hw/riscv/sifive_u: use 'fdt' from MachineState
[qemu.git] / hw / riscv / boot.c
blob98b80af51be221f96bbb364af217aa1fd9a4b749
1 /*
2 * QEMU RISC-V Boot Helper
4 * Copyright (c) 2017 SiFive, Inc.
5 * Copyright (c) 2019 Alistair Francis <alistair.francis@wdc.com>
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms and conditions of the GNU General Public License,
9 * version 2 or later, as published by the Free Software Foundation.
11 * This program is distributed in the hope it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 * more details.
16 * You should have received a copy of the GNU General Public License along with
17 * this program. If not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
21 #include "qemu/datadir.h"
22 #include "qemu/units.h"
23 #include "qemu/error-report.h"
24 #include "exec/cpu-defs.h"
25 #include "hw/boards.h"
26 #include "hw/loader.h"
27 #include "hw/riscv/boot.h"
28 #include "hw/riscv/boot_opensbi.h"
29 #include "elf.h"
30 #include "sysemu/device_tree.h"
31 #include "sysemu/qtest.h"
32 #include "sysemu/kvm.h"
33 #include "sysemu/reset.h"
35 #include <libfdt.h>
37 bool riscv_is_32bit(RISCVHartArrayState *harts)
39 return harts->harts[0].env.misa_mxl_max == MXL_RV32;
43 * Return the per-socket PLIC hart topology configuration string
44 * (caller must free with g_free())
46 char *riscv_plic_hart_config_string(int hart_count)
48 g_autofree const char **vals = g_new(const char *, hart_count + 1);
49 int i;
51 for (i = 0; i < hart_count; i++) {
52 CPUState *cs = qemu_get_cpu(i);
53 CPURISCVState *env = &RISCV_CPU(cs)->env;
55 if (kvm_enabled()) {
56 vals[i] = "S";
57 } else if (riscv_has_ext(env, RVS)) {
58 vals[i] = "MS";
59 } else {
60 vals[i] = "M";
63 vals[i] = NULL;
65 /* g_strjoinv() obliges us to cast away const here */
66 return g_strjoinv(",", (char **)vals);
69 target_ulong riscv_calc_kernel_start_addr(RISCVHartArrayState *harts,
70 target_ulong firmware_end_addr) {
71 if (riscv_is_32bit(harts)) {
72 return QEMU_ALIGN_UP(firmware_end_addr, 4 * MiB);
73 } else {
74 return QEMU_ALIGN_UP(firmware_end_addr, 2 * MiB);
78 const char *riscv_default_firmware_name(RISCVHartArrayState *harts)
80 if (riscv_is_32bit(harts)) {
81 return RISCV32_BIOS_BIN;
84 return RISCV64_BIOS_BIN;
87 static char *riscv_find_bios(const char *bios_filename)
89 char *filename;
91 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_filename);
92 if (filename == NULL) {
93 if (!qtest_enabled()) {
95 * We only ship OpenSBI binary bios images in the QEMU source.
96 * For machines that use images other than the default bios,
97 * running QEMU test will complain hence let's suppress the error
98 * report for QEMU testing.
100 error_report("Unable to find the RISC-V BIOS \"%s\"",
101 bios_filename);
102 exit(1);
106 return filename;
109 char *riscv_find_firmware(const char *firmware_filename,
110 const char *default_machine_firmware)
112 char *filename = NULL;
114 if ((!firmware_filename) || (!strcmp(firmware_filename, "default"))) {
116 * The user didn't specify -bios, or has specified "-bios default".
117 * That means we are going to load the OpenSBI binary included in
118 * the QEMU source.
120 filename = riscv_find_bios(default_machine_firmware);
121 } else if (strcmp(firmware_filename, "none")) {
122 filename = riscv_find_bios(firmware_filename);
125 return filename;
128 target_ulong riscv_find_and_load_firmware(MachineState *machine,
129 const char *default_machine_firmware,
130 hwaddr firmware_load_addr,
131 symbol_fn_t sym_cb)
133 char *firmware_filename;
134 target_ulong firmware_end_addr = firmware_load_addr;
136 firmware_filename = riscv_find_firmware(machine->firmware,
137 default_machine_firmware);
139 if (firmware_filename) {
140 /* If not "none" load the firmware */
141 firmware_end_addr = riscv_load_firmware(firmware_filename,
142 firmware_load_addr, sym_cb);
143 g_free(firmware_filename);
146 return firmware_end_addr;
149 target_ulong riscv_load_firmware(const char *firmware_filename,
150 hwaddr firmware_load_addr,
151 symbol_fn_t sym_cb)
153 uint64_t firmware_entry, firmware_end;
154 ssize_t firmware_size;
156 if (load_elf_ram_sym(firmware_filename, NULL, NULL, NULL,
157 &firmware_entry, NULL, &firmware_end, NULL,
158 0, EM_RISCV, 1, 0, NULL, true, sym_cb) > 0) {
159 return firmware_end;
162 firmware_size = load_image_targphys_as(firmware_filename,
163 firmware_load_addr,
164 current_machine->ram_size, NULL);
166 if (firmware_size > 0) {
167 return firmware_load_addr + firmware_size;
170 error_report("could not load firmware '%s'", firmware_filename);
171 exit(1);
174 target_ulong riscv_load_kernel(const char *kernel_filename,
175 target_ulong kernel_start_addr,
176 symbol_fn_t sym_cb)
178 uint64_t kernel_load_base, kernel_entry;
181 * NB: Use low address not ELF entry point to ensure that the fw_dynamic
182 * behaviour when loading an ELF matches the fw_payload, fw_jump and BBL
183 * behaviour, as well as fw_dynamic with a raw binary, all of which jump to
184 * the (expected) load address load address. This allows kernels to have
185 * separate SBI and ELF entry points (used by FreeBSD, for example).
187 if (load_elf_ram_sym(kernel_filename, NULL, NULL, NULL,
188 NULL, &kernel_load_base, NULL, NULL, 0,
189 EM_RISCV, 1, 0, NULL, true, sym_cb) > 0) {
190 return kernel_load_base;
193 if (load_uimage_as(kernel_filename, &kernel_entry, NULL, NULL,
194 NULL, NULL, NULL) > 0) {
195 return kernel_entry;
198 if (load_image_targphys_as(kernel_filename, kernel_start_addr,
199 current_machine->ram_size, NULL) > 0) {
200 return kernel_start_addr;
203 error_report("could not load kernel '%s'", kernel_filename);
204 exit(1);
207 hwaddr riscv_load_initrd(const char *filename, uint64_t mem_size,
208 uint64_t kernel_entry, hwaddr *start)
210 ssize_t size;
213 * We want to put the initrd far enough into RAM that when the
214 * kernel is uncompressed it will not clobber the initrd. However
215 * on boards without much RAM we must ensure that we still leave
216 * enough room for a decent sized initrd, and on boards with large
217 * amounts of RAM we must avoid the initrd being so far up in RAM
218 * that it is outside lowmem and inaccessible to the kernel.
219 * So for boards with less than 256MB of RAM we put the initrd
220 * halfway into RAM, and for boards with 256MB of RAM or more we put
221 * the initrd at 128MB.
223 *start = kernel_entry + MIN(mem_size / 2, 128 * MiB);
225 size = load_ramdisk(filename, *start, mem_size - *start);
226 if (size == -1) {
227 size = load_image_targphys(filename, *start, mem_size - *start);
228 if (size == -1) {
229 error_report("could not load ramdisk '%s'", filename);
230 exit(1);
234 return *start + size;
237 uint64_t riscv_load_fdt(hwaddr dram_base, uint64_t mem_size, void *fdt)
239 uint64_t temp, fdt_addr;
240 hwaddr dram_end = dram_base + mem_size;
241 int ret, fdtsize = fdt_totalsize(fdt);
243 if (fdtsize <= 0) {
244 error_report("invalid device-tree");
245 exit(1);
249 * We should put fdt as far as possible to avoid kernel/initrd overwriting
250 * its content. But it should be addressable by 32 bit system as well.
251 * Thus, put it at an 2MB aligned address that less than fdt size from the
252 * end of dram or 3GB whichever is lesser.
254 temp = (dram_base < 3072 * MiB) ? MIN(dram_end, 3072 * MiB) : dram_end;
255 fdt_addr = QEMU_ALIGN_DOWN(temp - fdtsize, 2 * MiB);
257 ret = fdt_pack(fdt);
258 /* Should only fail if we've built a corrupted tree */
259 g_assert(ret == 0);
260 /* copy in the device tree */
261 qemu_fdt_dumpdtb(fdt, fdtsize);
263 rom_add_blob_fixed_as("fdt", fdt, fdtsize, fdt_addr,
264 &address_space_memory);
265 qemu_register_reset_nosnapshotload(qemu_fdt_randomize_seeds,
266 rom_ptr_for_as(&address_space_memory, fdt_addr, fdtsize));
268 return fdt_addr;
271 void riscv_rom_copy_firmware_info(MachineState *machine, hwaddr rom_base,
272 hwaddr rom_size, uint32_t reset_vec_size,
273 uint64_t kernel_entry)
275 struct fw_dynamic_info dinfo;
276 size_t dinfo_len;
278 if (sizeof(dinfo.magic) == 4) {
279 dinfo.magic = cpu_to_le32(FW_DYNAMIC_INFO_MAGIC_VALUE);
280 dinfo.version = cpu_to_le32(FW_DYNAMIC_INFO_VERSION);
281 dinfo.next_mode = cpu_to_le32(FW_DYNAMIC_INFO_NEXT_MODE_S);
282 dinfo.next_addr = cpu_to_le32(kernel_entry);
283 } else {
284 dinfo.magic = cpu_to_le64(FW_DYNAMIC_INFO_MAGIC_VALUE);
285 dinfo.version = cpu_to_le64(FW_DYNAMIC_INFO_VERSION);
286 dinfo.next_mode = cpu_to_le64(FW_DYNAMIC_INFO_NEXT_MODE_S);
287 dinfo.next_addr = cpu_to_le64(kernel_entry);
289 dinfo.options = 0;
290 dinfo.boot_hart = 0;
291 dinfo_len = sizeof(dinfo);
294 * copy the dynamic firmware info. This information is specific to
295 * OpenSBI but doesn't break any other firmware as long as they don't
296 * expect any certain value in "a2" register.
298 if (dinfo_len > (rom_size - reset_vec_size)) {
299 error_report("not enough space to store dynamic firmware info");
300 exit(1);
303 rom_add_blob_fixed_as("mrom.finfo", &dinfo, dinfo_len,
304 rom_base + reset_vec_size,
305 &address_space_memory);
308 void riscv_setup_rom_reset_vec(MachineState *machine, RISCVHartArrayState *harts,
309 hwaddr start_addr,
310 hwaddr rom_base, hwaddr rom_size,
311 uint64_t kernel_entry,
312 uint64_t fdt_load_addr)
314 int i;
315 uint32_t start_addr_hi32 = 0x00000000;
316 uint32_t fdt_load_addr_hi32 = 0x00000000;
318 if (!riscv_is_32bit(harts)) {
319 start_addr_hi32 = start_addr >> 32;
320 fdt_load_addr_hi32 = fdt_load_addr >> 32;
322 /* reset vector */
323 uint32_t reset_vec[10] = {
324 0x00000297, /* 1: auipc t0, %pcrel_hi(fw_dyn) */
325 0x02828613, /* addi a2, t0, %pcrel_lo(1b) */
326 0xf1402573, /* csrr a0, mhartid */
329 0x00028067, /* jr t0 */
330 start_addr, /* start: .dword */
331 start_addr_hi32,
332 fdt_load_addr, /* fdt_laddr: .dword */
333 fdt_load_addr_hi32,
334 /* fw_dyn: */
336 if (riscv_is_32bit(harts)) {
337 reset_vec[3] = 0x0202a583; /* lw a1, 32(t0) */
338 reset_vec[4] = 0x0182a283; /* lw t0, 24(t0) */
339 } else {
340 reset_vec[3] = 0x0202b583; /* ld a1, 32(t0) */
341 reset_vec[4] = 0x0182b283; /* ld t0, 24(t0) */
344 /* copy in the reset vector in little_endian byte order */
345 for (i = 0; i < ARRAY_SIZE(reset_vec); i++) {
346 reset_vec[i] = cpu_to_le32(reset_vec[i]);
348 rom_add_blob_fixed_as("mrom.reset", reset_vec, sizeof(reset_vec),
349 rom_base, &address_space_memory);
350 riscv_rom_copy_firmware_info(machine, rom_base, rom_size, sizeof(reset_vec),
351 kernel_entry);
354 void riscv_setup_direct_kernel(hwaddr kernel_addr, hwaddr fdt_addr)
356 CPUState *cs;
358 for (cs = first_cpu; cs; cs = CPU_NEXT(cs)) {
359 RISCVCPU *riscv_cpu = RISCV_CPU(cs);
360 riscv_cpu->env.kernel_addr = kernel_addr;
361 riscv_cpu->env.fdt_addr = fdt_addr;
365 void riscv_setup_firmware_boot(MachineState *machine)
367 if (machine->kernel_filename) {
368 FWCfgState *fw_cfg;
369 fw_cfg = fw_cfg_find();
371 assert(fw_cfg);
373 * Expose the kernel, the command line, and the initrd in fw_cfg.
374 * We don't process them here at all, it's all left to the
375 * firmware.
377 load_image_to_fw_cfg(fw_cfg,
378 FW_CFG_KERNEL_SIZE, FW_CFG_KERNEL_DATA,
379 machine->kernel_filename,
380 true);
381 load_image_to_fw_cfg(fw_cfg,
382 FW_CFG_INITRD_SIZE, FW_CFG_INITRD_DATA,
383 machine->initrd_filename, false);
385 if (machine->kernel_cmdline) {
386 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE,
387 strlen(machine->kernel_cmdline) + 1);
388 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA,
389 machine->kernel_cmdline);