2 * Microblaze helper routines.
4 * Copyright (c) 2009 Edgar E. Iglesias <edgar.iglesias@gmail.com>.
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
23 #include "host-utils.h"
27 #if !defined(CONFIG_USER_ONLY)
28 #define MMUSUFFIX _mmu
30 #include "softmmu_template.h"
32 #include "softmmu_template.h"
34 #include "softmmu_template.h"
36 #include "softmmu_template.h"
38 /* Try to fill the TLB and return an exception if error. If retaddr is
39 NULL, it means that the function was called in C code (i.e. not
40 from generated code or from helper.c) */
41 /* XXX: fix it to restore all registers */
42 void tlb_fill (target_ulong addr
, int is_write
, int mmu_idx
, void *retaddr
)
49 /* XXX: hack to restore env in all cases, even if not called from
54 ret
= cpu_mb_handle_mmu_fault(env
, addr
, is_write
, mmu_idx
, 1);
57 /* now we have a real cpu fault */
58 pc
= (unsigned long)retaddr
;
61 /* the PC is inside the translated code. It means that we have
62 a virtual CPU fault */
63 cpu_restore_state(tb
, env
, pc
, NULL
);
72 void helper_raise_exception(uint32_t index
)
74 env
->exception_index
= index
;
78 void helper_debug(void)
82 qemu_log("PC=%8.8x\n", env
->sregs
[SR_PC
]);
83 qemu_log("rmsr=%x resr=%x rear=%x debug[%x] imm=%x iflags=%x\n",
84 env
->sregs
[SR_MSR
], env
->sregs
[SR_ESR
], env
->sregs
[SR_EAR
],
85 env
->debug
, env
->imm
, env
->iflags
);
86 qemu_log("btaken=%d btarget=%x mode=%s(saved=%s) eip=%d ie=%d\n",
87 env
->btaken
, env
->btarget
,
88 (env
->sregs
[SR_MSR
] & MSR_UM
) ? "user" : "kernel",
89 (env
->sregs
[SR_MSR
] & MSR_UMS
) ? "user" : "kernel",
90 (env
->sregs
[SR_MSR
] & MSR_EIP
),
91 (env
->sregs
[SR_MSR
] & MSR_IE
));
92 for (i
= 0; i
< 32; i
++) {
93 qemu_log("r%2.2d=%8.8x ", i
, env
->regs
[i
]);
100 static inline uint32_t compute_carry(uint32_t a
, uint32_t b
, uint32_t cin
)
104 if ((b
== ~0) && cin
)
106 else if ((~0 - a
) < (b
+ cin
))
111 uint32_t helper_cmp(uint32_t a
, uint32_t b
)
116 if ((b
& 0x80000000) ^ (a
& 0x80000000))
117 t
= (t
& 0x7fffffff) | (b
& 0x80000000);
121 uint32_t helper_cmpu(uint32_t a
, uint32_t b
)
126 if ((b
& 0x80000000) ^ (a
& 0x80000000))
127 t
= (t
& 0x7fffffff) | (a
& 0x80000000);
131 uint32_t helper_carry(uint32_t a
, uint32_t b
, uint32_t cf
)
134 ncf
= compute_carry(a
, b
, cf
);
138 static inline int div_prepare(uint32_t a
, uint32_t b
)
141 env
->sregs
[SR_MSR
] |= MSR_DZ
;
143 if ((env
->sregs
[SR_MSR
] & MSR_EE
)
144 && !(env
->pvr
.regs
[2] & PVR2_DIV_ZERO_EXC_MASK
)) {
145 env
->sregs
[SR_ESR
] = ESR_EC_DIVZERO
;
146 helper_raise_exception(EXCP_HW_EXCP
);
150 env
->sregs
[SR_MSR
] &= ~MSR_DZ
;
154 uint32_t helper_divs(uint32_t a
, uint32_t b
)
156 if (!div_prepare(a
, b
))
158 return (int32_t)a
/ (int32_t)b
;
161 uint32_t helper_divu(uint32_t a
, uint32_t b
)
163 if (!div_prepare(a
, b
))
168 /* raise FPU exception. */
169 static void raise_fpu_exception(void)
171 env
->sregs
[SR_ESR
] = ESR_EC_FPU
;
172 helper_raise_exception(EXCP_HW_EXCP
);
175 static void update_fpu_flags(int flags
)
179 if (flags
& float_flag_invalid
) {
180 env
->sregs
[SR_FSR
] |= FSR_IO
;
183 if (flags
& float_flag_divbyzero
) {
184 env
->sregs
[SR_FSR
] |= FSR_DZ
;
187 if (flags
& float_flag_overflow
) {
188 env
->sregs
[SR_FSR
] |= FSR_OF
;
191 if (flags
& float_flag_underflow
) {
192 env
->sregs
[SR_FSR
] |= FSR_UF
;
196 && (env
->pvr
.regs
[2] & PVR2_FPU_EXC_MASK
)
197 && (env
->sregs
[SR_MSR
] & MSR_EE
)) {
198 raise_fpu_exception();
202 uint32_t helper_fadd(uint32_t a
, uint32_t b
)
204 CPU_FloatU fd
, fa
, fb
;
207 set_float_exception_flags(0, &env
->fp_status
);
210 fd
.f
= float32_add(fa
.f
, fb
.f
, &env
->fp_status
);
212 flags
= get_float_exception_flags(&env
->fp_status
);
213 update_fpu_flags(flags
);
217 uint32_t helper_frsub(uint32_t a
, uint32_t b
)
219 CPU_FloatU fd
, fa
, fb
;
222 set_float_exception_flags(0, &env
->fp_status
);
225 fd
.f
= float32_sub(fb
.f
, fa
.f
, &env
->fp_status
);
226 flags
= get_float_exception_flags(&env
->fp_status
);
227 update_fpu_flags(flags
);
231 uint32_t helper_fmul(uint32_t a
, uint32_t b
)
233 CPU_FloatU fd
, fa
, fb
;
236 set_float_exception_flags(0, &env
->fp_status
);
239 fd
.f
= float32_mul(fa
.f
, fb
.f
, &env
->fp_status
);
240 flags
= get_float_exception_flags(&env
->fp_status
);
241 update_fpu_flags(flags
);
246 uint32_t helper_fdiv(uint32_t a
, uint32_t b
)
248 CPU_FloatU fd
, fa
, fb
;
251 set_float_exception_flags(0, &env
->fp_status
);
254 fd
.f
= float32_div(fb
.f
, fa
.f
, &env
->fp_status
);
255 flags
= get_float_exception_flags(&env
->fp_status
);
256 update_fpu_flags(flags
);
261 uint32_t helper_fcmp_un(uint32_t a
, uint32_t b
)
269 if (float32_is_signaling_nan(fa
.f
) || float32_is_signaling_nan(fb
.f
)) {
270 update_fpu_flags(float_flag_invalid
);
274 if (float32_is_quiet_nan(fa
.f
) || float32_is_quiet_nan(fb
.f
)) {
281 uint32_t helper_fcmp_lt(uint32_t a
, uint32_t b
)
287 set_float_exception_flags(0, &env
->fp_status
);
290 r
= float32_lt(fb
.f
, fa
.f
, &env
->fp_status
);
291 flags
= get_float_exception_flags(&env
->fp_status
);
292 update_fpu_flags(flags
& float_flag_invalid
);
297 uint32_t helper_fcmp_eq(uint32_t a
, uint32_t b
)
303 set_float_exception_flags(0, &env
->fp_status
);
306 r
= float32_eq(fa
.f
, fb
.f
, &env
->fp_status
);
307 flags
= get_float_exception_flags(&env
->fp_status
);
308 update_fpu_flags(flags
& float_flag_invalid
);
313 uint32_t helper_fcmp_le(uint32_t a
, uint32_t b
)
321 set_float_exception_flags(0, &env
->fp_status
);
322 r
= float32_le(fa
.f
, fb
.f
, &env
->fp_status
);
323 flags
= get_float_exception_flags(&env
->fp_status
);
324 update_fpu_flags(flags
& float_flag_invalid
);
330 uint32_t helper_fcmp_gt(uint32_t a
, uint32_t b
)
337 set_float_exception_flags(0, &env
->fp_status
);
338 r
= float32_lt(fa
.f
, fb
.f
, &env
->fp_status
);
339 flags
= get_float_exception_flags(&env
->fp_status
);
340 update_fpu_flags(flags
& float_flag_invalid
);
344 uint32_t helper_fcmp_ne(uint32_t a
, uint32_t b
)
351 set_float_exception_flags(0, &env
->fp_status
);
352 r
= !float32_eq(fa
.f
, fb
.f
, &env
->fp_status
);
353 flags
= get_float_exception_flags(&env
->fp_status
);
354 update_fpu_flags(flags
& float_flag_invalid
);
359 uint32_t helper_fcmp_ge(uint32_t a
, uint32_t b
)
366 set_float_exception_flags(0, &env
->fp_status
);
367 r
= !float32_lt(fa
.f
, fb
.f
, &env
->fp_status
);
368 flags
= get_float_exception_flags(&env
->fp_status
);
369 update_fpu_flags(flags
& float_flag_invalid
);
374 uint32_t helper_flt(uint32_t a
)
379 fd
.f
= int32_to_float32(fa
.l
, &env
->fp_status
);
383 uint32_t helper_fint(uint32_t a
)
389 set_float_exception_flags(0, &env
->fp_status
);
391 r
= float32_to_int32(fa
.f
, &env
->fp_status
);
392 flags
= get_float_exception_flags(&env
->fp_status
);
393 update_fpu_flags(flags
);
398 uint32_t helper_fsqrt(uint32_t a
)
403 set_float_exception_flags(0, &env
->fp_status
);
405 fd
.l
= float32_sqrt(fa
.f
, &env
->fp_status
);
406 flags
= get_float_exception_flags(&env
->fp_status
);
407 update_fpu_flags(flags
);
412 uint32_t helper_pcmpbf(uint32_t a
, uint32_t b
)
415 uint32_t mask
= 0xff000000;
417 for (i
= 0; i
< 4; i
++) {
418 if ((a
& mask
) == (b
& mask
))
425 void helper_memalign(uint32_t addr
, uint32_t dr
, uint32_t wr
, uint32_t mask
)
428 qemu_log_mask(CPU_LOG_INT
,
429 "unaligned access addr=%x mask=%x, wr=%d dr=r%d\n",
431 env
->sregs
[SR_EAR
] = addr
;
432 env
->sregs
[SR_ESR
] = ESR_EC_UNALIGNED_DATA
| (wr
<< 10) \
435 env
->sregs
[SR_ESR
] |= 1 << 11;
437 if (!(env
->sregs
[SR_MSR
] & MSR_EE
)) {
440 helper_raise_exception(EXCP_HW_EXCP
);
444 #if !defined(CONFIG_USER_ONLY)
445 /* Writes/reads to the MMU's special regs end up here. */
446 uint32_t helper_mmu_read(uint32_t rn
)
448 return mmu_read(env
, rn
);
451 void helper_mmu_write(uint32_t rn
, uint32_t v
)
453 mmu_write(env
, rn
, v
);
456 void do_unassigned_access(target_phys_addr_t addr
, int is_write
, int is_exec
,
457 int is_asi
, int size
)
461 if (!cpu_single_env
) {
466 /* XXX: hack to restore env in all cases, even if not called from
469 env
= cpu_single_env
;
470 qemu_log_mask(CPU_LOG_INT
, "Unassigned " TARGET_FMT_plx
" wr=%d exe=%d\n",
471 addr
, is_write
, is_exec
);
472 if (!(env
->sregs
[SR_MSR
] & MSR_EE
)) {
477 env
->sregs
[SR_EAR
] = addr
;
479 if ((env
->pvr
.regs
[2] & PVR2_IOPB_BUS_EXC_MASK
)) {
480 env
->sregs
[SR_ESR
] = ESR_EC_INSN_BUS
;
481 helper_raise_exception(EXCP_HW_EXCP
);
484 if ((env
->pvr
.regs
[2] & PVR2_DOPB_BUS_EXC_MASK
)) {
485 env
->sregs
[SR_ESR
] = ESR_EC_DATA_BUS
;
486 helper_raise_exception(EXCP_HW_EXCP
);