migration: postcopy take proper error return
[qemu.git] / target / sparc / mmu_helper.c
blobafbfba7b7e00a4bc3bdc0b17b82990d781415a9f
1 /*
2 * Sparc MMU helpers
4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
21 #include "cpu.h"
22 #include "exec/exec-all.h"
23 #include "qemu/qemu-print.h"
24 #include "trace.h"
26 /* Sparc MMU emulation */
28 #if defined(CONFIG_USER_ONLY)
30 bool sparc_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
31 MMUAccessType access_type, int mmu_idx,
32 bool probe, uintptr_t retaddr)
34 SPARCCPU *cpu = SPARC_CPU(cs);
35 CPUSPARCState *env = &cpu->env;
37 if (access_type == MMU_INST_FETCH) {
38 cs->exception_index = TT_TFAULT;
39 } else {
40 cs->exception_index = TT_DFAULT;
41 #ifdef TARGET_SPARC64
42 env->dmmu.mmuregs[4] = address;
43 #else
44 env->mmuregs[4] = address;
45 #endif
47 cpu_loop_exit_restore(cs, retaddr);
50 #else
52 #ifndef TARGET_SPARC64
54 * Sparc V8 Reference MMU (SRMMU)
56 static const int access_table[8][8] = {
57 { 0, 0, 0, 0, 8, 0, 12, 12 },
58 { 0, 0, 0, 0, 8, 0, 0, 0 },
59 { 8, 8, 0, 0, 0, 8, 12, 12 },
60 { 8, 8, 0, 0, 0, 8, 0, 0 },
61 { 8, 0, 8, 0, 8, 8, 12, 12 },
62 { 8, 0, 8, 0, 8, 0, 8, 0 },
63 { 8, 8, 8, 0, 8, 8, 12, 12 },
64 { 8, 8, 8, 0, 8, 8, 8, 0 }
67 static const int perm_table[2][8] = {
69 PAGE_READ,
70 PAGE_READ | PAGE_WRITE,
71 PAGE_READ | PAGE_EXEC,
72 PAGE_READ | PAGE_WRITE | PAGE_EXEC,
73 PAGE_EXEC,
74 PAGE_READ | PAGE_WRITE,
75 PAGE_READ | PAGE_EXEC,
76 PAGE_READ | PAGE_WRITE | PAGE_EXEC
79 PAGE_READ,
80 PAGE_READ | PAGE_WRITE,
81 PAGE_READ | PAGE_EXEC,
82 PAGE_READ | PAGE_WRITE | PAGE_EXEC,
83 PAGE_EXEC,
84 PAGE_READ,
90 static int get_physical_address(CPUSPARCState *env, hwaddr *physical,
91 int *prot, int *access_index, MemTxAttrs *attrs,
92 target_ulong address, int rw, int mmu_idx,
93 target_ulong *page_size)
95 int access_perms = 0;
96 hwaddr pde_ptr;
97 uint32_t pde;
98 int error_code = 0, is_dirty, is_user;
99 unsigned long page_offset;
100 CPUState *cs = env_cpu(env);
101 MemTxResult result;
103 is_user = mmu_idx == MMU_USER_IDX;
105 if (mmu_idx == MMU_PHYS_IDX) {
106 *page_size = TARGET_PAGE_SIZE;
107 /* Boot mode: instruction fetches are taken from PROM */
108 if (rw == 2 && (env->mmuregs[0] & env->def.mmu_bm)) {
109 *physical = env->prom_addr | (address & 0x7ffffULL);
110 *prot = PAGE_READ | PAGE_EXEC;
111 return 0;
113 *physical = address;
114 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
115 return 0;
118 *access_index = ((rw & 1) << 2) | (rw & 2) | (is_user ? 0 : 1);
119 *physical = 0xffffffffffff0000ULL;
121 /* SPARC reference MMU table walk: Context table->L1->L2->PTE */
122 /* Context base + context number */
123 pde_ptr = (env->mmuregs[1] << 4) + (env->mmuregs[2] << 2);
124 pde = address_space_ldl(cs->as, pde_ptr, MEMTXATTRS_UNSPECIFIED, &result);
125 if (result != MEMTX_OK) {
126 return 4 << 2; /* Translation fault, L = 0 */
129 /* Ctx pde */
130 switch (pde & PTE_ENTRYTYPE_MASK) {
131 default:
132 case 0: /* Invalid */
133 return 1 << 2;
134 case 2: /* L0 PTE, maybe should not happen? */
135 case 3: /* Reserved */
136 return 4 << 2;
137 case 1: /* L0 PDE */
138 pde_ptr = ((address >> 22) & ~3) + ((pde & ~3) << 4);
139 pde = address_space_ldl(cs->as, pde_ptr,
140 MEMTXATTRS_UNSPECIFIED, &result);
141 if (result != MEMTX_OK) {
142 return (1 << 8) | (4 << 2); /* Translation fault, L = 1 */
145 switch (pde & PTE_ENTRYTYPE_MASK) {
146 default:
147 case 0: /* Invalid */
148 return (1 << 8) | (1 << 2);
149 case 3: /* Reserved */
150 return (1 << 8) | (4 << 2);
151 case 1: /* L1 PDE */
152 pde_ptr = ((address & 0xfc0000) >> 16) + ((pde & ~3) << 4);
153 pde = address_space_ldl(cs->as, pde_ptr,
154 MEMTXATTRS_UNSPECIFIED, &result);
155 if (result != MEMTX_OK) {
156 return (2 << 8) | (4 << 2); /* Translation fault, L = 2 */
159 switch (pde & PTE_ENTRYTYPE_MASK) {
160 default:
161 case 0: /* Invalid */
162 return (2 << 8) | (1 << 2);
163 case 3: /* Reserved */
164 return (2 << 8) | (4 << 2);
165 case 1: /* L2 PDE */
166 pde_ptr = ((address & 0x3f000) >> 10) + ((pde & ~3) << 4);
167 pde = address_space_ldl(cs->as, pde_ptr,
168 MEMTXATTRS_UNSPECIFIED, &result);
169 if (result != MEMTX_OK) {
170 return (3 << 8) | (4 << 2); /* Translation fault, L = 3 */
173 switch (pde & PTE_ENTRYTYPE_MASK) {
174 default:
175 case 0: /* Invalid */
176 return (3 << 8) | (1 << 2);
177 case 1: /* PDE, should not happen */
178 case 3: /* Reserved */
179 return (3 << 8) | (4 << 2);
180 case 2: /* L3 PTE */
181 page_offset = 0;
183 *page_size = TARGET_PAGE_SIZE;
184 break;
185 case 2: /* L2 PTE */
186 page_offset = address & 0x3f000;
187 *page_size = 0x40000;
189 break;
190 case 2: /* L1 PTE */
191 page_offset = address & 0xfff000;
192 *page_size = 0x1000000;
196 /* check access */
197 access_perms = (pde & PTE_ACCESS_MASK) >> PTE_ACCESS_SHIFT;
198 error_code = access_table[*access_index][access_perms];
199 if (error_code && !((env->mmuregs[0] & MMU_NF) && is_user)) {
200 return error_code;
203 /* update page modified and dirty bits */
204 is_dirty = (rw & 1) && !(pde & PG_MODIFIED_MASK);
205 if (!(pde & PG_ACCESSED_MASK) || is_dirty) {
206 pde |= PG_ACCESSED_MASK;
207 if (is_dirty) {
208 pde |= PG_MODIFIED_MASK;
210 stl_phys_notdirty(cs->as, pde_ptr, pde);
213 /* the page can be put in the TLB */
214 *prot = perm_table[is_user][access_perms];
215 if (!(pde & PG_MODIFIED_MASK)) {
216 /* only set write access if already dirty... otherwise wait
217 for dirty access */
218 *prot &= ~PAGE_WRITE;
221 /* Even if large ptes, we map only one 4KB page in the cache to
222 avoid filling it too fast */
223 *physical = ((hwaddr)(pde & PTE_ADDR_MASK) << 4) + page_offset;
224 return error_code;
227 /* Perform address translation */
228 bool sparc_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
229 MMUAccessType access_type, int mmu_idx,
230 bool probe, uintptr_t retaddr)
232 SPARCCPU *cpu = SPARC_CPU(cs);
233 CPUSPARCState *env = &cpu->env;
234 hwaddr paddr;
235 target_ulong vaddr;
236 target_ulong page_size;
237 int error_code = 0, prot, access_index;
238 MemTxAttrs attrs = {};
241 * TODO: If we ever need tlb_vaddr_to_host for this target,
242 * then we must figure out how to manipulate FSR and FAR
243 * when both MMU_NF and probe are set. In the meantime,
244 * do not support this use case.
246 assert(!probe);
248 address &= TARGET_PAGE_MASK;
249 error_code = get_physical_address(env, &paddr, &prot, &access_index, &attrs,
250 address, access_type,
251 mmu_idx, &page_size);
252 vaddr = address;
253 if (likely(error_code == 0)) {
254 qemu_log_mask(CPU_LOG_MMU,
255 "Translate at %" VADDR_PRIx " -> "
256 TARGET_FMT_plx ", vaddr " TARGET_FMT_lx "\n",
257 address, paddr, vaddr);
258 tlb_set_page(cs, vaddr, paddr, prot, mmu_idx, page_size);
259 return true;
262 if (env->mmuregs[3]) { /* Fault status register */
263 env->mmuregs[3] = 1; /* overflow (not read before another fault) */
265 env->mmuregs[3] |= (access_index << 5) | error_code | 2;
266 env->mmuregs[4] = address; /* Fault address register */
268 if ((env->mmuregs[0] & MMU_NF) || env->psret == 0) {
269 /* No fault mode: if a mapping is available, just override
270 permissions. If no mapping is available, redirect accesses to
271 neverland. Fake/overridden mappings will be flushed when
272 switching to normal mode. */
273 prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
274 tlb_set_page(cs, vaddr, paddr, prot, mmu_idx, TARGET_PAGE_SIZE);
275 return true;
276 } else {
277 if (access_type == MMU_INST_FETCH) {
278 cs->exception_index = TT_TFAULT;
279 } else {
280 cs->exception_index = TT_DFAULT;
282 cpu_loop_exit_restore(cs, retaddr);
286 target_ulong mmu_probe(CPUSPARCState *env, target_ulong address, int mmulev)
288 CPUState *cs = env_cpu(env);
289 hwaddr pde_ptr;
290 uint32_t pde;
291 MemTxResult result;
294 * TODO: MMU probe operations are supposed to set the fault
295 * status registers, but we don't do this.
298 /* Context base + context number */
299 pde_ptr = (hwaddr)(env->mmuregs[1] << 4) +
300 (env->mmuregs[2] << 2);
301 pde = address_space_ldl(cs->as, pde_ptr, MEMTXATTRS_UNSPECIFIED, &result);
302 if (result != MEMTX_OK) {
303 return 0;
306 switch (pde & PTE_ENTRYTYPE_MASK) {
307 default:
308 case 0: /* Invalid */
309 case 2: /* PTE, maybe should not happen? */
310 case 3: /* Reserved */
311 return 0;
312 case 1: /* L1 PDE */
313 if (mmulev == 3) {
314 return pde;
316 pde_ptr = ((address >> 22) & ~3) + ((pde & ~3) << 4);
317 pde = address_space_ldl(cs->as, pde_ptr,
318 MEMTXATTRS_UNSPECIFIED, &result);
319 if (result != MEMTX_OK) {
320 return 0;
323 switch (pde & PTE_ENTRYTYPE_MASK) {
324 default:
325 case 0: /* Invalid */
326 case 3: /* Reserved */
327 return 0;
328 case 2: /* L1 PTE */
329 return pde;
330 case 1: /* L2 PDE */
331 if (mmulev == 2) {
332 return pde;
334 pde_ptr = ((address & 0xfc0000) >> 16) + ((pde & ~3) << 4);
335 pde = address_space_ldl(cs->as, pde_ptr,
336 MEMTXATTRS_UNSPECIFIED, &result);
337 if (result != MEMTX_OK) {
338 return 0;
341 switch (pde & PTE_ENTRYTYPE_MASK) {
342 default:
343 case 0: /* Invalid */
344 case 3: /* Reserved */
345 return 0;
346 case 2: /* L2 PTE */
347 return pde;
348 case 1: /* L3 PDE */
349 if (mmulev == 1) {
350 return pde;
352 pde_ptr = ((address & 0x3f000) >> 10) + ((pde & ~3) << 4);
353 pde = address_space_ldl(cs->as, pde_ptr,
354 MEMTXATTRS_UNSPECIFIED, &result);
355 if (result != MEMTX_OK) {
356 return 0;
359 switch (pde & PTE_ENTRYTYPE_MASK) {
360 default:
361 case 0: /* Invalid */
362 case 1: /* PDE, should not happen */
363 case 3: /* Reserved */
364 return 0;
365 case 2: /* L3 PTE */
366 return pde;
371 return 0;
374 void dump_mmu(CPUSPARCState *env)
376 CPUState *cs = env_cpu(env);
377 target_ulong va, va1, va2;
378 unsigned int n, m, o;
379 hwaddr pa;
380 uint32_t pde;
382 qemu_printf("Root ptr: " TARGET_FMT_plx ", ctx: %d\n",
383 (hwaddr)env->mmuregs[1] << 4, env->mmuregs[2]);
384 for (n = 0, va = 0; n < 256; n++, va += 16 * 1024 * 1024) {
385 pde = mmu_probe(env, va, 2);
386 if (pde) {
387 pa = cpu_get_phys_page_debug(cs, va);
388 qemu_printf("VA: " TARGET_FMT_lx ", PA: " TARGET_FMT_plx
389 " PDE: " TARGET_FMT_lx "\n", va, pa, pde);
390 for (m = 0, va1 = va; m < 64; m++, va1 += 256 * 1024) {
391 pde = mmu_probe(env, va1, 1);
392 if (pde) {
393 pa = cpu_get_phys_page_debug(cs, va1);
394 qemu_printf(" VA: " TARGET_FMT_lx ", PA: "
395 TARGET_FMT_plx " PDE: " TARGET_FMT_lx "\n",
396 va1, pa, pde);
397 for (o = 0, va2 = va1; o < 64; o++, va2 += 4 * 1024) {
398 pde = mmu_probe(env, va2, 0);
399 if (pde) {
400 pa = cpu_get_phys_page_debug(cs, va2);
401 qemu_printf(" VA: " TARGET_FMT_lx ", PA: "
402 TARGET_FMT_plx " PTE: "
403 TARGET_FMT_lx "\n",
404 va2, pa, pde);
413 /* Gdb expects all registers windows to be flushed in ram. This function handles
414 * reads (and only reads) in stack frames as if windows were flushed. We assume
415 * that the sparc ABI is followed.
417 int sparc_cpu_memory_rw_debug(CPUState *cs, vaddr address,
418 uint8_t *buf, int len, bool is_write)
420 SPARCCPU *cpu = SPARC_CPU(cs);
421 CPUSPARCState *env = &cpu->env;
422 target_ulong addr = address;
423 int i;
424 int len1;
425 int cwp = env->cwp;
427 if (!is_write) {
428 for (i = 0; i < env->nwindows; i++) {
429 int off;
430 target_ulong fp = env->regbase[cwp * 16 + 22];
432 /* Assume fp == 0 means end of frame. */
433 if (fp == 0) {
434 break;
437 cwp = cpu_cwp_inc(env, cwp + 1);
439 /* Invalid window ? */
440 if (env->wim & (1 << cwp)) {
441 break;
444 /* According to the ABI, the stack is growing downward. */
445 if (addr + len < fp) {
446 break;
449 /* Not in this frame. */
450 if (addr > fp + 64) {
451 continue;
454 /* Handle access before this window. */
455 if (addr < fp) {
456 len1 = fp - addr;
457 if (cpu_memory_rw_debug(cs, addr, buf, len1, is_write) != 0) {
458 return -1;
460 addr += len1;
461 len -= len1;
462 buf += len1;
465 /* Access byte per byte to registers. Not very efficient but speed
466 * is not critical.
468 off = addr - fp;
469 len1 = 64 - off;
471 if (len1 > len) {
472 len1 = len;
475 for (; len1; len1--) {
476 int reg = cwp * 16 + 8 + (off >> 2);
477 union {
478 uint32_t v;
479 uint8_t c[4];
480 } u;
481 u.v = cpu_to_be32(env->regbase[reg]);
482 *buf++ = u.c[off & 3];
483 addr++;
484 len--;
485 off++;
488 if (len == 0) {
489 return 0;
493 return cpu_memory_rw_debug(cs, addr, buf, len, is_write);
496 #else /* !TARGET_SPARC64 */
498 /* 41 bit physical address space */
499 static inline hwaddr ultrasparc_truncate_physical(uint64_t x)
501 return x & 0x1ffffffffffULL;
505 * UltraSparc IIi I/DMMUs
508 /* Returns true if TTE tag is valid and matches virtual address value
509 in context requires virtual address mask value calculated from TTE
510 entry size */
511 static inline int ultrasparc_tag_match(SparcTLBEntry *tlb,
512 uint64_t address, uint64_t context,
513 hwaddr *physical)
515 uint64_t mask = -(8192ULL << 3 * TTE_PGSIZE(tlb->tte));
517 /* valid, context match, virtual address match? */
518 if (TTE_IS_VALID(tlb->tte) &&
519 (TTE_IS_GLOBAL(tlb->tte) || tlb_compare_context(tlb, context))
520 && compare_masked(address, tlb->tag, mask)) {
521 /* decode physical address */
522 *physical = ((tlb->tte & mask) | (address & ~mask)) & 0x1ffffffe000ULL;
523 return 1;
526 return 0;
529 static int get_physical_address_data(CPUSPARCState *env, hwaddr *physical,
530 int *prot, MemTxAttrs *attrs,
531 target_ulong address, int rw, int mmu_idx)
533 CPUState *cs = env_cpu(env);
534 unsigned int i;
535 uint64_t context;
536 uint64_t sfsr = 0;
537 bool is_user = false;
539 switch (mmu_idx) {
540 case MMU_PHYS_IDX:
541 g_assert_not_reached();
542 case MMU_USER_IDX:
543 is_user = true;
544 /* fallthru */
545 case MMU_KERNEL_IDX:
546 context = env->dmmu.mmu_primary_context & 0x1fff;
547 sfsr |= SFSR_CT_PRIMARY;
548 break;
549 case MMU_USER_SECONDARY_IDX:
550 is_user = true;
551 /* fallthru */
552 case MMU_KERNEL_SECONDARY_IDX:
553 context = env->dmmu.mmu_secondary_context & 0x1fff;
554 sfsr |= SFSR_CT_SECONDARY;
555 break;
556 case MMU_NUCLEUS_IDX:
557 sfsr |= SFSR_CT_NUCLEUS;
558 /* FALLTHRU */
559 default:
560 context = 0;
561 break;
564 if (rw == 1) {
565 sfsr |= SFSR_WRITE_BIT;
566 } else if (rw == 4) {
567 sfsr |= SFSR_NF_BIT;
570 for (i = 0; i < 64; i++) {
571 /* ctx match, vaddr match, valid? */
572 if (ultrasparc_tag_match(&env->dtlb[i], address, context, physical)) {
573 int do_fault = 0;
575 if (TTE_IS_IE(env->dtlb[i].tte)) {
576 attrs->byte_swap = true;
579 /* access ok? */
580 /* multiple bits in SFSR.FT may be set on TT_DFAULT */
581 if (TTE_IS_PRIV(env->dtlb[i].tte) && is_user) {
582 do_fault = 1;
583 sfsr |= SFSR_FT_PRIV_BIT; /* privilege violation */
584 trace_mmu_helper_dfault(address, context, mmu_idx, env->tl);
586 if (rw == 4) {
587 if (TTE_IS_SIDEEFFECT(env->dtlb[i].tte)) {
588 do_fault = 1;
589 sfsr |= SFSR_FT_NF_E_BIT;
591 } else {
592 if (TTE_IS_NFO(env->dtlb[i].tte)) {
593 do_fault = 1;
594 sfsr |= SFSR_FT_NFO_BIT;
598 if (do_fault) {
599 /* faults above are reported with TT_DFAULT. */
600 cs->exception_index = TT_DFAULT;
601 } else if (!TTE_IS_W_OK(env->dtlb[i].tte) && (rw == 1)) {
602 do_fault = 1;
603 cs->exception_index = TT_DPROT;
605 trace_mmu_helper_dprot(address, context, mmu_idx, env->tl);
608 if (!do_fault) {
609 *prot = PAGE_READ;
610 if (TTE_IS_W_OK(env->dtlb[i].tte)) {
611 *prot |= PAGE_WRITE;
614 TTE_SET_USED(env->dtlb[i].tte);
616 return 0;
619 if (env->dmmu.sfsr & SFSR_VALID_BIT) { /* Fault status register */
620 sfsr |= SFSR_OW_BIT; /* overflow (not read before
621 another fault) */
624 if (env->pstate & PS_PRIV) {
625 sfsr |= SFSR_PR_BIT;
628 /* FIXME: ASI field in SFSR must be set */
629 env->dmmu.sfsr = sfsr | SFSR_VALID_BIT;
631 env->dmmu.sfar = address; /* Fault address register */
633 env->dmmu.tag_access = (address & ~0x1fffULL) | context;
635 return 1;
639 trace_mmu_helper_dmiss(address, context);
642 * On MMU misses:
643 * - UltraSPARC IIi: SFSR and SFAR unmodified
644 * - JPS1: SFAR updated and some fields of SFSR updated
646 env->dmmu.tag_access = (address & ~0x1fffULL) | context;
647 cs->exception_index = TT_DMISS;
648 return 1;
651 static int get_physical_address_code(CPUSPARCState *env, hwaddr *physical,
652 int *prot, MemTxAttrs *attrs,
653 target_ulong address, int mmu_idx)
655 CPUState *cs = env_cpu(env);
656 unsigned int i;
657 uint64_t context;
658 bool is_user = false;
660 switch (mmu_idx) {
661 case MMU_PHYS_IDX:
662 case MMU_USER_SECONDARY_IDX:
663 case MMU_KERNEL_SECONDARY_IDX:
664 g_assert_not_reached();
665 case MMU_USER_IDX:
666 is_user = true;
667 /* fallthru */
668 case MMU_KERNEL_IDX:
669 context = env->dmmu.mmu_primary_context & 0x1fff;
670 break;
671 default:
672 context = 0;
673 break;
676 if (env->tl == 0) {
677 /* PRIMARY context */
678 context = env->dmmu.mmu_primary_context & 0x1fff;
679 } else {
680 /* NUCLEUS context */
681 context = 0;
684 for (i = 0; i < 64; i++) {
685 /* ctx match, vaddr match, valid? */
686 if (ultrasparc_tag_match(&env->itlb[i],
687 address, context, physical)) {
688 /* access ok? */
689 if (TTE_IS_PRIV(env->itlb[i].tte) && is_user) {
690 /* Fault status register */
691 if (env->immu.sfsr & SFSR_VALID_BIT) {
692 env->immu.sfsr = SFSR_OW_BIT; /* overflow (not read before
693 another fault) */
694 } else {
695 env->immu.sfsr = 0;
697 if (env->pstate & PS_PRIV) {
698 env->immu.sfsr |= SFSR_PR_BIT;
700 if (env->tl > 0) {
701 env->immu.sfsr |= SFSR_CT_NUCLEUS;
704 /* FIXME: ASI field in SFSR must be set */
705 env->immu.sfsr |= SFSR_FT_PRIV_BIT | SFSR_VALID_BIT;
706 cs->exception_index = TT_TFAULT;
708 env->immu.tag_access = (address & ~0x1fffULL) | context;
710 trace_mmu_helper_tfault(address, context);
712 return 1;
714 *prot = PAGE_EXEC;
715 TTE_SET_USED(env->itlb[i].tte);
716 return 0;
720 trace_mmu_helper_tmiss(address, context);
722 /* Context is stored in DMMU (dmmuregs[1]) also for IMMU */
723 env->immu.tag_access = (address & ~0x1fffULL) | context;
724 cs->exception_index = TT_TMISS;
725 return 1;
728 static int get_physical_address(CPUSPARCState *env, hwaddr *physical,
729 int *prot, int *access_index, MemTxAttrs *attrs,
730 target_ulong address, int rw, int mmu_idx,
731 target_ulong *page_size)
733 /* ??? We treat everything as a small page, then explicitly flush
734 everything when an entry is evicted. */
735 *page_size = TARGET_PAGE_SIZE;
737 /* safety net to catch wrong softmmu index use from dynamic code */
738 if (env->tl > 0 && mmu_idx != MMU_NUCLEUS_IDX) {
739 if (rw == 2) {
740 trace_mmu_helper_get_phys_addr_code(env->tl, mmu_idx,
741 env->dmmu.mmu_primary_context,
742 env->dmmu.mmu_secondary_context,
743 address);
744 } else {
745 trace_mmu_helper_get_phys_addr_data(env->tl, mmu_idx,
746 env->dmmu.mmu_primary_context,
747 env->dmmu.mmu_secondary_context,
748 address);
752 if (mmu_idx == MMU_PHYS_IDX) {
753 *physical = ultrasparc_truncate_physical(address);
754 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
755 return 0;
758 if (rw == 2) {
759 return get_physical_address_code(env, physical, prot, attrs, address,
760 mmu_idx);
761 } else {
762 return get_physical_address_data(env, physical, prot, attrs, address,
763 rw, mmu_idx);
767 /* Perform address translation */
768 bool sparc_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
769 MMUAccessType access_type, int mmu_idx,
770 bool probe, uintptr_t retaddr)
772 SPARCCPU *cpu = SPARC_CPU(cs);
773 CPUSPARCState *env = &cpu->env;
774 target_ulong vaddr;
775 hwaddr paddr;
776 target_ulong page_size;
777 MemTxAttrs attrs = {};
778 int error_code = 0, prot, access_index;
780 address &= TARGET_PAGE_MASK;
781 error_code = get_physical_address(env, &paddr, &prot, &access_index, &attrs,
782 address, access_type,
783 mmu_idx, &page_size);
784 if (likely(error_code == 0)) {
785 vaddr = address;
787 trace_mmu_helper_mmu_fault(address, paddr, mmu_idx, env->tl,
788 env->dmmu.mmu_primary_context,
789 env->dmmu.mmu_secondary_context);
791 tlb_set_page_with_attrs(cs, vaddr, paddr, attrs, prot, mmu_idx,
792 page_size);
793 return true;
795 if (probe) {
796 return false;
798 cpu_loop_exit_restore(cs, retaddr);
801 void dump_mmu(CPUSPARCState *env)
803 unsigned int i;
804 const char *mask;
806 qemu_printf("MMU contexts: Primary: %" PRId64 ", Secondary: %"
807 PRId64 "\n",
808 env->dmmu.mmu_primary_context,
809 env->dmmu.mmu_secondary_context);
810 qemu_printf("DMMU Tag Access: %" PRIx64 ", TSB Tag Target: %" PRIx64
811 "\n", env->dmmu.tag_access, env->dmmu.tsb_tag_target);
812 if ((env->lsu & DMMU_E) == 0) {
813 qemu_printf("DMMU disabled\n");
814 } else {
815 qemu_printf("DMMU dump\n");
816 for (i = 0; i < 64; i++) {
817 switch (TTE_PGSIZE(env->dtlb[i].tte)) {
818 default:
819 case 0x0:
820 mask = " 8k";
821 break;
822 case 0x1:
823 mask = " 64k";
824 break;
825 case 0x2:
826 mask = "512k";
827 break;
828 case 0x3:
829 mask = " 4M";
830 break;
832 if (TTE_IS_VALID(env->dtlb[i].tte)) {
833 qemu_printf("[%02u] VA: %" PRIx64 ", PA: %llx"
834 ", %s, %s, %s, %s, ie %s, ctx %" PRId64 " %s\n",
836 env->dtlb[i].tag & (uint64_t)~0x1fffULL,
837 TTE_PA(env->dtlb[i].tte),
838 mask,
839 TTE_IS_PRIV(env->dtlb[i].tte) ? "priv" : "user",
840 TTE_IS_W_OK(env->dtlb[i].tte) ? "RW" : "RO",
841 TTE_IS_LOCKED(env->dtlb[i].tte) ?
842 "locked" : "unlocked",
843 TTE_IS_IE(env->dtlb[i].tte) ?
844 "yes" : "no",
845 env->dtlb[i].tag & (uint64_t)0x1fffULL,
846 TTE_IS_GLOBAL(env->dtlb[i].tte) ?
847 "global" : "local");
851 if ((env->lsu & IMMU_E) == 0) {
852 qemu_printf("IMMU disabled\n");
853 } else {
854 qemu_printf("IMMU dump\n");
855 for (i = 0; i < 64; i++) {
856 switch (TTE_PGSIZE(env->itlb[i].tte)) {
857 default:
858 case 0x0:
859 mask = " 8k";
860 break;
861 case 0x1:
862 mask = " 64k";
863 break;
864 case 0x2:
865 mask = "512k";
866 break;
867 case 0x3:
868 mask = " 4M";
869 break;
871 if (TTE_IS_VALID(env->itlb[i].tte)) {
872 qemu_printf("[%02u] VA: %" PRIx64 ", PA: %llx"
873 ", %s, %s, %s, ctx %" PRId64 " %s\n",
875 env->itlb[i].tag & (uint64_t)~0x1fffULL,
876 TTE_PA(env->itlb[i].tte),
877 mask,
878 TTE_IS_PRIV(env->itlb[i].tte) ? "priv" : "user",
879 TTE_IS_LOCKED(env->itlb[i].tte) ?
880 "locked" : "unlocked",
881 env->itlb[i].tag & (uint64_t)0x1fffULL,
882 TTE_IS_GLOBAL(env->itlb[i].tte) ?
883 "global" : "local");
889 #endif /* TARGET_SPARC64 */
891 static int cpu_sparc_get_phys_page(CPUSPARCState *env, hwaddr *phys,
892 target_ulong addr, int rw, int mmu_idx)
894 target_ulong page_size;
895 int prot, access_index;
896 MemTxAttrs attrs = {};
898 return get_physical_address(env, phys, &prot, &access_index, &attrs, addr,
899 rw, mmu_idx, &page_size);
902 #if defined(TARGET_SPARC64)
903 hwaddr cpu_get_phys_page_nofault(CPUSPARCState *env, target_ulong addr,
904 int mmu_idx)
906 hwaddr phys_addr;
908 if (cpu_sparc_get_phys_page(env, &phys_addr, addr, 4, mmu_idx) != 0) {
909 return -1;
911 return phys_addr;
913 #endif
915 hwaddr sparc_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
917 SPARCCPU *cpu = SPARC_CPU(cs);
918 CPUSPARCState *env = &cpu->env;
919 hwaddr phys_addr;
920 int mmu_idx = cpu_mmu_index(env, false);
922 if (cpu_sparc_get_phys_page(env, &phys_addr, addr, 2, mmu_idx) != 0) {
923 if (cpu_sparc_get_phys_page(env, &phys_addr, addr, 0, mmu_idx) != 0) {
924 return -1;
927 return phys_addr;
929 #endif