);
2386 rdma
->listen_id
= NULL
;
2388 if (rdma
->channel
) {
2389 if (!rdma
->is_return_path
) {
2390 rdma_destroy_event_channel(rdma
->channel
);
2392 rdma
->channel
= NULL
;
2396 if (rdma
->channel
) {
2397 rdma_destroy_event_channel(rdma
->channel
);
2398 rdma
->channel
= NULL
;
2401 g_free(rdma
->host_port
);
2403 rdma
->host_port
= NULL
;
2407 static int qemu_rdma_source_init(RDMAContext
*rdma
, bool pin_all
, Error
**errp
)
2410 Error
*local_err
= NULL
, **temp
= &local_err
;
2413 * Will be validated against destination's actual capabilities
2414 * after the connect() completes.
2416 rdma
->pin_all
= pin_all
;
2418 ret
= qemu_rdma_resolve_host(rdma
, temp
);
2420 goto err_rdma_source_init
;
2423 ret
= qemu_rdma_alloc_pd_cq(rdma
);
2425 ERROR(temp
, "rdma migration: error allocating pd and cq! Your mlock()"
2426 " limits may be too low. Please check $ ulimit -a # and "
2427 "search for 'ulimit -l' in the output");
2428 goto err_rdma_source_init
;
2431 ret
= qemu_rdma_alloc_qp(rdma
);
2433 ERROR(temp
, "rdma migration: error allocating qp!");
2434 goto err_rdma_source_init
;
2437 ret
= qemu_rdma_init_ram_blocks(rdma
);
2439 ERROR(temp
, "rdma migration: error initializing ram blocks!");
2440 goto err_rdma_source_init
;
2443 /* Build the hash that maps from offset to RAMBlock */
2444 rdma
->blockmap
= g_hash_table_new(g_direct_hash
, g_direct_equal
);
2445 for (idx
= 0; idx
< rdma
->local_ram_blocks
.nb_blocks
; idx
++) {
2446 g_hash_table_insert(rdma
->blockmap
,
2447 (void *)(uintptr_t)rdma
->local_ram_blocks
.block
[idx
].offset
,
2448 &rdma
->local_ram_blocks
.block
[idx
]);
2451 for (idx
= 0; idx
< RDMA_WRID_MAX
; idx
++) {
2452 ret
= qemu_rdma_reg_control(rdma
, idx
);
2454 ERROR(temp
, "rdma migration: error registering %d control!",
2456 goto err_rdma_source_init
;
2462 err_rdma_source_init
:
2463 error_propagate(errp
, local_err
);
2464 qemu_rdma_cleanup(rdma
);
2468 static int qemu_get_cm_event_timeout(RDMAContext
*rdma
,
2469 struct rdma_cm_event
**cm_event
,
2470 long msec
, Error
**errp
)
2473 struct pollfd poll_fd
= {
2474 .fd
= rdma
->channel
->fd
,
2480 ret
= poll(&poll_fd
, 1, msec
);
2481 } while (ret
< 0 && errno
== EINTR
);
2484 ERROR(errp
, "poll cm event timeout");
2486 } else if (ret
< 0) {
2487 ERROR(errp
, "failed to poll cm event, errno=%i", errno
);
2489 } else if (poll_fd
.revents
& POLLIN
) {
2490 return rdma_get_cm_event(rdma
->channel
, cm_event
);
2492 ERROR(errp
, "no POLLIN event, revent=%x", poll_fd
.revents
);
2497 static int qemu_rdma_connect(RDMAContext
*rdma
, Error
**errp
, bool return_path
)
2499 RDMACapabilities cap
= {
2500 .version
= RDMA_CONTROL_VERSION_CURRENT
,
2503 struct rdma_conn_param conn_param
= { .initiator_depth
= 2,
2505 .private_data
= &cap
,
2506 .private_data_len
= sizeof(cap
),
2508 struct rdma_cm_event
*cm_event
;
2512 * Only negotiate the capability with destination if the user
2513 * on the source first requested the capability.
2515 if (rdma
->pin_all
) {
2516 trace_qemu_rdma_connect_pin_all_requested();
2517 cap
.flags
|= RDMA_CAPABILITY_PIN_ALL
;
2520 caps_to_network(&cap
);
2522 ret
= qemu_rdma_post_recv_control(rdma
, RDMA_WRID_READY
);
2524 ERROR(errp
, "posting second control recv");
2525 goto err_rdma_source_connect
;
2528 ret
= rdma_connect(rdma
->cm_id
, &conn_param
);
2530 perror("rdma_connect");
2531 ERROR(errp
, "connecting to destination!");
2532 goto err_rdma_source_connect
;
2536 ret
= qemu_get_cm_event_timeout(rdma
, &cm_event
, 5000, errp
);
2538 ret
= rdma_get_cm_event(rdma
->channel
, &cm_event
);
2541 perror("rdma_get_cm_event after rdma_connect");
2542 ERROR(errp
, "connecting to destination!");
2543 goto err_rdma_source_connect
;
2546 if (cm_event
->event
!= RDMA_CM_EVENT_ESTABLISHED
) {
2547 perror("rdma_get_cm_event != EVENT_ESTABLISHED after rdma_connect");
2548 ERROR(errp
, "connecting to destination!");
2549 rdma_ack_cm_event(cm_event
);
2550 goto err_rdma_source_connect
;
2552 rdma
->connected
= true;
2554 memcpy(&cap
, cm_event
->param
.conn
.private_data
, sizeof(cap
));
2555 network_to_caps(&cap
);
2558 * Verify that the *requested* capabilities are supported by the destination
2559 * and disable them otherwise.
2561 if (rdma
->pin_all
&& !(cap
.flags
& RDMA_CAPABILITY_PIN_ALL
)) {
2562 ERROR(errp
, "Server cannot support pinning all memory. "
2563 "Will register memory dynamically.");
2564 rdma
->pin_all
= false;
2567 trace_qemu_rdma_connect_pin_all_outcome(rdma
->pin_all
);
2569 rdma_ack_cm_event(cm_event
);
2571 rdma
->control_ready_expected
= 1;
2575 err_rdma_source_connect
:
2576 qemu_rdma_cleanup(rdma
);
2580 static int qemu_rdma_dest_init(RDMAContext
*rdma
, Error
**errp
)
2583 struct rdma_cm_id
*listen_id
;
2584 char ip
[40] = "unknown";
2585 struct rdma_addrinfo
*res
, *e
;
2588 for (idx
= 0; idx
< RDMA_WRID_MAX
; idx
++) {
2589 rdma
->wr_data
[idx
].control_len
= 0;
2590 rdma
->wr_data
[idx
].control_curr
= NULL
;
2593 if (!rdma
->host
|| !rdma
->host
[0]) {
2594 ERROR(errp
, "RDMA host is not set!");
2595 rdma
->error_state
= -EINVAL
;
2598 /* create CM channel */
2599 rdma
->channel
= rdma_create_event_channel();
2600 if (!rdma
->channel
) {
2601 ERROR(errp
, "could not create rdma event channel");
2602 rdma
->error_state
= -EINVAL
;
2607 ret
= rdma_create_id(rdma
->channel
, &listen_id
, NULL
, RDMA_PS_TCP
);
2609 ERROR(errp
, "could not create cm_id!");
2610 goto err_dest_init_create_listen_id
;
2613 snprintf(port_str
, 16, "%d", rdma
->port
);
2614 port_str
[15] = '\0';
2616 ret
= rdma_getaddrinfo(rdma
->host
, port_str
, NULL
, &res
);
2618 ERROR(errp
, "could not rdma_getaddrinfo address %s", rdma
->host
);
2619 goto err_dest_init_bind_addr
;
2622 for (e
= res
; e
!= NULL
; e
= e
->ai_next
) {
2623 inet_ntop(e
->ai_family
,
2624 &((struct sockaddr_in
*) e
->ai_dst_addr
)->sin_addr
, ip
, sizeof ip
);
2625 trace_qemu_rdma_dest_init_trying(rdma
->host
, ip
);
2626 ret
= rdma_bind_addr(listen_id
, e
->ai_dst_addr
);
2630 if (e
->ai_family
== AF_INET6
) {
2631 ret
= qemu_rdma_broken_ipv6_kernel(listen_id
->verbs
, errp
);
2639 rdma_freeaddrinfo(res
);
2641 ERROR(errp
, "Error: could not rdma_bind_addr!");
2642 goto err_dest_init_bind_addr
;
2645 rdma
->listen_id
= listen_id
;
2646 qemu_rdma_dump_gid("dest_init", listen_id
);
2649 err_dest_init_bind_addr
:
2650 rdma_destroy_id(listen_id
);
2651 err_dest_init_create_listen_id
:
2652 rdma_destroy_event_channel(rdma
->channel
);
2653 rdma
->channel
= NULL
;
2654 rdma
->error_state
= ret
;
2659 static void qemu_rdma_return_path_dest_init(RDMAContext
*rdma_return_path
,
2664 for (idx
= 0; idx
< RDMA_WRID_MAX
; idx
++) {
2665 rdma_return_path
->wr_data
[idx
].control_len
= 0;
2666 rdma_return_path
->wr_data
[idx
].control_curr
= NULL
;
2669 /*the CM channel and CM id is shared*/
2670 rdma_return_path
->channel
= rdma
->channel
;
2671 rdma_return_path
->listen_id
= rdma
->listen_id
;
2673 rdma
->return_path
= rdma_return_path
;
2674 rdma_return_path
->return_path
= rdma
;
2675 rdma_return_path
->is_return_path
= true;
2678 static void *qemu_rdma_data_init(const char *host_port
, Error
**errp
)
2680 RDMAContext
*rdma
= NULL
;
2681 InetSocketAddress
*addr
;
2684 rdma
= g_new0(RDMAContext
, 1);
2685 rdma
->current_index
= -1;
2686 rdma
->current_chunk
= -1;
2688 addr
= g_new(InetSocketAddress
, 1);
2689 if (!inet_parse(addr
, host_port
, NULL
)) {
2690 rdma
->port
= atoi(addr
->port
);
2691 rdma
->host
= g_strdup(addr
->host
);
2692 rdma
->host_port
= g_strdup(host_port
);
2694 ERROR(errp
, "bad RDMA migration address '%s'", host_port
);
2699 qapi_free_InetSocketAddress(addr
);
2706 * QEMUFile interface to the control channel.
2707 * SEND messages for control only.
2708 * VM's ram is handled with regular RDMA messages.
2710 static ssize_t
qio_channel_rdma_writev(QIOChannel
*ioc
,
2711 const struct iovec
*iov
,
2717 QIOChannelRDMA
*rioc
= QIO_CHANNEL_RDMA(ioc
);
2718 QEMUFile
*f
= rioc
->file
;
2725 RCU_READ_LOCK_GUARD();
2726 rdma
= qatomic_rcu_read(&rioc
->rdmaout
);
2732 CHECK_ERROR_STATE();
2735 * Push out any writes that
2736 * we're queued up for VM's ram.
2738 ret
= qemu_rdma_write_flush(f
, rdma
);
2740 rdma
->error_state
= ret
;
2744 for (i
= 0; i
< niov
; i
++) {
2745 size_t remaining
= iov
[i
].iov_len
;
2746 uint8_t * data
= (void *)iov
[i
].iov_base
;
2748 RDMAControlHeader head
;
2750 len
= MIN(remaining
, RDMA_SEND_INCREMENT
);
2754 head
.type
= RDMA_CONTROL_QEMU_FILE
;
2756 ret
= qemu_rdma_exchange_send(rdma
, &head
, data
, NULL
, NULL
, NULL
);
2759 rdma
->error_state
= ret
;
2771 static size_t qemu_rdma_fill(RDMAContext
*rdma
, uint8_t *buf
,
2772 size_t size
, int idx
)
2776 if (rdma
->wr_data
[idx
].control_len
) {
2777 trace_qemu_rdma_fill(rdma
->wr_data
[idx
].control_len
, size
);
2779 len
= MIN(size
, rdma
->wr_data
[idx
].control_len
);
2780 memcpy(buf
, rdma
->wr_data
[idx
].control_curr
, len
);
2781 rdma
->wr_data
[idx
].control_curr
+= len
;
2782 rdma
->wr_data
[idx
].control_len
-= len
;
2789 * QEMUFile interface to the control channel.
2790 * RDMA links don't use bytestreams, so we have to
2791 * return bytes to QEMUFile opportunistically.
2793 static ssize_t
qio_channel_rdma_readv(QIOChannel
*ioc
,
2794 const struct iovec
*iov
,
2800 QIOChannelRDMA
*rioc
= QIO_CHANNEL_RDMA(ioc
);
2802 RDMAControlHeader head
;
2807 RCU_READ_LOCK_GUARD();
2808 rdma
= qatomic_rcu_read(&rioc
->rdmain
);
2814 CHECK_ERROR_STATE();
2816 for (i
= 0; i
< niov
; i
++) {
2817 size_t want
= iov
[i
].iov_len
;
2818 uint8_t *data
= (void *)iov
[i
].iov_base
;
2821 * First, we hold on to the last SEND message we
2822 * were given and dish out the bytes until we run
2825 ret
= qemu_rdma_fill(rdma
, data
, want
, 0);
2828 /* Got what we needed, so go to next iovec */
2833 /* If we got any data so far, then don't wait
2834 * for more, just return what we have */
2840 /* We've got nothing at all, so lets wait for
2843 ret
= qemu_rdma_exchange_recv(rdma
, &head
, RDMA_CONTROL_QEMU_FILE
);
2846 rdma
->error_state
= ret
;
2851 * SEND was received with new bytes, now try again.
2853 ret
= qemu_rdma_fill(rdma
, data
, want
, 0);
2857 /* Still didn't get enough, so lets just return */
2860 return QIO_CHANNEL_ERR_BLOCK
;
2870 * Block until all the outstanding chunks have been delivered by the hardware.
2872 static int qemu_rdma_drain_cq(QEMUFile
*f
, RDMAContext
*rdma
)
2876 if (qemu_rdma_write_flush(f
, rdma
) < 0) {
2880 while (rdma
->nb_sent
) {
2881 ret
= qemu_rdma_block_for_wrid(rdma
, RDMA_WRID_RDMA_WRITE
, NULL
);
2883 error_report("rdma migration: complete polling error!");
2888 qemu_rdma_unregister_waiting(rdma
);
2894 static int qio_channel_rdma_set_blocking(QIOChannel
*ioc
,
2898 QIOChannelRDMA
*rioc
= QIO_CHANNEL_RDMA(ioc
);
2899 /* XXX we should make readv/writev actually honour this :-) */
2900 rioc
->blocking
= blocking
;
2905 typedef struct QIOChannelRDMASource QIOChannelRDMASource
;
2906 struct QIOChannelRDMASource
{
2908 QIOChannelRDMA
*rioc
;
2909 GIOCondition condition
;
2913 qio_channel_rdma_source_prepare(GSource
*source
,
2916 QIOChannelRDMASource
*rsource
= (QIOChannelRDMASource
*)source
;
2918 GIOCondition cond
= 0;
2921 RCU_READ_LOCK_GUARD();
2922 if (rsource
->condition
== G_IO_IN
) {
2923 rdma
= qatomic_rcu_read(&rsource
->rioc
->rdmain
);
2925 rdma
= qatomic_rcu_read(&rsource
->rioc
->rdmaout
);
2929 error_report("RDMAContext is NULL when prepare Gsource");
2933 if (rdma
->wr_data
[0].control_len
) {
2938 return cond
& rsource
->condition
;
2942 qio_channel_rdma_source_check(GSource
*source
)
2944 QIOChannelRDMASource
*rsource
= (QIOChannelRDMASource
*)source
;
2946 GIOCondition cond
= 0;
2948 RCU_READ_LOCK_GUARD();
2949 if (rsource
->condition
== G_IO_IN
) {
2950 rdma
= qatomic_rcu_read(&rsource
->rioc
->rdmain
);
2952 rdma
= qatomic_rcu_read(&rsource
->rioc
->rdmaout
);
2956 error_report("RDMAContext is NULL when check Gsource");
2960 if (rdma
->wr_data
[0].control_len
) {
2965 return cond
& rsource
->condition
;
2969 qio_channel_rdma_source_dispatch(GSource
*source
,
2970 GSourceFunc callback
,
2973 QIOChannelFunc func
= (QIOChannelFunc
)callback
;
2974 QIOChannelRDMASource
*rsource
= (QIOChannelRDMASource
*)source
;
2976 GIOCondition cond
= 0;
2978 RCU_READ_LOCK_GUARD();
2979 if (rsource
->condition
== G_IO_IN
) {
2980 rdma
= qatomic_rcu_read(&rsource
->rioc
->rdmain
);
2982 rdma
= qatomic_rcu_read(&rsource
->rioc
->rdmaout
);
2986 error_report("RDMAContext is NULL when dispatch Gsource");
2990 if (rdma
->wr_data
[0].control_len
) {
2995 return (*func
)(QIO_CHANNEL(rsource
->rioc
),
2996 (cond
& rsource
->condition
),
3001 qio_channel_rdma_source_finalize(GSource
*source
)
3003 QIOChannelRDMASource
*ssource
= (QIOChannelRDMASource
*)source
;
3005 object_unref(OBJECT(ssource
->rioc
));
3008 GSourceFuncs qio_channel_rdma_source_funcs
= {
3009 qio_channel_rdma_source_prepare
,
3010 qio_channel_rdma_source_check
,
3011 qio_channel_rdma_source_dispatch
,
3012 qio_channel_rdma_source_finalize
3015 static GSource
*qio_channel_rdma_create_watch(QIOChannel
*ioc
,
3016 GIOCondition condition
)
3018 QIOChannelRDMA
*rioc
= QIO_CHANNEL_RDMA(ioc
);
3019 QIOChannelRDMASource
*ssource
;
3022 source
= g_source_new(&qio_channel_rdma_source_funcs
,
3023 sizeof(QIOChannelRDMASource
));
3024 ssource
= (QIOChannelRDMASource
*)source
;
3026 ssource
->rioc
= rioc
;
3027 object_ref(OBJECT(rioc
));
3029 ssource
->condition
= condition
;
3034 static void qio_channel_rdma_set_aio_fd_handler(QIOChannel
*ioc
,
3037 IOHandler
*io_write
,
3040 QIOChannelRDMA
*rioc
= QIO_CHANNEL_RDMA(ioc
);
3042 aio_set_fd_handler(ctx
, rioc
->rdmain
->comp_channel
->fd
,
3043 false, io_read
, io_write
, NULL
, opaque
);
3045 aio_set_fd_handler(ctx
, rioc
->rdmaout
->comp_channel
->fd
,
3046 false, io_read
, io_write
, NULL
, opaque
);
3050 struct rdma_close_rcu
{
3051 struct rcu_head rcu
;
3052 RDMAContext
*rdmain
;
3053 RDMAContext
*rdmaout
;
3056 /* callback from qio_channel_rdma_close via call_rcu */
3057 static void qio_channel_rdma_close_rcu(struct rdma_close_rcu
*rcu
)
3060 qemu_rdma_cleanup(rcu
->rdmain
);
3064 qemu_rdma_cleanup(rcu
->rdmaout
);
3067 g_free(rcu
->rdmain
);
3068 g_free(rcu
->rdmaout
);
3072 static int qio_channel_rdma_close(QIOChannel
*ioc
,
3075 QIOChannelRDMA
*rioc
= QIO_CHANNEL_RDMA(ioc
);
3076 RDMAContext
*rdmain
, *rdmaout
;
3077 struct rdma_close_rcu
*rcu
= g_new(struct rdma_close_rcu
, 1);
3079 trace_qemu_rdma_close();
3081 rdmain
= rioc
->rdmain
;
3083 qatomic_rcu_set(&rioc
->rdmain
, NULL
);
3086 rdmaout
= rioc
->rdmaout
;
3088 qatomic_rcu_set(&rioc
->rdmaout
, NULL
);
3091 rcu
->rdmain
= rdmain
;
3092 rcu
->rdmaout
= rdmaout
;
3093 call_rcu(rcu
, qio_channel_rdma_close_rcu
, rcu
);
3099 qio_channel_rdma_shutdown(QIOChannel
*ioc
,
3100 QIOChannelShutdown how
,
3103 QIOChannelRDMA
*rioc
= QIO_CHANNEL_RDMA(ioc
);
3104 RDMAContext
*rdmain
, *rdmaout
;
3106 RCU_READ_LOCK_GUARD();
3108 rdmain
= qatomic_rcu_read(&rioc
->rdmain
);
3109 rdmaout
= qatomic_rcu_read(&rioc
->rdmain
);
3112 case QIO_CHANNEL_SHUTDOWN_READ
:
3114 rdmain
->error_state
= -1;
3117 case QIO_CHANNEL_SHUTDOWN_WRITE
:
3119 rdmaout
->error_state
= -1;
3122 case QIO_CHANNEL_SHUTDOWN_BOTH
:
3125 rdmain
->error_state
= -1;
3128 rdmaout
->error_state
= -1;
3139 * This means that 'block_offset' is a full virtual address that does not
3140 * belong to a RAMBlock of the virtual machine and instead
3141 * represents a private malloc'd memory area that the caller wishes to
3145 * Offset is an offset to be added to block_offset and used
3146 * to also lookup the corresponding RAMBlock.
3149 * Initiate an transfer this size.
3152 * A 'hint' or 'advice' that means that we wish to speculatively
3153 * and asynchronously unregister this memory. In this case, there is no
3154 * guarantee that the unregister will actually happen, for example,
3155 * if the memory is being actively transmitted. Additionally, the memory
3156 * may be re-registered at any future time if a write within the same
3157 * chunk was requested again, even if you attempted to unregister it
3160 * @size < 0 : TODO, not yet supported
3161 * Unregister the memory NOW. This means that the caller does not
3162 * expect there to be any future RDMA transfers and we just want to clean
3163 * things up. This is used in case the upper layer owns the memory and
3164 * cannot wait for qemu_fclose() to occur.
3166 * @bytes_sent : User-specificed pointer to indicate how many bytes were
3167 * sent. Usually, this will not be more than a few bytes of
3168 * the protocol because most transfers are sent asynchronously.
3170 static size_t qemu_rdma_save_page(QEMUFile
*f
, void *opaque
,
3171 ram_addr_t block_offset
, ram_addr_t offset
,
3172 size_t size
, uint64_t *bytes_sent
)
3174 QIOChannelRDMA
*rioc
= QIO_CHANNEL_RDMA(opaque
);
3178 RCU_READ_LOCK_GUARD();
3179 rdma
= qatomic_rcu_read(&rioc
->rdmaout
);
3185 CHECK_ERROR_STATE();
3187 if (migration_in_postcopy()) {
3188 return RAM_SAVE_CONTROL_NOT_SUPP
;
3195 * Add this page to the current 'chunk'. If the chunk
3196 * is full, or the page doesn't belong to the current chunk,
3197 * an actual RDMA write will occur and a new chunk will be formed.
3199 ret
= qemu_rdma_write(f
, rdma
, block_offset
, offset
, size
);
3201 error_report("rdma migration: write error! %d", ret
);
3206 * We always return 1 bytes because the RDMA
3207 * protocol is completely asynchronous. We do not yet know
3208 * whether an identified chunk is zero or not because we're
3209 * waiting for other pages to potentially be merged with
3210 * the current chunk. So, we have to call qemu_update_position()
3211 * later on when the actual write occurs.
3217 uint64_t index
, chunk
;
3219 /* TODO: Change QEMUFileOps prototype to be signed: size_t => long
3221 ret = qemu_rdma_drain_cq(f, rdma);
3223 fprintf(stderr, "rdma: failed to synchronously drain"
3224 " completion queue before unregistration.\n");
3230 ret
= qemu_rdma_search_ram_block(rdma
, block_offset
,
3231 offset
, size
, &index
, &chunk
);
3234 error_report("ram block search failed");
3238 qemu_rdma_signal_unregister(rdma
, index
, chunk
, 0);
3241 * TODO: Synchronous, guaranteed unregistration (should not occur during
3242 * fast-path). Otherwise, unregisters will process on the next call to
3243 * qemu_rdma_drain_cq()
3245 qemu_rdma_unregister_waiting(rdma);
3251 * Drain the Completion Queue if possible, but do not block,
3254 * If nothing to poll, the end of the iteration will do this
3255 * again to make sure we don't overflow the request queue.
3258 uint64_t wr_id
, wr_id_in
;
3259 int ret
= qemu_rdma_poll(rdma
, &wr_id_in
, NULL
);
3261 error_report("rdma migration: polling error! %d", ret
);
3265 wr_id
= wr_id_in
& RDMA_WRID_TYPE_MASK
;
3267 if (wr_id
== RDMA_WRID_NONE
) {
3272 return RAM_SAVE_CONTROL_DELAYED
;
3274 rdma
->error_state
= ret
;
3278 static void rdma_accept_incoming_migration(void *opaque
);
3280 static void rdma_cm_poll_handler(void *opaque
)
3282 RDMAContext
*rdma
= opaque
;
3284 struct rdma_cm_event
*cm_event
;
3285 MigrationIncomingState
*mis
= migration_incoming_get_current();
3287 ret
= rdma_get_cm_event(rdma
->channel
, &cm_event
);
3289 error_report("get_cm_event failed %d", errno
);
3293 if (cm_event
->event
== RDMA_CM_EVENT_DISCONNECTED
||
3294 cm_event
->event
== RDMA_CM_EVENT_DEVICE_REMOVAL
) {
3295 if (!rdma
->error_state
&&
3296 migration_incoming_get_current()->state
!=
3297 MIGRATION_STATUS_COMPLETED
) {
3298 error_report("receive cm event, cm event is %d", cm_event
->event
);
3299 rdma
->error_state
= -EPIPE
;
3300 if (rdma
->return_path
) {
3301 rdma
->return_path
->error_state
= -EPIPE
;
3304 rdma_ack_cm_event(cm_event
);
3306 if (mis
->migration_incoming_co
) {
3307 qemu_coroutine_enter(mis
->migration_incoming_co
);
3311 rdma_ack_cm_event(cm_event
);
3314 static int qemu_rdma_accept(RDMAContext
*rdma
)
3316 RDMACapabilities cap
;
3317 struct rdma_conn_param conn_param
= {
3318 .responder_resources
= 2,
3319 .private_data
= &cap
,
3320 .private_data_len
= sizeof(cap
),
3322 RDMAContext
*rdma_return_path
= NULL
;
3323 struct rdma_cm_event
*cm_event
;
3324 struct ibv_context
*verbs
;
3328 ret
= rdma_get_cm_event(rdma
->channel
, &cm_event
);
3330 goto err_rdma_dest_wait
;
3333 if (cm_event
->event
!= RDMA_CM_EVENT_CONNECT_REQUEST
) {
3334 rdma_ack_cm_event(cm_event
);
3335 goto err_rdma_dest_wait
;
3339 * initialize the RDMAContext for return path for postcopy after first
3340 * connection request reached.
3342 if (migrate_postcopy() && !rdma
->is_return_path
) {
3343 rdma_return_path
= qemu_rdma_data_init(rdma
->host_port
, NULL
);
3344 if (rdma_return_path
== NULL
) {
3345 rdma_ack_cm_event(cm_event
);
3346 goto err_rdma_dest_wait
;
3349 qemu_rdma_return_path_dest_init(rdma_return_path
, rdma
);
3352 memcpy(&cap
, cm_event
->param
.conn
.private_data
, sizeof(cap
));
3354 network_to_caps(&cap
);
3356 if (cap
.version
< 1 || cap
.version
> RDMA_CONTROL_VERSION_CURRENT
) {
3357 error_report("Unknown source RDMA version: %d, bailing...",
3359 rdma_ack_cm_event(cm_event
);
3360 goto err_rdma_dest_wait
;
3364 * Respond with only the capabilities this version of QEMU knows about.
3366 cap
.flags
&= known_capabilities
;
3369 * Enable the ones that we do know about.
3370 * Add other checks here as new ones are introduced.
3372 if (cap
.flags
& RDMA_CAPABILITY_PIN_ALL
) {
3373 rdma
->pin_all
= true;
3376 rdma
->cm_id
= cm_event
->id
;
3377 verbs
= cm_event
->id
->verbs
;
3379 rdma_ack_cm_event(cm_event
);
3381 trace_qemu_rdma_accept_pin_state(rdma
->pin_all
);
3383 caps_to_network(&cap
);
3385 trace_qemu_rdma_accept_pin_verbsc(verbs
);
3388 rdma
->verbs
= verbs
;
3389 } else if (rdma
->verbs
!= verbs
) {
3390 error_report("ibv context not matching %p, %p!", rdma
->verbs
,
3392 goto err_rdma_dest_wait
;
3395 qemu_rdma_dump_id("dest_init", verbs
);
3397 ret
= qemu_rdma_alloc_pd_cq(rdma
);
3399 error_report("rdma migration: error allocating pd and cq!");
3400 goto err_rdma_dest_wait
;
3403 ret
= qemu_rdma_alloc_qp(rdma
);
3405 error_report("rdma migration: error allocating qp!");
3406 goto err_rdma_dest_wait
;
3409 ret
= qemu_rdma_init_ram_blocks(rdma
);
3411 error_report("rdma migration: error initializing ram blocks!");
3412 goto err_rdma_dest_wait
;
3415 for (idx
= 0; idx
< RDMA_WRID_MAX
; idx
++) {
3416 ret
= qemu_rdma_reg_control(rdma
, idx
);
3418 error_report("rdma: error registering %d control", idx
);
3419 goto err_rdma_dest_wait
;
3423 /* Accept the second connection request for return path */
3424 if (migrate_postcopy() && !rdma
->is_return_path
) {
3425 qemu_set_fd_handler(rdma
->channel
->fd
, rdma_accept_incoming_migration
,
3427 (void *)(intptr_t)rdma
->return_path
);
3429 qemu_set_fd_handler(rdma
->channel
->fd
, rdma_cm_poll_handler
,
3433 ret
= rdma_accept(rdma
->cm_id
, &conn_param
);
3435 error_report("rdma_accept returns %d", ret
);
3436 goto err_rdma_dest_wait
;
3439 ret
= rdma_get_cm_event(rdma
->channel
, &cm_event
);
3441 error_report("rdma_accept get_cm_event failed %d", ret
);
3442 goto err_rdma_dest_wait
;
3445 if (cm_event
->event
!= RDMA_CM_EVENT_ESTABLISHED
) {
3446 error_report("rdma_accept not event established");
3447 rdma_ack_cm_event(cm_event
);
3448 goto err_rdma_dest_wait
;
3451 rdma_ack_cm_event(cm_event
);
3452 rdma
->connected
= true;
3454 ret
= qemu_rdma_post_recv_control(rdma
, RDMA_WRID_READY
);
3456 error_report("rdma migration: error posting second control recv");
3457 goto err_rdma_dest_wait
;
3460 qemu_rdma_dump_gid("dest_connect", rdma
->cm_id
);
3465 rdma
->error_state
= ret
;
3466 qemu_rdma_cleanup(rdma
);
3467 g_free(rdma_return_path
);
3471 static int dest_ram_sort_func(const void *a
, const void *b
)
3473 unsigned int a_index
= ((const RDMALocalBlock
*)a
)->src_index
;
3474 unsigned int b_index
= ((const RDMALocalBlock
*)b
)->src_index
;
3476 return (a_index
< b_index
) ? -1 : (a_index
!= b_index
);
3480 * During each iteration of the migration, we listen for instructions
3481 * by the source VM to perform dynamic page registrations before they
3482 * can perform RDMA operations.
3484 * We respond with the 'rkey'.
3486 * Keep doing this until the source tells us to stop.
3488 static int qemu_rdma_registration_handle(QEMUFile
*f
, void *opaque
)
3490 RDMAControlHeader reg_resp
= { .len
= sizeof(RDMARegisterResult
),
3491 .type
= RDMA_CONTROL_REGISTER_RESULT
,
3494 RDMAControlHeader unreg_resp
= { .len
= 0,
3495 .type
= RDMA_CONTROL_UNREGISTER_FINISHED
,
3498 RDMAControlHeader blocks
= { .type
= RDMA_CONTROL_RAM_BLOCKS_RESULT
,
3500 QIOChannelRDMA
*rioc
= QIO_CHANNEL_RDMA(opaque
);
3502 RDMALocalBlocks
*local
;
3503 RDMAControlHeader head
;
3504 RDMARegister
*reg
, *registers
;
3506 RDMARegisterResult
*reg_result
;
3507 static RDMARegisterResult results
[RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE
];
3508 RDMALocalBlock
*block
;
3515 RCU_READ_LOCK_GUARD();
3516 rdma
= qatomic_rcu_read(&rioc
->rdmain
);
3522 CHECK_ERROR_STATE();
3524 local
= &rdma
->local_ram_blocks
;
3526 trace_qemu_rdma_registration_handle_wait();
3528 ret
= qemu_rdma_exchange_recv(rdma
, &head
, RDMA_CONTROL_NONE
);
3534 if (head
.repeat
> RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE
) {
3535 error_report("rdma: Too many requests in this message (%d)."
3536 "Bailing.", head
.repeat
);
3541 switch (head
.type
) {
3542 case RDMA_CONTROL_COMPRESS
:
3543 comp
= (RDMACompress
*) rdma
->wr_data
[idx
].control_curr
;
3544 network_to_compress(comp
);
3546 trace_qemu_rdma_registration_handle_compress(comp
->length
,
3549 if (comp
->block_idx
>= rdma
->local_ram_blocks
.nb_blocks
) {
3550 error_report("rdma: 'compress' bad block index %u (vs %d)",
3551 (unsigned int)comp
->block_idx
,
3552 rdma
->local_ram_blocks
.nb_blocks
);
3556 block
= &(rdma
->local_ram_blocks
.block
[comp
->block_idx
]);
3558 host_addr
= block
->local_host_addr
+
3559 (comp
->offset
- block
->offset
);
3561 ram_handle_compressed(host_addr
, comp
->value
, comp
->length
);
3564 case RDMA_CONTROL_REGISTER_FINISHED
:
3565 trace_qemu_rdma_registration_handle_finished();
3568 case RDMA_CONTROL_RAM_BLOCKS_REQUEST
:
3569 trace_qemu_rdma_registration_handle_ram_blocks();
3571 /* Sort our local RAM Block list so it's the same as the source,
3572 * we can do this since we've filled in a src_index in the list
3573 * as we received the RAMBlock list earlier.
3575 qsort(rdma
->local_ram_blocks
.block
,
3576 rdma
->local_ram_blocks
.nb_blocks
,
3577 sizeof(RDMALocalBlock
), dest_ram_sort_func
);
3578 for (i
= 0; i
< local
->nb_blocks
; i
++) {
3579 local
->block
[i
].index
= i
;
3582 if (rdma
->pin_all
) {
3583 ret
= qemu_rdma_reg_whole_ram_blocks(rdma
);
3585 error_report("rdma migration: error dest "
3586 "registering ram blocks");
3592 * Dest uses this to prepare to transmit the RAMBlock descriptions
3593 * to the source VM after connection setup.
3594 * Both sides use the "remote" structure to communicate and update
3595 * their "local" descriptions with what was sent.
3597 for (i
= 0; i
< local
->nb_blocks
; i
++) {
3598 rdma
->dest_blocks
[i
].remote_host_addr
=
3599 (uintptr_t)(local
->block
[i
].local_host_addr
);
3601 if (rdma
->pin_all
) {
3602 rdma
->dest_blocks
[i
].remote_rkey
= local
->block
[i
].mr
->rkey
;
3605 rdma
->dest_blocks
[i
].offset
= local
->block
[i
].offset
;
3606 rdma
->dest_blocks
[i
].length
= local
->block
[i
].length
;
3608 dest_block_to_network(&rdma
->dest_blocks
[i
]);
3609 trace_qemu_rdma_registration_handle_ram_blocks_loop(
3610 local
->block
[i
].block_name
,
3611 local
->block
[i
].offset
,
3612 local
->block
[i
].length
,
3613 local
->block
[i
].local_host_addr
,
3614 local
->block
[i
].src_index
);
3617 blocks
.len
= rdma
->local_ram_blocks
.nb_blocks
3618 * sizeof(RDMADestBlock
);
3621 ret
= qemu_rdma_post_send_control(rdma
,
3622 (uint8_t *) rdma
->dest_blocks
, &blocks
);
3625 error_report("rdma migration: error sending remote info");
3630 case RDMA_CONTROL_REGISTER_REQUEST
:
3631 trace_qemu_rdma_registration_handle_register(head
.repeat
);
3633 reg_resp
.repeat
= head
.repeat
;
3634 registers
= (RDMARegister
*) rdma
->wr_data
[idx
].control_curr
;
3636 for (count
= 0; count
< head
.repeat
; count
++) {
3638 uint8_t *chunk_start
, *chunk_end
;
3640 reg
= ®isters
[count
];
3641 network_to_register(reg
);
3643 reg_result
= &results
[count
];
3645 trace_qemu_rdma_registration_handle_register_loop(count
,
3646 reg
->current_index
, reg
->key
.current_addr
, reg
->chunks
);
3648 if (reg
->current_index
>= rdma
->local_ram_blocks
.nb_blocks
) {
3649 error_report("rdma: 'register' bad block index %u (vs %d)",
3650 (unsigned int)reg
->current_index
,
3651 rdma
->local_ram_blocks
.nb_blocks
);
3655 block
= &(rdma
->local_ram_blocks
.block
[reg
->current_index
]);
3656 if (block
->is_ram_block
) {
3657 if (block
->offset
> reg
->key
.current_addr
) {
3658 error_report("rdma: bad register address for block %s"
3659 " offset: %" PRIx64
" current_addr: %" PRIx64
,
3660 block
->block_name
, block
->offset
,
3661 reg
->key
.current_addr
);
3665 host_addr
= (block
->local_host_addr
+
3666 (reg
->key
.current_addr
- block
->offset
));
3667 chunk
= ram_chunk_index(block
->local_host_addr
,
3668 (uint8_t *) host_addr
);
3670 chunk
= reg
->key
.chunk
;
3671 host_addr
= block
->local_host_addr
+
3672 (reg
->key
.chunk
* (1UL << RDMA_REG_CHUNK_SHIFT
));
3673 /* Check for particularly bad chunk value */
3674 if (host_addr
< (void *)block
->local_host_addr
) {
3675 error_report("rdma: bad chunk for block %s"
3677 block
->block_name
, reg
->key
.chunk
);
3682 chunk_start
= ram_chunk_start(block
, chunk
);
3683 chunk_end
= ram_chunk_end(block
, chunk
+ reg
->chunks
);
3684 /* avoid "-Waddress-of-packed-member" warning */
3685 uint32_t tmp_rkey
= 0;
3686 if (qemu_rdma_register_and_get_keys(rdma
, block
,
3687 (uintptr_t)host_addr
, NULL
, &tmp_rkey
,
3688 chunk
, chunk_start
, chunk_end
)) {
3689 error_report("cannot get rkey");
3693 reg_result
->rkey
= tmp_rkey
;
3695 reg_result
->host_addr
= (uintptr_t)block
->local_host_addr
;
3697 trace_qemu_rdma_registration_handle_register_rkey(
3700 result_to_network(reg_result
);
3703 ret
= qemu_rdma_post_send_control(rdma
,
3704 (uint8_t *) results
, ®_resp
);
3707 error_report("Failed to send control buffer");
3711 case RDMA_CONTROL_UNREGISTER_REQUEST
:
3712 trace_qemu_rdma_registration_handle_unregister(head
.repeat
);
3713 unreg_resp
.repeat
= head
.repeat
;
3714 registers
= (RDMARegister
*) rdma
->wr_data
[idx
].control_curr
;
3716 for (count
= 0; count
< head
.repeat
; count
++) {
3717 reg
= ®isters
[count
];
3718 network_to_register(reg
);
3720 trace_qemu_rdma_registration_handle_unregister_loop(count
,
3721 reg
->current_index
, reg
->key
.chunk
);
3723 block
= &(rdma
->local_ram_blocks
.block
[reg
->current_index
]);
3725 ret
= ibv_dereg_mr(block
->pmr
[reg
->key
.chunk
]);
3726 block
->pmr
[reg
->key
.chunk
] = NULL
;
3729 perror("rdma unregistration chunk failed");
3734 rdma
->total_registrations
--;
3736 trace_qemu_rdma_registration_handle_unregister_success(
3740 ret
= qemu_rdma_post_send_control(rdma
, NULL
, &unreg_resp
);
3743 error_report("Failed to send control buffer");
3747 case RDMA_CONTROL_REGISTER_RESULT
:
3748 error_report("Invalid RESULT message at dest.");
3752 error_report("Unknown control message %s", control_desc(head
.type
));
3759 rdma
->error_state
= ret
;
3765 * Called via a ram_control_load_hook during the initial RAM load section which
3766 * lists the RAMBlocks by name. This lets us know the order of the RAMBlocks
3768 * We've already built our local RAMBlock list, but not yet sent the list to
3772 rdma_block_notification_handle(QIOChannelRDMA
*rioc
, const char *name
)
3778 RCU_READ_LOCK_GUARD();
3779 rdma
= qatomic_rcu_read(&rioc
->rdmain
);
3785 /* Find the matching RAMBlock in our local list */
3786 for (curr
= 0; curr
< rdma
->local_ram_blocks
.nb_blocks
; curr
++) {
3787 if (!strcmp(rdma
->local_ram_blocks
.block
[curr
].block_name
, name
)) {
3794 error_report("RAMBlock '%s' not found on destination", name
);
3798 rdma
->local_ram_blocks
.block
[curr
].src_index
= rdma
->next_src_index
;
3799 trace_rdma_block_notification_handle(name
, rdma
->next_src_index
);
3800 rdma
->next_src_index
++;
3805 static int rdma_load_hook(QEMUFile
*f
, void *opaque
, uint64_t flags
, void *data
)
3808 case RAM_CONTROL_BLOCK_REG
:
3809 return rdma_block_notification_handle(opaque
, data
);
3811 case RAM_CONTROL_HOOK
:
3812 return qemu_rdma_registration_handle(f
, opaque
);
3815 /* Shouldn't be called with any other values */
3820 static int qemu_rdma_registration_start(QEMUFile
*f
, void *opaque
,
3821 uint64_t flags
, void *data
)
3823 QIOChannelRDMA
*rioc
= QIO_CHANNEL_RDMA(opaque
);
3826 RCU_READ_LOCK_GUARD();
3827 rdma
= qatomic_rcu_read(&rioc
->rdmaout
);
3832 CHECK_ERROR_STATE();
3834 if (migration_in_postcopy()) {
3838 trace_qemu_rdma_registration_start(flags
);
3839 qemu_put_be64(f
, RAM_SAVE_FLAG_HOOK
);
3846 * Inform dest that dynamic registrations are done for now.
3847 * First, flush writes, if any.
3849 static int qemu_rdma_registration_stop(QEMUFile
*f
, void *opaque
,
3850 uint64_t flags
, void *data
)
3852 QIOChannelRDMA
*rioc
= QIO_CHANNEL_RDMA(opaque
);
3854 RDMAControlHeader head
= { .len
= 0, .repeat
= 1 };
3857 RCU_READ_LOCK_GUARD();
3858 rdma
= qatomic_rcu_read(&rioc
->rdmaout
);
3863 CHECK_ERROR_STATE();
3865 if (migration_in_postcopy()) {
3870 ret
= qemu_rdma_drain_cq(f
, rdma
);
3876 if (flags
== RAM_CONTROL_SETUP
) {
3877 RDMAControlHeader resp
= {.type
= RDMA_CONTROL_RAM_BLOCKS_RESULT
};
3878 RDMALocalBlocks
*local
= &rdma
->local_ram_blocks
;
3879 int reg_result_idx
, i
, nb_dest_blocks
;
3881 head
.type
= RDMA_CONTROL_RAM_BLOCKS_REQUEST
;
3882 trace_qemu_rdma_registration_stop_ram();
3885 * Make sure that we parallelize the pinning on both sides.
3886 * For very large guests, doing this serially takes a really
3887 * long time, so we have to 'interleave' the pinning locally
3888 * with the control messages by performing the pinning on this
3889 * side before we receive the control response from the other
3890 * side that the pinning has completed.
3892 ret
= qemu_rdma_exchange_send(rdma
, &head
, NULL
, &resp
,
3893 ®_result_idx
, rdma
->pin_all
?
3894 qemu_rdma_reg_whole_ram_blocks
: NULL
);
3896 fprintf(stderr
, "receiving remote info!");
3900 nb_dest_blocks
= resp
.len
/ sizeof(RDMADestBlock
);
3903 * The protocol uses two different sets of rkeys (mutually exclusive):
3904 * 1. One key to represent the virtual address of the entire ram block.
3905 * (dynamic chunk registration disabled - pin everything with one rkey.)
3906 * 2. One to represent individual chunks within a ram block.
3907 * (dynamic chunk registration enabled - pin individual chunks.)
3909 * Once the capability is successfully negotiated, the destination transmits
3910 * the keys to use (or sends them later) including the virtual addresses
3911 * and then propagates the remote ram block descriptions to his local copy.
3914 if (local
->nb_blocks
!= nb_dest_blocks
) {
3915 fprintf(stderr
, "ram blocks mismatch (Number of blocks %d vs %d) "
3916 "Your QEMU command line parameters are probably "
3917 "not identical on both the source and destination.",
3918 local
->nb_blocks
, nb_dest_blocks
);
3919 rdma
->error_state
= -EINVAL
;
3923 qemu_rdma_move_header(rdma
, reg_result_idx
, &resp
);
3924 memcpy(rdma
->dest_blocks
,
3925 rdma
->wr_data
[reg_result_idx
].control_curr
, resp
.len
);
3926 for (i
= 0; i
< nb_dest_blocks
; i
++) {
3927 network_to_dest_block(&rdma
->dest_blocks
[i
]);
3929 /* We require that the blocks are in the same order */
3930 if (rdma
->dest_blocks
[i
].length
!= local
->block
[i
].length
) {
3931 fprintf(stderr
, "Block %s/%d has a different length %" PRIu64
3932 "vs %" PRIu64
, local
->block
[i
].block_name
, i
,
3933 local
->block
[i
].length
,
3934 rdma
->dest_blocks
[i
].length
);
3935 rdma
->error_state
= -EINVAL
;
3938 local
->block
[i
].remote_host_addr
=
3939 rdma
->dest_blocks
[i
].remote_host_addr
;
3940 local
->block
[i
].remote_rkey
= rdma
->dest_blocks
[i
].remote_rkey
;
3944 trace_qemu_rdma_registration_stop(flags
);
3946 head
.type
= RDMA_CONTROL_REGISTER_FINISHED
;
3947 ret
= qemu_rdma_exchange_send(rdma
, &head
, NULL
, NULL
, NULL
, NULL
);
3955 rdma
->error_state
= ret
;
3959 static const QEMUFileHooks rdma_read_hooks
= {
3960 .hook_ram_load
= rdma_load_hook
,
3963 static const QEMUFileHooks rdma_write_hooks
= {
3964 .before_ram_iterate
= qemu_rdma_registration_start
,
3965 .after_ram_iterate
= qemu_rdma_registration_stop
,
3966 .save_page
= qemu_rdma_save_page
,
3970 static void qio_channel_rdma_finalize(Object
*obj
)
3972 QIOChannelRDMA
*rioc
= QIO_CHANNEL_RDMA(obj
);
3974 qemu_rdma_cleanup(rioc
->rdmain
);
3975 g_free(rioc
->rdmain
);
3976 rioc
->rdmain
= NULL
;
3978 if (rioc
->rdmaout
) {
3979 qemu_rdma_cleanup(rioc
->rdmaout
);
3980 g_free(rioc
->rdmaout
);
3981 rioc
->rdmaout
= NULL
;
3985 static void qio_channel_rdma_class_init(ObjectClass
*klass
,
3986 void *class_data G_GNUC_UNUSED
)
3988 QIOChannelClass
*ioc_klass
= QIO_CHANNEL_CLASS(klass
);
3990 ioc_klass
->io_writev
= qio_channel_rdma_writev
;
3991 ioc_klass
->io_readv
= qio_channel_rdma_readv
;
3992 ioc_klass
->io_set_blocking
= qio_channel_rdma_set_blocking
;
3993 ioc_klass
->io_close
= qio_channel_rdma_close
;
3994 ioc_klass
->io_create_watch
= qio_channel_rdma_create_watch
;
3995 ioc_klass
->io_set_aio_fd_handler
= qio_channel_rdma_set_aio_fd_handler
;
3996 ioc_klass
->io_shutdown
= qio_channel_rdma_shutdown
;
3999 static const TypeInfo qio_channel_rdma_info
= {
4000 .parent
= TYPE_QIO_CHANNEL
,
4001 .name
= TYPE_QIO_CHANNEL_RDMA
,
4002 .instance_size
= sizeof(QIOChannelRDMA
),
4003 .instance_finalize
= qio_channel_rdma_finalize
,
4004 .class_init
= qio_channel_rdma_class_init
,
4007 static void qio_channel_rdma_register_types(void)
4009 type_register_static(&qio_channel_rdma_info
);
4012 type_init(qio_channel_rdma_register_types
);
4014 static QEMUFile
*qemu_fopen_rdma(RDMAContext
*rdma
, const char *mode
)
4016 QIOChannelRDMA
*rioc
;
4018 if (qemu_file_mode_is_not_valid(mode
)) {
4022 rioc
= QIO_CHANNEL_RDMA(object_new(TYPE_QIO_CHANNEL_RDMA
));
4024 if (mode
[0] == 'w') {
4025 rioc
->file
= qemu_fopen_channel_output(QIO_CHANNEL(rioc
));
4026 rioc
->rdmaout
= rdma
;
4027 rioc
->rdmain
= rdma
->return_path
;
4028 qemu_file_set_hooks(rioc
->file
, &rdma_write_hooks
);
4030 rioc
->file
= qemu_fopen_channel_input(QIO_CHANNEL(rioc
));
4031 rioc
->rdmain
= rdma
;
4032 rioc
->rdmaout
= rdma
->return_path
;
4033 qemu_file_set_hooks(rioc
->file
, &rdma_read_hooks
);
4039 static void rdma_accept_incoming_migration(void *opaque
)
4041 RDMAContext
*rdma
= opaque
;
4044 Error
*local_err
= NULL
;
4046 trace_qemu_rdma_accept_incoming_migration();
4047 ret
= qemu_rdma_accept(rdma
);
4050 fprintf(stderr
, "RDMA ERROR: Migration initialization failed\n");
4054 trace_qemu_rdma_accept_incoming_migration_accepted();
4056 if (rdma
->is_return_path
) {
4060 f
= qemu_fopen_rdma(rdma
, "rb");
4062 fprintf(stderr
, "RDMA ERROR: could not qemu_fopen_rdma\n");
4063 qemu_rdma_cleanup(rdma
);
4067 rdma
->migration_started_on_destination
= 1;
4068 migration_fd_process_incoming(f
, &local_err
);
4070 error_reportf_err(local_err
, "RDMA ERROR:");
4074 void rdma_start_incoming_migration(const char *host_port
, Error
**errp
)
4077 RDMAContext
*rdma
, *rdma_return_path
= NULL
;
4078 Error
*local_err
= NULL
;
4080 trace_rdma_start_incoming_migration();
4082 /* Avoid ram_block_discard_disable(), cannot change during migration. */
4083 if (ram_block_discard_is_required()) {
4084 error_setg(errp
, "RDMA: cannot disable RAM discard");
4088 rdma
= qemu_rdma_data_init(host_port
, &local_err
);
4093 ret
= qemu_rdma_dest_init(rdma
, &local_err
);
4099 trace_rdma_start_incoming_migration_after_dest_init();
4101 ret
= rdma_listen(rdma
->listen_id
, 5);
4104 ERROR(errp
, "listening on socket!");
4108 trace_rdma_start_incoming_migration_after_rdma_listen();
4110 qemu_set_fd_handler(rdma
->channel
->fd
, rdma_accept_incoming_migration
,
4111 NULL
, (void *)(intptr_t)rdma
);
4115 qemu_rdma_cleanup(rdma
);
4117 error_propagate(errp
, local_err
);
4120 g_free(rdma
->host_port
);
4123 g_free(rdma_return_path
);
4126 void rdma_start_outgoing_migration(void *opaque
,
4127 const char *host_port
, Error
**errp
)
4129 MigrationState
*s
= opaque
;
4130 RDMAContext
*rdma_return_path
= NULL
;
4134 /* Avoid ram_block_discard_disable(), cannot change during migration. */
4135 if (ram_block_discard_is_required()) {
4136 error_setg(errp
, "RDMA: cannot disable RAM discard");
4140 rdma
= qemu_rdma_data_init(host_port
, errp
);
4145 ret
= qemu_rdma_source_init(rdma
,
4146 s
->enabled_capabilities
[MIGRATION_CAPABILITY_RDMA_PIN_ALL
], errp
);
4152 trace_rdma_start_outgoing_migration_after_rdma_source_init();
4153 ret
= qemu_rdma_connect(rdma
, errp
, false);
4159 /* RDMA postcopy need a separate queue pair for return path */
4160 if (migrate_postcopy()) {
4161 rdma_return_path
= qemu_rdma_data_init(host_port
, errp
);
4163 if (rdma_return_path
== NULL
) {
4164 goto return_path_err
;
4167 ret
= qemu_rdma_source_init(rdma_return_path
,
4168 s
->enabled_capabilities
[MIGRATION_CAPABILITY_RDMA_PIN_ALL
], errp
);
4171 goto return_path_err
;
4174 ret
= qemu_rdma_connect(rdma_return_path
, errp
, true);
4177 goto return_path_err
;
4180 rdma
->return_path
= rdma_return_path
;
4181 rdma_return_path
->return_path
= rdma
;
4182 rdma_return_path
->is_return_path
= true;
4185 trace_rdma_start_outgoing_migration_after_rdma_connect();
4187 s
->to_dst_file
= qemu_fopen_rdma(rdma
, "wb");
4188 migrate_fd_connect(s
, NULL
);
4191 qemu_rdma_cleanup(rdma
);
4194 g_free(rdma_return_path
);