spapr_iommu: Realloc guest visible TCE table when starting/stopping listening
[qemu.git] / hw / ppc / spapr_pci.c
blobcbb7cdd7745c4b63c316a4e61684082dd9888ca8
1 /*
2 * QEMU sPAPR PCI host originated from Uninorth PCI host
4 * Copyright (c) 2011 Alexey Kardashevskiy, IBM Corporation.
5 * Copyright (C) 2011 David Gibson, IBM Corporation.
7 * Permission is hereby granted, free of charge, to any person obtaining a copy
8 * of this software and associated documentation files (the "Software"), to deal
9 * in the Software without restriction, including without limitation the rights
10 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11 * copies of the Software, and to permit persons to whom the Software is
12 * furnished to do so, subject to the following conditions:
14 * The above copyright notice and this permission notice shall be included in
15 * all copies or substantial portions of the Software.
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
23 * THE SOFTWARE.
25 #include "qemu/osdep.h"
26 #include "qapi/error.h"
27 #include "qemu-common.h"
28 #include "cpu.h"
29 #include "hw/hw.h"
30 #include "hw/sysbus.h"
31 #include "hw/pci/pci.h"
32 #include "hw/pci/msi.h"
33 #include "hw/pci/msix.h"
34 #include "hw/pci/pci_host.h"
35 #include "hw/ppc/spapr.h"
36 #include "hw/pci-host/spapr.h"
37 #include "exec/address-spaces.h"
38 #include <libfdt.h>
39 #include "trace.h"
40 #include "qemu/error-report.h"
41 #include "qapi/qmp/qerror.h"
43 #include "hw/pci/pci_bridge.h"
44 #include "hw/pci/pci_bus.h"
45 #include "hw/ppc/spapr_drc.h"
46 #include "sysemu/device_tree.h"
47 #include "sysemu/kvm.h"
49 #include "hw/vfio/vfio.h"
51 /* Copied from the kernel arch/powerpc/platforms/pseries/msi.c */
52 #define RTAS_QUERY_FN 0
53 #define RTAS_CHANGE_FN 1
54 #define RTAS_RESET_FN 2
55 #define RTAS_CHANGE_MSI_FN 3
56 #define RTAS_CHANGE_MSIX_FN 4
58 /* Interrupt types to return on RTAS_CHANGE_* */
59 #define RTAS_TYPE_MSI 1
60 #define RTAS_TYPE_MSIX 2
62 #define FDT_NAME_MAX 128
64 #define _FDT(exp) \
65 do { \
66 int ret = (exp); \
67 if (ret < 0) { \
68 return ret; \
69 } \
70 } while (0)
72 sPAPRPHBState *spapr_pci_find_phb(sPAPRMachineState *spapr, uint64_t buid)
74 sPAPRPHBState *sphb;
76 QLIST_FOREACH(sphb, &spapr->phbs, list) {
77 if (sphb->buid != buid) {
78 continue;
80 return sphb;
83 return NULL;
86 PCIDevice *spapr_pci_find_dev(sPAPRMachineState *spapr, uint64_t buid,
87 uint32_t config_addr)
89 sPAPRPHBState *sphb = spapr_pci_find_phb(spapr, buid);
90 PCIHostState *phb = PCI_HOST_BRIDGE(sphb);
91 int bus_num = (config_addr >> 16) & 0xFF;
92 int devfn = (config_addr >> 8) & 0xFF;
94 if (!phb) {
95 return NULL;
98 return pci_find_device(phb->bus, bus_num, devfn);
101 static uint32_t rtas_pci_cfgaddr(uint32_t arg)
103 /* This handles the encoding of extended config space addresses */
104 return ((arg >> 20) & 0xf00) | (arg & 0xff);
107 static void finish_read_pci_config(sPAPRMachineState *spapr, uint64_t buid,
108 uint32_t addr, uint32_t size,
109 target_ulong rets)
111 PCIDevice *pci_dev;
112 uint32_t val;
114 if ((size != 1) && (size != 2) && (size != 4)) {
115 /* access must be 1, 2 or 4 bytes */
116 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
117 return;
120 pci_dev = spapr_pci_find_dev(spapr, buid, addr);
121 addr = rtas_pci_cfgaddr(addr);
123 if (!pci_dev || (addr % size) || (addr >= pci_config_size(pci_dev))) {
124 /* Access must be to a valid device, within bounds and
125 * naturally aligned */
126 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
127 return;
130 val = pci_host_config_read_common(pci_dev, addr,
131 pci_config_size(pci_dev), size);
133 rtas_st(rets, 0, RTAS_OUT_SUCCESS);
134 rtas_st(rets, 1, val);
137 static void rtas_ibm_read_pci_config(PowerPCCPU *cpu, sPAPRMachineState *spapr,
138 uint32_t token, uint32_t nargs,
139 target_ulong args,
140 uint32_t nret, target_ulong rets)
142 uint64_t buid;
143 uint32_t size, addr;
145 if ((nargs != 4) || (nret != 2)) {
146 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
147 return;
150 buid = rtas_ldq(args, 1);
151 size = rtas_ld(args, 3);
152 addr = rtas_ld(args, 0);
154 finish_read_pci_config(spapr, buid, addr, size, rets);
157 static void rtas_read_pci_config(PowerPCCPU *cpu, sPAPRMachineState *spapr,
158 uint32_t token, uint32_t nargs,
159 target_ulong args,
160 uint32_t nret, target_ulong rets)
162 uint32_t size, addr;
164 if ((nargs != 2) || (nret != 2)) {
165 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
166 return;
169 size = rtas_ld(args, 1);
170 addr = rtas_ld(args, 0);
172 finish_read_pci_config(spapr, 0, addr, size, rets);
175 static void finish_write_pci_config(sPAPRMachineState *spapr, uint64_t buid,
176 uint32_t addr, uint32_t size,
177 uint32_t val, target_ulong rets)
179 PCIDevice *pci_dev;
181 if ((size != 1) && (size != 2) && (size != 4)) {
182 /* access must be 1, 2 or 4 bytes */
183 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
184 return;
187 pci_dev = spapr_pci_find_dev(spapr, buid, addr);
188 addr = rtas_pci_cfgaddr(addr);
190 if (!pci_dev || (addr % size) || (addr >= pci_config_size(pci_dev))) {
191 /* Access must be to a valid device, within bounds and
192 * naturally aligned */
193 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
194 return;
197 pci_host_config_write_common(pci_dev, addr, pci_config_size(pci_dev),
198 val, size);
200 rtas_st(rets, 0, RTAS_OUT_SUCCESS);
203 static void rtas_ibm_write_pci_config(PowerPCCPU *cpu, sPAPRMachineState *spapr,
204 uint32_t token, uint32_t nargs,
205 target_ulong args,
206 uint32_t nret, target_ulong rets)
208 uint64_t buid;
209 uint32_t val, size, addr;
211 if ((nargs != 5) || (nret != 1)) {
212 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
213 return;
216 buid = rtas_ldq(args, 1);
217 val = rtas_ld(args, 4);
218 size = rtas_ld(args, 3);
219 addr = rtas_ld(args, 0);
221 finish_write_pci_config(spapr, buid, addr, size, val, rets);
224 static void rtas_write_pci_config(PowerPCCPU *cpu, sPAPRMachineState *spapr,
225 uint32_t token, uint32_t nargs,
226 target_ulong args,
227 uint32_t nret, target_ulong rets)
229 uint32_t val, size, addr;
231 if ((nargs != 3) || (nret != 1)) {
232 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
233 return;
237 val = rtas_ld(args, 2);
238 size = rtas_ld(args, 1);
239 addr = rtas_ld(args, 0);
241 finish_write_pci_config(spapr, 0, addr, size, val, rets);
245 * Set MSI/MSIX message data.
246 * This is required for msi_notify()/msix_notify() which
247 * will write at the addresses via spapr_msi_write().
249 * If hwaddr == 0, all entries will have .data == first_irq i.e.
250 * table will be reset.
252 static void spapr_msi_setmsg(PCIDevice *pdev, hwaddr addr, bool msix,
253 unsigned first_irq, unsigned req_num)
255 unsigned i;
256 MSIMessage msg = { .address = addr, .data = first_irq };
258 if (!msix) {
259 msi_set_message(pdev, msg);
260 trace_spapr_pci_msi_setup(pdev->name, 0, msg.address);
261 return;
264 for (i = 0; i < req_num; ++i) {
265 msix_set_message(pdev, i, msg);
266 trace_spapr_pci_msi_setup(pdev->name, i, msg.address);
267 if (addr) {
268 ++msg.data;
273 static void rtas_ibm_change_msi(PowerPCCPU *cpu, sPAPRMachineState *spapr,
274 uint32_t token, uint32_t nargs,
275 target_ulong args, uint32_t nret,
276 target_ulong rets)
278 uint32_t config_addr = rtas_ld(args, 0);
279 uint64_t buid = rtas_ldq(args, 1);
280 unsigned int func = rtas_ld(args, 3);
281 unsigned int req_num = rtas_ld(args, 4); /* 0 == remove all */
282 unsigned int seq_num = rtas_ld(args, 5);
283 unsigned int ret_intr_type;
284 unsigned int irq, max_irqs = 0;
285 sPAPRPHBState *phb = NULL;
286 PCIDevice *pdev = NULL;
287 spapr_pci_msi *msi;
288 int *config_addr_key;
289 Error *err = NULL;
291 switch (func) {
292 case RTAS_CHANGE_MSI_FN:
293 case RTAS_CHANGE_FN:
294 ret_intr_type = RTAS_TYPE_MSI;
295 break;
296 case RTAS_CHANGE_MSIX_FN:
297 ret_intr_type = RTAS_TYPE_MSIX;
298 break;
299 default:
300 error_report("rtas_ibm_change_msi(%u) is not implemented", func);
301 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
302 return;
305 /* Fins sPAPRPHBState */
306 phb = spapr_pci_find_phb(spapr, buid);
307 if (phb) {
308 pdev = spapr_pci_find_dev(spapr, buid, config_addr);
310 if (!phb || !pdev) {
311 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
312 return;
315 msi = (spapr_pci_msi *) g_hash_table_lookup(phb->msi, &config_addr);
317 /* Releasing MSIs */
318 if (!req_num) {
319 if (!msi) {
320 trace_spapr_pci_msi("Releasing wrong config", config_addr);
321 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
322 return;
325 xics_spapr_free(spapr->xics, msi->first_irq, msi->num);
326 if (msi_present(pdev)) {
327 spapr_msi_setmsg(pdev, 0, false, 0, 0);
329 if (msix_present(pdev)) {
330 spapr_msi_setmsg(pdev, 0, true, 0, 0);
332 g_hash_table_remove(phb->msi, &config_addr);
334 trace_spapr_pci_msi("Released MSIs", config_addr);
335 rtas_st(rets, 0, RTAS_OUT_SUCCESS);
336 rtas_st(rets, 1, 0);
337 return;
340 /* Enabling MSI */
342 /* Check if the device supports as many IRQs as requested */
343 if (ret_intr_type == RTAS_TYPE_MSI) {
344 max_irqs = msi_nr_vectors_allocated(pdev);
345 } else if (ret_intr_type == RTAS_TYPE_MSIX) {
346 max_irqs = pdev->msix_entries_nr;
348 if (!max_irqs) {
349 error_report("Requested interrupt type %d is not enabled for device %x",
350 ret_intr_type, config_addr);
351 rtas_st(rets, 0, -1); /* Hardware error */
352 return;
354 /* Correct the number if the guest asked for too many */
355 if (req_num > max_irqs) {
356 trace_spapr_pci_msi_retry(config_addr, req_num, max_irqs);
357 req_num = max_irqs;
358 irq = 0; /* to avoid misleading trace */
359 goto out;
362 /* Allocate MSIs */
363 irq = xics_spapr_alloc_block(spapr->xics, 0, req_num, false,
364 ret_intr_type == RTAS_TYPE_MSI, &err);
365 if (err) {
366 error_reportf_err(err, "Can't allocate MSIs for device %x: ",
367 config_addr);
368 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
369 return;
372 /* Release previous MSIs */
373 if (msi) {
374 xics_spapr_free(spapr->xics, msi->first_irq, msi->num);
375 g_hash_table_remove(phb->msi, &config_addr);
378 /* Setup MSI/MSIX vectors in the device (via cfgspace or MSIX BAR) */
379 spapr_msi_setmsg(pdev, SPAPR_PCI_MSI_WINDOW, ret_intr_type == RTAS_TYPE_MSIX,
380 irq, req_num);
382 /* Add MSI device to cache */
383 msi = g_new(spapr_pci_msi, 1);
384 msi->first_irq = irq;
385 msi->num = req_num;
386 config_addr_key = g_new(int, 1);
387 *config_addr_key = config_addr;
388 g_hash_table_insert(phb->msi, config_addr_key, msi);
390 out:
391 rtas_st(rets, 0, RTAS_OUT_SUCCESS);
392 rtas_st(rets, 1, req_num);
393 rtas_st(rets, 2, ++seq_num);
394 if (nret > 3) {
395 rtas_st(rets, 3, ret_intr_type);
398 trace_spapr_pci_rtas_ibm_change_msi(config_addr, func, req_num, irq);
401 static void rtas_ibm_query_interrupt_source_number(PowerPCCPU *cpu,
402 sPAPRMachineState *spapr,
403 uint32_t token,
404 uint32_t nargs,
405 target_ulong args,
406 uint32_t nret,
407 target_ulong rets)
409 uint32_t config_addr = rtas_ld(args, 0);
410 uint64_t buid = rtas_ldq(args, 1);
411 unsigned int intr_src_num = -1, ioa_intr_num = rtas_ld(args, 3);
412 sPAPRPHBState *phb = NULL;
413 PCIDevice *pdev = NULL;
414 spapr_pci_msi *msi;
416 /* Find sPAPRPHBState */
417 phb = spapr_pci_find_phb(spapr, buid);
418 if (phb) {
419 pdev = spapr_pci_find_dev(spapr, buid, config_addr);
421 if (!phb || !pdev) {
422 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
423 return;
426 /* Find device descriptor and start IRQ */
427 msi = (spapr_pci_msi *) g_hash_table_lookup(phb->msi, &config_addr);
428 if (!msi || !msi->first_irq || !msi->num || (ioa_intr_num >= msi->num)) {
429 trace_spapr_pci_msi("Failed to return vector", config_addr);
430 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
431 return;
433 intr_src_num = msi->first_irq + ioa_intr_num;
434 trace_spapr_pci_rtas_ibm_query_interrupt_source_number(ioa_intr_num,
435 intr_src_num);
437 rtas_st(rets, 0, RTAS_OUT_SUCCESS);
438 rtas_st(rets, 1, intr_src_num);
439 rtas_st(rets, 2, 1);/* 0 == level; 1 == edge */
442 static void rtas_ibm_set_eeh_option(PowerPCCPU *cpu,
443 sPAPRMachineState *spapr,
444 uint32_t token, uint32_t nargs,
445 target_ulong args, uint32_t nret,
446 target_ulong rets)
448 sPAPRPHBState *sphb;
449 uint32_t addr, option;
450 uint64_t buid;
451 int ret;
453 if ((nargs != 4) || (nret != 1)) {
454 goto param_error_exit;
457 buid = rtas_ldq(args, 1);
458 addr = rtas_ld(args, 0);
459 option = rtas_ld(args, 3);
461 sphb = spapr_pci_find_phb(spapr, buid);
462 if (!sphb) {
463 goto param_error_exit;
466 if (!spapr_phb_eeh_available(sphb)) {
467 goto param_error_exit;
470 ret = spapr_phb_vfio_eeh_set_option(sphb, addr, option);
471 rtas_st(rets, 0, ret);
472 return;
474 param_error_exit:
475 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
478 static void rtas_ibm_get_config_addr_info2(PowerPCCPU *cpu,
479 sPAPRMachineState *spapr,
480 uint32_t token, uint32_t nargs,
481 target_ulong args, uint32_t nret,
482 target_ulong rets)
484 sPAPRPHBState *sphb;
485 PCIDevice *pdev;
486 uint32_t addr, option;
487 uint64_t buid;
489 if ((nargs != 4) || (nret != 2)) {
490 goto param_error_exit;
493 buid = rtas_ldq(args, 1);
494 sphb = spapr_pci_find_phb(spapr, buid);
495 if (!sphb) {
496 goto param_error_exit;
499 if (!spapr_phb_eeh_available(sphb)) {
500 goto param_error_exit;
504 * We always have PE address of form "00BB0001". "BB"
505 * represents the bus number of PE's primary bus.
507 option = rtas_ld(args, 3);
508 switch (option) {
509 case RTAS_GET_PE_ADDR:
510 addr = rtas_ld(args, 0);
511 pdev = spapr_pci_find_dev(spapr, buid, addr);
512 if (!pdev) {
513 goto param_error_exit;
516 rtas_st(rets, 1, (pci_bus_num(pdev->bus) << 16) + 1);
517 break;
518 case RTAS_GET_PE_MODE:
519 rtas_st(rets, 1, RTAS_PE_MODE_SHARED);
520 break;
521 default:
522 goto param_error_exit;
525 rtas_st(rets, 0, RTAS_OUT_SUCCESS);
526 return;
528 param_error_exit:
529 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
532 static void rtas_ibm_read_slot_reset_state2(PowerPCCPU *cpu,
533 sPAPRMachineState *spapr,
534 uint32_t token, uint32_t nargs,
535 target_ulong args, uint32_t nret,
536 target_ulong rets)
538 sPAPRPHBState *sphb;
539 uint64_t buid;
540 int state, ret;
542 if ((nargs != 3) || (nret != 4 && nret != 5)) {
543 goto param_error_exit;
546 buid = rtas_ldq(args, 1);
547 sphb = spapr_pci_find_phb(spapr, buid);
548 if (!sphb) {
549 goto param_error_exit;
552 if (!spapr_phb_eeh_available(sphb)) {
553 goto param_error_exit;
556 ret = spapr_phb_vfio_eeh_get_state(sphb, &state);
557 rtas_st(rets, 0, ret);
558 if (ret != RTAS_OUT_SUCCESS) {
559 return;
562 rtas_st(rets, 1, state);
563 rtas_st(rets, 2, RTAS_EEH_SUPPORT);
564 rtas_st(rets, 3, RTAS_EEH_PE_UNAVAIL_INFO);
565 if (nret >= 5) {
566 rtas_st(rets, 4, RTAS_EEH_PE_RECOVER_INFO);
568 return;
570 param_error_exit:
571 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
574 static void rtas_ibm_set_slot_reset(PowerPCCPU *cpu,
575 sPAPRMachineState *spapr,
576 uint32_t token, uint32_t nargs,
577 target_ulong args, uint32_t nret,
578 target_ulong rets)
580 sPAPRPHBState *sphb;
581 uint32_t option;
582 uint64_t buid;
583 int ret;
585 if ((nargs != 4) || (nret != 1)) {
586 goto param_error_exit;
589 buid = rtas_ldq(args, 1);
590 option = rtas_ld(args, 3);
591 sphb = spapr_pci_find_phb(spapr, buid);
592 if (!sphb) {
593 goto param_error_exit;
596 if (!spapr_phb_eeh_available(sphb)) {
597 goto param_error_exit;
600 ret = spapr_phb_vfio_eeh_reset(sphb, option);
601 rtas_st(rets, 0, ret);
602 return;
604 param_error_exit:
605 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
608 static void rtas_ibm_configure_pe(PowerPCCPU *cpu,
609 sPAPRMachineState *spapr,
610 uint32_t token, uint32_t nargs,
611 target_ulong args, uint32_t nret,
612 target_ulong rets)
614 sPAPRPHBState *sphb;
615 uint64_t buid;
616 int ret;
618 if ((nargs != 3) || (nret != 1)) {
619 goto param_error_exit;
622 buid = rtas_ldq(args, 1);
623 sphb = spapr_pci_find_phb(spapr, buid);
624 if (!sphb) {
625 goto param_error_exit;
628 if (!spapr_phb_eeh_available(sphb)) {
629 goto param_error_exit;
632 ret = spapr_phb_vfio_eeh_configure(sphb);
633 rtas_st(rets, 0, ret);
634 return;
636 param_error_exit:
637 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
640 /* To support it later */
641 static void rtas_ibm_slot_error_detail(PowerPCCPU *cpu,
642 sPAPRMachineState *spapr,
643 uint32_t token, uint32_t nargs,
644 target_ulong args, uint32_t nret,
645 target_ulong rets)
647 sPAPRPHBState *sphb;
648 int option;
649 uint64_t buid;
651 if ((nargs != 8) || (nret != 1)) {
652 goto param_error_exit;
655 buid = rtas_ldq(args, 1);
656 sphb = spapr_pci_find_phb(spapr, buid);
657 if (!sphb) {
658 goto param_error_exit;
661 if (!spapr_phb_eeh_available(sphb)) {
662 goto param_error_exit;
665 option = rtas_ld(args, 7);
666 switch (option) {
667 case RTAS_SLOT_TEMP_ERR_LOG:
668 case RTAS_SLOT_PERM_ERR_LOG:
669 break;
670 default:
671 goto param_error_exit;
674 /* We don't have error log yet */
675 rtas_st(rets, 0, RTAS_OUT_NO_ERRORS_FOUND);
676 return;
678 param_error_exit:
679 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
682 static int pci_spapr_swizzle(int slot, int pin)
684 return (slot + pin) % PCI_NUM_PINS;
687 static int pci_spapr_map_irq(PCIDevice *pci_dev, int irq_num)
690 * Here we need to convert pci_dev + irq_num to some unique value
691 * which is less than number of IRQs on the specific bus (4). We
692 * use standard PCI swizzling, that is (slot number + pin number)
693 * % 4.
695 return pci_spapr_swizzle(PCI_SLOT(pci_dev->devfn), irq_num);
698 static void pci_spapr_set_irq(void *opaque, int irq_num, int level)
701 * Here we use the number returned by pci_spapr_map_irq to find a
702 * corresponding qemu_irq.
704 sPAPRPHBState *phb = opaque;
706 trace_spapr_pci_lsi_set(phb->dtbusname, irq_num, phb->lsi_table[irq_num].irq);
707 qemu_set_irq(spapr_phb_lsi_qirq(phb, irq_num), level);
710 static PCIINTxRoute spapr_route_intx_pin_to_irq(void *opaque, int pin)
712 sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(opaque);
713 PCIINTxRoute route;
715 route.mode = PCI_INTX_ENABLED;
716 route.irq = sphb->lsi_table[pin].irq;
718 return route;
722 * MSI/MSIX memory region implementation.
723 * The handler handles both MSI and MSIX.
724 * For MSI-X, the vector number is encoded as a part of the address,
725 * data is set to 0.
726 * For MSI, the vector number is encoded in least bits in data.
728 static void spapr_msi_write(void *opaque, hwaddr addr,
729 uint64_t data, unsigned size)
731 sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
732 uint32_t irq = data;
734 trace_spapr_pci_msi_write(addr, data, irq);
736 qemu_irq_pulse(xics_get_qirq(spapr->xics, irq));
739 static const MemoryRegionOps spapr_msi_ops = {
740 /* There is no .read as the read result is undefined by PCI spec */
741 .read = NULL,
742 .write = spapr_msi_write,
743 .endianness = DEVICE_LITTLE_ENDIAN
747 * PHB PCI device
749 static AddressSpace *spapr_pci_dma_iommu(PCIBus *bus, void *opaque, int devfn)
751 sPAPRPHBState *phb = opaque;
753 return &phb->iommu_as;
756 static char *spapr_phb_vfio_get_loc_code(sPAPRPHBState *sphb, PCIDevice *pdev)
758 char *path = NULL, *buf = NULL, *host = NULL;
760 /* Get the PCI VFIO host id */
761 host = object_property_get_str(OBJECT(pdev), "host", NULL);
762 if (!host) {
763 goto err_out;
766 /* Construct the path of the file that will give us the DT location */
767 path = g_strdup_printf("/sys/bus/pci/devices/%s/devspec", host);
768 g_free(host);
769 if (!path || !g_file_get_contents(path, &buf, NULL, NULL)) {
770 goto err_out;
772 g_free(path);
774 /* Construct and read from host device tree the loc-code */
775 path = g_strdup_printf("/proc/device-tree%s/ibm,loc-code", buf);
776 g_free(buf);
777 if (!path || !g_file_get_contents(path, &buf, NULL, NULL)) {
778 goto err_out;
780 return buf;
782 err_out:
783 g_free(path);
784 return NULL;
787 static char *spapr_phb_get_loc_code(sPAPRPHBState *sphb, PCIDevice *pdev)
789 char *buf;
790 const char *devtype = "qemu";
791 uint32_t busnr = pci_bus_num(PCI_BUS(qdev_get_parent_bus(DEVICE(pdev))));
793 if (object_dynamic_cast(OBJECT(pdev), "vfio-pci")) {
794 buf = spapr_phb_vfio_get_loc_code(sphb, pdev);
795 if (buf) {
796 return buf;
798 devtype = "vfio";
801 * For emulated devices and VFIO-failure case, make up
802 * the loc-code.
804 buf = g_strdup_printf("%s_%s:%04x:%02x:%02x.%x",
805 devtype, pdev->name, sphb->index, busnr,
806 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
807 return buf;
810 /* Macros to operate with address in OF binding to PCI */
811 #define b_x(x, p, l) (((x) & ((1<<(l))-1)) << (p))
812 #define b_n(x) b_x((x), 31, 1) /* 0 if relocatable */
813 #define b_p(x) b_x((x), 30, 1) /* 1 if prefetchable */
814 #define b_t(x) b_x((x), 29, 1) /* 1 if the address is aliased */
815 #define b_ss(x) b_x((x), 24, 2) /* the space code */
816 #define b_bbbbbbbb(x) b_x((x), 16, 8) /* bus number */
817 #define b_ddddd(x) b_x((x), 11, 5) /* device number */
818 #define b_fff(x) b_x((x), 8, 3) /* function number */
819 #define b_rrrrrrrr(x) b_x((x), 0, 8) /* register number */
821 /* for 'reg'/'assigned-addresses' OF properties */
822 #define RESOURCE_CELLS_SIZE 2
823 #define RESOURCE_CELLS_ADDRESS 3
825 typedef struct ResourceFields {
826 uint32_t phys_hi;
827 uint32_t phys_mid;
828 uint32_t phys_lo;
829 uint32_t size_hi;
830 uint32_t size_lo;
831 } QEMU_PACKED ResourceFields;
833 typedef struct ResourceProps {
834 ResourceFields reg[8];
835 ResourceFields assigned[7];
836 uint32_t reg_len;
837 uint32_t assigned_len;
838 } ResourceProps;
840 /* fill in the 'reg'/'assigned-resources' OF properties for
841 * a PCI device. 'reg' describes resource requirements for a
842 * device's IO/MEM regions, 'assigned-addresses' describes the
843 * actual resource assignments.
845 * the properties are arrays of ('phys-addr', 'size') pairs describing
846 * the addressable regions of the PCI device, where 'phys-addr' is a
847 * RESOURCE_CELLS_ADDRESS-tuple of 32-bit integers corresponding to
848 * (phys.hi, phys.mid, phys.lo), and 'size' is a
849 * RESOURCE_CELLS_SIZE-tuple corresponding to (size.hi, size.lo).
851 * phys.hi = 0xYYXXXXZZ, where:
852 * 0xYY = npt000ss
853 * ||| |
854 * ||| +-- space code
855 * ||| |
856 * ||| + 00 if configuration space
857 * ||| + 01 if IO region,
858 * ||| + 10 if 32-bit MEM region
859 * ||| + 11 if 64-bit MEM region
860 * |||
861 * ||+------ for non-relocatable IO: 1 if aliased
862 * || for relocatable IO: 1 if below 64KB
863 * || for MEM: 1 if below 1MB
864 * |+------- 1 if region is prefetchable
865 * +-------- 1 if region is non-relocatable
866 * 0xXXXX = bbbbbbbb dddddfff, encoding bus, slot, and function
867 * bits respectively
868 * 0xZZ = rrrrrrrr, the register number of the BAR corresponding
869 * to the region
871 * phys.mid and phys.lo correspond respectively to the hi/lo portions
872 * of the actual address of the region.
874 * how the phys-addr/size values are used differ slightly between
875 * 'reg' and 'assigned-addresses' properties. namely, 'reg' has
876 * an additional description for the config space region of the
877 * device, and in the case of QEMU has n=0 and phys.mid=phys.lo=0
878 * to describe the region as relocatable, with an address-mapping
879 * that corresponds directly to the PHB's address space for the
880 * resource. 'assigned-addresses' always has n=1 set with an absolute
881 * address assigned for the resource. in general, 'assigned-addresses'
882 * won't be populated, since addresses for PCI devices are generally
883 * unmapped initially and left to the guest to assign.
885 * note also that addresses defined in these properties are, at least
886 * for PAPR guests, relative to the PHBs IO/MEM windows, and
887 * correspond directly to the addresses in the BARs.
889 * in accordance with PCI Bus Binding to Open Firmware,
890 * IEEE Std 1275-1994, section 4.1.1, as implemented by PAPR+ v2.7,
891 * Appendix C.
893 static void populate_resource_props(PCIDevice *d, ResourceProps *rp)
895 int bus_num = pci_bus_num(PCI_BUS(qdev_get_parent_bus(DEVICE(d))));
896 uint32_t dev_id = (b_bbbbbbbb(bus_num) |
897 b_ddddd(PCI_SLOT(d->devfn)) |
898 b_fff(PCI_FUNC(d->devfn)));
899 ResourceFields *reg, *assigned;
900 int i, reg_idx = 0, assigned_idx = 0;
902 /* config space region */
903 reg = &rp->reg[reg_idx++];
904 reg->phys_hi = cpu_to_be32(dev_id);
905 reg->phys_mid = 0;
906 reg->phys_lo = 0;
907 reg->size_hi = 0;
908 reg->size_lo = 0;
910 for (i = 0; i < PCI_NUM_REGIONS; i++) {
911 if (!d->io_regions[i].size) {
912 continue;
915 reg = &rp->reg[reg_idx++];
917 reg->phys_hi = cpu_to_be32(dev_id | b_rrrrrrrr(pci_bar(d, i)));
918 if (d->io_regions[i].type & PCI_BASE_ADDRESS_SPACE_IO) {
919 reg->phys_hi |= cpu_to_be32(b_ss(1));
920 } else if (d->io_regions[i].type & PCI_BASE_ADDRESS_MEM_TYPE_64) {
921 reg->phys_hi |= cpu_to_be32(b_ss(3));
922 } else {
923 reg->phys_hi |= cpu_to_be32(b_ss(2));
925 reg->phys_mid = 0;
926 reg->phys_lo = 0;
927 reg->size_hi = cpu_to_be32(d->io_regions[i].size >> 32);
928 reg->size_lo = cpu_to_be32(d->io_regions[i].size);
930 if (d->io_regions[i].addr == PCI_BAR_UNMAPPED) {
931 continue;
934 assigned = &rp->assigned[assigned_idx++];
935 assigned->phys_hi = cpu_to_be32(reg->phys_hi | b_n(1));
936 assigned->phys_mid = cpu_to_be32(d->io_regions[i].addr >> 32);
937 assigned->phys_lo = cpu_to_be32(d->io_regions[i].addr);
938 assigned->size_hi = reg->size_hi;
939 assigned->size_lo = reg->size_lo;
942 rp->reg_len = reg_idx * sizeof(ResourceFields);
943 rp->assigned_len = assigned_idx * sizeof(ResourceFields);
946 static uint32_t spapr_phb_get_pci_drc_index(sPAPRPHBState *phb,
947 PCIDevice *pdev);
949 static int spapr_populate_pci_child_dt(PCIDevice *dev, void *fdt, int offset,
950 sPAPRPHBState *sphb)
952 ResourceProps rp;
953 bool is_bridge = false;
954 int pci_status, err;
955 char *buf = NULL;
956 uint32_t drc_index = spapr_phb_get_pci_drc_index(sphb, dev);
957 uint32_t max_msi, max_msix;
959 if (pci_default_read_config(dev, PCI_HEADER_TYPE, 1) ==
960 PCI_HEADER_TYPE_BRIDGE) {
961 is_bridge = true;
964 /* in accordance with PAPR+ v2.7 13.6.3, Table 181 */
965 _FDT(fdt_setprop_cell(fdt, offset, "vendor-id",
966 pci_default_read_config(dev, PCI_VENDOR_ID, 2)));
967 _FDT(fdt_setprop_cell(fdt, offset, "device-id",
968 pci_default_read_config(dev, PCI_DEVICE_ID, 2)));
969 _FDT(fdt_setprop_cell(fdt, offset, "revision-id",
970 pci_default_read_config(dev, PCI_REVISION_ID, 1)));
971 _FDT(fdt_setprop_cell(fdt, offset, "class-code",
972 pci_default_read_config(dev, PCI_CLASS_PROG, 3)));
973 if (pci_default_read_config(dev, PCI_INTERRUPT_PIN, 1)) {
974 _FDT(fdt_setprop_cell(fdt, offset, "interrupts",
975 pci_default_read_config(dev, PCI_INTERRUPT_PIN, 1)));
978 if (!is_bridge) {
979 _FDT(fdt_setprop_cell(fdt, offset, "min-grant",
980 pci_default_read_config(dev, PCI_MIN_GNT, 1)));
981 _FDT(fdt_setprop_cell(fdt, offset, "max-latency",
982 pci_default_read_config(dev, PCI_MAX_LAT, 1)));
985 if (pci_default_read_config(dev, PCI_SUBSYSTEM_ID, 2)) {
986 _FDT(fdt_setprop_cell(fdt, offset, "subsystem-id",
987 pci_default_read_config(dev, PCI_SUBSYSTEM_ID, 2)));
990 if (pci_default_read_config(dev, PCI_SUBSYSTEM_VENDOR_ID, 2)) {
991 _FDT(fdt_setprop_cell(fdt, offset, "subsystem-vendor-id",
992 pci_default_read_config(dev, PCI_SUBSYSTEM_VENDOR_ID, 2)));
995 _FDT(fdt_setprop_cell(fdt, offset, "cache-line-size",
996 pci_default_read_config(dev, PCI_CACHE_LINE_SIZE, 1)));
998 /* the following fdt cells are masked off the pci status register */
999 pci_status = pci_default_read_config(dev, PCI_STATUS, 2);
1000 _FDT(fdt_setprop_cell(fdt, offset, "devsel-speed",
1001 PCI_STATUS_DEVSEL_MASK & pci_status));
1003 if (pci_status & PCI_STATUS_FAST_BACK) {
1004 _FDT(fdt_setprop(fdt, offset, "fast-back-to-back", NULL, 0));
1006 if (pci_status & PCI_STATUS_66MHZ) {
1007 _FDT(fdt_setprop(fdt, offset, "66mhz-capable", NULL, 0));
1009 if (pci_status & PCI_STATUS_UDF) {
1010 _FDT(fdt_setprop(fdt, offset, "udf-supported", NULL, 0));
1013 /* NOTE: this is normally generated by firmware via path/unit name,
1014 * but in our case we must set it manually since it does not get
1015 * processed by OF beforehand
1017 _FDT(fdt_setprop_string(fdt, offset, "name", "pci"));
1018 buf = spapr_phb_get_loc_code(sphb, dev);
1019 if (!buf) {
1020 error_report("Failed setting the ibm,loc-code");
1021 return -1;
1024 err = fdt_setprop_string(fdt, offset, "ibm,loc-code", buf);
1025 g_free(buf);
1026 if (err < 0) {
1027 return err;
1030 if (drc_index) {
1031 _FDT(fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index));
1034 _FDT(fdt_setprop_cell(fdt, offset, "#address-cells",
1035 RESOURCE_CELLS_ADDRESS));
1036 _FDT(fdt_setprop_cell(fdt, offset, "#size-cells",
1037 RESOURCE_CELLS_SIZE));
1039 max_msi = msi_nr_vectors_allocated(dev);
1040 if (max_msi) {
1041 _FDT(fdt_setprop_cell(fdt, offset, "ibm,req#msi", max_msi));
1043 max_msix = dev->msix_entries_nr;
1044 if (max_msix) {
1045 _FDT(fdt_setprop_cell(fdt, offset, "ibm,req#msi-x", max_msix));
1048 populate_resource_props(dev, &rp);
1049 _FDT(fdt_setprop(fdt, offset, "reg", (uint8_t *)rp.reg, rp.reg_len));
1050 _FDT(fdt_setprop(fdt, offset, "assigned-addresses",
1051 (uint8_t *)rp.assigned, rp.assigned_len));
1053 return 0;
1056 /* create OF node for pci device and required OF DT properties */
1057 static int spapr_create_pci_child_dt(sPAPRPHBState *phb, PCIDevice *dev,
1058 void *fdt, int node_offset)
1060 int offset, ret;
1061 int slot = PCI_SLOT(dev->devfn);
1062 int func = PCI_FUNC(dev->devfn);
1063 char nodename[FDT_NAME_MAX];
1065 if (func != 0) {
1066 snprintf(nodename, FDT_NAME_MAX, "pci@%x,%x", slot, func);
1067 } else {
1068 snprintf(nodename, FDT_NAME_MAX, "pci@%x", slot);
1070 offset = fdt_add_subnode(fdt, node_offset, nodename);
1071 ret = spapr_populate_pci_child_dt(dev, fdt, offset, phb);
1073 g_assert(!ret);
1074 if (ret) {
1075 return 0;
1077 return offset;
1080 static void spapr_phb_add_pci_device(sPAPRDRConnector *drc,
1081 sPAPRPHBState *phb,
1082 PCIDevice *pdev,
1083 Error **errp)
1085 sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
1086 DeviceState *dev = DEVICE(pdev);
1087 void *fdt = NULL;
1088 int fdt_start_offset = 0, fdt_size;
1090 fdt = create_device_tree(&fdt_size);
1091 fdt_start_offset = spapr_create_pci_child_dt(phb, pdev, fdt, 0);
1092 if (!fdt_start_offset) {
1093 error_setg(errp, "Failed to create pci child device tree node");
1094 goto out;
1097 drck->attach(drc, DEVICE(pdev),
1098 fdt, fdt_start_offset, !dev->hotplugged, errp);
1099 out:
1100 if (*errp) {
1101 g_free(fdt);
1105 static void spapr_phb_remove_pci_device_cb(DeviceState *dev, void *opaque)
1107 /* some version guests do not wait for completion of a device
1108 * cleanup (generally done asynchronously by the kernel) before
1109 * signaling to QEMU that the device is safe, but instead sleep
1110 * for some 'safe' period of time. unfortunately on a busy host
1111 * this sleep isn't guaranteed to be long enough, resulting in
1112 * bad things like IRQ lines being left asserted during final
1113 * device removal. to deal with this we call reset just prior
1114 * to finalizing the device, which will put the device back into
1115 * an 'idle' state, as the device cleanup code expects.
1117 pci_device_reset(PCI_DEVICE(dev));
1118 object_unparent(OBJECT(dev));
1121 static void spapr_phb_remove_pci_device(sPAPRDRConnector *drc,
1122 sPAPRPHBState *phb,
1123 PCIDevice *pdev,
1124 Error **errp)
1126 sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
1128 drck->detach(drc, DEVICE(pdev), spapr_phb_remove_pci_device_cb, phb, errp);
1131 static sPAPRDRConnector *spapr_phb_get_pci_func_drc(sPAPRPHBState *phb,
1132 uint32_t busnr,
1133 int32_t devfn)
1135 return spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_PCI,
1136 (phb->index << 16) |
1137 (busnr << 8) |
1138 devfn);
1141 static sPAPRDRConnector *spapr_phb_get_pci_drc(sPAPRPHBState *phb,
1142 PCIDevice *pdev)
1144 uint32_t busnr = pci_bus_num(PCI_BUS(qdev_get_parent_bus(DEVICE(pdev))));
1145 return spapr_phb_get_pci_func_drc(phb, busnr, pdev->devfn);
1148 static uint32_t spapr_phb_get_pci_drc_index(sPAPRPHBState *phb,
1149 PCIDevice *pdev)
1151 sPAPRDRConnector *drc = spapr_phb_get_pci_drc(phb, pdev);
1152 sPAPRDRConnectorClass *drck;
1154 if (!drc) {
1155 return 0;
1158 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
1159 return drck->get_index(drc);
1162 static void spapr_phb_hot_plug_child(HotplugHandler *plug_handler,
1163 DeviceState *plugged_dev, Error **errp)
1165 sPAPRPHBState *phb = SPAPR_PCI_HOST_BRIDGE(DEVICE(plug_handler));
1166 PCIDevice *pdev = PCI_DEVICE(plugged_dev);
1167 sPAPRDRConnector *drc = spapr_phb_get_pci_drc(phb, pdev);
1168 Error *local_err = NULL;
1169 PCIBus *bus = PCI_BUS(qdev_get_parent_bus(DEVICE(pdev)));
1170 uint32_t slotnr = PCI_SLOT(pdev->devfn);
1172 /* if DR is disabled we don't need to do anything in the case of
1173 * hotplug or coldplug callbacks
1175 if (!phb->dr_enabled) {
1176 /* if this is a hotplug operation initiated by the user
1177 * we need to let them know it's not enabled
1179 if (plugged_dev->hotplugged) {
1180 error_setg(errp, QERR_BUS_NO_HOTPLUG,
1181 object_get_typename(OBJECT(phb)));
1183 return;
1186 g_assert(drc);
1188 /* Following the QEMU convention used for PCIe multifunction
1189 * hotplug, we do not allow functions to be hotplugged to a
1190 * slot that already has function 0 present
1192 if (plugged_dev->hotplugged && bus->devices[PCI_DEVFN(slotnr, 0)] &&
1193 PCI_FUNC(pdev->devfn) != 0) {
1194 error_setg(errp, "PCI: slot %d function 0 already ocuppied by %s,"
1195 " additional functions can no longer be exposed to guest.",
1196 slotnr, bus->devices[PCI_DEVFN(slotnr, 0)]->name);
1197 return;
1200 spapr_phb_add_pci_device(drc, phb, pdev, &local_err);
1201 if (local_err) {
1202 error_propagate(errp, local_err);
1203 return;
1206 /* If this is function 0, signal hotplug for all the device functions.
1207 * Otherwise defer sending the hotplug event.
1209 if (plugged_dev->hotplugged && PCI_FUNC(pdev->devfn) == 0) {
1210 int i;
1212 for (i = 0; i < 8; i++) {
1213 sPAPRDRConnector *func_drc;
1214 sPAPRDRConnectorClass *func_drck;
1215 sPAPRDREntitySense state;
1217 func_drc = spapr_phb_get_pci_func_drc(phb, pci_bus_num(bus),
1218 PCI_DEVFN(slotnr, i));
1219 func_drck = SPAPR_DR_CONNECTOR_GET_CLASS(func_drc);
1220 func_drck->entity_sense(func_drc, &state);
1222 if (state == SPAPR_DR_ENTITY_SENSE_PRESENT) {
1223 spapr_hotplug_req_add_by_index(func_drc);
1229 static void spapr_phb_hot_unplug_child(HotplugHandler *plug_handler,
1230 DeviceState *plugged_dev, Error **errp)
1232 sPAPRPHBState *phb = SPAPR_PCI_HOST_BRIDGE(DEVICE(plug_handler));
1233 PCIDevice *pdev = PCI_DEVICE(plugged_dev);
1234 sPAPRDRConnectorClass *drck;
1235 sPAPRDRConnector *drc = spapr_phb_get_pci_drc(phb, pdev);
1236 Error *local_err = NULL;
1238 if (!phb->dr_enabled) {
1239 error_setg(errp, QERR_BUS_NO_HOTPLUG,
1240 object_get_typename(OBJECT(phb)));
1241 return;
1244 g_assert(drc);
1246 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
1247 if (!drck->release_pending(drc)) {
1248 PCIBus *bus = PCI_BUS(qdev_get_parent_bus(DEVICE(pdev)));
1249 uint32_t slotnr = PCI_SLOT(pdev->devfn);
1250 sPAPRDRConnector *func_drc;
1251 sPAPRDRConnectorClass *func_drck;
1252 sPAPRDREntitySense state;
1253 int i;
1255 /* ensure any other present functions are pending unplug */
1256 if (PCI_FUNC(pdev->devfn) == 0) {
1257 for (i = 1; i < 8; i++) {
1258 func_drc = spapr_phb_get_pci_func_drc(phb, pci_bus_num(bus),
1259 PCI_DEVFN(slotnr, i));
1260 func_drck = SPAPR_DR_CONNECTOR_GET_CLASS(func_drc);
1261 func_drck->entity_sense(func_drc, &state);
1262 if (state == SPAPR_DR_ENTITY_SENSE_PRESENT
1263 && !func_drck->release_pending(func_drc)) {
1264 error_setg(errp,
1265 "PCI: slot %d, function %d still present. "
1266 "Must unplug all non-0 functions first.",
1267 slotnr, i);
1268 return;
1273 spapr_phb_remove_pci_device(drc, phb, pdev, &local_err);
1274 if (local_err) {
1275 error_propagate(errp, local_err);
1276 return;
1279 /* if this isn't func 0, defer unplug event. otherwise signal removal
1280 * for all present functions
1282 if (PCI_FUNC(pdev->devfn) == 0) {
1283 for (i = 7; i >= 0; i--) {
1284 func_drc = spapr_phb_get_pci_func_drc(phb, pci_bus_num(bus),
1285 PCI_DEVFN(slotnr, i));
1286 func_drck = SPAPR_DR_CONNECTOR_GET_CLASS(func_drc);
1287 func_drck->entity_sense(func_drc, &state);
1288 if (state == SPAPR_DR_ENTITY_SENSE_PRESENT) {
1289 spapr_hotplug_req_remove_by_index(func_drc);
1296 static void spapr_phb_realize(DeviceState *dev, Error **errp)
1298 sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
1299 SysBusDevice *s = SYS_BUS_DEVICE(dev);
1300 sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(s);
1301 PCIHostState *phb = PCI_HOST_BRIDGE(s);
1302 char *namebuf;
1303 int i;
1304 PCIBus *bus;
1305 uint64_t msi_window_size = 4096;
1306 sPAPRTCETable *tcet;
1308 if (sphb->index != (uint32_t)-1) {
1309 hwaddr windows_base;
1311 if ((sphb->buid != (uint64_t)-1) || (sphb->dma_liobn != (uint32_t)-1)
1312 || (sphb->mem_win_addr != (hwaddr)-1)
1313 || (sphb->io_win_addr != (hwaddr)-1)) {
1314 error_setg(errp, "Either \"index\" or other parameters must"
1315 " be specified for PAPR PHB, not both");
1316 return;
1319 if (sphb->index > SPAPR_PCI_MAX_INDEX) {
1320 error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
1321 SPAPR_PCI_MAX_INDEX);
1322 return;
1325 sphb->buid = SPAPR_PCI_BASE_BUID + sphb->index;
1326 sphb->dma_liobn = SPAPR_PCI_LIOBN(sphb->index, 0);
1328 windows_base = SPAPR_PCI_WINDOW_BASE
1329 + sphb->index * SPAPR_PCI_WINDOW_SPACING;
1330 sphb->mem_win_addr = windows_base + SPAPR_PCI_MMIO_WIN_OFF;
1331 sphb->io_win_addr = windows_base + SPAPR_PCI_IO_WIN_OFF;
1334 if (sphb->buid == (uint64_t)-1) {
1335 error_setg(errp, "BUID not specified for PHB");
1336 return;
1339 if (sphb->dma_liobn == (uint32_t)-1) {
1340 error_setg(errp, "LIOBN not specified for PHB");
1341 return;
1344 if (sphb->mem_win_addr == (hwaddr)-1) {
1345 error_setg(errp, "Memory window address not specified for PHB");
1346 return;
1349 if (sphb->io_win_addr == (hwaddr)-1) {
1350 error_setg(errp, "IO window address not specified for PHB");
1351 return;
1354 if (spapr_pci_find_phb(spapr, sphb->buid)) {
1355 error_setg(errp, "PCI host bridges must have unique BUIDs");
1356 return;
1359 sphb->dtbusname = g_strdup_printf("pci@%" PRIx64, sphb->buid);
1361 namebuf = alloca(strlen(sphb->dtbusname) + 32);
1363 /* Initialize memory regions */
1364 sprintf(namebuf, "%s.mmio", sphb->dtbusname);
1365 memory_region_init(&sphb->memspace, OBJECT(sphb), namebuf, UINT64_MAX);
1367 sprintf(namebuf, "%s.mmio-alias", sphb->dtbusname);
1368 memory_region_init_alias(&sphb->memwindow, OBJECT(sphb),
1369 namebuf, &sphb->memspace,
1370 SPAPR_PCI_MEM_WIN_BUS_OFFSET, sphb->mem_win_size);
1371 memory_region_add_subregion(get_system_memory(), sphb->mem_win_addr,
1372 &sphb->memwindow);
1374 /* Initialize IO regions */
1375 sprintf(namebuf, "%s.io", sphb->dtbusname);
1376 memory_region_init(&sphb->iospace, OBJECT(sphb),
1377 namebuf, SPAPR_PCI_IO_WIN_SIZE);
1379 sprintf(namebuf, "%s.io-alias", sphb->dtbusname);
1380 memory_region_init_alias(&sphb->iowindow, OBJECT(sphb), namebuf,
1381 &sphb->iospace, 0, SPAPR_PCI_IO_WIN_SIZE);
1382 memory_region_add_subregion(get_system_memory(), sphb->io_win_addr,
1383 &sphb->iowindow);
1385 bus = pci_register_bus(dev, NULL,
1386 pci_spapr_set_irq, pci_spapr_map_irq, sphb,
1387 &sphb->memspace, &sphb->iospace,
1388 PCI_DEVFN(0, 0), PCI_NUM_PINS, TYPE_PCI_BUS);
1389 phb->bus = bus;
1390 qbus_set_hotplug_handler(BUS(phb->bus), DEVICE(sphb), NULL);
1393 * Initialize PHB address space.
1394 * By default there will be at least one subregion for default
1395 * 32bit DMA window.
1396 * Later the guest might want to create another DMA window
1397 * which will become another memory subregion.
1399 sprintf(namebuf, "%s.iommu-root", sphb->dtbusname);
1401 memory_region_init(&sphb->iommu_root, OBJECT(sphb),
1402 namebuf, UINT64_MAX);
1403 address_space_init(&sphb->iommu_as, &sphb->iommu_root,
1404 sphb->dtbusname);
1407 * As MSI/MSIX interrupts trigger by writing at MSI/MSIX vectors,
1408 * we need to allocate some memory to catch those writes coming
1409 * from msi_notify()/msix_notify().
1410 * As MSIMessage:addr is going to be the same and MSIMessage:data
1411 * is going to be a VIRQ number, 4 bytes of the MSI MR will only
1412 * be used.
1414 * For KVM we want to ensure that this memory is a full page so that
1415 * our memory slot is of page size granularity.
1417 #ifdef CONFIG_KVM
1418 if (kvm_enabled()) {
1419 msi_window_size = getpagesize();
1421 #endif
1423 memory_region_init_io(&sphb->msiwindow, NULL, &spapr_msi_ops, spapr,
1424 "msi", msi_window_size);
1425 memory_region_add_subregion(&sphb->iommu_root, SPAPR_PCI_MSI_WINDOW,
1426 &sphb->msiwindow);
1428 pci_setup_iommu(bus, spapr_pci_dma_iommu, sphb);
1430 pci_bus_set_route_irq_fn(bus, spapr_route_intx_pin_to_irq);
1432 QLIST_INSERT_HEAD(&spapr->phbs, sphb, list);
1434 /* Initialize the LSI table */
1435 for (i = 0; i < PCI_NUM_PINS; i++) {
1436 uint32_t irq;
1437 Error *local_err = NULL;
1439 irq = xics_spapr_alloc_block(spapr->xics, 0, 1, true, false,
1440 &local_err);
1441 if (local_err) {
1442 error_propagate(errp, local_err);
1443 error_prepend(errp, "can't allocate LSIs: ");
1444 return;
1447 sphb->lsi_table[i].irq = irq;
1450 /* allocate connectors for child PCI devices */
1451 if (sphb->dr_enabled) {
1452 for (i = 0; i < PCI_SLOT_MAX * 8; i++) {
1453 spapr_dr_connector_new(OBJECT(phb),
1454 SPAPR_DR_CONNECTOR_TYPE_PCI,
1455 (sphb->index << 16) | i);
1459 tcet = spapr_tce_new_table(DEVICE(sphb), sphb->dma_liobn);
1460 if (!tcet) {
1461 error_setg(errp, "Unable to create TCE table for %s",
1462 sphb->dtbusname);
1463 return;
1466 memory_region_add_subregion_overlap(&sphb->iommu_root, 0,
1467 spapr_tce_get_iommu(tcet), 0);
1469 sphb->msi = g_hash_table_new_full(g_int_hash, g_int_equal, g_free, g_free);
1472 static int spapr_phb_children_reset(Object *child, void *opaque)
1474 DeviceState *dev = (DeviceState *) object_dynamic_cast(child, TYPE_DEVICE);
1476 if (dev) {
1477 device_reset(dev);
1480 return 0;
1483 void spapr_phb_dma_reset(sPAPRPHBState *sphb)
1485 sPAPRTCETable *tcet = spapr_tce_find_by_liobn(sphb->dma_liobn);
1487 if (tcet && tcet->nb_table) {
1488 spapr_tce_table_disable(tcet);
1491 /* Register default 32bit DMA window */
1492 spapr_tce_table_enable(tcet, SPAPR_TCE_PAGE_SHIFT, sphb->dma_win_addr,
1493 sphb->dma_win_size >> SPAPR_TCE_PAGE_SHIFT);
1496 static void spapr_phb_reset(DeviceState *qdev)
1498 sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(qdev);
1500 spapr_phb_dma_reset(sphb);
1502 /* Reset the IOMMU state */
1503 object_child_foreach(OBJECT(qdev), spapr_phb_children_reset, NULL);
1505 if (spapr_phb_eeh_available(SPAPR_PCI_HOST_BRIDGE(qdev))) {
1506 spapr_phb_vfio_reset(qdev);
1510 static Property spapr_phb_properties[] = {
1511 DEFINE_PROP_UINT32("index", sPAPRPHBState, index, -1),
1512 DEFINE_PROP_UINT64("buid", sPAPRPHBState, buid, -1),
1513 DEFINE_PROP_UINT32("liobn", sPAPRPHBState, dma_liobn, -1),
1514 DEFINE_PROP_UINT64("mem_win_addr", sPAPRPHBState, mem_win_addr, -1),
1515 DEFINE_PROP_UINT64("mem_win_size", sPAPRPHBState, mem_win_size,
1516 SPAPR_PCI_MMIO_WIN_SIZE),
1517 DEFINE_PROP_UINT64("io_win_addr", sPAPRPHBState, io_win_addr, -1),
1518 DEFINE_PROP_UINT64("io_win_size", sPAPRPHBState, io_win_size,
1519 SPAPR_PCI_IO_WIN_SIZE),
1520 DEFINE_PROP_BOOL("dynamic-reconfiguration", sPAPRPHBState, dr_enabled,
1521 true),
1522 /* Default DMA window is 0..1GB */
1523 DEFINE_PROP_UINT64("dma_win_addr", sPAPRPHBState, dma_win_addr, 0),
1524 DEFINE_PROP_UINT64("dma_win_size", sPAPRPHBState, dma_win_size, 0x40000000),
1525 DEFINE_PROP_END_OF_LIST(),
1528 static const VMStateDescription vmstate_spapr_pci_lsi = {
1529 .name = "spapr_pci/lsi",
1530 .version_id = 1,
1531 .minimum_version_id = 1,
1532 .fields = (VMStateField[]) {
1533 VMSTATE_UINT32_EQUAL(irq, struct spapr_pci_lsi),
1535 VMSTATE_END_OF_LIST()
1539 static const VMStateDescription vmstate_spapr_pci_msi = {
1540 .name = "spapr_pci/msi",
1541 .version_id = 1,
1542 .minimum_version_id = 1,
1543 .fields = (VMStateField []) {
1544 VMSTATE_UINT32(key, spapr_pci_msi_mig),
1545 VMSTATE_UINT32(value.first_irq, spapr_pci_msi_mig),
1546 VMSTATE_UINT32(value.num, spapr_pci_msi_mig),
1547 VMSTATE_END_OF_LIST()
1551 static void spapr_pci_pre_save(void *opaque)
1553 sPAPRPHBState *sphb = opaque;
1554 GHashTableIter iter;
1555 gpointer key, value;
1556 int i;
1558 g_free(sphb->msi_devs);
1559 sphb->msi_devs = NULL;
1560 sphb->msi_devs_num = g_hash_table_size(sphb->msi);
1561 if (!sphb->msi_devs_num) {
1562 return;
1564 sphb->msi_devs = g_malloc(sphb->msi_devs_num * sizeof(spapr_pci_msi_mig));
1566 g_hash_table_iter_init(&iter, sphb->msi);
1567 for (i = 0; g_hash_table_iter_next(&iter, &key, &value); ++i) {
1568 sphb->msi_devs[i].key = *(uint32_t *) key;
1569 sphb->msi_devs[i].value = *(spapr_pci_msi *) value;
1573 static int spapr_pci_post_load(void *opaque, int version_id)
1575 sPAPRPHBState *sphb = opaque;
1576 gpointer key, value;
1577 int i;
1579 for (i = 0; i < sphb->msi_devs_num; ++i) {
1580 key = g_memdup(&sphb->msi_devs[i].key,
1581 sizeof(sphb->msi_devs[i].key));
1582 value = g_memdup(&sphb->msi_devs[i].value,
1583 sizeof(sphb->msi_devs[i].value));
1584 g_hash_table_insert(sphb->msi, key, value);
1586 g_free(sphb->msi_devs);
1587 sphb->msi_devs = NULL;
1588 sphb->msi_devs_num = 0;
1590 return 0;
1593 static const VMStateDescription vmstate_spapr_pci = {
1594 .name = "spapr_pci",
1595 .version_id = 2,
1596 .minimum_version_id = 2,
1597 .pre_save = spapr_pci_pre_save,
1598 .post_load = spapr_pci_post_load,
1599 .fields = (VMStateField[]) {
1600 VMSTATE_UINT64_EQUAL(buid, sPAPRPHBState),
1601 VMSTATE_UINT32_EQUAL(dma_liobn, sPAPRPHBState),
1602 VMSTATE_UINT64_EQUAL(mem_win_addr, sPAPRPHBState),
1603 VMSTATE_UINT64_EQUAL(mem_win_size, sPAPRPHBState),
1604 VMSTATE_UINT64_EQUAL(io_win_addr, sPAPRPHBState),
1605 VMSTATE_UINT64_EQUAL(io_win_size, sPAPRPHBState),
1606 VMSTATE_STRUCT_ARRAY(lsi_table, sPAPRPHBState, PCI_NUM_PINS, 0,
1607 vmstate_spapr_pci_lsi, struct spapr_pci_lsi),
1608 VMSTATE_INT32(msi_devs_num, sPAPRPHBState),
1609 VMSTATE_STRUCT_VARRAY_ALLOC(msi_devs, sPAPRPHBState, msi_devs_num, 0,
1610 vmstate_spapr_pci_msi, spapr_pci_msi_mig),
1611 VMSTATE_END_OF_LIST()
1615 static const char *spapr_phb_root_bus_path(PCIHostState *host_bridge,
1616 PCIBus *rootbus)
1618 sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(host_bridge);
1620 return sphb->dtbusname;
1623 static void spapr_phb_class_init(ObjectClass *klass, void *data)
1625 PCIHostBridgeClass *hc = PCI_HOST_BRIDGE_CLASS(klass);
1626 DeviceClass *dc = DEVICE_CLASS(klass);
1627 HotplugHandlerClass *hp = HOTPLUG_HANDLER_CLASS(klass);
1629 hc->root_bus_path = spapr_phb_root_bus_path;
1630 dc->realize = spapr_phb_realize;
1631 dc->props = spapr_phb_properties;
1632 dc->reset = spapr_phb_reset;
1633 dc->vmsd = &vmstate_spapr_pci;
1634 set_bit(DEVICE_CATEGORY_BRIDGE, dc->categories);
1635 hp->plug = spapr_phb_hot_plug_child;
1636 hp->unplug = spapr_phb_hot_unplug_child;
1639 static const TypeInfo spapr_phb_info = {
1640 .name = TYPE_SPAPR_PCI_HOST_BRIDGE,
1641 .parent = TYPE_PCI_HOST_BRIDGE,
1642 .instance_size = sizeof(sPAPRPHBState),
1643 .class_init = spapr_phb_class_init,
1644 .interfaces = (InterfaceInfo[]) {
1645 { TYPE_HOTPLUG_HANDLER },
1650 PCIHostState *spapr_create_phb(sPAPRMachineState *spapr, int index)
1652 DeviceState *dev;
1654 dev = qdev_create(NULL, TYPE_SPAPR_PCI_HOST_BRIDGE);
1655 qdev_prop_set_uint32(dev, "index", index);
1656 qdev_init_nofail(dev);
1658 return PCI_HOST_BRIDGE(dev);
1661 typedef struct sPAPRFDT {
1662 void *fdt;
1663 int node_off;
1664 sPAPRPHBState *sphb;
1665 } sPAPRFDT;
1667 static void spapr_populate_pci_devices_dt(PCIBus *bus, PCIDevice *pdev,
1668 void *opaque)
1670 PCIBus *sec_bus;
1671 sPAPRFDT *p = opaque;
1672 int offset;
1673 sPAPRFDT s_fdt;
1675 offset = spapr_create_pci_child_dt(p->sphb, pdev, p->fdt, p->node_off);
1676 if (!offset) {
1677 error_report("Failed to create pci child device tree node");
1678 return;
1681 if ((pci_default_read_config(pdev, PCI_HEADER_TYPE, 1) !=
1682 PCI_HEADER_TYPE_BRIDGE)) {
1683 return;
1686 sec_bus = pci_bridge_get_sec_bus(PCI_BRIDGE(pdev));
1687 if (!sec_bus) {
1688 return;
1691 s_fdt.fdt = p->fdt;
1692 s_fdt.node_off = offset;
1693 s_fdt.sphb = p->sphb;
1694 pci_for_each_device(sec_bus, pci_bus_num(sec_bus),
1695 spapr_populate_pci_devices_dt,
1696 &s_fdt);
1699 static void spapr_phb_pci_enumerate_bridge(PCIBus *bus, PCIDevice *pdev,
1700 void *opaque)
1702 unsigned int *bus_no = opaque;
1703 unsigned int primary = *bus_no;
1704 unsigned int subordinate = 0xff;
1705 PCIBus *sec_bus = NULL;
1707 if ((pci_default_read_config(pdev, PCI_HEADER_TYPE, 1) !=
1708 PCI_HEADER_TYPE_BRIDGE)) {
1709 return;
1712 (*bus_no)++;
1713 pci_default_write_config(pdev, PCI_PRIMARY_BUS, primary, 1);
1714 pci_default_write_config(pdev, PCI_SECONDARY_BUS, *bus_no, 1);
1715 pci_default_write_config(pdev, PCI_SUBORDINATE_BUS, *bus_no, 1);
1717 sec_bus = pci_bridge_get_sec_bus(PCI_BRIDGE(pdev));
1718 if (!sec_bus) {
1719 return;
1722 pci_default_write_config(pdev, PCI_SUBORDINATE_BUS, subordinate, 1);
1723 pci_for_each_device(sec_bus, pci_bus_num(sec_bus),
1724 spapr_phb_pci_enumerate_bridge, bus_no);
1725 pci_default_write_config(pdev, PCI_SUBORDINATE_BUS, *bus_no, 1);
1728 static void spapr_phb_pci_enumerate(sPAPRPHBState *phb)
1730 PCIBus *bus = PCI_HOST_BRIDGE(phb)->bus;
1731 unsigned int bus_no = 0;
1733 pci_for_each_device(bus, pci_bus_num(bus),
1734 spapr_phb_pci_enumerate_bridge,
1735 &bus_no);
1739 int spapr_populate_pci_dt(sPAPRPHBState *phb,
1740 uint32_t xics_phandle,
1741 void *fdt)
1743 int bus_off, i, j, ret;
1744 char nodename[FDT_NAME_MAX];
1745 uint32_t bus_range[] = { cpu_to_be32(0), cpu_to_be32(0xff) };
1746 const uint64_t mmiosize = memory_region_size(&phb->memwindow);
1747 const uint64_t w32max = (1ULL << 32) - SPAPR_PCI_MEM_WIN_BUS_OFFSET;
1748 const uint64_t w32size = MIN(w32max, mmiosize);
1749 const uint64_t w64size = (mmiosize > w32size) ? (mmiosize - w32size) : 0;
1750 struct {
1751 uint32_t hi;
1752 uint64_t child;
1753 uint64_t parent;
1754 uint64_t size;
1755 } QEMU_PACKED ranges[] = {
1757 cpu_to_be32(b_ss(1)), cpu_to_be64(0),
1758 cpu_to_be64(phb->io_win_addr),
1759 cpu_to_be64(memory_region_size(&phb->iospace)),
1762 cpu_to_be32(b_ss(2)), cpu_to_be64(SPAPR_PCI_MEM_WIN_BUS_OFFSET),
1763 cpu_to_be64(phb->mem_win_addr),
1764 cpu_to_be64(w32size),
1767 cpu_to_be32(b_ss(3)), cpu_to_be64(1ULL << 32),
1768 cpu_to_be64(phb->mem_win_addr + w32size),
1769 cpu_to_be64(w64size)
1772 const unsigned sizeof_ranges = (w64size ? 3 : 2) * sizeof(ranges[0]);
1773 uint64_t bus_reg[] = { cpu_to_be64(phb->buid), 0 };
1774 uint32_t interrupt_map_mask[] = {
1775 cpu_to_be32(b_ddddd(-1)|b_fff(0)), 0x0, 0x0, cpu_to_be32(-1)};
1776 uint32_t interrupt_map[PCI_SLOT_MAX * PCI_NUM_PINS][7];
1777 sPAPRTCETable *tcet;
1778 PCIBus *bus = PCI_HOST_BRIDGE(phb)->bus;
1779 sPAPRFDT s_fdt;
1781 /* Start populating the FDT */
1782 snprintf(nodename, FDT_NAME_MAX, "pci@%" PRIx64, phb->buid);
1783 bus_off = fdt_add_subnode(fdt, 0, nodename);
1784 if (bus_off < 0) {
1785 return bus_off;
1788 /* Write PHB properties */
1789 _FDT(fdt_setprop_string(fdt, bus_off, "device_type", "pci"));
1790 _FDT(fdt_setprop_string(fdt, bus_off, "compatible", "IBM,Logical_PHB"));
1791 _FDT(fdt_setprop_cell(fdt, bus_off, "#address-cells", 0x3));
1792 _FDT(fdt_setprop_cell(fdt, bus_off, "#size-cells", 0x2));
1793 _FDT(fdt_setprop_cell(fdt, bus_off, "#interrupt-cells", 0x1));
1794 _FDT(fdt_setprop(fdt, bus_off, "used-by-rtas", NULL, 0));
1795 _FDT(fdt_setprop(fdt, bus_off, "bus-range", &bus_range, sizeof(bus_range)));
1796 _FDT(fdt_setprop(fdt, bus_off, "ranges", &ranges, sizeof_ranges));
1797 _FDT(fdt_setprop(fdt, bus_off, "reg", &bus_reg, sizeof(bus_reg)));
1798 _FDT(fdt_setprop_cell(fdt, bus_off, "ibm,pci-config-space-type", 0x1));
1799 _FDT(fdt_setprop_cell(fdt, bus_off, "ibm,pe-total-#msi", XICS_IRQS_SPAPR));
1801 /* Build the interrupt-map, this must matches what is done
1802 * in pci_spapr_map_irq
1804 _FDT(fdt_setprop(fdt, bus_off, "interrupt-map-mask",
1805 &interrupt_map_mask, sizeof(interrupt_map_mask)));
1806 for (i = 0; i < PCI_SLOT_MAX; i++) {
1807 for (j = 0; j < PCI_NUM_PINS; j++) {
1808 uint32_t *irqmap = interrupt_map[i*PCI_NUM_PINS + j];
1809 int lsi_num = pci_spapr_swizzle(i, j);
1811 irqmap[0] = cpu_to_be32(b_ddddd(i)|b_fff(0));
1812 irqmap[1] = 0;
1813 irqmap[2] = 0;
1814 irqmap[3] = cpu_to_be32(j+1);
1815 irqmap[4] = cpu_to_be32(xics_phandle);
1816 irqmap[5] = cpu_to_be32(phb->lsi_table[lsi_num].irq);
1817 irqmap[6] = cpu_to_be32(0x8);
1820 /* Write interrupt map */
1821 _FDT(fdt_setprop(fdt, bus_off, "interrupt-map", &interrupt_map,
1822 sizeof(interrupt_map)));
1824 tcet = spapr_tce_find_by_liobn(phb->dma_liobn);
1825 if (!tcet) {
1826 return -1;
1828 spapr_dma_dt(fdt, bus_off, "ibm,dma-window",
1829 tcet->liobn, tcet->bus_offset,
1830 tcet->nb_table << tcet->page_shift);
1832 /* Walk the bridges and program the bus numbers*/
1833 spapr_phb_pci_enumerate(phb);
1834 _FDT(fdt_setprop_cell(fdt, bus_off, "qemu,phb-enumerated", 0x1));
1836 /* Populate tree nodes with PCI devices attached */
1837 s_fdt.fdt = fdt;
1838 s_fdt.node_off = bus_off;
1839 s_fdt.sphb = phb;
1840 pci_for_each_device(bus, pci_bus_num(bus),
1841 spapr_populate_pci_devices_dt,
1842 &s_fdt);
1844 ret = spapr_drc_populate_dt(fdt, bus_off, OBJECT(phb),
1845 SPAPR_DR_CONNECTOR_TYPE_PCI);
1846 if (ret) {
1847 return ret;
1850 return 0;
1853 void spapr_pci_rtas_init(void)
1855 spapr_rtas_register(RTAS_READ_PCI_CONFIG, "read-pci-config",
1856 rtas_read_pci_config);
1857 spapr_rtas_register(RTAS_WRITE_PCI_CONFIG, "write-pci-config",
1858 rtas_write_pci_config);
1859 spapr_rtas_register(RTAS_IBM_READ_PCI_CONFIG, "ibm,read-pci-config",
1860 rtas_ibm_read_pci_config);
1861 spapr_rtas_register(RTAS_IBM_WRITE_PCI_CONFIG, "ibm,write-pci-config",
1862 rtas_ibm_write_pci_config);
1863 if (msi_nonbroken) {
1864 spapr_rtas_register(RTAS_IBM_QUERY_INTERRUPT_SOURCE_NUMBER,
1865 "ibm,query-interrupt-source-number",
1866 rtas_ibm_query_interrupt_source_number);
1867 spapr_rtas_register(RTAS_IBM_CHANGE_MSI, "ibm,change-msi",
1868 rtas_ibm_change_msi);
1871 spapr_rtas_register(RTAS_IBM_SET_EEH_OPTION,
1872 "ibm,set-eeh-option",
1873 rtas_ibm_set_eeh_option);
1874 spapr_rtas_register(RTAS_IBM_GET_CONFIG_ADDR_INFO2,
1875 "ibm,get-config-addr-info2",
1876 rtas_ibm_get_config_addr_info2);
1877 spapr_rtas_register(RTAS_IBM_READ_SLOT_RESET_STATE2,
1878 "ibm,read-slot-reset-state2",
1879 rtas_ibm_read_slot_reset_state2);
1880 spapr_rtas_register(RTAS_IBM_SET_SLOT_RESET,
1881 "ibm,set-slot-reset",
1882 rtas_ibm_set_slot_reset);
1883 spapr_rtas_register(RTAS_IBM_CONFIGURE_PE,
1884 "ibm,configure-pe",
1885 rtas_ibm_configure_pe);
1886 spapr_rtas_register(RTAS_IBM_SLOT_ERROR_DETAIL,
1887 "ibm,slot-error-detail",
1888 rtas_ibm_slot_error_detail);
1891 static void spapr_pci_register_types(void)
1893 type_register_static(&spapr_phb_info);
1896 type_init(spapr_pci_register_types)
1898 static int spapr_switch_one_vga(DeviceState *dev, void *opaque)
1900 bool be = *(bool *)opaque;
1902 if (object_dynamic_cast(OBJECT(dev), "VGA")
1903 || object_dynamic_cast(OBJECT(dev), "secondary-vga")) {
1904 object_property_set_bool(OBJECT(dev), be, "big-endian-framebuffer",
1905 &error_abort);
1907 return 0;
1910 void spapr_pci_switch_vga(bool big_endian)
1912 sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
1913 sPAPRPHBState *sphb;
1916 * For backward compatibility with existing guests, we switch
1917 * the endianness of the VGA controller when changing the guest
1918 * interrupt mode
1920 QLIST_FOREACH(sphb, &spapr->phbs, list) {
1921 BusState *bus = &PCI_HOST_BRIDGE(sphb)->bus->qbus;
1922 qbus_walk_children(bus, spapr_switch_one_vga, NULL, NULL, NULL,
1923 &big_endian);