hw/arm: gsj add pca9548
[qemu.git] / migration / rdma.c
blobd90b29a4b51a040cea65e9ab633f888d52bd8010
1 /*
2 * RDMA protocol and interfaces
4 * Copyright IBM, Corp. 2010-2013
5 * Copyright Red Hat, Inc. 2015-2016
7 * Authors:
8 * Michael R. Hines <mrhines@us.ibm.com>
9 * Jiuxing Liu <jl@us.ibm.com>
10 * Daniel P. Berrange <berrange@redhat.com>
12 * This work is licensed under the terms of the GNU GPL, version 2 or
13 * later. See the COPYING file in the top-level directory.
17 #include "qemu/osdep.h"
18 #include "qapi/error.h"
19 #include "qemu/cutils.h"
20 #include "rdma.h"
21 #include "migration.h"
22 #include "qemu-file.h"
23 #include "ram.h"
24 #include "qemu-file-channel.h"
25 #include "qemu/error-report.h"
26 #include "qemu/main-loop.h"
27 #include "qemu/module.h"
28 #include "qemu/rcu.h"
29 #include "qemu/sockets.h"
30 #include "qemu/bitmap.h"
31 #include "qemu/coroutine.h"
32 #include "exec/memory.h"
33 #include <sys/socket.h>
34 #include <netdb.h>
35 #include <arpa/inet.h>
36 #include <rdma/rdma_cma.h>
37 #include "trace.h"
38 #include "qom/object.h"
39 #include <poll.h>
42 * Print and error on both the Monitor and the Log file.
44 #define ERROR(errp, fmt, ...) \
45 do { \
46 fprintf(stderr, "RDMA ERROR: " fmt "\n", ## __VA_ARGS__); \
47 if (errp && (*(errp) == NULL)) { \
48 error_setg(errp, "RDMA ERROR: " fmt, ## __VA_ARGS__); \
49 } \
50 } while (0)
52 #define RDMA_RESOLVE_TIMEOUT_MS 10000
54 /* Do not merge data if larger than this. */
55 #define RDMA_MERGE_MAX (2 * 1024 * 1024)
56 #define RDMA_SIGNALED_SEND_MAX (RDMA_MERGE_MAX / 4096)
58 #define RDMA_REG_CHUNK_SHIFT 20 /* 1 MB */
61 * This is only for non-live state being migrated.
62 * Instead of RDMA_WRITE messages, we use RDMA_SEND
63 * messages for that state, which requires a different
64 * delivery design than main memory.
66 #define RDMA_SEND_INCREMENT 32768
69 * Maximum size infiniband SEND message
71 #define RDMA_CONTROL_MAX_BUFFER (512 * 1024)
72 #define RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE 4096
74 #define RDMA_CONTROL_VERSION_CURRENT 1
76 * Capabilities for negotiation.
78 #define RDMA_CAPABILITY_PIN_ALL 0x01
81 * Add the other flags above to this list of known capabilities
82 * as they are introduced.
84 static uint32_t known_capabilities = RDMA_CAPABILITY_PIN_ALL;
86 #define CHECK_ERROR_STATE() \
87 do { \
88 if (rdma->error_state) { \
89 if (!rdma->error_reported) { \
90 error_report("RDMA is in an error state waiting migration" \
91 " to abort!"); \
92 rdma->error_reported = 1; \
93 } \
94 return rdma->error_state; \
95 } \
96 } while (0)
99 * A work request ID is 64-bits and we split up these bits
100 * into 3 parts:
102 * bits 0-15 : type of control message, 2^16
103 * bits 16-29: ram block index, 2^14
104 * bits 30-63: ram block chunk number, 2^34
106 * The last two bit ranges are only used for RDMA writes,
107 * in order to track their completion and potentially
108 * also track unregistration status of the message.
110 #define RDMA_WRID_TYPE_SHIFT 0UL
111 #define RDMA_WRID_BLOCK_SHIFT 16UL
112 #define RDMA_WRID_CHUNK_SHIFT 30UL
114 #define RDMA_WRID_TYPE_MASK \
115 ((1UL << RDMA_WRID_BLOCK_SHIFT) - 1UL)
117 #define RDMA_WRID_BLOCK_MASK \
118 (~RDMA_WRID_TYPE_MASK & ((1UL << RDMA_WRID_CHUNK_SHIFT) - 1UL))
120 #define RDMA_WRID_CHUNK_MASK (~RDMA_WRID_BLOCK_MASK & ~RDMA_WRID_TYPE_MASK)
123 * RDMA migration protocol:
124 * 1. RDMA Writes (data messages, i.e. RAM)
125 * 2. IB Send/Recv (control channel messages)
127 enum {
128 RDMA_WRID_NONE = 0,
129 RDMA_WRID_RDMA_WRITE = 1,
130 RDMA_WRID_SEND_CONTROL = 2000,
131 RDMA_WRID_RECV_CONTROL = 4000,
134 static const char *wrid_desc[] = {
135 [RDMA_WRID_NONE] = "NONE",
136 [RDMA_WRID_RDMA_WRITE] = "WRITE RDMA",
137 [RDMA_WRID_SEND_CONTROL] = "CONTROL SEND",
138 [RDMA_WRID_RECV_CONTROL] = "CONTROL RECV",
142 * Work request IDs for IB SEND messages only (not RDMA writes).
143 * This is used by the migration protocol to transmit
144 * control messages (such as device state and registration commands)
146 * We could use more WRs, but we have enough for now.
148 enum {
149 RDMA_WRID_READY = 0,
150 RDMA_WRID_DATA,
151 RDMA_WRID_CONTROL,
152 RDMA_WRID_MAX,
156 * SEND/RECV IB Control Messages.
158 enum {
159 RDMA_CONTROL_NONE = 0,
160 RDMA_CONTROL_ERROR,
161 RDMA_CONTROL_READY, /* ready to receive */
162 RDMA_CONTROL_QEMU_FILE, /* QEMUFile-transmitted bytes */
163 RDMA_CONTROL_RAM_BLOCKS_REQUEST, /* RAMBlock synchronization */
164 RDMA_CONTROL_RAM_BLOCKS_RESULT, /* RAMBlock synchronization */
165 RDMA_CONTROL_COMPRESS, /* page contains repeat values */
166 RDMA_CONTROL_REGISTER_REQUEST, /* dynamic page registration */
167 RDMA_CONTROL_REGISTER_RESULT, /* key to use after registration */
168 RDMA_CONTROL_REGISTER_FINISHED, /* current iteration finished */
169 RDMA_CONTROL_UNREGISTER_REQUEST, /* dynamic UN-registration */
170 RDMA_CONTROL_UNREGISTER_FINISHED, /* unpinning finished */
175 * Memory and MR structures used to represent an IB Send/Recv work request.
176 * This is *not* used for RDMA writes, only IB Send/Recv.
178 typedef struct {
179 uint8_t control[RDMA_CONTROL_MAX_BUFFER]; /* actual buffer to register */
180 struct ibv_mr *control_mr; /* registration metadata */
181 size_t control_len; /* length of the message */
182 uint8_t *control_curr; /* start of unconsumed bytes */
183 } RDMAWorkRequestData;
186 * Negotiate RDMA capabilities during connection-setup time.
188 typedef struct {
189 uint32_t version;
190 uint32_t flags;
191 } RDMACapabilities;
193 static void caps_to_network(RDMACapabilities *cap)
195 cap->version = htonl(cap->version);
196 cap->flags = htonl(cap->flags);
199 static void network_to_caps(RDMACapabilities *cap)
201 cap->version = ntohl(cap->version);
202 cap->flags = ntohl(cap->flags);
206 * Representation of a RAMBlock from an RDMA perspective.
207 * This is not transmitted, only local.
208 * This and subsequent structures cannot be linked lists
209 * because we're using a single IB message to transmit
210 * the information. It's small anyway, so a list is overkill.
212 typedef struct RDMALocalBlock {
213 char *block_name;
214 uint8_t *local_host_addr; /* local virtual address */
215 uint64_t remote_host_addr; /* remote virtual address */
216 uint64_t offset;
217 uint64_t length;
218 struct ibv_mr **pmr; /* MRs for chunk-level registration */
219 struct ibv_mr *mr; /* MR for non-chunk-level registration */
220 uint32_t *remote_keys; /* rkeys for chunk-level registration */
221 uint32_t remote_rkey; /* rkeys for non-chunk-level registration */
222 int index; /* which block are we */
223 unsigned int src_index; /* (Only used on dest) */
224 bool is_ram_block;
225 int nb_chunks;
226 unsigned long *transit_bitmap;
227 unsigned long *unregister_bitmap;
228 } RDMALocalBlock;
231 * Also represents a RAMblock, but only on the dest.
232 * This gets transmitted by the dest during connection-time
233 * to the source VM and then is used to populate the
234 * corresponding RDMALocalBlock with
235 * the information needed to perform the actual RDMA.
237 typedef struct QEMU_PACKED RDMADestBlock {
238 uint64_t remote_host_addr;
239 uint64_t offset;
240 uint64_t length;
241 uint32_t remote_rkey;
242 uint32_t padding;
243 } RDMADestBlock;
245 static const char *control_desc(unsigned int rdma_control)
247 static const char *strs[] = {
248 [RDMA_CONTROL_NONE] = "NONE",
249 [RDMA_CONTROL_ERROR] = "ERROR",
250 [RDMA_CONTROL_READY] = "READY",
251 [RDMA_CONTROL_QEMU_FILE] = "QEMU FILE",
252 [RDMA_CONTROL_RAM_BLOCKS_REQUEST] = "RAM BLOCKS REQUEST",
253 [RDMA_CONTROL_RAM_BLOCKS_RESULT] = "RAM BLOCKS RESULT",
254 [RDMA_CONTROL_COMPRESS] = "COMPRESS",
255 [RDMA_CONTROL_REGISTER_REQUEST] = "REGISTER REQUEST",
256 [RDMA_CONTROL_REGISTER_RESULT] = "REGISTER RESULT",
257 [RDMA_CONTROL_REGISTER_FINISHED] = "REGISTER FINISHED",
258 [RDMA_CONTROL_UNREGISTER_REQUEST] = "UNREGISTER REQUEST",
259 [RDMA_CONTROL_UNREGISTER_FINISHED] = "UNREGISTER FINISHED",
262 if (rdma_control > RDMA_CONTROL_UNREGISTER_FINISHED) {
263 return "??BAD CONTROL VALUE??";
266 return strs[rdma_control];
269 static uint64_t htonll(uint64_t v)
271 union { uint32_t lv[2]; uint64_t llv; } u;
272 u.lv[0] = htonl(v >> 32);
273 u.lv[1] = htonl(v & 0xFFFFFFFFULL);
274 return u.llv;
277 static uint64_t ntohll(uint64_t v)
279 union { uint32_t lv[2]; uint64_t llv; } u;
280 u.llv = v;
281 return ((uint64_t)ntohl(u.lv[0]) << 32) | (uint64_t) ntohl(u.lv[1]);
284 static void dest_block_to_network(RDMADestBlock *db)
286 db->remote_host_addr = htonll(db->remote_host_addr);
287 db->offset = htonll(db->offset);
288 db->length = htonll(db->length);
289 db->remote_rkey = htonl(db->remote_rkey);
292 static void network_to_dest_block(RDMADestBlock *db)
294 db->remote_host_addr = ntohll(db->remote_host_addr);
295 db->offset = ntohll(db->offset);
296 db->length = ntohll(db->length);
297 db->remote_rkey = ntohl(db->remote_rkey);
301 * Virtual address of the above structures used for transmitting
302 * the RAMBlock descriptions at connection-time.
303 * This structure is *not* transmitted.
305 typedef struct RDMALocalBlocks {
306 int nb_blocks;
307 bool init; /* main memory init complete */
308 RDMALocalBlock *block;
309 } RDMALocalBlocks;
312 * Main data structure for RDMA state.
313 * While there is only one copy of this structure being allocated right now,
314 * this is the place where one would start if you wanted to consider
315 * having more than one RDMA connection open at the same time.
317 typedef struct RDMAContext {
318 char *host;
319 int port;
320 char *host_port;
322 RDMAWorkRequestData wr_data[RDMA_WRID_MAX];
325 * This is used by *_exchange_send() to figure out whether or not
326 * the initial "READY" message has already been received or not.
327 * This is because other functions may potentially poll() and detect
328 * the READY message before send() does, in which case we need to
329 * know if it completed.
331 int control_ready_expected;
333 /* number of outstanding writes */
334 int nb_sent;
336 /* store info about current buffer so that we can
337 merge it with future sends */
338 uint64_t current_addr;
339 uint64_t current_length;
340 /* index of ram block the current buffer belongs to */
341 int current_index;
342 /* index of the chunk in the current ram block */
343 int current_chunk;
345 bool pin_all;
348 * infiniband-specific variables for opening the device
349 * and maintaining connection state and so forth.
351 * cm_id also has ibv_context, rdma_event_channel, and ibv_qp in
352 * cm_id->verbs, cm_id->channel, and cm_id->qp.
354 struct rdma_cm_id *cm_id; /* connection manager ID */
355 struct rdma_cm_id *listen_id;
356 bool connected;
358 struct ibv_context *verbs;
359 struct rdma_event_channel *channel;
360 struct ibv_qp *qp; /* queue pair */
361 struct ibv_comp_channel *comp_channel; /* completion channel */
362 struct ibv_pd *pd; /* protection domain */
363 struct ibv_cq *cq; /* completion queue */
366 * If a previous write failed (perhaps because of a failed
367 * memory registration, then do not attempt any future work
368 * and remember the error state.
370 int error_state;
371 int error_reported;
372 int received_error;
375 * Description of ram blocks used throughout the code.
377 RDMALocalBlocks local_ram_blocks;
378 RDMADestBlock *dest_blocks;
380 /* Index of the next RAMBlock received during block registration */
381 unsigned int next_src_index;
384 * Migration on *destination* started.
385 * Then use coroutine yield function.
386 * Source runs in a thread, so we don't care.
388 int migration_started_on_destination;
390 int total_registrations;
391 int total_writes;
393 int unregister_current, unregister_next;
394 uint64_t unregistrations[RDMA_SIGNALED_SEND_MAX];
396 GHashTable *blockmap;
398 /* the RDMAContext for return path */
399 struct RDMAContext *return_path;
400 bool is_return_path;
401 } RDMAContext;
403 #define TYPE_QIO_CHANNEL_RDMA "qio-channel-rdma"
404 OBJECT_DECLARE_SIMPLE_TYPE(QIOChannelRDMA, QIO_CHANNEL_RDMA)
408 struct QIOChannelRDMA {
409 QIOChannel parent;
410 RDMAContext *rdmain;
411 RDMAContext *rdmaout;
412 QEMUFile *file;
413 bool blocking; /* XXX we don't actually honour this yet */
417 * Main structure for IB Send/Recv control messages.
418 * This gets prepended at the beginning of every Send/Recv.
420 typedef struct QEMU_PACKED {
421 uint32_t len; /* Total length of data portion */
422 uint32_t type; /* which control command to perform */
423 uint32_t repeat; /* number of commands in data portion of same type */
424 uint32_t padding;
425 } RDMAControlHeader;
427 static void control_to_network(RDMAControlHeader *control)
429 control->type = htonl(control->type);
430 control->len = htonl(control->len);
431 control->repeat = htonl(control->repeat);
434 static void network_to_control(RDMAControlHeader *control)
436 control->type = ntohl(control->type);
437 control->len = ntohl(control->len);
438 control->repeat = ntohl(control->repeat);
442 * Register a single Chunk.
443 * Information sent by the source VM to inform the dest
444 * to register an single chunk of memory before we can perform
445 * the actual RDMA operation.
447 typedef struct QEMU_PACKED {
448 union QEMU_PACKED {
449 uint64_t current_addr; /* offset into the ram_addr_t space */
450 uint64_t chunk; /* chunk to lookup if unregistering */
451 } key;
452 uint32_t current_index; /* which ramblock the chunk belongs to */
453 uint32_t padding;
454 uint64_t chunks; /* how many sequential chunks to register */
455 } RDMARegister;
457 static void register_to_network(RDMAContext *rdma, RDMARegister *reg)
459 RDMALocalBlock *local_block;
460 local_block = &rdma->local_ram_blocks.block[reg->current_index];
462 if (local_block->is_ram_block) {
464 * current_addr as passed in is an address in the local ram_addr_t
465 * space, we need to translate this for the destination
467 reg->key.current_addr -= local_block->offset;
468 reg->key.current_addr += rdma->dest_blocks[reg->current_index].offset;
470 reg->key.current_addr = htonll(reg->key.current_addr);
471 reg->current_index = htonl(reg->current_index);
472 reg->chunks = htonll(reg->chunks);
475 static void network_to_register(RDMARegister *reg)
477 reg->key.current_addr = ntohll(reg->key.current_addr);
478 reg->current_index = ntohl(reg->current_index);
479 reg->chunks = ntohll(reg->chunks);
482 typedef struct QEMU_PACKED {
483 uint32_t value; /* if zero, we will madvise() */
484 uint32_t block_idx; /* which ram block index */
485 uint64_t offset; /* Address in remote ram_addr_t space */
486 uint64_t length; /* length of the chunk */
487 } RDMACompress;
489 static void compress_to_network(RDMAContext *rdma, RDMACompress *comp)
491 comp->value = htonl(comp->value);
493 * comp->offset as passed in is an address in the local ram_addr_t
494 * space, we need to translate this for the destination
496 comp->offset -= rdma->local_ram_blocks.block[comp->block_idx].offset;
497 comp->offset += rdma->dest_blocks[comp->block_idx].offset;
498 comp->block_idx = htonl(comp->block_idx);
499 comp->offset = htonll(comp->offset);
500 comp->length = htonll(comp->length);
503 static void network_to_compress(RDMACompress *comp)
505 comp->value = ntohl(comp->value);
506 comp->block_idx = ntohl(comp->block_idx);
507 comp->offset = ntohll(comp->offset);
508 comp->length = ntohll(comp->length);
512 * The result of the dest's memory registration produces an "rkey"
513 * which the source VM must reference in order to perform
514 * the RDMA operation.
516 typedef struct QEMU_PACKED {
517 uint32_t rkey;
518 uint32_t padding;
519 uint64_t host_addr;
520 } RDMARegisterResult;
522 static void result_to_network(RDMARegisterResult *result)
524 result->rkey = htonl(result->rkey);
525 result->host_addr = htonll(result->host_addr);
528 static void network_to_result(RDMARegisterResult *result)
530 result->rkey = ntohl(result->rkey);
531 result->host_addr = ntohll(result->host_addr);
534 const char *print_wrid(int wrid);
535 static int qemu_rdma_exchange_send(RDMAContext *rdma, RDMAControlHeader *head,
536 uint8_t *data, RDMAControlHeader *resp,
537 int *resp_idx,
538 int (*callback)(RDMAContext *rdma));
540 static inline uint64_t ram_chunk_index(const uint8_t *start,
541 const uint8_t *host)
543 return ((uintptr_t) host - (uintptr_t) start) >> RDMA_REG_CHUNK_SHIFT;
546 static inline uint8_t *ram_chunk_start(const RDMALocalBlock *rdma_ram_block,
547 uint64_t i)
549 return (uint8_t *)(uintptr_t)(rdma_ram_block->local_host_addr +
550 (i << RDMA_REG_CHUNK_SHIFT));
553 static inline uint8_t *ram_chunk_end(const RDMALocalBlock *rdma_ram_block,
554 uint64_t i)
556 uint8_t *result = ram_chunk_start(rdma_ram_block, i) +
557 (1UL << RDMA_REG_CHUNK_SHIFT);
559 if (result > (rdma_ram_block->local_host_addr + rdma_ram_block->length)) {
560 result = rdma_ram_block->local_host_addr + rdma_ram_block->length;
563 return result;
566 static int rdma_add_block(RDMAContext *rdma, const char *block_name,
567 void *host_addr,
568 ram_addr_t block_offset, uint64_t length)
570 RDMALocalBlocks *local = &rdma->local_ram_blocks;
571 RDMALocalBlock *block;
572 RDMALocalBlock *old = local->block;
574 local->block = g_new0(RDMALocalBlock, local->nb_blocks + 1);
576 if (local->nb_blocks) {
577 int x;
579 if (rdma->blockmap) {
580 for (x = 0; x < local->nb_blocks; x++) {
581 g_hash_table_remove(rdma->blockmap,
582 (void *)(uintptr_t)old[x].offset);
583 g_hash_table_insert(rdma->blockmap,
584 (void *)(uintptr_t)old[x].offset,
585 &local->block[x]);
588 memcpy(local->block, old, sizeof(RDMALocalBlock) * local->nb_blocks);
589 g_free(old);
592 block = &local->block[local->nb_blocks];
594 block->block_name = g_strdup(block_name);
595 block->local_host_addr = host_addr;
596 block->offset = block_offset;
597 block->length = length;
598 block->index = local->nb_blocks;
599 block->src_index = ~0U; /* Filled in by the receipt of the block list */
600 block->nb_chunks = ram_chunk_index(host_addr, host_addr + length) + 1UL;
601 block->transit_bitmap = bitmap_new(block->nb_chunks);
602 bitmap_clear(block->transit_bitmap, 0, block->nb_chunks);
603 block->unregister_bitmap = bitmap_new(block->nb_chunks);
604 bitmap_clear(block->unregister_bitmap, 0, block->nb_chunks);
605 block->remote_keys = g_new0(uint32_t, block->nb_chunks);
607 block->is_ram_block = local->init ? false : true;
609 if (rdma->blockmap) {
610 g_hash_table_insert(rdma->blockmap, (void *)(uintptr_t)block_offset, block);
613 trace_rdma_add_block(block_name, local->nb_blocks,
614 (uintptr_t) block->local_host_addr,
615 block->offset, block->length,
616 (uintptr_t) (block->local_host_addr + block->length),
617 BITS_TO_LONGS(block->nb_chunks) *
618 sizeof(unsigned long) * 8,
619 block->nb_chunks);
621 local->nb_blocks++;
623 return 0;
627 * Memory regions need to be registered with the device and queue pairs setup
628 * in advanced before the migration starts. This tells us where the RAM blocks
629 * are so that we can register them individually.
631 static int qemu_rdma_init_one_block(RAMBlock *rb, void *opaque)
633 const char *block_name = qemu_ram_get_idstr(rb);
634 void *host_addr = qemu_ram_get_host_addr(rb);
635 ram_addr_t block_offset = qemu_ram_get_offset(rb);
636 ram_addr_t length = qemu_ram_get_used_length(rb);
637 return rdma_add_block(opaque, block_name, host_addr, block_offset, length);
641 * Identify the RAMBlocks and their quantity. They will be references to
642 * identify chunk boundaries inside each RAMBlock and also be referenced
643 * during dynamic page registration.
645 static int qemu_rdma_init_ram_blocks(RDMAContext *rdma)
647 RDMALocalBlocks *local = &rdma->local_ram_blocks;
648 int ret;
650 assert(rdma->blockmap == NULL);
651 memset(local, 0, sizeof *local);
652 ret = foreach_not_ignored_block(qemu_rdma_init_one_block, rdma);
653 if (ret) {
654 return ret;
656 trace_qemu_rdma_init_ram_blocks(local->nb_blocks);
657 rdma->dest_blocks = g_new0(RDMADestBlock,
658 rdma->local_ram_blocks.nb_blocks);
659 local->init = true;
660 return 0;
664 * Note: If used outside of cleanup, the caller must ensure that the destination
665 * block structures are also updated
667 static int rdma_delete_block(RDMAContext *rdma, RDMALocalBlock *block)
669 RDMALocalBlocks *local = &rdma->local_ram_blocks;
670 RDMALocalBlock *old = local->block;
671 int x;
673 if (rdma->blockmap) {
674 g_hash_table_remove(rdma->blockmap, (void *)(uintptr_t)block->offset);
676 if (block->pmr) {
677 int j;
679 for (j = 0; j < block->nb_chunks; j++) {
680 if (!block->pmr[j]) {
681 continue;
683 ibv_dereg_mr(block->pmr[j]);
684 rdma->total_registrations--;
686 g_free(block->pmr);
687 block->pmr = NULL;
690 if (block->mr) {
691 ibv_dereg_mr(block->mr);
692 rdma->total_registrations--;
693 block->mr = NULL;
696 g_free(block->transit_bitmap);
697 block->transit_bitmap = NULL;
699 g_free(block->unregister_bitmap);
700 block->unregister_bitmap = NULL;
702 g_free(block->remote_keys);
703 block->remote_keys = NULL;
705 g_free(block->block_name);
706 block->block_name = NULL;
708 if (rdma->blockmap) {
709 for (x = 0; x < local->nb_blocks; x++) {
710 g_hash_table_remove(rdma->blockmap,
711 (void *)(uintptr_t)old[x].offset);
715 if (local->nb_blocks > 1) {
717 local->block = g_new0(RDMALocalBlock, local->nb_blocks - 1);
719 if (block->index) {
720 memcpy(local->block, old, sizeof(RDMALocalBlock) * block->index);
723 if (block->index < (local->nb_blocks - 1)) {
724 memcpy(local->block + block->index, old + (block->index + 1),
725 sizeof(RDMALocalBlock) *
726 (local->nb_blocks - (block->index + 1)));
727 for (x = block->index; x < local->nb_blocks - 1; x++) {
728 local->block[x].index--;
731 } else {
732 assert(block == local->block);
733 local->block = NULL;
736 trace_rdma_delete_block(block, (uintptr_t)block->local_host_addr,
737 block->offset, block->length,
738 (uintptr_t)(block->local_host_addr + block->length),
739 BITS_TO_LONGS(block->nb_chunks) *
740 sizeof(unsigned long) * 8, block->nb_chunks);
742 g_free(old);
744 local->nb_blocks--;
746 if (local->nb_blocks && rdma->blockmap) {
747 for (x = 0; x < local->nb_blocks; x++) {
748 g_hash_table_insert(rdma->blockmap,
749 (void *)(uintptr_t)local->block[x].offset,
750 &local->block[x]);
754 return 0;
758 * Put in the log file which RDMA device was opened and the details
759 * associated with that device.
761 static void qemu_rdma_dump_id(const char *who, struct ibv_context *verbs)
763 struct ibv_port_attr port;
765 if (ibv_query_port(verbs, 1, &port)) {
766 error_report("Failed to query port information");
767 return;
770 printf("%s RDMA Device opened: kernel name %s "
771 "uverbs device name %s, "
772 "infiniband_verbs class device path %s, "
773 "infiniband class device path %s, "
774 "transport: (%d) %s\n",
775 who,
776 verbs->device->name,
777 verbs->device->dev_name,
778 verbs->device->dev_path,
779 verbs->device->ibdev_path,
780 port.link_layer,
781 (port.link_layer == IBV_LINK_LAYER_INFINIBAND) ? "Infiniband" :
782 ((port.link_layer == IBV_LINK_LAYER_ETHERNET)
783 ? "Ethernet" : "Unknown"));
787 * Put in the log file the RDMA gid addressing information,
788 * useful for folks who have trouble understanding the
789 * RDMA device hierarchy in the kernel.
791 static void qemu_rdma_dump_gid(const char *who, struct rdma_cm_id *id)
793 char sgid[33];
794 char dgid[33];
795 inet_ntop(AF_INET6, &id->route.addr.addr.ibaddr.sgid, sgid, sizeof sgid);
796 inet_ntop(AF_INET6, &id->route.addr.addr.ibaddr.dgid, dgid, sizeof dgid);
797 trace_qemu_rdma_dump_gid(who, sgid, dgid);
801 * As of now, IPv6 over RoCE / iWARP is not supported by linux.
802 * We will try the next addrinfo struct, and fail if there are
803 * no other valid addresses to bind against.
805 * If user is listening on '[::]', then we will not have a opened a device
806 * yet and have no way of verifying if the device is RoCE or not.
808 * In this case, the source VM will throw an error for ALL types of
809 * connections (both IPv4 and IPv6) if the destination machine does not have
810 * a regular infiniband network available for use.
812 * The only way to guarantee that an error is thrown for broken kernels is
813 * for the management software to choose a *specific* interface at bind time
814 * and validate what time of hardware it is.
816 * Unfortunately, this puts the user in a fix:
818 * If the source VM connects with an IPv4 address without knowing that the
819 * destination has bound to '[::]' the migration will unconditionally fail
820 * unless the management software is explicitly listening on the IPv4
821 * address while using a RoCE-based device.
823 * If the source VM connects with an IPv6 address, then we're OK because we can
824 * throw an error on the source (and similarly on the destination).
826 * But in mixed environments, this will be broken for a while until it is fixed
827 * inside linux.
829 * We do provide a *tiny* bit of help in this function: We can list all of the
830 * devices in the system and check to see if all the devices are RoCE or
831 * Infiniband.
833 * If we detect that we have a *pure* RoCE environment, then we can safely
834 * thrown an error even if the management software has specified '[::]' as the
835 * bind address.
837 * However, if there is are multiple hetergeneous devices, then we cannot make
838 * this assumption and the user just has to be sure they know what they are
839 * doing.
841 * Patches are being reviewed on linux-rdma.
843 static int qemu_rdma_broken_ipv6_kernel(struct ibv_context *verbs, Error **errp)
845 /* This bug only exists in linux, to our knowledge. */
846 #ifdef CONFIG_LINUX
847 struct ibv_port_attr port_attr;
850 * Verbs are only NULL if management has bound to '[::]'.
852 * Let's iterate through all the devices and see if there any pure IB
853 * devices (non-ethernet).
855 * If not, then we can safely proceed with the migration.
856 * Otherwise, there are no guarantees until the bug is fixed in linux.
858 if (!verbs) {
859 int num_devices, x;
860 struct ibv_device **dev_list = ibv_get_device_list(&num_devices);
861 bool roce_found = false;
862 bool ib_found = false;
864 for (x = 0; x < num_devices; x++) {
865 verbs = ibv_open_device(dev_list[x]);
866 if (!verbs) {
867 if (errno == EPERM) {
868 continue;
869 } else {
870 return -EINVAL;
874 if (ibv_query_port(verbs, 1, &port_attr)) {
875 ibv_close_device(verbs);
876 ERROR(errp, "Could not query initial IB port");
877 return -EINVAL;
880 if (port_attr.link_layer == IBV_LINK_LAYER_INFINIBAND) {
881 ib_found = true;
882 } else if (port_attr.link_layer == IBV_LINK_LAYER_ETHERNET) {
883 roce_found = true;
886 ibv_close_device(verbs);
890 if (roce_found) {
891 if (ib_found) {
892 fprintf(stderr, "WARN: migrations may fail:"
893 " IPv6 over RoCE / iWARP in linux"
894 " is broken. But since you appear to have a"
895 " mixed RoCE / IB environment, be sure to only"
896 " migrate over the IB fabric until the kernel "
897 " fixes the bug.\n");
898 } else {
899 ERROR(errp, "You only have RoCE / iWARP devices in your systems"
900 " and your management software has specified '[::]'"
901 ", but IPv6 over RoCE / iWARP is not supported in Linux.");
902 return -ENONET;
906 return 0;
910 * If we have a verbs context, that means that some other than '[::]' was
911 * used by the management software for binding. In which case we can
912 * actually warn the user about a potentially broken kernel.
915 /* IB ports start with 1, not 0 */
916 if (ibv_query_port(verbs, 1, &port_attr)) {
917 ERROR(errp, "Could not query initial IB port");
918 return -EINVAL;
921 if (port_attr.link_layer == IBV_LINK_LAYER_ETHERNET) {
922 ERROR(errp, "Linux kernel's RoCE / iWARP does not support IPv6 "
923 "(but patches on linux-rdma in progress)");
924 return -ENONET;
927 #endif
929 return 0;
933 * Figure out which RDMA device corresponds to the requested IP hostname
934 * Also create the initial connection manager identifiers for opening
935 * the connection.
937 static int qemu_rdma_resolve_host(RDMAContext *rdma, Error **errp)
939 int ret;
940 struct rdma_addrinfo *res;
941 char port_str[16];
942 struct rdma_cm_event *cm_event;
943 char ip[40] = "unknown";
944 struct rdma_addrinfo *e;
946 if (rdma->host == NULL || !strcmp(rdma->host, "")) {
947 ERROR(errp, "RDMA hostname has not been set");
948 return -EINVAL;
951 /* create CM channel */
952 rdma->channel = rdma_create_event_channel();
953 if (!rdma->channel) {
954 ERROR(errp, "could not create CM channel");
955 return -EINVAL;
958 /* create CM id */
959 ret = rdma_create_id(rdma->channel, &rdma->cm_id, NULL, RDMA_PS_TCP);
960 if (ret) {
961 ERROR(errp, "could not create channel id");
962 goto err_resolve_create_id;
965 snprintf(port_str, 16, "%d", rdma->port);
966 port_str[15] = '\0';
968 ret = rdma_getaddrinfo(rdma->host, port_str, NULL, &res);
969 if (ret < 0) {
970 ERROR(errp, "could not rdma_getaddrinfo address %s", rdma->host);
971 goto err_resolve_get_addr;
974 for (e = res; e != NULL; e = e->ai_next) {
975 inet_ntop(e->ai_family,
976 &((struct sockaddr_in *) e->ai_dst_addr)->sin_addr, ip, sizeof ip);
977 trace_qemu_rdma_resolve_host_trying(rdma->host, ip);
979 ret = rdma_resolve_addr(rdma->cm_id, NULL, e->ai_dst_addr,
980 RDMA_RESOLVE_TIMEOUT_MS);
981 if (!ret) {
982 if (e->ai_family == AF_INET6) {
983 ret = qemu_rdma_broken_ipv6_kernel(rdma->cm_id->verbs, errp);
984 if (ret) {
985 continue;
988 goto route;
992 rdma_freeaddrinfo(res);
993 ERROR(errp, "could not resolve address %s", rdma->host);
994 goto err_resolve_get_addr;
996 route:
997 rdma_freeaddrinfo(res);
998 qemu_rdma_dump_gid("source_resolve_addr", rdma->cm_id);
1000 ret = rdma_get_cm_event(rdma->channel, &cm_event);
1001 if (ret) {
1002 ERROR(errp, "could not perform event_addr_resolved");
1003 goto err_resolve_get_addr;
1006 if (cm_event->event != RDMA_CM_EVENT_ADDR_RESOLVED) {
1007 ERROR(errp, "result not equal to event_addr_resolved %s",
1008 rdma_event_str(cm_event->event));
1009 perror("rdma_resolve_addr");
1010 rdma_ack_cm_event(cm_event);
1011 ret = -EINVAL;
1012 goto err_resolve_get_addr;
1014 rdma_ack_cm_event(cm_event);
1016 /* resolve route */
1017 ret = rdma_resolve_route(rdma->cm_id, RDMA_RESOLVE_TIMEOUT_MS);
1018 if (ret) {
1019 ERROR(errp, "could not resolve rdma route");
1020 goto err_resolve_get_addr;
1023 ret = rdma_get_cm_event(rdma->channel, &cm_event);
1024 if (ret) {
1025 ERROR(errp, "could not perform event_route_resolved");
1026 goto err_resolve_get_addr;
1028 if (cm_event->event != RDMA_CM_EVENT_ROUTE_RESOLVED) {
1029 ERROR(errp, "result not equal to event_route_resolved: %s",
1030 rdma_event_str(cm_event->event));
1031 rdma_ack_cm_event(cm_event);
1032 ret = -EINVAL;
1033 goto err_resolve_get_addr;
1035 rdma_ack_cm_event(cm_event);
1036 rdma->verbs = rdma->cm_id->verbs;
1037 qemu_rdma_dump_id("source_resolve_host", rdma->cm_id->verbs);
1038 qemu_rdma_dump_gid("source_resolve_host", rdma->cm_id);
1039 return 0;
1041 err_resolve_get_addr:
1042 rdma_destroy_id(rdma->cm_id);
1043 rdma->cm_id = NULL;
1044 err_resolve_create_id:
1045 rdma_destroy_event_channel(rdma->channel);
1046 rdma->channel = NULL;
1047 return ret;
1051 * Create protection domain and completion queues
1053 static int qemu_rdma_alloc_pd_cq(RDMAContext *rdma)
1055 /* allocate pd */
1056 rdma->pd = ibv_alloc_pd(rdma->verbs);
1057 if (!rdma->pd) {
1058 error_report("failed to allocate protection domain");
1059 return -1;
1062 /* create completion channel */
1063 rdma->comp_channel = ibv_create_comp_channel(rdma->verbs);
1064 if (!rdma->comp_channel) {
1065 error_report("failed to allocate completion channel");
1066 goto err_alloc_pd_cq;
1070 * Completion queue can be filled by both read and write work requests,
1071 * so must reflect the sum of both possible queue sizes.
1073 rdma->cq = ibv_create_cq(rdma->verbs, (RDMA_SIGNALED_SEND_MAX * 3),
1074 NULL, rdma->comp_channel, 0);
1075 if (!rdma->cq) {
1076 error_report("failed to allocate completion queue");
1077 goto err_alloc_pd_cq;
1080 return 0;
1082 err_alloc_pd_cq:
1083 if (rdma->pd) {
1084 ibv_dealloc_pd(rdma->pd);
1086 if (rdma->comp_channel) {
1087 ibv_destroy_comp_channel(rdma->comp_channel);
1089 rdma->pd = NULL;
1090 rdma->comp_channel = NULL;
1091 return -1;
1096 * Create queue pairs.
1098 static int qemu_rdma_alloc_qp(RDMAContext *rdma)
1100 struct ibv_qp_init_attr attr = { 0 };
1101 int ret;
1103 attr.cap.max_send_wr = RDMA_SIGNALED_SEND_MAX;
1104 attr.cap.max_recv_wr = 3;
1105 attr.cap.max_send_sge = 1;
1106 attr.cap.max_recv_sge = 1;
1107 attr.send_cq = rdma->cq;
1108 attr.recv_cq = rdma->cq;
1109 attr.qp_type = IBV_QPT_RC;
1111 ret = rdma_create_qp(rdma->cm_id, rdma->pd, &attr);
1112 if (ret) {
1113 return -1;
1116 rdma->qp = rdma->cm_id->qp;
1117 return 0;
1120 static int qemu_rdma_reg_whole_ram_blocks(RDMAContext *rdma)
1122 int i;
1123 RDMALocalBlocks *local = &rdma->local_ram_blocks;
1125 for (i = 0; i < local->nb_blocks; i++) {
1126 local->block[i].mr =
1127 ibv_reg_mr(rdma->pd,
1128 local->block[i].local_host_addr,
1129 local->block[i].length,
1130 IBV_ACCESS_LOCAL_WRITE |
1131 IBV_ACCESS_REMOTE_WRITE
1133 if (!local->block[i].mr) {
1134 perror("Failed to register local dest ram block!\n");
1135 break;
1137 rdma->total_registrations++;
1140 if (i >= local->nb_blocks) {
1141 return 0;
1144 for (i--; i >= 0; i--) {
1145 ibv_dereg_mr(local->block[i].mr);
1146 rdma->total_registrations--;
1149 return -1;
1154 * Find the ram block that corresponds to the page requested to be
1155 * transmitted by QEMU.
1157 * Once the block is found, also identify which 'chunk' within that
1158 * block that the page belongs to.
1160 * This search cannot fail or the migration will fail.
1162 static int qemu_rdma_search_ram_block(RDMAContext *rdma,
1163 uintptr_t block_offset,
1164 uint64_t offset,
1165 uint64_t length,
1166 uint64_t *block_index,
1167 uint64_t *chunk_index)
1169 uint64_t current_addr = block_offset + offset;
1170 RDMALocalBlock *block = g_hash_table_lookup(rdma->blockmap,
1171 (void *) block_offset);
1172 assert(block);
1173 assert(current_addr >= block->offset);
1174 assert((current_addr + length) <= (block->offset + block->length));
1176 *block_index = block->index;
1177 *chunk_index = ram_chunk_index(block->local_host_addr,
1178 block->local_host_addr + (current_addr - block->offset));
1180 return 0;
1184 * Register a chunk with IB. If the chunk was already registered
1185 * previously, then skip.
1187 * Also return the keys associated with the registration needed
1188 * to perform the actual RDMA operation.
1190 static int qemu_rdma_register_and_get_keys(RDMAContext *rdma,
1191 RDMALocalBlock *block, uintptr_t host_addr,
1192 uint32_t *lkey, uint32_t *rkey, int chunk,
1193 uint8_t *chunk_start, uint8_t *chunk_end)
1195 if (block->mr) {
1196 if (lkey) {
1197 *lkey = block->mr->lkey;
1199 if (rkey) {
1200 *rkey = block->mr->rkey;
1202 return 0;
1205 /* allocate memory to store chunk MRs */
1206 if (!block->pmr) {
1207 block->pmr = g_new0(struct ibv_mr *, block->nb_chunks);
1211 * If 'rkey', then we're the destination, so grant access to the source.
1213 * If 'lkey', then we're the source VM, so grant access only to ourselves.
1215 if (!block->pmr[chunk]) {
1216 uint64_t len = chunk_end - chunk_start;
1218 trace_qemu_rdma_register_and_get_keys(len, chunk_start);
1220 block->pmr[chunk] = ibv_reg_mr(rdma->pd,
1221 chunk_start, len,
1222 (rkey ? (IBV_ACCESS_LOCAL_WRITE |
1223 IBV_ACCESS_REMOTE_WRITE) : 0));
1225 if (!block->pmr[chunk]) {
1226 perror("Failed to register chunk!");
1227 fprintf(stderr, "Chunk details: block: %d chunk index %d"
1228 " start %" PRIuPTR " end %" PRIuPTR
1229 " host %" PRIuPTR
1230 " local %" PRIuPTR " registrations: %d\n",
1231 block->index, chunk, (uintptr_t)chunk_start,
1232 (uintptr_t)chunk_end, host_addr,
1233 (uintptr_t)block->local_host_addr,
1234 rdma->total_registrations);
1235 return -1;
1237 rdma->total_registrations++;
1240 if (lkey) {
1241 *lkey = block->pmr[chunk]->lkey;
1243 if (rkey) {
1244 *rkey = block->pmr[chunk]->rkey;
1246 return 0;
1250 * Register (at connection time) the memory used for control
1251 * channel messages.
1253 static int qemu_rdma_reg_control(RDMAContext *rdma, int idx)
1255 rdma->wr_data[idx].control_mr = ibv_reg_mr(rdma->pd,
1256 rdma->wr_data[idx].control, RDMA_CONTROL_MAX_BUFFER,
1257 IBV_ACCESS_LOCAL_WRITE | IBV_ACCESS_REMOTE_WRITE);
1258 if (rdma->wr_data[idx].control_mr) {
1259 rdma->total_registrations++;
1260 return 0;
1262 error_report("qemu_rdma_reg_control failed");
1263 return -1;
1266 const char *print_wrid(int wrid)
1268 if (wrid >= RDMA_WRID_RECV_CONTROL) {
1269 return wrid_desc[RDMA_WRID_RECV_CONTROL];
1271 return wrid_desc[wrid];
1275 * RDMA requires memory registration (mlock/pinning), but this is not good for
1276 * overcommitment.
1278 * In preparation for the future where LRU information or workload-specific
1279 * writable writable working set memory access behavior is available to QEMU
1280 * it would be nice to have in place the ability to UN-register/UN-pin
1281 * particular memory regions from the RDMA hardware when it is determine that
1282 * those regions of memory will likely not be accessed again in the near future.
1284 * While we do not yet have such information right now, the following
1285 * compile-time option allows us to perform a non-optimized version of this
1286 * behavior.
1288 * By uncommenting this option, you will cause *all* RDMA transfers to be
1289 * unregistered immediately after the transfer completes on both sides of the
1290 * connection. This has no effect in 'rdma-pin-all' mode, only regular mode.
1292 * This will have a terrible impact on migration performance, so until future
1293 * workload information or LRU information is available, do not attempt to use
1294 * this feature except for basic testing.
1296 /* #define RDMA_UNREGISTRATION_EXAMPLE */
1299 * Perform a non-optimized memory unregistration after every transfer
1300 * for demonstration purposes, only if pin-all is not requested.
1302 * Potential optimizations:
1303 * 1. Start a new thread to run this function continuously
1304 - for bit clearing
1305 - and for receipt of unregister messages
1306 * 2. Use an LRU.
1307 * 3. Use workload hints.
1309 static int qemu_rdma_unregister_waiting(RDMAContext *rdma)
1311 while (rdma->unregistrations[rdma->unregister_current]) {
1312 int ret;
1313 uint64_t wr_id = rdma->unregistrations[rdma->unregister_current];
1314 uint64_t chunk =
1315 (wr_id & RDMA_WRID_CHUNK_MASK) >> RDMA_WRID_CHUNK_SHIFT;
1316 uint64_t index =
1317 (wr_id & RDMA_WRID_BLOCK_MASK) >> RDMA_WRID_BLOCK_SHIFT;
1318 RDMALocalBlock *block =
1319 &(rdma->local_ram_blocks.block[index]);
1320 RDMARegister reg = { .current_index = index };
1321 RDMAControlHeader resp = { .type = RDMA_CONTROL_UNREGISTER_FINISHED,
1323 RDMAControlHeader head = { .len = sizeof(RDMARegister),
1324 .type = RDMA_CONTROL_UNREGISTER_REQUEST,
1325 .repeat = 1,
1328 trace_qemu_rdma_unregister_waiting_proc(chunk,
1329 rdma->unregister_current);
1331 rdma->unregistrations[rdma->unregister_current] = 0;
1332 rdma->unregister_current++;
1334 if (rdma->unregister_current == RDMA_SIGNALED_SEND_MAX) {
1335 rdma->unregister_current = 0;
1340 * Unregistration is speculative (because migration is single-threaded
1341 * and we cannot break the protocol's inifinband message ordering).
1342 * Thus, if the memory is currently being used for transmission,
1343 * then abort the attempt to unregister and try again
1344 * later the next time a completion is received for this memory.
1346 clear_bit(chunk, block->unregister_bitmap);
1348 if (test_bit(chunk, block->transit_bitmap)) {
1349 trace_qemu_rdma_unregister_waiting_inflight(chunk);
1350 continue;
1353 trace_qemu_rdma_unregister_waiting_send(chunk);
1355 ret = ibv_dereg_mr(block->pmr[chunk]);
1356 block->pmr[chunk] = NULL;
1357 block->remote_keys[chunk] = 0;
1359 if (ret != 0) {
1360 perror("unregistration chunk failed");
1361 return -ret;
1363 rdma->total_registrations--;
1365 reg.key.chunk = chunk;
1366 register_to_network(rdma, &reg);
1367 ret = qemu_rdma_exchange_send(rdma, &head, (uint8_t *) &reg,
1368 &resp, NULL, NULL);
1369 if (ret < 0) {
1370 return ret;
1373 trace_qemu_rdma_unregister_waiting_complete(chunk);
1376 return 0;
1379 static uint64_t qemu_rdma_make_wrid(uint64_t wr_id, uint64_t index,
1380 uint64_t chunk)
1382 uint64_t result = wr_id & RDMA_WRID_TYPE_MASK;
1384 result |= (index << RDMA_WRID_BLOCK_SHIFT);
1385 result |= (chunk << RDMA_WRID_CHUNK_SHIFT);
1387 return result;
1391 * Set bit for unregistration in the next iteration.
1392 * We cannot transmit right here, but will unpin later.
1394 static void qemu_rdma_signal_unregister(RDMAContext *rdma, uint64_t index,
1395 uint64_t chunk, uint64_t wr_id)
1397 if (rdma->unregistrations[rdma->unregister_next] != 0) {
1398 error_report("rdma migration: queue is full");
1399 } else {
1400 RDMALocalBlock *block = &(rdma->local_ram_blocks.block[index]);
1402 if (!test_and_set_bit(chunk, block->unregister_bitmap)) {
1403 trace_qemu_rdma_signal_unregister_append(chunk,
1404 rdma->unregister_next);
1406 rdma->unregistrations[rdma->unregister_next++] =
1407 qemu_rdma_make_wrid(wr_id, index, chunk);
1409 if (rdma->unregister_next == RDMA_SIGNALED_SEND_MAX) {
1410 rdma->unregister_next = 0;
1412 } else {
1413 trace_qemu_rdma_signal_unregister_already(chunk);
1419 * Consult the connection manager to see a work request
1420 * (of any kind) has completed.
1421 * Return the work request ID that completed.
1423 static uint64_t qemu_rdma_poll(RDMAContext *rdma, uint64_t *wr_id_out,
1424 uint32_t *byte_len)
1426 int ret;
1427 struct ibv_wc wc;
1428 uint64_t wr_id;
1430 ret = ibv_poll_cq(rdma->cq, 1, &wc);
1432 if (!ret) {
1433 *wr_id_out = RDMA_WRID_NONE;
1434 return 0;
1437 if (ret < 0) {
1438 error_report("ibv_poll_cq return %d", ret);
1439 return ret;
1442 wr_id = wc.wr_id & RDMA_WRID_TYPE_MASK;
1444 if (wc.status != IBV_WC_SUCCESS) {
1445 fprintf(stderr, "ibv_poll_cq wc.status=%d %s!\n",
1446 wc.status, ibv_wc_status_str(wc.status));
1447 fprintf(stderr, "ibv_poll_cq wrid=%s!\n", wrid_desc[wr_id]);
1449 return -1;
1452 if (rdma->control_ready_expected &&
1453 (wr_id >= RDMA_WRID_RECV_CONTROL)) {
1454 trace_qemu_rdma_poll_recv(wrid_desc[RDMA_WRID_RECV_CONTROL],
1455 wr_id - RDMA_WRID_RECV_CONTROL, wr_id, rdma->nb_sent);
1456 rdma->control_ready_expected = 0;
1459 if (wr_id == RDMA_WRID_RDMA_WRITE) {
1460 uint64_t chunk =
1461 (wc.wr_id & RDMA_WRID_CHUNK_MASK) >> RDMA_WRID_CHUNK_SHIFT;
1462 uint64_t index =
1463 (wc.wr_id & RDMA_WRID_BLOCK_MASK) >> RDMA_WRID_BLOCK_SHIFT;
1464 RDMALocalBlock *block = &(rdma->local_ram_blocks.block[index]);
1466 trace_qemu_rdma_poll_write(print_wrid(wr_id), wr_id, rdma->nb_sent,
1467 index, chunk, block->local_host_addr,
1468 (void *)(uintptr_t)block->remote_host_addr);
1470 clear_bit(chunk, block->transit_bitmap);
1472 if (rdma->nb_sent > 0) {
1473 rdma->nb_sent--;
1476 if (!rdma->pin_all) {
1478 * FYI: If one wanted to signal a specific chunk to be unregistered
1479 * using LRU or workload-specific information, this is the function
1480 * you would call to do so. That chunk would then get asynchronously
1481 * unregistered later.
1483 #ifdef RDMA_UNREGISTRATION_EXAMPLE
1484 qemu_rdma_signal_unregister(rdma, index, chunk, wc.wr_id);
1485 #endif
1487 } else {
1488 trace_qemu_rdma_poll_other(print_wrid(wr_id), wr_id, rdma->nb_sent);
1491 *wr_id_out = wc.wr_id;
1492 if (byte_len) {
1493 *byte_len = wc.byte_len;
1496 return 0;
1499 /* Wait for activity on the completion channel.
1500 * Returns 0 on success, none-0 on error.
1502 static int qemu_rdma_wait_comp_channel(RDMAContext *rdma)
1504 struct rdma_cm_event *cm_event;
1505 int ret = -1;
1508 * Coroutine doesn't start until migration_fd_process_incoming()
1509 * so don't yield unless we know we're running inside of a coroutine.
1511 if (rdma->migration_started_on_destination &&
1512 migration_incoming_get_current()->state == MIGRATION_STATUS_ACTIVE) {
1513 yield_until_fd_readable(rdma->comp_channel->fd);
1514 } else {
1515 /* This is the source side, we're in a separate thread
1516 * or destination prior to migration_fd_process_incoming()
1517 * after postcopy, the destination also in a separate thread.
1518 * we can't yield; so we have to poll the fd.
1519 * But we need to be able to handle 'cancel' or an error
1520 * without hanging forever.
1522 while (!rdma->error_state && !rdma->received_error) {
1523 GPollFD pfds[2];
1524 pfds[0].fd = rdma->comp_channel->fd;
1525 pfds[0].events = G_IO_IN | G_IO_HUP | G_IO_ERR;
1526 pfds[0].revents = 0;
1528 pfds[1].fd = rdma->channel->fd;
1529 pfds[1].events = G_IO_IN | G_IO_HUP | G_IO_ERR;
1530 pfds[1].revents = 0;
1532 /* 0.1s timeout, should be fine for a 'cancel' */
1533 switch (qemu_poll_ns(pfds, 2, 100 * 1000 * 1000)) {
1534 case 2:
1535 case 1: /* fd active */
1536 if (pfds[0].revents) {
1537 return 0;
1540 if (pfds[1].revents) {
1541 ret = rdma_get_cm_event(rdma->channel, &cm_event);
1542 if (ret) {
1543 error_report("failed to get cm event while wait "
1544 "completion channel");
1545 return -EPIPE;
1548 error_report("receive cm event while wait comp channel,"
1549 "cm event is %d", cm_event->event);
1550 if (cm_event->event == RDMA_CM_EVENT_DISCONNECTED ||
1551 cm_event->event == RDMA_CM_EVENT_DEVICE_REMOVAL) {
1552 rdma_ack_cm_event(cm_event);
1553 return -EPIPE;
1555 rdma_ack_cm_event(cm_event);
1557 break;
1559 case 0: /* Timeout, go around again */
1560 break;
1562 default: /* Error of some type -
1563 * I don't trust errno from qemu_poll_ns
1565 error_report("%s: poll failed", __func__);
1566 return -EPIPE;
1569 if (migrate_get_current()->state == MIGRATION_STATUS_CANCELLING) {
1570 /* Bail out and let the cancellation happen */
1571 return -EPIPE;
1576 if (rdma->received_error) {
1577 return -EPIPE;
1579 return rdma->error_state;
1583 * Block until the next work request has completed.
1585 * First poll to see if a work request has already completed,
1586 * otherwise block.
1588 * If we encounter completed work requests for IDs other than
1589 * the one we're interested in, then that's generally an error.
1591 * The only exception is actual RDMA Write completions. These
1592 * completions only need to be recorded, but do not actually
1593 * need further processing.
1595 static int qemu_rdma_block_for_wrid(RDMAContext *rdma, int wrid_requested,
1596 uint32_t *byte_len)
1598 int num_cq_events = 0, ret = 0;
1599 struct ibv_cq *cq;
1600 void *cq_ctx;
1601 uint64_t wr_id = RDMA_WRID_NONE, wr_id_in;
1603 if (ibv_req_notify_cq(rdma->cq, 0)) {
1604 return -1;
1606 /* poll cq first */
1607 while (wr_id != wrid_requested) {
1608 ret = qemu_rdma_poll(rdma, &wr_id_in, byte_len);
1609 if (ret < 0) {
1610 return ret;
1613 wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
1615 if (wr_id == RDMA_WRID_NONE) {
1616 break;
1618 if (wr_id != wrid_requested) {
1619 trace_qemu_rdma_block_for_wrid_miss(print_wrid(wrid_requested),
1620 wrid_requested, print_wrid(wr_id), wr_id);
1624 if (wr_id == wrid_requested) {
1625 return 0;
1628 while (1) {
1629 ret = qemu_rdma_wait_comp_channel(rdma);
1630 if (ret) {
1631 goto err_block_for_wrid;
1634 ret = ibv_get_cq_event(rdma->comp_channel, &cq, &cq_ctx);
1635 if (ret) {
1636 perror("ibv_get_cq_event");
1637 goto err_block_for_wrid;
1640 num_cq_events++;
1642 ret = -ibv_req_notify_cq(cq, 0);
1643 if (ret) {
1644 goto err_block_for_wrid;
1647 while (wr_id != wrid_requested) {
1648 ret = qemu_rdma_poll(rdma, &wr_id_in, byte_len);
1649 if (ret < 0) {
1650 goto err_block_for_wrid;
1653 wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
1655 if (wr_id == RDMA_WRID_NONE) {
1656 break;
1658 if (wr_id != wrid_requested) {
1659 trace_qemu_rdma_block_for_wrid_miss(print_wrid(wrid_requested),
1660 wrid_requested, print_wrid(wr_id), wr_id);
1664 if (wr_id == wrid_requested) {
1665 goto success_block_for_wrid;
1669 success_block_for_wrid:
1670 if (num_cq_events) {
1671 ibv_ack_cq_events(cq, num_cq_events);
1673 return 0;
1675 err_block_for_wrid:
1676 if (num_cq_events) {
1677 ibv_ack_cq_events(cq, num_cq_events);
1680 rdma->error_state = ret;
1681 return ret;
1685 * Post a SEND message work request for the control channel
1686 * containing some data and block until the post completes.
1688 static int qemu_rdma_post_send_control(RDMAContext *rdma, uint8_t *buf,
1689 RDMAControlHeader *head)
1691 int ret = 0;
1692 RDMAWorkRequestData *wr = &rdma->wr_data[RDMA_WRID_CONTROL];
1693 struct ibv_send_wr *bad_wr;
1694 struct ibv_sge sge = {
1695 .addr = (uintptr_t)(wr->control),
1696 .length = head->len + sizeof(RDMAControlHeader),
1697 .lkey = wr->control_mr->lkey,
1699 struct ibv_send_wr send_wr = {
1700 .wr_id = RDMA_WRID_SEND_CONTROL,
1701 .opcode = IBV_WR_SEND,
1702 .send_flags = IBV_SEND_SIGNALED,
1703 .sg_list = &sge,
1704 .num_sge = 1,
1707 trace_qemu_rdma_post_send_control(control_desc(head->type));
1710 * We don't actually need to do a memcpy() in here if we used
1711 * the "sge" properly, but since we're only sending control messages
1712 * (not RAM in a performance-critical path), then its OK for now.
1714 * The copy makes the RDMAControlHeader simpler to manipulate
1715 * for the time being.
1717 assert(head->len <= RDMA_CONTROL_MAX_BUFFER - sizeof(*head));
1718 memcpy(wr->control, head, sizeof(RDMAControlHeader));
1719 control_to_network((void *) wr->control);
1721 if (buf) {
1722 memcpy(wr->control + sizeof(RDMAControlHeader), buf, head->len);
1726 ret = ibv_post_send(rdma->qp, &send_wr, &bad_wr);
1728 if (ret > 0) {
1729 error_report("Failed to use post IB SEND for control");
1730 return -ret;
1733 ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_SEND_CONTROL, NULL);
1734 if (ret < 0) {
1735 error_report("rdma migration: send polling control error");
1738 return ret;
1742 * Post a RECV work request in anticipation of some future receipt
1743 * of data on the control channel.
1745 static int qemu_rdma_post_recv_control(RDMAContext *rdma, int idx)
1747 struct ibv_recv_wr *bad_wr;
1748 struct ibv_sge sge = {
1749 .addr = (uintptr_t)(rdma->wr_data[idx].control),
1750 .length = RDMA_CONTROL_MAX_BUFFER,
1751 .lkey = rdma->wr_data[idx].control_mr->lkey,
1754 struct ibv_recv_wr recv_wr = {
1755 .wr_id = RDMA_WRID_RECV_CONTROL + idx,
1756 .sg_list = &sge,
1757 .num_sge = 1,
1761 if (ibv_post_recv(rdma->qp, &recv_wr, &bad_wr)) {
1762 return -1;
1765 return 0;
1769 * Block and wait for a RECV control channel message to arrive.
1771 static int qemu_rdma_exchange_get_response(RDMAContext *rdma,
1772 RDMAControlHeader *head, int expecting, int idx)
1774 uint32_t byte_len;
1775 int ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RECV_CONTROL + idx,
1776 &byte_len);
1778 if (ret < 0) {
1779 error_report("rdma migration: recv polling control error!");
1780 return ret;
1783 network_to_control((void *) rdma->wr_data[idx].control);
1784 memcpy(head, rdma->wr_data[idx].control, sizeof(RDMAControlHeader));
1786 trace_qemu_rdma_exchange_get_response_start(control_desc(expecting));
1788 if (expecting == RDMA_CONTROL_NONE) {
1789 trace_qemu_rdma_exchange_get_response_none(control_desc(head->type),
1790 head->type);
1791 } else if (head->type != expecting || head->type == RDMA_CONTROL_ERROR) {
1792 error_report("Was expecting a %s (%d) control message"
1793 ", but got: %s (%d), length: %d",
1794 control_desc(expecting), expecting,
1795 control_desc(head->type), head->type, head->len);
1796 if (head->type == RDMA_CONTROL_ERROR) {
1797 rdma->received_error = true;
1799 return -EIO;
1801 if (head->len > RDMA_CONTROL_MAX_BUFFER - sizeof(*head)) {
1802 error_report("too long length: %d", head->len);
1803 return -EINVAL;
1805 if (sizeof(*head) + head->len != byte_len) {
1806 error_report("Malformed length: %d byte_len %d", head->len, byte_len);
1807 return -EINVAL;
1810 return 0;
1814 * When a RECV work request has completed, the work request's
1815 * buffer is pointed at the header.
1817 * This will advance the pointer to the data portion
1818 * of the control message of the work request's buffer that
1819 * was populated after the work request finished.
1821 static void qemu_rdma_move_header(RDMAContext *rdma, int idx,
1822 RDMAControlHeader *head)
1824 rdma->wr_data[idx].control_len = head->len;
1825 rdma->wr_data[idx].control_curr =
1826 rdma->wr_data[idx].control + sizeof(RDMAControlHeader);
1830 * This is an 'atomic' high-level operation to deliver a single, unified
1831 * control-channel message.
1833 * Additionally, if the user is expecting some kind of reply to this message,
1834 * they can request a 'resp' response message be filled in by posting an
1835 * additional work request on behalf of the user and waiting for an additional
1836 * completion.
1838 * The extra (optional) response is used during registration to us from having
1839 * to perform an *additional* exchange of message just to provide a response by
1840 * instead piggy-backing on the acknowledgement.
1842 static int qemu_rdma_exchange_send(RDMAContext *rdma, RDMAControlHeader *head,
1843 uint8_t *data, RDMAControlHeader *resp,
1844 int *resp_idx,
1845 int (*callback)(RDMAContext *rdma))
1847 int ret = 0;
1850 * Wait until the dest is ready before attempting to deliver the message
1851 * by waiting for a READY message.
1853 if (rdma->control_ready_expected) {
1854 RDMAControlHeader resp;
1855 ret = qemu_rdma_exchange_get_response(rdma,
1856 &resp, RDMA_CONTROL_READY, RDMA_WRID_READY);
1857 if (ret < 0) {
1858 return ret;
1863 * If the user is expecting a response, post a WR in anticipation of it.
1865 if (resp) {
1866 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_DATA);
1867 if (ret) {
1868 error_report("rdma migration: error posting"
1869 " extra control recv for anticipated result!");
1870 return ret;
1875 * Post a WR to replace the one we just consumed for the READY message.
1877 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
1878 if (ret) {
1879 error_report("rdma migration: error posting first control recv!");
1880 return ret;
1884 * Deliver the control message that was requested.
1886 ret = qemu_rdma_post_send_control(rdma, data, head);
1888 if (ret < 0) {
1889 error_report("Failed to send control buffer!");
1890 return ret;
1894 * If we're expecting a response, block and wait for it.
1896 if (resp) {
1897 if (callback) {
1898 trace_qemu_rdma_exchange_send_issue_callback();
1899 ret = callback(rdma);
1900 if (ret < 0) {
1901 return ret;
1905 trace_qemu_rdma_exchange_send_waiting(control_desc(resp->type));
1906 ret = qemu_rdma_exchange_get_response(rdma, resp,
1907 resp->type, RDMA_WRID_DATA);
1909 if (ret < 0) {
1910 return ret;
1913 qemu_rdma_move_header(rdma, RDMA_WRID_DATA, resp);
1914 if (resp_idx) {
1915 *resp_idx = RDMA_WRID_DATA;
1917 trace_qemu_rdma_exchange_send_received(control_desc(resp->type));
1920 rdma->control_ready_expected = 1;
1922 return 0;
1926 * This is an 'atomic' high-level operation to receive a single, unified
1927 * control-channel message.
1929 static int qemu_rdma_exchange_recv(RDMAContext *rdma, RDMAControlHeader *head,
1930 int expecting)
1932 RDMAControlHeader ready = {
1933 .len = 0,
1934 .type = RDMA_CONTROL_READY,
1935 .repeat = 1,
1937 int ret;
1940 * Inform the source that we're ready to receive a message.
1942 ret = qemu_rdma_post_send_control(rdma, NULL, &ready);
1944 if (ret < 0) {
1945 error_report("Failed to send control buffer!");
1946 return ret;
1950 * Block and wait for the message.
1952 ret = qemu_rdma_exchange_get_response(rdma, head,
1953 expecting, RDMA_WRID_READY);
1955 if (ret < 0) {
1956 return ret;
1959 qemu_rdma_move_header(rdma, RDMA_WRID_READY, head);
1962 * Post a new RECV work request to replace the one we just consumed.
1964 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
1965 if (ret) {
1966 error_report("rdma migration: error posting second control recv!");
1967 return ret;
1970 return 0;
1974 * Write an actual chunk of memory using RDMA.
1976 * If we're using dynamic registration on the dest-side, we have to
1977 * send a registration command first.
1979 static int qemu_rdma_write_one(QEMUFile *f, RDMAContext *rdma,
1980 int current_index, uint64_t current_addr,
1981 uint64_t length)
1983 struct ibv_sge sge;
1984 struct ibv_send_wr send_wr = { 0 };
1985 struct ibv_send_wr *bad_wr;
1986 int reg_result_idx, ret, count = 0;
1987 uint64_t chunk, chunks;
1988 uint8_t *chunk_start, *chunk_end;
1989 RDMALocalBlock *block = &(rdma->local_ram_blocks.block[current_index]);
1990 RDMARegister reg;
1991 RDMARegisterResult *reg_result;
1992 RDMAControlHeader resp = { .type = RDMA_CONTROL_REGISTER_RESULT };
1993 RDMAControlHeader head = { .len = sizeof(RDMARegister),
1994 .type = RDMA_CONTROL_REGISTER_REQUEST,
1995 .repeat = 1,
1998 retry:
1999 sge.addr = (uintptr_t)(block->local_host_addr +
2000 (current_addr - block->offset));
2001 sge.length = length;
2003 chunk = ram_chunk_index(block->local_host_addr,
2004 (uint8_t *)(uintptr_t)sge.addr);
2005 chunk_start = ram_chunk_start(block, chunk);
2007 if (block->is_ram_block) {
2008 chunks = length / (1UL << RDMA_REG_CHUNK_SHIFT);
2010 if (chunks && ((length % (1UL << RDMA_REG_CHUNK_SHIFT)) == 0)) {
2011 chunks--;
2013 } else {
2014 chunks = block->length / (1UL << RDMA_REG_CHUNK_SHIFT);
2016 if (chunks && ((block->length % (1UL << RDMA_REG_CHUNK_SHIFT)) == 0)) {
2017 chunks--;
2021 trace_qemu_rdma_write_one_top(chunks + 1,
2022 (chunks + 1) *
2023 (1UL << RDMA_REG_CHUNK_SHIFT) / 1024 / 1024);
2025 chunk_end = ram_chunk_end(block, chunk + chunks);
2027 if (!rdma->pin_all) {
2028 #ifdef RDMA_UNREGISTRATION_EXAMPLE
2029 qemu_rdma_unregister_waiting(rdma);
2030 #endif
2033 while (test_bit(chunk, block->transit_bitmap)) {
2034 (void)count;
2035 trace_qemu_rdma_write_one_block(count++, current_index, chunk,
2036 sge.addr, length, rdma->nb_sent, block->nb_chunks);
2038 ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL);
2040 if (ret < 0) {
2041 error_report("Failed to Wait for previous write to complete "
2042 "block %d chunk %" PRIu64
2043 " current %" PRIu64 " len %" PRIu64 " %d",
2044 current_index, chunk, sge.addr, length, rdma->nb_sent);
2045 return ret;
2049 if (!rdma->pin_all || !block->is_ram_block) {
2050 if (!block->remote_keys[chunk]) {
2052 * This chunk has not yet been registered, so first check to see
2053 * if the entire chunk is zero. If so, tell the other size to
2054 * memset() + madvise() the entire chunk without RDMA.
2057 if (buffer_is_zero((void *)(uintptr_t)sge.addr, length)) {
2058 RDMACompress comp = {
2059 .offset = current_addr,
2060 .value = 0,
2061 .block_idx = current_index,
2062 .length = length,
2065 head.len = sizeof(comp);
2066 head.type = RDMA_CONTROL_COMPRESS;
2068 trace_qemu_rdma_write_one_zero(chunk, sge.length,
2069 current_index, current_addr);
2071 compress_to_network(rdma, &comp);
2072 ret = qemu_rdma_exchange_send(rdma, &head,
2073 (uint8_t *) &comp, NULL, NULL, NULL);
2075 if (ret < 0) {
2076 return -EIO;
2079 acct_update_position(f, sge.length, true);
2081 return 1;
2085 * Otherwise, tell other side to register.
2087 reg.current_index = current_index;
2088 if (block->is_ram_block) {
2089 reg.key.current_addr = current_addr;
2090 } else {
2091 reg.key.chunk = chunk;
2093 reg.chunks = chunks;
2095 trace_qemu_rdma_write_one_sendreg(chunk, sge.length, current_index,
2096 current_addr);
2098 register_to_network(rdma, &reg);
2099 ret = qemu_rdma_exchange_send(rdma, &head, (uint8_t *) &reg,
2100 &resp, &reg_result_idx, NULL);
2101 if (ret < 0) {
2102 return ret;
2105 /* try to overlap this single registration with the one we sent. */
2106 if (qemu_rdma_register_and_get_keys(rdma, block, sge.addr,
2107 &sge.lkey, NULL, chunk,
2108 chunk_start, chunk_end)) {
2109 error_report("cannot get lkey");
2110 return -EINVAL;
2113 reg_result = (RDMARegisterResult *)
2114 rdma->wr_data[reg_result_idx].control_curr;
2116 network_to_result(reg_result);
2118 trace_qemu_rdma_write_one_recvregres(block->remote_keys[chunk],
2119 reg_result->rkey, chunk);
2121 block->remote_keys[chunk] = reg_result->rkey;
2122 block->remote_host_addr = reg_result->host_addr;
2123 } else {
2124 /* already registered before */
2125 if (qemu_rdma_register_and_get_keys(rdma, block, sge.addr,
2126 &sge.lkey, NULL, chunk,
2127 chunk_start, chunk_end)) {
2128 error_report("cannot get lkey!");
2129 return -EINVAL;
2133 send_wr.wr.rdma.rkey = block->remote_keys[chunk];
2134 } else {
2135 send_wr.wr.rdma.rkey = block->remote_rkey;
2137 if (qemu_rdma_register_and_get_keys(rdma, block, sge.addr,
2138 &sge.lkey, NULL, chunk,
2139 chunk_start, chunk_end)) {
2140 error_report("cannot get lkey!");
2141 return -EINVAL;
2146 * Encode the ram block index and chunk within this wrid.
2147 * We will use this information at the time of completion
2148 * to figure out which bitmap to check against and then which
2149 * chunk in the bitmap to look for.
2151 send_wr.wr_id = qemu_rdma_make_wrid(RDMA_WRID_RDMA_WRITE,
2152 current_index, chunk);
2154 send_wr.opcode = IBV_WR_RDMA_WRITE;
2155 send_wr.send_flags = IBV_SEND_SIGNALED;
2156 send_wr.sg_list = &sge;
2157 send_wr.num_sge = 1;
2158 send_wr.wr.rdma.remote_addr = block->remote_host_addr +
2159 (current_addr - block->offset);
2161 trace_qemu_rdma_write_one_post(chunk, sge.addr, send_wr.wr.rdma.remote_addr,
2162 sge.length);
2165 * ibv_post_send() does not return negative error numbers,
2166 * per the specification they are positive - no idea why.
2168 ret = ibv_post_send(rdma->qp, &send_wr, &bad_wr);
2170 if (ret == ENOMEM) {
2171 trace_qemu_rdma_write_one_queue_full();
2172 ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL);
2173 if (ret < 0) {
2174 error_report("rdma migration: failed to make "
2175 "room in full send queue! %d", ret);
2176 return ret;
2179 goto retry;
2181 } else if (ret > 0) {
2182 perror("rdma migration: post rdma write failed");
2183 return -ret;
2186 set_bit(chunk, block->transit_bitmap);
2187 acct_update_position(f, sge.length, false);
2188 rdma->total_writes++;
2190 return 0;
2194 * Push out any unwritten RDMA operations.
2196 * We support sending out multiple chunks at the same time.
2197 * Not all of them need to get signaled in the completion queue.
2199 static int qemu_rdma_write_flush(QEMUFile *f, RDMAContext *rdma)
2201 int ret;
2203 if (!rdma->current_length) {
2204 return 0;
2207 ret = qemu_rdma_write_one(f, rdma,
2208 rdma->current_index, rdma->current_addr, rdma->current_length);
2210 if (ret < 0) {
2211 return ret;
2214 if (ret == 0) {
2215 rdma->nb_sent++;
2216 trace_qemu_rdma_write_flush(rdma->nb_sent);
2219 rdma->current_length = 0;
2220 rdma->current_addr = 0;
2222 return 0;
2225 static inline int qemu_rdma_buffer_mergable(RDMAContext *rdma,
2226 uint64_t offset, uint64_t len)
2228 RDMALocalBlock *block;
2229 uint8_t *host_addr;
2230 uint8_t *chunk_end;
2232 if (rdma->current_index < 0) {
2233 return 0;
2236 if (rdma->current_chunk < 0) {
2237 return 0;
2240 block = &(rdma->local_ram_blocks.block[rdma->current_index]);
2241 host_addr = block->local_host_addr + (offset - block->offset);
2242 chunk_end = ram_chunk_end(block, rdma->current_chunk);
2244 if (rdma->current_length == 0) {
2245 return 0;
2249 * Only merge into chunk sequentially.
2251 if (offset != (rdma->current_addr + rdma->current_length)) {
2252 return 0;
2255 if (offset < block->offset) {
2256 return 0;
2259 if ((offset + len) > (block->offset + block->length)) {
2260 return 0;
2263 if ((host_addr + len) > chunk_end) {
2264 return 0;
2267 return 1;
2271 * We're not actually writing here, but doing three things:
2273 * 1. Identify the chunk the buffer belongs to.
2274 * 2. If the chunk is full or the buffer doesn't belong to the current
2275 * chunk, then start a new chunk and flush() the old chunk.
2276 * 3. To keep the hardware busy, we also group chunks into batches
2277 * and only require that a batch gets acknowledged in the completion
2278 * queue instead of each individual chunk.
2280 static int qemu_rdma_write(QEMUFile *f, RDMAContext *rdma,
2281 uint64_t block_offset, uint64_t offset,
2282 uint64_t len)
2284 uint64_t current_addr = block_offset + offset;
2285 uint64_t index = rdma->current_index;
2286 uint64_t chunk = rdma->current_chunk;
2287 int ret;
2289 /* If we cannot merge it, we flush the current buffer first. */
2290 if (!qemu_rdma_buffer_mergable(rdma, current_addr, len)) {
2291 ret = qemu_rdma_write_flush(f, rdma);
2292 if (ret) {
2293 return ret;
2295 rdma->current_length = 0;
2296 rdma->current_addr = current_addr;
2298 ret = qemu_rdma_search_ram_block(rdma, block_offset,
2299 offset, len, &index, &chunk);
2300 if (ret) {
2301 error_report("ram block search failed");
2302 return ret;
2304 rdma->current_index = index;
2305 rdma->current_chunk = chunk;
2308 /* merge it */
2309 rdma->current_length += len;
2311 /* flush it if buffer is too large */
2312 if (rdma->current_length >= RDMA_MERGE_MAX) {
2313 return qemu_rdma_write_flush(f, rdma);
2316 return 0;
2319 static void qemu_rdma_cleanup(RDMAContext *rdma)
2321 int idx;
2323 if (rdma->cm_id && rdma->connected) {
2324 if ((rdma->error_state ||
2325 migrate_get_current()->state == MIGRATION_STATUS_CANCELLING) &&
2326 !rdma->received_error) {
2327 RDMAControlHeader head = { .len = 0,
2328 .type = RDMA_CONTROL_ERROR,
2329 .repeat = 1,
2331 error_report("Early error. Sending error.");
2332 qemu_rdma_post_send_control(rdma, NULL, &head);
2335 rdma_disconnect(rdma->cm_id);
2336 trace_qemu_rdma_cleanup_disconnect();
2337 rdma->connected = false;
2340 if (rdma->channel) {
2341 qemu_set_fd_handler(rdma->channel->fd, NULL, NULL, NULL);
2343 g_free(rdma->dest_blocks);
2344 rdma->dest_blocks = NULL;
2346 for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2347 if (rdma->wr_data[idx].control_mr) {
2348 rdma->total_registrations--;
2349 ibv_dereg_mr(rdma->wr_data[idx].control_mr);
2351 rdma->wr_data[idx].control_mr = NULL;
2354 if (rdma->local_ram_blocks.block) {
2355 while (rdma->local_ram_blocks.nb_blocks) {
2356 rdma_delete_block(rdma, &rdma->local_ram_blocks.block[0]);
2360 if (rdma->qp) {
2361 rdma_destroy_qp(rdma->cm_id);
2362 rdma->qp = NULL;
2364 if (rdma->cq) {
2365 ibv_destroy_cq(rdma->cq);
2366 rdma->cq = NULL;
2368 if (rdma->comp_channel) {
2369 ibv_destroy_comp_channel(rdma->comp_channel);
2370 rdma->comp_channel = NULL;
2372 if (rdma->pd) {
2373 ibv_dealloc_pd(rdma->pd);
2374 rdma->pd = NULL;
2376 if (rdma->cm_id) {
2377 rdma_destroy_id(rdma->cm_id);
2378 rdma->cm_id = NULL;
2381 /* the destination side, listen_id and channel is shared */
2382 if (rdma->listen_id) {
2383 if (!rdma->is_return_path) {
2384 rdma_destroy_id(rdma->listen_id);
2386 rdma->listen_id = NULL;
2388 if (rdma->channel) {
2389 if (!rdma->is_return_path) {
2390 rdma_destroy_event_channel(rdma->channel);
2392 rdma->channel = NULL;
2396 if (rdma->channel) {
2397 rdma_destroy_event_channel(rdma->channel);
2398 rdma->channel = NULL;
2400 g_free(rdma->host);
2401 g_free(rdma->host_port);
2402 rdma->host = NULL;
2403 rdma->host_port = NULL;
2407 static int qemu_rdma_source_init(RDMAContext *rdma, bool pin_all, Error **errp)
2409 int ret, idx;
2410 Error *local_err = NULL, **temp = &local_err;
2413 * Will be validated against destination's actual capabilities
2414 * after the connect() completes.
2416 rdma->pin_all = pin_all;
2418 ret = qemu_rdma_resolve_host(rdma, temp);
2419 if (ret) {
2420 goto err_rdma_source_init;
2423 ret = qemu_rdma_alloc_pd_cq(rdma);
2424 if (ret) {
2425 ERROR(temp, "rdma migration: error allocating pd and cq! Your mlock()"
2426 " limits may be too low. Please check $ ulimit -a # and "
2427 "search for 'ulimit -l' in the output");
2428 goto err_rdma_source_init;
2431 ret = qemu_rdma_alloc_qp(rdma);
2432 if (ret) {
2433 ERROR(temp, "rdma migration: error allocating qp!");
2434 goto err_rdma_source_init;
2437 ret = qemu_rdma_init_ram_blocks(rdma);
2438 if (ret) {
2439 ERROR(temp, "rdma migration: error initializing ram blocks!");
2440 goto err_rdma_source_init;
2443 /* Build the hash that maps from offset to RAMBlock */
2444 rdma->blockmap = g_hash_table_new(g_direct_hash, g_direct_equal);
2445 for (idx = 0; idx < rdma->local_ram_blocks.nb_blocks; idx++) {
2446 g_hash_table_insert(rdma->blockmap,
2447 (void *)(uintptr_t)rdma->local_ram_blocks.block[idx].offset,
2448 &rdma->local_ram_blocks.block[idx]);
2451 for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2452 ret = qemu_rdma_reg_control(rdma, idx);
2453 if (ret) {
2454 ERROR(temp, "rdma migration: error registering %d control!",
2455 idx);
2456 goto err_rdma_source_init;
2460 return 0;
2462 err_rdma_source_init:
2463 error_propagate(errp, local_err);
2464 qemu_rdma_cleanup(rdma);
2465 return -1;
2468 static int qemu_get_cm_event_timeout(RDMAContext *rdma,
2469 struct rdma_cm_event **cm_event,
2470 long msec, Error **errp)
2472 int ret;
2473 struct pollfd poll_fd = {
2474 .fd = rdma->channel->fd,
2475 .events = POLLIN,
2476 .revents = 0
2479 do {
2480 ret = poll(&poll_fd, 1, msec);
2481 } while (ret < 0 && errno == EINTR);
2483 if (ret == 0) {
2484 ERROR(errp, "poll cm event timeout");
2485 return -1;
2486 } else if (ret < 0) {
2487 ERROR(errp, "failed to poll cm event, errno=%i", errno);
2488 return -1;
2489 } else if (poll_fd.revents & POLLIN) {
2490 return rdma_get_cm_event(rdma->channel, cm_event);
2491 } else {
2492 ERROR(errp, "no POLLIN event, revent=%x", poll_fd.revents);
2493 return -1;
2497 static int qemu_rdma_connect(RDMAContext *rdma, Error **errp, bool return_path)
2499 RDMACapabilities cap = {
2500 .version = RDMA_CONTROL_VERSION_CURRENT,
2501 .flags = 0,
2503 struct rdma_conn_param conn_param = { .initiator_depth = 2,
2504 .retry_count = 5,
2505 .private_data = &cap,
2506 .private_data_len = sizeof(cap),
2508 struct rdma_cm_event *cm_event;
2509 int ret;
2512 * Only negotiate the capability with destination if the user
2513 * on the source first requested the capability.
2515 if (rdma->pin_all) {
2516 trace_qemu_rdma_connect_pin_all_requested();
2517 cap.flags |= RDMA_CAPABILITY_PIN_ALL;
2520 caps_to_network(&cap);
2522 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
2523 if (ret) {
2524 ERROR(errp, "posting second control recv");
2525 goto err_rdma_source_connect;
2528 ret = rdma_connect(rdma->cm_id, &conn_param);
2529 if (ret) {
2530 perror("rdma_connect");
2531 ERROR(errp, "connecting to destination!");
2532 goto err_rdma_source_connect;
2535 if (return_path) {
2536 ret = qemu_get_cm_event_timeout(rdma, &cm_event, 5000, errp);
2537 } else {
2538 ret = rdma_get_cm_event(rdma->channel, &cm_event);
2540 if (ret) {
2541 perror("rdma_get_cm_event after rdma_connect");
2542 ERROR(errp, "connecting to destination!");
2543 goto err_rdma_source_connect;
2546 if (cm_event->event != RDMA_CM_EVENT_ESTABLISHED) {
2547 perror("rdma_get_cm_event != EVENT_ESTABLISHED after rdma_connect");
2548 ERROR(errp, "connecting to destination!");
2549 rdma_ack_cm_event(cm_event);
2550 goto err_rdma_source_connect;
2552 rdma->connected = true;
2554 memcpy(&cap, cm_event->param.conn.private_data, sizeof(cap));
2555 network_to_caps(&cap);
2558 * Verify that the *requested* capabilities are supported by the destination
2559 * and disable them otherwise.
2561 if (rdma->pin_all && !(cap.flags & RDMA_CAPABILITY_PIN_ALL)) {
2562 ERROR(errp, "Server cannot support pinning all memory. "
2563 "Will register memory dynamically.");
2564 rdma->pin_all = false;
2567 trace_qemu_rdma_connect_pin_all_outcome(rdma->pin_all);
2569 rdma_ack_cm_event(cm_event);
2571 rdma->control_ready_expected = 1;
2572 rdma->nb_sent = 0;
2573 return 0;
2575 err_rdma_source_connect:
2576 qemu_rdma_cleanup(rdma);
2577 return -1;
2580 static int qemu_rdma_dest_init(RDMAContext *rdma, Error **errp)
2582 int ret, idx;
2583 struct rdma_cm_id *listen_id;
2584 char ip[40] = "unknown";
2585 struct rdma_addrinfo *res, *e;
2586 char port_str[16];
2588 for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2589 rdma->wr_data[idx].control_len = 0;
2590 rdma->wr_data[idx].control_curr = NULL;
2593 if (!rdma->host || !rdma->host[0]) {
2594 ERROR(errp, "RDMA host is not set!");
2595 rdma->error_state = -EINVAL;
2596 return -1;
2598 /* create CM channel */
2599 rdma->channel = rdma_create_event_channel();
2600 if (!rdma->channel) {
2601 ERROR(errp, "could not create rdma event channel");
2602 rdma->error_state = -EINVAL;
2603 return -1;
2606 /* create CM id */
2607 ret = rdma_create_id(rdma->channel, &listen_id, NULL, RDMA_PS_TCP);
2608 if (ret) {
2609 ERROR(errp, "could not create cm_id!");
2610 goto err_dest_init_create_listen_id;
2613 snprintf(port_str, 16, "%d", rdma->port);
2614 port_str[15] = '\0';
2616 ret = rdma_getaddrinfo(rdma->host, port_str, NULL, &res);
2617 if (ret < 0) {
2618 ERROR(errp, "could not rdma_getaddrinfo address %s", rdma->host);
2619 goto err_dest_init_bind_addr;
2622 for (e = res; e != NULL; e = e->ai_next) {
2623 inet_ntop(e->ai_family,
2624 &((struct sockaddr_in *) e->ai_dst_addr)->sin_addr, ip, sizeof ip);
2625 trace_qemu_rdma_dest_init_trying(rdma->host, ip);
2626 ret = rdma_bind_addr(listen_id, e->ai_dst_addr);
2627 if (ret) {
2628 continue;
2630 if (e->ai_family == AF_INET6) {
2631 ret = qemu_rdma_broken_ipv6_kernel(listen_id->verbs, errp);
2632 if (ret) {
2633 continue;
2636 break;
2639 rdma_freeaddrinfo(res);
2640 if (!e) {
2641 ERROR(errp, "Error: could not rdma_bind_addr!");
2642 goto err_dest_init_bind_addr;
2645 rdma->listen_id = listen_id;
2646 qemu_rdma_dump_gid("dest_init", listen_id);
2647 return 0;
2649 err_dest_init_bind_addr:
2650 rdma_destroy_id(listen_id);
2651 err_dest_init_create_listen_id:
2652 rdma_destroy_event_channel(rdma->channel);
2653 rdma->channel = NULL;
2654 rdma->error_state = ret;
2655 return ret;
2659 static void qemu_rdma_return_path_dest_init(RDMAContext *rdma_return_path,
2660 RDMAContext *rdma)
2662 int idx;
2664 for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2665 rdma_return_path->wr_data[idx].control_len = 0;
2666 rdma_return_path->wr_data[idx].control_curr = NULL;
2669 /*the CM channel and CM id is shared*/
2670 rdma_return_path->channel = rdma->channel;
2671 rdma_return_path->listen_id = rdma->listen_id;
2673 rdma->return_path = rdma_return_path;
2674 rdma_return_path->return_path = rdma;
2675 rdma_return_path->is_return_path = true;
2678 static void *qemu_rdma_data_init(const char *host_port, Error **errp)
2680 RDMAContext *rdma = NULL;
2681 InetSocketAddress *addr;
2683 if (host_port) {
2684 rdma = g_new0(RDMAContext, 1);
2685 rdma->current_index = -1;
2686 rdma->current_chunk = -1;
2688 addr = g_new(InetSocketAddress, 1);
2689 if (!inet_parse(addr, host_port, NULL)) {
2690 rdma->port = atoi(addr->port);
2691 rdma->host = g_strdup(addr->host);
2692 rdma->host_port = g_strdup(host_port);
2693 } else {
2694 ERROR(errp, "bad RDMA migration address '%s'", host_port);
2695 g_free(rdma);
2696 rdma = NULL;
2699 qapi_free_InetSocketAddress(addr);
2702 return rdma;
2706 * QEMUFile interface to the control channel.
2707 * SEND messages for control only.
2708 * VM's ram is handled with regular RDMA messages.
2710 static ssize_t qio_channel_rdma_writev(QIOChannel *ioc,
2711 const struct iovec *iov,
2712 size_t niov,
2713 int *fds,
2714 size_t nfds,
2715 Error **errp)
2717 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
2718 QEMUFile *f = rioc->file;
2719 RDMAContext *rdma;
2720 int ret;
2721 ssize_t done = 0;
2722 size_t i;
2723 size_t len = 0;
2725 RCU_READ_LOCK_GUARD();
2726 rdma = qatomic_rcu_read(&rioc->rdmaout);
2728 if (!rdma) {
2729 return -EIO;
2732 CHECK_ERROR_STATE();
2735 * Push out any writes that
2736 * we're queued up for VM's ram.
2738 ret = qemu_rdma_write_flush(f, rdma);
2739 if (ret < 0) {
2740 rdma->error_state = ret;
2741 return ret;
2744 for (i = 0; i < niov; i++) {
2745 size_t remaining = iov[i].iov_len;
2746 uint8_t * data = (void *)iov[i].iov_base;
2747 while (remaining) {
2748 RDMAControlHeader head;
2750 len = MIN(remaining, RDMA_SEND_INCREMENT);
2751 remaining -= len;
2753 head.len = len;
2754 head.type = RDMA_CONTROL_QEMU_FILE;
2756 ret = qemu_rdma_exchange_send(rdma, &head, data, NULL, NULL, NULL);
2758 if (ret < 0) {
2759 rdma->error_state = ret;
2760 return ret;
2763 data += len;
2764 done += len;
2768 return done;
2771 static size_t qemu_rdma_fill(RDMAContext *rdma, uint8_t *buf,
2772 size_t size, int idx)
2774 size_t len = 0;
2776 if (rdma->wr_data[idx].control_len) {
2777 trace_qemu_rdma_fill(rdma->wr_data[idx].control_len, size);
2779 len = MIN(size, rdma->wr_data[idx].control_len);
2780 memcpy(buf, rdma->wr_data[idx].control_curr, len);
2781 rdma->wr_data[idx].control_curr += len;
2782 rdma->wr_data[idx].control_len -= len;
2785 return len;
2789 * QEMUFile interface to the control channel.
2790 * RDMA links don't use bytestreams, so we have to
2791 * return bytes to QEMUFile opportunistically.
2793 static ssize_t qio_channel_rdma_readv(QIOChannel *ioc,
2794 const struct iovec *iov,
2795 size_t niov,
2796 int **fds,
2797 size_t *nfds,
2798 Error **errp)
2800 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
2801 RDMAContext *rdma;
2802 RDMAControlHeader head;
2803 int ret = 0;
2804 ssize_t i;
2805 size_t done = 0;
2807 RCU_READ_LOCK_GUARD();
2808 rdma = qatomic_rcu_read(&rioc->rdmain);
2810 if (!rdma) {
2811 return -EIO;
2814 CHECK_ERROR_STATE();
2816 for (i = 0; i < niov; i++) {
2817 size_t want = iov[i].iov_len;
2818 uint8_t *data = (void *)iov[i].iov_base;
2821 * First, we hold on to the last SEND message we
2822 * were given and dish out the bytes until we run
2823 * out of bytes.
2825 ret = qemu_rdma_fill(rdma, data, want, 0);
2826 done += ret;
2827 want -= ret;
2828 /* Got what we needed, so go to next iovec */
2829 if (want == 0) {
2830 continue;
2833 /* If we got any data so far, then don't wait
2834 * for more, just return what we have */
2835 if (done > 0) {
2836 break;
2840 /* We've got nothing at all, so lets wait for
2841 * more to arrive
2843 ret = qemu_rdma_exchange_recv(rdma, &head, RDMA_CONTROL_QEMU_FILE);
2845 if (ret < 0) {
2846 rdma->error_state = ret;
2847 return ret;
2851 * SEND was received with new bytes, now try again.
2853 ret = qemu_rdma_fill(rdma, data, want, 0);
2854 done += ret;
2855 want -= ret;
2857 /* Still didn't get enough, so lets just return */
2858 if (want) {
2859 if (done == 0) {
2860 return QIO_CHANNEL_ERR_BLOCK;
2861 } else {
2862 break;
2866 return done;
2870 * Block until all the outstanding chunks have been delivered by the hardware.
2872 static int qemu_rdma_drain_cq(QEMUFile *f, RDMAContext *rdma)
2874 int ret;
2876 if (qemu_rdma_write_flush(f, rdma) < 0) {
2877 return -EIO;
2880 while (rdma->nb_sent) {
2881 ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL);
2882 if (ret < 0) {
2883 error_report("rdma migration: complete polling error!");
2884 return -EIO;
2888 qemu_rdma_unregister_waiting(rdma);
2890 return 0;
2894 static int qio_channel_rdma_set_blocking(QIOChannel *ioc,
2895 bool blocking,
2896 Error **errp)
2898 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
2899 /* XXX we should make readv/writev actually honour this :-) */
2900 rioc->blocking = blocking;
2901 return 0;
2905 typedef struct QIOChannelRDMASource QIOChannelRDMASource;
2906 struct QIOChannelRDMASource {
2907 GSource parent;
2908 QIOChannelRDMA *rioc;
2909 GIOCondition condition;
2912 static gboolean
2913 qio_channel_rdma_source_prepare(GSource *source,
2914 gint *timeout)
2916 QIOChannelRDMASource *rsource = (QIOChannelRDMASource *)source;
2917 RDMAContext *rdma;
2918 GIOCondition cond = 0;
2919 *timeout = -1;
2921 RCU_READ_LOCK_GUARD();
2922 if (rsource->condition == G_IO_IN) {
2923 rdma = qatomic_rcu_read(&rsource->rioc->rdmain);
2924 } else {
2925 rdma = qatomic_rcu_read(&rsource->rioc->rdmaout);
2928 if (!rdma) {
2929 error_report("RDMAContext is NULL when prepare Gsource");
2930 return FALSE;
2933 if (rdma->wr_data[0].control_len) {
2934 cond |= G_IO_IN;
2936 cond |= G_IO_OUT;
2938 return cond & rsource->condition;
2941 static gboolean
2942 qio_channel_rdma_source_check(GSource *source)
2944 QIOChannelRDMASource *rsource = (QIOChannelRDMASource *)source;
2945 RDMAContext *rdma;
2946 GIOCondition cond = 0;
2948 RCU_READ_LOCK_GUARD();
2949 if (rsource->condition == G_IO_IN) {
2950 rdma = qatomic_rcu_read(&rsource->rioc->rdmain);
2951 } else {
2952 rdma = qatomic_rcu_read(&rsource->rioc->rdmaout);
2955 if (!rdma) {
2956 error_report("RDMAContext is NULL when check Gsource");
2957 return FALSE;
2960 if (rdma->wr_data[0].control_len) {
2961 cond |= G_IO_IN;
2963 cond |= G_IO_OUT;
2965 return cond & rsource->condition;
2968 static gboolean
2969 qio_channel_rdma_source_dispatch(GSource *source,
2970 GSourceFunc callback,
2971 gpointer user_data)
2973 QIOChannelFunc func = (QIOChannelFunc)callback;
2974 QIOChannelRDMASource *rsource = (QIOChannelRDMASource *)source;
2975 RDMAContext *rdma;
2976 GIOCondition cond = 0;
2978 RCU_READ_LOCK_GUARD();
2979 if (rsource->condition == G_IO_IN) {
2980 rdma = qatomic_rcu_read(&rsource->rioc->rdmain);
2981 } else {
2982 rdma = qatomic_rcu_read(&rsource->rioc->rdmaout);
2985 if (!rdma) {
2986 error_report("RDMAContext is NULL when dispatch Gsource");
2987 return FALSE;
2990 if (rdma->wr_data[0].control_len) {
2991 cond |= G_IO_IN;
2993 cond |= G_IO_OUT;
2995 return (*func)(QIO_CHANNEL(rsource->rioc),
2996 (cond & rsource->condition),
2997 user_data);
3000 static void
3001 qio_channel_rdma_source_finalize(GSource *source)
3003 QIOChannelRDMASource *ssource = (QIOChannelRDMASource *)source;
3005 object_unref(OBJECT(ssource->rioc));
3008 GSourceFuncs qio_channel_rdma_source_funcs = {
3009 qio_channel_rdma_source_prepare,
3010 qio_channel_rdma_source_check,
3011 qio_channel_rdma_source_dispatch,
3012 qio_channel_rdma_source_finalize
3015 static GSource *qio_channel_rdma_create_watch(QIOChannel *ioc,
3016 GIOCondition condition)
3018 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
3019 QIOChannelRDMASource *ssource;
3020 GSource *source;
3022 source = g_source_new(&qio_channel_rdma_source_funcs,
3023 sizeof(QIOChannelRDMASource));
3024 ssource = (QIOChannelRDMASource *)source;
3026 ssource->rioc = rioc;
3027 object_ref(OBJECT(rioc));
3029 ssource->condition = condition;
3031 return source;
3034 static void qio_channel_rdma_set_aio_fd_handler(QIOChannel *ioc,
3035 AioContext *ctx,
3036 IOHandler *io_read,
3037 IOHandler *io_write,
3038 void *opaque)
3040 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
3041 if (io_read) {
3042 aio_set_fd_handler(ctx, rioc->rdmain->comp_channel->fd,
3043 false, io_read, io_write, NULL, opaque);
3044 } else {
3045 aio_set_fd_handler(ctx, rioc->rdmaout->comp_channel->fd,
3046 false, io_read, io_write, NULL, opaque);
3050 struct rdma_close_rcu {
3051 struct rcu_head rcu;
3052 RDMAContext *rdmain;
3053 RDMAContext *rdmaout;
3056 /* callback from qio_channel_rdma_close via call_rcu */
3057 static void qio_channel_rdma_close_rcu(struct rdma_close_rcu *rcu)
3059 if (rcu->rdmain) {
3060 qemu_rdma_cleanup(rcu->rdmain);
3063 if (rcu->rdmaout) {
3064 qemu_rdma_cleanup(rcu->rdmaout);
3067 g_free(rcu->rdmain);
3068 g_free(rcu->rdmaout);
3069 g_free(rcu);
3072 static int qio_channel_rdma_close(QIOChannel *ioc,
3073 Error **errp)
3075 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
3076 RDMAContext *rdmain, *rdmaout;
3077 struct rdma_close_rcu *rcu = g_new(struct rdma_close_rcu, 1);
3079 trace_qemu_rdma_close();
3081 rdmain = rioc->rdmain;
3082 if (rdmain) {
3083 qatomic_rcu_set(&rioc->rdmain, NULL);
3086 rdmaout = rioc->rdmaout;
3087 if (rdmaout) {
3088 qatomic_rcu_set(&rioc->rdmaout, NULL);
3091 rcu->rdmain = rdmain;
3092 rcu->rdmaout = rdmaout;
3093 call_rcu(rcu, qio_channel_rdma_close_rcu, rcu);
3095 return 0;
3098 static int
3099 qio_channel_rdma_shutdown(QIOChannel *ioc,
3100 QIOChannelShutdown how,
3101 Error **errp)
3103 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
3104 RDMAContext *rdmain, *rdmaout;
3106 RCU_READ_LOCK_GUARD();
3108 rdmain = qatomic_rcu_read(&rioc->rdmain);
3109 rdmaout = qatomic_rcu_read(&rioc->rdmain);
3111 switch (how) {
3112 case QIO_CHANNEL_SHUTDOWN_READ:
3113 if (rdmain) {
3114 rdmain->error_state = -1;
3116 break;
3117 case QIO_CHANNEL_SHUTDOWN_WRITE:
3118 if (rdmaout) {
3119 rdmaout->error_state = -1;
3121 break;
3122 case QIO_CHANNEL_SHUTDOWN_BOTH:
3123 default:
3124 if (rdmain) {
3125 rdmain->error_state = -1;
3127 if (rdmaout) {
3128 rdmaout->error_state = -1;
3130 break;
3133 return 0;
3137 * Parameters:
3138 * @offset == 0 :
3139 * This means that 'block_offset' is a full virtual address that does not
3140 * belong to a RAMBlock of the virtual machine and instead
3141 * represents a private malloc'd memory area that the caller wishes to
3142 * transfer.
3144 * @offset != 0 :
3145 * Offset is an offset to be added to block_offset and used
3146 * to also lookup the corresponding RAMBlock.
3148 * @size > 0 :
3149 * Initiate an transfer this size.
3151 * @size == 0 :
3152 * A 'hint' or 'advice' that means that we wish to speculatively
3153 * and asynchronously unregister this memory. In this case, there is no
3154 * guarantee that the unregister will actually happen, for example,
3155 * if the memory is being actively transmitted. Additionally, the memory
3156 * may be re-registered at any future time if a write within the same
3157 * chunk was requested again, even if you attempted to unregister it
3158 * here.
3160 * @size < 0 : TODO, not yet supported
3161 * Unregister the memory NOW. This means that the caller does not
3162 * expect there to be any future RDMA transfers and we just want to clean
3163 * things up. This is used in case the upper layer owns the memory and
3164 * cannot wait for qemu_fclose() to occur.
3166 * @bytes_sent : User-specificed pointer to indicate how many bytes were
3167 * sent. Usually, this will not be more than a few bytes of
3168 * the protocol because most transfers are sent asynchronously.
3170 static size_t qemu_rdma_save_page(QEMUFile *f, void *opaque,
3171 ram_addr_t block_offset, ram_addr_t offset,
3172 size_t size, uint64_t *bytes_sent)
3174 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(opaque);
3175 RDMAContext *rdma;
3176 int ret;
3178 RCU_READ_LOCK_GUARD();
3179 rdma = qatomic_rcu_read(&rioc->rdmaout);
3181 if (!rdma) {
3182 return -EIO;
3185 CHECK_ERROR_STATE();
3187 if (migration_in_postcopy()) {
3188 return RAM_SAVE_CONTROL_NOT_SUPP;
3191 qemu_fflush(f);
3193 if (size > 0) {
3195 * Add this page to the current 'chunk'. If the chunk
3196 * is full, or the page doesn't belong to the current chunk,
3197 * an actual RDMA write will occur and a new chunk will be formed.
3199 ret = qemu_rdma_write(f, rdma, block_offset, offset, size);
3200 if (ret < 0) {
3201 error_report("rdma migration: write error! %d", ret);
3202 goto err;
3206 * We always return 1 bytes because the RDMA
3207 * protocol is completely asynchronous. We do not yet know
3208 * whether an identified chunk is zero or not because we're
3209 * waiting for other pages to potentially be merged with
3210 * the current chunk. So, we have to call qemu_update_position()
3211 * later on when the actual write occurs.
3213 if (bytes_sent) {
3214 *bytes_sent = 1;
3216 } else {
3217 uint64_t index, chunk;
3219 /* TODO: Change QEMUFileOps prototype to be signed: size_t => long
3220 if (size < 0) {
3221 ret = qemu_rdma_drain_cq(f, rdma);
3222 if (ret < 0) {
3223 fprintf(stderr, "rdma: failed to synchronously drain"
3224 " completion queue before unregistration.\n");
3225 goto err;
3230 ret = qemu_rdma_search_ram_block(rdma, block_offset,
3231 offset, size, &index, &chunk);
3233 if (ret) {
3234 error_report("ram block search failed");
3235 goto err;
3238 qemu_rdma_signal_unregister(rdma, index, chunk, 0);
3241 * TODO: Synchronous, guaranteed unregistration (should not occur during
3242 * fast-path). Otherwise, unregisters will process on the next call to
3243 * qemu_rdma_drain_cq()
3244 if (size < 0) {
3245 qemu_rdma_unregister_waiting(rdma);
3251 * Drain the Completion Queue if possible, but do not block,
3252 * just poll.
3254 * If nothing to poll, the end of the iteration will do this
3255 * again to make sure we don't overflow the request queue.
3257 while (1) {
3258 uint64_t wr_id, wr_id_in;
3259 int ret = qemu_rdma_poll(rdma, &wr_id_in, NULL);
3260 if (ret < 0) {
3261 error_report("rdma migration: polling error! %d", ret);
3262 goto err;
3265 wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
3267 if (wr_id == RDMA_WRID_NONE) {
3268 break;
3272 return RAM_SAVE_CONTROL_DELAYED;
3273 err:
3274 rdma->error_state = ret;
3275 return ret;
3278 static void rdma_accept_incoming_migration(void *opaque);
3280 static void rdma_cm_poll_handler(void *opaque)
3282 RDMAContext *rdma = opaque;
3283 int ret;
3284 struct rdma_cm_event *cm_event;
3285 MigrationIncomingState *mis = migration_incoming_get_current();
3287 ret = rdma_get_cm_event(rdma->channel, &cm_event);
3288 if (ret) {
3289 error_report("get_cm_event failed %d", errno);
3290 return;
3293 if (cm_event->event == RDMA_CM_EVENT_DISCONNECTED ||
3294 cm_event->event == RDMA_CM_EVENT_DEVICE_REMOVAL) {
3295 if (!rdma->error_state &&
3296 migration_incoming_get_current()->state !=
3297 MIGRATION_STATUS_COMPLETED) {
3298 error_report("receive cm event, cm event is %d", cm_event->event);
3299 rdma->error_state = -EPIPE;
3300 if (rdma->return_path) {
3301 rdma->return_path->error_state = -EPIPE;
3304 rdma_ack_cm_event(cm_event);
3306 if (mis->migration_incoming_co) {
3307 qemu_coroutine_enter(mis->migration_incoming_co);
3309 return;
3311 rdma_ack_cm_event(cm_event);
3314 static int qemu_rdma_accept(RDMAContext *rdma)
3316 RDMACapabilities cap;
3317 struct rdma_conn_param conn_param = {
3318 .responder_resources = 2,
3319 .private_data = &cap,
3320 .private_data_len = sizeof(cap),
3322 RDMAContext *rdma_return_path = NULL;
3323 struct rdma_cm_event *cm_event;
3324 struct ibv_context *verbs;
3325 int ret = -EINVAL;
3326 int idx;
3328 ret = rdma_get_cm_event(rdma->channel, &cm_event);
3329 if (ret) {
3330 goto err_rdma_dest_wait;
3333 if (cm_event->event != RDMA_CM_EVENT_CONNECT_REQUEST) {
3334 rdma_ack_cm_event(cm_event);
3335 goto err_rdma_dest_wait;
3339 * initialize the RDMAContext for return path for postcopy after first
3340 * connection request reached.
3342 if (migrate_postcopy() && !rdma->is_return_path) {
3343 rdma_return_path = qemu_rdma_data_init(rdma->host_port, NULL);
3344 if (rdma_return_path == NULL) {
3345 rdma_ack_cm_event(cm_event);
3346 goto err_rdma_dest_wait;
3349 qemu_rdma_return_path_dest_init(rdma_return_path, rdma);
3352 memcpy(&cap, cm_event->param.conn.private_data, sizeof(cap));
3354 network_to_caps(&cap);
3356 if (cap.version < 1 || cap.version > RDMA_CONTROL_VERSION_CURRENT) {
3357 error_report("Unknown source RDMA version: %d, bailing...",
3358 cap.version);
3359 rdma_ack_cm_event(cm_event);
3360 goto err_rdma_dest_wait;
3364 * Respond with only the capabilities this version of QEMU knows about.
3366 cap.flags &= known_capabilities;
3369 * Enable the ones that we do know about.
3370 * Add other checks here as new ones are introduced.
3372 if (cap.flags & RDMA_CAPABILITY_PIN_ALL) {
3373 rdma->pin_all = true;
3376 rdma->cm_id = cm_event->id;
3377 verbs = cm_event->id->verbs;
3379 rdma_ack_cm_event(cm_event);
3381 trace_qemu_rdma_accept_pin_state(rdma->pin_all);
3383 caps_to_network(&cap);
3385 trace_qemu_rdma_accept_pin_verbsc(verbs);
3387 if (!rdma->verbs) {
3388 rdma->verbs = verbs;
3389 } else if (rdma->verbs != verbs) {
3390 error_report("ibv context not matching %p, %p!", rdma->verbs,
3391 verbs);
3392 goto err_rdma_dest_wait;
3395 qemu_rdma_dump_id("dest_init", verbs);
3397 ret = qemu_rdma_alloc_pd_cq(rdma);
3398 if (ret) {
3399 error_report("rdma migration: error allocating pd and cq!");
3400 goto err_rdma_dest_wait;
3403 ret = qemu_rdma_alloc_qp(rdma);
3404 if (ret) {
3405 error_report("rdma migration: error allocating qp!");
3406 goto err_rdma_dest_wait;
3409 ret = qemu_rdma_init_ram_blocks(rdma);
3410 if (ret) {
3411 error_report("rdma migration: error initializing ram blocks!");
3412 goto err_rdma_dest_wait;
3415 for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
3416 ret = qemu_rdma_reg_control(rdma, idx);
3417 if (ret) {
3418 error_report("rdma: error registering %d control", idx);
3419 goto err_rdma_dest_wait;
3423 /* Accept the second connection request for return path */
3424 if (migrate_postcopy() && !rdma->is_return_path) {
3425 qemu_set_fd_handler(rdma->channel->fd, rdma_accept_incoming_migration,
3426 NULL,
3427 (void *)(intptr_t)rdma->return_path);
3428 } else {
3429 qemu_set_fd_handler(rdma->channel->fd, rdma_cm_poll_handler,
3430 NULL, rdma);
3433 ret = rdma_accept(rdma->cm_id, &conn_param);
3434 if (ret) {
3435 error_report("rdma_accept returns %d", ret);
3436 goto err_rdma_dest_wait;
3439 ret = rdma_get_cm_event(rdma->channel, &cm_event);
3440 if (ret) {
3441 error_report("rdma_accept get_cm_event failed %d", ret);
3442 goto err_rdma_dest_wait;
3445 if (cm_event->event != RDMA_CM_EVENT_ESTABLISHED) {
3446 error_report("rdma_accept not event established");
3447 rdma_ack_cm_event(cm_event);
3448 goto err_rdma_dest_wait;
3451 rdma_ack_cm_event(cm_event);
3452 rdma->connected = true;
3454 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
3455 if (ret) {
3456 error_report("rdma migration: error posting second control recv");
3457 goto err_rdma_dest_wait;
3460 qemu_rdma_dump_gid("dest_connect", rdma->cm_id);
3462 return 0;
3464 err_rdma_dest_wait:
3465 rdma->error_state = ret;
3466 qemu_rdma_cleanup(rdma);
3467 g_free(rdma_return_path);
3468 return ret;
3471 static int dest_ram_sort_func(const void *a, const void *b)
3473 unsigned int a_index = ((const RDMALocalBlock *)a)->src_index;
3474 unsigned int b_index = ((const RDMALocalBlock *)b)->src_index;
3476 return (a_index < b_index) ? -1 : (a_index != b_index);
3480 * During each iteration of the migration, we listen for instructions
3481 * by the source VM to perform dynamic page registrations before they
3482 * can perform RDMA operations.
3484 * We respond with the 'rkey'.
3486 * Keep doing this until the source tells us to stop.
3488 static int qemu_rdma_registration_handle(QEMUFile *f, void *opaque)
3490 RDMAControlHeader reg_resp = { .len = sizeof(RDMARegisterResult),
3491 .type = RDMA_CONTROL_REGISTER_RESULT,
3492 .repeat = 0,
3494 RDMAControlHeader unreg_resp = { .len = 0,
3495 .type = RDMA_CONTROL_UNREGISTER_FINISHED,
3496 .repeat = 0,
3498 RDMAControlHeader blocks = { .type = RDMA_CONTROL_RAM_BLOCKS_RESULT,
3499 .repeat = 1 };
3500 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(opaque);
3501 RDMAContext *rdma;
3502 RDMALocalBlocks *local;
3503 RDMAControlHeader head;
3504 RDMARegister *reg, *registers;
3505 RDMACompress *comp;
3506 RDMARegisterResult *reg_result;
3507 static RDMARegisterResult results[RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE];
3508 RDMALocalBlock *block;
3509 void *host_addr;
3510 int ret = 0;
3511 int idx = 0;
3512 int count = 0;
3513 int i = 0;
3515 RCU_READ_LOCK_GUARD();
3516 rdma = qatomic_rcu_read(&rioc->rdmain);
3518 if (!rdma) {
3519 return -EIO;
3522 CHECK_ERROR_STATE();
3524 local = &rdma->local_ram_blocks;
3525 do {
3526 trace_qemu_rdma_registration_handle_wait();
3528 ret = qemu_rdma_exchange_recv(rdma, &head, RDMA_CONTROL_NONE);
3530 if (ret < 0) {
3531 break;
3534 if (head.repeat > RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE) {
3535 error_report("rdma: Too many requests in this message (%d)."
3536 "Bailing.", head.repeat);
3537 ret = -EIO;
3538 break;
3541 switch (head.type) {
3542 case RDMA_CONTROL_COMPRESS:
3543 comp = (RDMACompress *) rdma->wr_data[idx].control_curr;
3544 network_to_compress(comp);
3546 trace_qemu_rdma_registration_handle_compress(comp->length,
3547 comp->block_idx,
3548 comp->offset);
3549 if (comp->block_idx >= rdma->local_ram_blocks.nb_blocks) {
3550 error_report("rdma: 'compress' bad block index %u (vs %d)",
3551 (unsigned int)comp->block_idx,
3552 rdma->local_ram_blocks.nb_blocks);
3553 ret = -EIO;
3554 goto out;
3556 block = &(rdma->local_ram_blocks.block[comp->block_idx]);
3558 host_addr = block->local_host_addr +
3559 (comp->offset - block->offset);
3561 ram_handle_compressed(host_addr, comp->value, comp->length);
3562 break;
3564 case RDMA_CONTROL_REGISTER_FINISHED:
3565 trace_qemu_rdma_registration_handle_finished();
3566 goto out;
3568 case RDMA_CONTROL_RAM_BLOCKS_REQUEST:
3569 trace_qemu_rdma_registration_handle_ram_blocks();
3571 /* Sort our local RAM Block list so it's the same as the source,
3572 * we can do this since we've filled in a src_index in the list
3573 * as we received the RAMBlock list earlier.
3575 qsort(rdma->local_ram_blocks.block,
3576 rdma->local_ram_blocks.nb_blocks,
3577 sizeof(RDMALocalBlock), dest_ram_sort_func);
3578 for (i = 0; i < local->nb_blocks; i++) {
3579 local->block[i].index = i;
3582 if (rdma->pin_all) {
3583 ret = qemu_rdma_reg_whole_ram_blocks(rdma);
3584 if (ret) {
3585 error_report("rdma migration: error dest "
3586 "registering ram blocks");
3587 goto out;
3592 * Dest uses this to prepare to transmit the RAMBlock descriptions
3593 * to the source VM after connection setup.
3594 * Both sides use the "remote" structure to communicate and update
3595 * their "local" descriptions with what was sent.
3597 for (i = 0; i < local->nb_blocks; i++) {
3598 rdma->dest_blocks[i].remote_host_addr =
3599 (uintptr_t)(local->block[i].local_host_addr);
3601 if (rdma->pin_all) {
3602 rdma->dest_blocks[i].remote_rkey = local->block[i].mr->rkey;
3605 rdma->dest_blocks[i].offset = local->block[i].offset;
3606 rdma->dest_blocks[i].length = local->block[i].length;
3608 dest_block_to_network(&rdma->dest_blocks[i]);
3609 trace_qemu_rdma_registration_handle_ram_blocks_loop(
3610 local->block[i].block_name,
3611 local->block[i].offset,
3612 local->block[i].length,
3613 local->block[i].local_host_addr,
3614 local->block[i].src_index);
3617 blocks.len = rdma->local_ram_blocks.nb_blocks
3618 * sizeof(RDMADestBlock);
3621 ret = qemu_rdma_post_send_control(rdma,
3622 (uint8_t *) rdma->dest_blocks, &blocks);
3624 if (ret < 0) {
3625 error_report("rdma migration: error sending remote info");
3626 goto out;
3629 break;
3630 case RDMA_CONTROL_REGISTER_REQUEST:
3631 trace_qemu_rdma_registration_handle_register(head.repeat);
3633 reg_resp.repeat = head.repeat;
3634 registers = (RDMARegister *) rdma->wr_data[idx].control_curr;
3636 for (count = 0; count < head.repeat; count++) {
3637 uint64_t chunk;
3638 uint8_t *chunk_start, *chunk_end;
3640 reg = &registers[count];
3641 network_to_register(reg);
3643 reg_result = &results[count];
3645 trace_qemu_rdma_registration_handle_register_loop(count,
3646 reg->current_index, reg->key.current_addr, reg->chunks);
3648 if (reg->current_index >= rdma->local_ram_blocks.nb_blocks) {
3649 error_report("rdma: 'register' bad block index %u (vs %d)",
3650 (unsigned int)reg->current_index,
3651 rdma->local_ram_blocks.nb_blocks);
3652 ret = -ENOENT;
3653 goto out;
3655 block = &(rdma->local_ram_blocks.block[reg->current_index]);
3656 if (block->is_ram_block) {
3657 if (block->offset > reg->key.current_addr) {
3658 error_report("rdma: bad register address for block %s"
3659 " offset: %" PRIx64 " current_addr: %" PRIx64,
3660 block->block_name, block->offset,
3661 reg->key.current_addr);
3662 ret = -ERANGE;
3663 goto out;
3665 host_addr = (block->local_host_addr +
3666 (reg->key.current_addr - block->offset));
3667 chunk = ram_chunk_index(block->local_host_addr,
3668 (uint8_t *) host_addr);
3669 } else {
3670 chunk = reg->key.chunk;
3671 host_addr = block->local_host_addr +
3672 (reg->key.chunk * (1UL << RDMA_REG_CHUNK_SHIFT));
3673 /* Check for particularly bad chunk value */
3674 if (host_addr < (void *)block->local_host_addr) {
3675 error_report("rdma: bad chunk for block %s"
3676 " chunk: %" PRIx64,
3677 block->block_name, reg->key.chunk);
3678 ret = -ERANGE;
3679 goto out;
3682 chunk_start = ram_chunk_start(block, chunk);
3683 chunk_end = ram_chunk_end(block, chunk + reg->chunks);
3684 /* avoid "-Waddress-of-packed-member" warning */
3685 uint32_t tmp_rkey = 0;
3686 if (qemu_rdma_register_and_get_keys(rdma, block,
3687 (uintptr_t)host_addr, NULL, &tmp_rkey,
3688 chunk, chunk_start, chunk_end)) {
3689 error_report("cannot get rkey");
3690 ret = -EINVAL;
3691 goto out;
3693 reg_result->rkey = tmp_rkey;
3695 reg_result->host_addr = (uintptr_t)block->local_host_addr;
3697 trace_qemu_rdma_registration_handle_register_rkey(
3698 reg_result->rkey);
3700 result_to_network(reg_result);
3703 ret = qemu_rdma_post_send_control(rdma,
3704 (uint8_t *) results, &reg_resp);
3706 if (ret < 0) {
3707 error_report("Failed to send control buffer");
3708 goto out;
3710 break;
3711 case RDMA_CONTROL_UNREGISTER_REQUEST:
3712 trace_qemu_rdma_registration_handle_unregister(head.repeat);
3713 unreg_resp.repeat = head.repeat;
3714 registers = (RDMARegister *) rdma->wr_data[idx].control_curr;
3716 for (count = 0; count < head.repeat; count++) {
3717 reg = &registers[count];
3718 network_to_register(reg);
3720 trace_qemu_rdma_registration_handle_unregister_loop(count,
3721 reg->current_index, reg->key.chunk);
3723 block = &(rdma->local_ram_blocks.block[reg->current_index]);
3725 ret = ibv_dereg_mr(block->pmr[reg->key.chunk]);
3726 block->pmr[reg->key.chunk] = NULL;
3728 if (ret != 0) {
3729 perror("rdma unregistration chunk failed");
3730 ret = -ret;
3731 goto out;
3734 rdma->total_registrations--;
3736 trace_qemu_rdma_registration_handle_unregister_success(
3737 reg->key.chunk);
3740 ret = qemu_rdma_post_send_control(rdma, NULL, &unreg_resp);
3742 if (ret < 0) {
3743 error_report("Failed to send control buffer");
3744 goto out;
3746 break;
3747 case RDMA_CONTROL_REGISTER_RESULT:
3748 error_report("Invalid RESULT message at dest.");
3749 ret = -EIO;
3750 goto out;
3751 default:
3752 error_report("Unknown control message %s", control_desc(head.type));
3753 ret = -EIO;
3754 goto out;
3756 } while (1);
3757 out:
3758 if (ret < 0) {
3759 rdma->error_state = ret;
3761 return ret;
3764 /* Destination:
3765 * Called via a ram_control_load_hook during the initial RAM load section which
3766 * lists the RAMBlocks by name. This lets us know the order of the RAMBlocks
3767 * on the source.
3768 * We've already built our local RAMBlock list, but not yet sent the list to
3769 * the source.
3771 static int
3772 rdma_block_notification_handle(QIOChannelRDMA *rioc, const char *name)
3774 RDMAContext *rdma;
3775 int curr;
3776 int found = -1;
3778 RCU_READ_LOCK_GUARD();
3779 rdma = qatomic_rcu_read(&rioc->rdmain);
3781 if (!rdma) {
3782 return -EIO;
3785 /* Find the matching RAMBlock in our local list */
3786 for (curr = 0; curr < rdma->local_ram_blocks.nb_blocks; curr++) {
3787 if (!strcmp(rdma->local_ram_blocks.block[curr].block_name, name)) {
3788 found = curr;
3789 break;
3793 if (found == -1) {
3794 error_report("RAMBlock '%s' not found on destination", name);
3795 return -ENOENT;
3798 rdma->local_ram_blocks.block[curr].src_index = rdma->next_src_index;
3799 trace_rdma_block_notification_handle(name, rdma->next_src_index);
3800 rdma->next_src_index++;
3802 return 0;
3805 static int rdma_load_hook(QEMUFile *f, void *opaque, uint64_t flags, void *data)
3807 switch (flags) {
3808 case RAM_CONTROL_BLOCK_REG:
3809 return rdma_block_notification_handle(opaque, data);
3811 case RAM_CONTROL_HOOK:
3812 return qemu_rdma_registration_handle(f, opaque);
3814 default:
3815 /* Shouldn't be called with any other values */
3816 abort();
3820 static int qemu_rdma_registration_start(QEMUFile *f, void *opaque,
3821 uint64_t flags, void *data)
3823 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(opaque);
3824 RDMAContext *rdma;
3826 RCU_READ_LOCK_GUARD();
3827 rdma = qatomic_rcu_read(&rioc->rdmaout);
3828 if (!rdma) {
3829 return -EIO;
3832 CHECK_ERROR_STATE();
3834 if (migration_in_postcopy()) {
3835 return 0;
3838 trace_qemu_rdma_registration_start(flags);
3839 qemu_put_be64(f, RAM_SAVE_FLAG_HOOK);
3840 qemu_fflush(f);
3842 return 0;
3846 * Inform dest that dynamic registrations are done for now.
3847 * First, flush writes, if any.
3849 static int qemu_rdma_registration_stop(QEMUFile *f, void *opaque,
3850 uint64_t flags, void *data)
3852 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(opaque);
3853 RDMAContext *rdma;
3854 RDMAControlHeader head = { .len = 0, .repeat = 1 };
3855 int ret = 0;
3857 RCU_READ_LOCK_GUARD();
3858 rdma = qatomic_rcu_read(&rioc->rdmaout);
3859 if (!rdma) {
3860 return -EIO;
3863 CHECK_ERROR_STATE();
3865 if (migration_in_postcopy()) {
3866 return 0;
3869 qemu_fflush(f);
3870 ret = qemu_rdma_drain_cq(f, rdma);
3872 if (ret < 0) {
3873 goto err;
3876 if (flags == RAM_CONTROL_SETUP) {
3877 RDMAControlHeader resp = {.type = RDMA_CONTROL_RAM_BLOCKS_RESULT };
3878 RDMALocalBlocks *local = &rdma->local_ram_blocks;
3879 int reg_result_idx, i, nb_dest_blocks;
3881 head.type = RDMA_CONTROL_RAM_BLOCKS_REQUEST;
3882 trace_qemu_rdma_registration_stop_ram();
3885 * Make sure that we parallelize the pinning on both sides.
3886 * For very large guests, doing this serially takes a really
3887 * long time, so we have to 'interleave' the pinning locally
3888 * with the control messages by performing the pinning on this
3889 * side before we receive the control response from the other
3890 * side that the pinning has completed.
3892 ret = qemu_rdma_exchange_send(rdma, &head, NULL, &resp,
3893 &reg_result_idx, rdma->pin_all ?
3894 qemu_rdma_reg_whole_ram_blocks : NULL);
3895 if (ret < 0) {
3896 fprintf(stderr, "receiving remote info!");
3897 return ret;
3900 nb_dest_blocks = resp.len / sizeof(RDMADestBlock);
3903 * The protocol uses two different sets of rkeys (mutually exclusive):
3904 * 1. One key to represent the virtual address of the entire ram block.
3905 * (dynamic chunk registration disabled - pin everything with one rkey.)
3906 * 2. One to represent individual chunks within a ram block.
3907 * (dynamic chunk registration enabled - pin individual chunks.)
3909 * Once the capability is successfully negotiated, the destination transmits
3910 * the keys to use (or sends them later) including the virtual addresses
3911 * and then propagates the remote ram block descriptions to his local copy.
3914 if (local->nb_blocks != nb_dest_blocks) {
3915 fprintf(stderr, "ram blocks mismatch (Number of blocks %d vs %d) "
3916 "Your QEMU command line parameters are probably "
3917 "not identical on both the source and destination.",
3918 local->nb_blocks, nb_dest_blocks);
3919 rdma->error_state = -EINVAL;
3920 return -EINVAL;
3923 qemu_rdma_move_header(rdma, reg_result_idx, &resp);
3924 memcpy(rdma->dest_blocks,
3925 rdma->wr_data[reg_result_idx].control_curr, resp.len);
3926 for (i = 0; i < nb_dest_blocks; i++) {
3927 network_to_dest_block(&rdma->dest_blocks[i]);
3929 /* We require that the blocks are in the same order */
3930 if (rdma->dest_blocks[i].length != local->block[i].length) {
3931 fprintf(stderr, "Block %s/%d has a different length %" PRIu64
3932 "vs %" PRIu64, local->block[i].block_name, i,
3933 local->block[i].length,
3934 rdma->dest_blocks[i].length);
3935 rdma->error_state = -EINVAL;
3936 return -EINVAL;
3938 local->block[i].remote_host_addr =
3939 rdma->dest_blocks[i].remote_host_addr;
3940 local->block[i].remote_rkey = rdma->dest_blocks[i].remote_rkey;
3944 trace_qemu_rdma_registration_stop(flags);
3946 head.type = RDMA_CONTROL_REGISTER_FINISHED;
3947 ret = qemu_rdma_exchange_send(rdma, &head, NULL, NULL, NULL, NULL);
3949 if (ret < 0) {
3950 goto err;
3953 return 0;
3954 err:
3955 rdma->error_state = ret;
3956 return ret;
3959 static const QEMUFileHooks rdma_read_hooks = {
3960 .hook_ram_load = rdma_load_hook,
3963 static const QEMUFileHooks rdma_write_hooks = {
3964 .before_ram_iterate = qemu_rdma_registration_start,
3965 .after_ram_iterate = qemu_rdma_registration_stop,
3966 .save_page = qemu_rdma_save_page,
3970 static void qio_channel_rdma_finalize(Object *obj)
3972 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(obj);
3973 if (rioc->rdmain) {
3974 qemu_rdma_cleanup(rioc->rdmain);
3975 g_free(rioc->rdmain);
3976 rioc->rdmain = NULL;
3978 if (rioc->rdmaout) {
3979 qemu_rdma_cleanup(rioc->rdmaout);
3980 g_free(rioc->rdmaout);
3981 rioc->rdmaout = NULL;
3985 static void qio_channel_rdma_class_init(ObjectClass *klass,
3986 void *class_data G_GNUC_UNUSED)
3988 QIOChannelClass *ioc_klass = QIO_CHANNEL_CLASS(klass);
3990 ioc_klass->io_writev = qio_channel_rdma_writev;
3991 ioc_klass->io_readv = qio_channel_rdma_readv;
3992 ioc_klass->io_set_blocking = qio_channel_rdma_set_blocking;
3993 ioc_klass->io_close = qio_channel_rdma_close;
3994 ioc_klass->io_create_watch = qio_channel_rdma_create_watch;
3995 ioc_klass->io_set_aio_fd_handler = qio_channel_rdma_set_aio_fd_handler;
3996 ioc_klass->io_shutdown = qio_channel_rdma_shutdown;
3999 static const TypeInfo qio_channel_rdma_info = {
4000 .parent = TYPE_QIO_CHANNEL,
4001 .name = TYPE_QIO_CHANNEL_RDMA,
4002 .instance_size = sizeof(QIOChannelRDMA),
4003 .instance_finalize = qio_channel_rdma_finalize,
4004 .class_init = qio_channel_rdma_class_init,
4007 static void qio_channel_rdma_register_types(void)
4009 type_register_static(&qio_channel_rdma_info);
4012 type_init(qio_channel_rdma_register_types);
4014 static QEMUFile *qemu_fopen_rdma(RDMAContext *rdma, const char *mode)
4016 QIOChannelRDMA *rioc;
4018 if (qemu_file_mode_is_not_valid(mode)) {
4019 return NULL;
4022 rioc = QIO_CHANNEL_RDMA(object_new(TYPE_QIO_CHANNEL_RDMA));
4024 if (mode[0] == 'w') {
4025 rioc->file = qemu_fopen_channel_output(QIO_CHANNEL(rioc));
4026 rioc->rdmaout = rdma;
4027 rioc->rdmain = rdma->return_path;
4028 qemu_file_set_hooks(rioc->file, &rdma_write_hooks);
4029 } else {
4030 rioc->file = qemu_fopen_channel_input(QIO_CHANNEL(rioc));
4031 rioc->rdmain = rdma;
4032 rioc->rdmaout = rdma->return_path;
4033 qemu_file_set_hooks(rioc->file, &rdma_read_hooks);
4036 return rioc->file;
4039 static void rdma_accept_incoming_migration(void *opaque)
4041 RDMAContext *rdma = opaque;
4042 int ret;
4043 QEMUFile *f;
4044 Error *local_err = NULL;
4046 trace_qemu_rdma_accept_incoming_migration();
4047 ret = qemu_rdma_accept(rdma);
4049 if (ret) {
4050 fprintf(stderr, "RDMA ERROR: Migration initialization failed\n");
4051 return;
4054 trace_qemu_rdma_accept_incoming_migration_accepted();
4056 if (rdma->is_return_path) {
4057 return;
4060 f = qemu_fopen_rdma(rdma, "rb");
4061 if (f == NULL) {
4062 fprintf(stderr, "RDMA ERROR: could not qemu_fopen_rdma\n");
4063 qemu_rdma_cleanup(rdma);
4064 return;
4067 rdma->migration_started_on_destination = 1;
4068 migration_fd_process_incoming(f, &local_err);
4069 if (local_err) {
4070 error_reportf_err(local_err, "RDMA ERROR:");
4074 void rdma_start_incoming_migration(const char *host_port, Error **errp)
4076 int ret;
4077 RDMAContext *rdma, *rdma_return_path = NULL;
4078 Error *local_err = NULL;
4080 trace_rdma_start_incoming_migration();
4082 /* Avoid ram_block_discard_disable(), cannot change during migration. */
4083 if (ram_block_discard_is_required()) {
4084 error_setg(errp, "RDMA: cannot disable RAM discard");
4085 return;
4088 rdma = qemu_rdma_data_init(host_port, &local_err);
4089 if (rdma == NULL) {
4090 goto err;
4093 ret = qemu_rdma_dest_init(rdma, &local_err);
4095 if (ret) {
4096 goto err;
4099 trace_rdma_start_incoming_migration_after_dest_init();
4101 ret = rdma_listen(rdma->listen_id, 5);
4103 if (ret) {
4104 ERROR(errp, "listening on socket!");
4105 goto cleanup_rdma;
4108 trace_rdma_start_incoming_migration_after_rdma_listen();
4110 qemu_set_fd_handler(rdma->channel->fd, rdma_accept_incoming_migration,
4111 NULL, (void *)(intptr_t)rdma);
4112 return;
4114 cleanup_rdma:
4115 qemu_rdma_cleanup(rdma);
4116 err:
4117 error_propagate(errp, local_err);
4118 if (rdma) {
4119 g_free(rdma->host);
4120 g_free(rdma->host_port);
4122 g_free(rdma);
4123 g_free(rdma_return_path);
4126 void rdma_start_outgoing_migration(void *opaque,
4127 const char *host_port, Error **errp)
4129 MigrationState *s = opaque;
4130 RDMAContext *rdma_return_path = NULL;
4131 RDMAContext *rdma;
4132 int ret = 0;
4134 /* Avoid ram_block_discard_disable(), cannot change during migration. */
4135 if (ram_block_discard_is_required()) {
4136 error_setg(errp, "RDMA: cannot disable RAM discard");
4137 return;
4140 rdma = qemu_rdma_data_init(host_port, errp);
4141 if (rdma == NULL) {
4142 goto err;
4145 ret = qemu_rdma_source_init(rdma,
4146 s->enabled_capabilities[MIGRATION_CAPABILITY_RDMA_PIN_ALL], errp);
4148 if (ret) {
4149 goto err;
4152 trace_rdma_start_outgoing_migration_after_rdma_source_init();
4153 ret = qemu_rdma_connect(rdma, errp, false);
4155 if (ret) {
4156 goto err;
4159 /* RDMA postcopy need a separate queue pair for return path */
4160 if (migrate_postcopy()) {
4161 rdma_return_path = qemu_rdma_data_init(host_port, errp);
4163 if (rdma_return_path == NULL) {
4164 goto return_path_err;
4167 ret = qemu_rdma_source_init(rdma_return_path,
4168 s->enabled_capabilities[MIGRATION_CAPABILITY_RDMA_PIN_ALL], errp);
4170 if (ret) {
4171 goto return_path_err;
4174 ret = qemu_rdma_connect(rdma_return_path, errp, true);
4176 if (ret) {
4177 goto return_path_err;
4180 rdma->return_path = rdma_return_path;
4181 rdma_return_path->return_path = rdma;
4182 rdma_return_path->is_return_path = true;
4185 trace_rdma_start_outgoing_migration_after_rdma_connect();
4187 s->to_dst_file = qemu_fopen_rdma(rdma, "wb");
4188 migrate_fd_connect(s, NULL);
4189 return;
4190 return_path_err:
4191 qemu_rdma_cleanup(rdma);
4192 err:
4193 g_free(rdma);
4194 g_free(rdma_return_path);