3 ** File: fmopl.c -- software implementation of FM sound generator
5 ** Copyright (C) 1999,2000 Tatsuyuki Satoh , MultiArcadeMachineEmurator development
17 /* This version of fmopl.c is a fork of the MAME one, relicensed under the LGPL.
19 * This library is free software; you can redistribute it and/or
20 * modify it under the terms of the GNU Lesser General Public
21 * License as published by the Free Software Foundation; either
22 * version 2.1 of the License, or (at your option) any later version.
24 * This library is distributed in the hope that it will be useful,
25 * but WITHOUT ANY WARRANTY; without even the implied warranty of
26 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
27 * Lesser General Public License for more details.
29 * You should have received a copy of the GNU Lesser General Public
30 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
33 #include "qemu/osdep.h"
35 //#include "driver.h" /* use M.A.M.E. */
38 #define PI 3.14159265358979323846
41 /* -------------------- for debug --------------------- */
42 /* #define OPL_OUTPUT_LOG */
44 static FILE *opl_dbg_fp
= NULL
;
45 static FM_OPL
*opl_dbg_opl
[16];
46 static int opl_dbg_maxchip
,opl_dbg_chip
;
49 /* -------------------- preliminary define section --------------------- */
50 /* attack/decay rate time rate */
51 #define OPL_ARRATE 141280 /* RATE 4 = 2826.24ms @ 3.6MHz */
52 #define OPL_DRRATE 1956000 /* RATE 4 = 39280.64ms @ 3.6MHz */
54 #define DELTAT_MIXING_LEVEL (1) /* DELTA-T ADPCM MIXING LEVEL */
56 #define FREQ_BITS 24 /* frequency turn */
58 /* counter bits = 20 , octerve 7 */
59 #define FREQ_RATE (1<<(FREQ_BITS-20))
60 #define TL_BITS (FREQ_BITS+2)
62 /* final output shift , limit minimum and maximum */
63 #define OPL_OUTSB (TL_BITS+3-16) /* OPL output final shift 16bit */
64 #define OPL_MAXOUT (0x7fff<<OPL_OUTSB)
65 #define OPL_MINOUT (-0x8000<<OPL_OUTSB)
67 /* -------------------- quality selection --------------------- */
70 /* used static memory = SIN_ENT * 4 (byte) */
73 /* output level entries (envelope,sinwave) */
74 /* envelope counter lower bits */
76 /* envelope output entries */
78 /* used dynamic memory = EG_ENT*4*4(byte)or EG_ENT*6*4(byte) */
79 /* used static memory = EG_ENT*4 (byte) */
81 #define EG_OFF ((2*EG_ENT)<<ENV_BITS) /* OFF */
83 #define EG_DST (EG_ENT<<ENV_BITS) /* DECAY START */
85 #define EG_AST 0 /* ATTACK START */
87 #define EG_STEP (96.0/EG_ENT) /* OPL is 0.1875 dB step */
89 /* LFO table entries */
91 #define VIB_SHIFT (32-9)
93 #define AMS_SHIFT (32-9)
97 /* -------------------- local defines , macros --------------------- */
99 /* register number to channel number , slot offset */
104 #define ENV_MOD_RR 0x00
105 #define ENV_MOD_DR 0x01
106 #define ENV_MOD_AR 0x02
108 /* -------------------- tables --------------------- */
109 static const int slot_array
[32]=
111 0, 2, 4, 1, 3, 5,-1,-1,
112 6, 8,10, 7, 9,11,-1,-1,
113 12,14,16,13,15,17,-1,-1,
114 -1,-1,-1,-1,-1,-1,-1,-1
117 /* key scale level */
118 /* table is 3dB/OCT , DV converts this in TL step at 6dB/OCT */
119 #define DV (EG_STEP/2)
120 static const uint32_t KSL_TABLE
[8*16]=
123 0.000/DV
, 0.000/DV
, 0.000/DV
, 0.000/DV
,
124 0.000/DV
, 0.000/DV
, 0.000/DV
, 0.000/DV
,
125 0.000/DV
, 0.000/DV
, 0.000/DV
, 0.000/DV
,
126 0.000/DV
, 0.000/DV
, 0.000/DV
, 0.000/DV
,
128 0.000/DV
, 0.000/DV
, 0.000/DV
, 0.000/DV
,
129 0.000/DV
, 0.000/DV
, 0.000/DV
, 0.000/DV
,
130 0.000/DV
, 0.750/DV
, 1.125/DV
, 1.500/DV
,
131 1.875/DV
, 2.250/DV
, 2.625/DV
, 3.000/DV
,
133 0.000/DV
, 0.000/DV
, 0.000/DV
, 0.000/DV
,
134 0.000/DV
, 1.125/DV
, 1.875/DV
, 2.625/DV
,
135 3.000/DV
, 3.750/DV
, 4.125/DV
, 4.500/DV
,
136 4.875/DV
, 5.250/DV
, 5.625/DV
, 6.000/DV
,
138 0.000/DV
, 0.000/DV
, 0.000/DV
, 1.875/DV
,
139 3.000/DV
, 4.125/DV
, 4.875/DV
, 5.625/DV
,
140 6.000/DV
, 6.750/DV
, 7.125/DV
, 7.500/DV
,
141 7.875/DV
, 8.250/DV
, 8.625/DV
, 9.000/DV
,
143 0.000/DV
, 0.000/DV
, 3.000/DV
, 4.875/DV
,
144 6.000/DV
, 7.125/DV
, 7.875/DV
, 8.625/DV
,
145 9.000/DV
, 9.750/DV
,10.125/DV
,10.500/DV
,
146 10.875/DV
,11.250/DV
,11.625/DV
,12.000/DV
,
148 0.000/DV
, 3.000/DV
, 6.000/DV
, 7.875/DV
,
149 9.000/DV
,10.125/DV
,10.875/DV
,11.625/DV
,
150 12.000/DV
,12.750/DV
,13.125/DV
,13.500/DV
,
151 13.875/DV
,14.250/DV
,14.625/DV
,15.000/DV
,
153 0.000/DV
, 6.000/DV
, 9.000/DV
,10.875/DV
,
154 12.000/DV
,13.125/DV
,13.875/DV
,14.625/DV
,
155 15.000/DV
,15.750/DV
,16.125/DV
,16.500/DV
,
156 16.875/DV
,17.250/DV
,17.625/DV
,18.000/DV
,
158 0.000/DV
, 9.000/DV
,12.000/DV
,13.875/DV
,
159 15.000/DV
,16.125/DV
,16.875/DV
,17.625/DV
,
160 18.000/DV
,18.750/DV
,19.125/DV
,19.500/DV
,
161 19.875/DV
,20.250/DV
,20.625/DV
,21.000/DV
165 /* sustain lebel table (3db per step) */
166 /* 0 - 15: 0, 3, 6, 9,12,15,18,21,24,27,30,33,36,39,42,93 (dB)*/
167 #define SC(db) (db*((3/EG_STEP)*(1<<ENV_BITS)))+EG_DST
168 static const int32_t SL_TABLE
[16]={
169 SC( 0),SC( 1),SC( 2),SC(3 ),SC(4 ),SC(5 ),SC(6 ),SC( 7),
170 SC( 8),SC( 9),SC(10),SC(11),SC(12),SC(13),SC(14),SC(31)
174 #define TL_MAX (EG_ENT*2) /* limit(tl + ksr + envelope) + sinwave */
175 /* TotalLevel : 48 24 12 6 3 1.5 0.75 (dB) */
176 /* TL_TABLE[ 0 to TL_MAX ] : plus section */
177 /* TL_TABLE[ TL_MAX to TL_MAX+TL_MAX-1 ] : minus section */
178 static int32_t *TL_TABLE
;
180 /* pointers to TL_TABLE with sinwave output offset */
181 static int32_t **SIN_TABLE
;
184 static int32_t *AMS_TABLE
;
185 static int32_t *VIB_TABLE
;
187 /* envelope output curve table */
188 /* attack + decay + OFF */
189 static int32_t ENV_CURVE
[2*EG_ENT
+1];
193 static const uint32_t MUL_TABLE
[16]= {
194 /* 1/2, 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15 */
195 0.50*ML
, 1.00*ML
, 2.00*ML
, 3.00*ML
, 4.00*ML
, 5.00*ML
, 6.00*ML
, 7.00*ML
,
196 8.00*ML
, 9.00*ML
,10.00*ML
,10.00*ML
,12.00*ML
,12.00*ML
,15.00*ML
,15.00*ML
200 /* dummy attack / decay rate ( when rate == 0 ) */
201 static int32_t RATE_0
[16]=
202 {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
204 /* -------------------- static state --------------------- */
206 /* lock level of common table */
207 static int num_lock
= 0;
210 static void *cur_chip
= NULL
; /* current chip point */
211 /* currenct chip state */
212 /* static OPLSAMPLE *bufL,*bufR; */
215 static OPL_SLOT
*SLOT7_1
, *SLOT7_2
, *SLOT8_1
, *SLOT8_2
;
217 static int32_t outd
[1];
220 static int32_t *ams_table
;
221 static int32_t *vib_table
;
222 static int32_t amsIncr
;
223 static int32_t vibIncr
;
224 static int32_t feedback2
; /* connect for SLOT 2 */
226 /* log output level */
227 #define LOG_ERR 3 /* ERROR */
228 #define LOG_WAR 2 /* WARNING */
229 #define LOG_INF 1 /* INFORMATION */
231 //#define LOG_LEVEL LOG_INF
232 #define LOG_LEVEL LOG_ERR
234 //#define LOG(n,x) if( (n)>=LOG_LEVEL ) logerror x
237 /* --------------------- subroutines --------------------- */
239 static inline int Limit( int val
, int max
, int min
) {
242 else if ( val
< min
)
248 /* status set and IRQ handling */
249 static inline void OPL_STATUS_SET(FM_OPL
*OPL
,int flag
)
251 /* set status flag */
253 if(!(OPL
->status
& 0x80))
255 if(OPL
->status
& OPL
->statusmask
)
262 /* status reset and IRQ handling */
263 static inline void OPL_STATUS_RESET(FM_OPL
*OPL
,int flag
)
265 /* reset status flag */
267 if((OPL
->status
& 0x80))
269 if (!(OPL
->status
& OPL
->statusmask
) )
277 static inline void OPL_STATUSMASK_SET(FM_OPL
*OPL
,int flag
)
279 OPL
->statusmask
= flag
;
280 /* IRQ handling check */
281 OPL_STATUS_SET(OPL
,0);
282 OPL_STATUS_RESET(OPL
,0);
285 /* ----- key on ----- */
286 static inline void OPL_KEYON(OPL_SLOT
*SLOT
)
288 /* sin wave restart */
291 SLOT
->evm
= ENV_MOD_AR
;
292 SLOT
->evs
= SLOT
->evsa
;
296 /* ----- key off ----- */
297 static inline void OPL_KEYOFF(OPL_SLOT
*SLOT
)
299 if( SLOT
->evm
> ENV_MOD_RR
)
301 /* set envelope counter from envleope output */
302 SLOT
->evm
= ENV_MOD_RR
;
303 if( !(SLOT
->evc
&EG_DST
) )
304 //SLOT->evc = (ENV_CURVE[SLOT->evc>>ENV_BITS]<<ENV_BITS) + EG_DST;
307 SLOT
->evs
= SLOT
->evsr
;
311 /* ---------- calcrate Envelope Generator & Phase Generator ---------- */
312 /* return : envelope output */
313 static inline uint32_t OPL_CALC_SLOT( OPL_SLOT
*SLOT
)
315 /* calcrate envelope generator */
316 if( (SLOT
->evc
+=SLOT
->evs
) >= SLOT
->eve
)
319 case ENV_MOD_AR
: /* ATTACK -> DECAY1 */
321 SLOT
->evm
= ENV_MOD_DR
;
323 SLOT
->eve
= SLOT
->SL
;
324 SLOT
->evs
= SLOT
->evsd
;
326 case ENV_MOD_DR
: /* DECAY -> SL or RR */
327 SLOT
->evc
= SLOT
->SL
;
335 SLOT
->evm
= ENV_MOD_RR
;
336 SLOT
->evs
= SLOT
->evsr
;
339 case ENV_MOD_RR
: /* RR -> OFF */
341 SLOT
->eve
= EG_OFF
+1;
346 /* calcrate envelope */
347 return SLOT
->TLL
+ENV_CURVE
[SLOT
->evc
>>ENV_BITS
]+(SLOT
->ams
? ams
: 0);
350 /* set algorithm connection */
351 static void set_algorithm( OPL_CH
*CH
)
353 int32_t *carrier
= &outd
[0];
354 CH
->connect1
= CH
->CON
? carrier
: &feedback2
;
355 CH
->connect2
= carrier
;
358 /* ---------- frequency counter for operater update ---------- */
359 static inline void CALC_FCSLOT(OPL_CH
*CH
,OPL_SLOT
*SLOT
)
363 /* frequency step counter */
364 SLOT
->Incr
= CH
->fc
* SLOT
->mul
;
365 ksr
= CH
->kcode
>> SLOT
->KSR
;
367 if( SLOT
->ksr
!= ksr
)
370 /* attack , decay rate recalcration */
371 SLOT
->evsa
= SLOT
->AR
[ksr
];
372 SLOT
->evsd
= SLOT
->DR
[ksr
];
373 SLOT
->evsr
= SLOT
->RR
[ksr
];
375 SLOT
->TLL
= SLOT
->TL
+ (CH
->ksl_base
>>SLOT
->ksl
);
378 /* set multi,am,vib,EG-TYP,KSR,mul */
379 static inline void set_mul(FM_OPL
*OPL
,int slot
,int v
)
381 OPL_CH
*CH
= &OPL
->P_CH
[slot
/2];
382 OPL_SLOT
*SLOT
= &CH
->SLOT
[slot
&1];
384 SLOT
->mul
= MUL_TABLE
[v
&0x0f];
385 SLOT
->KSR
= (v
&0x10) ? 0 : 2;
386 SLOT
->eg_typ
= (v
&0x20)>>5;
387 SLOT
->vib
= (v
&0x40);
388 SLOT
->ams
= (v
&0x80);
389 CALC_FCSLOT(CH
,SLOT
);
393 static inline void set_ksl_tl(FM_OPL
*OPL
,int slot
,int v
)
395 OPL_CH
*CH
= &OPL
->P_CH
[slot
/2];
396 OPL_SLOT
*SLOT
= &CH
->SLOT
[slot
&1];
397 int ksl
= v
>>6; /* 0 / 1.5 / 3 / 6 db/OCT */
399 SLOT
->ksl
= ksl
? 3-ksl
: 31;
400 SLOT
->TL
= (v
&0x3f)*(0.75/EG_STEP
); /* 0.75db step */
402 if( !(OPL
->mode
&0x80) )
403 { /* not CSM latch total level */
404 SLOT
->TLL
= SLOT
->TL
+ (CH
->ksl_base
>>SLOT
->ksl
);
408 /* set attack rate & decay rate */
409 static inline void set_ar_dr(FM_OPL
*OPL
,int slot
,int v
)
411 OPL_CH
*CH
= &OPL
->P_CH
[slot
/2];
412 OPL_SLOT
*SLOT
= &CH
->SLOT
[slot
&1];
416 SLOT
->AR
= ar
? &OPL
->AR_TABLE
[ar
<<2] : RATE_0
;
417 SLOT
->evsa
= SLOT
->AR
[SLOT
->ksr
];
418 if( SLOT
->evm
== ENV_MOD_AR
) SLOT
->evs
= SLOT
->evsa
;
420 SLOT
->DR
= dr
? &OPL
->DR_TABLE
[dr
<<2] : RATE_0
;
421 SLOT
->evsd
= SLOT
->DR
[SLOT
->ksr
];
422 if( SLOT
->evm
== ENV_MOD_DR
) SLOT
->evs
= SLOT
->evsd
;
425 /* set sustain level & release rate */
426 static inline void set_sl_rr(FM_OPL
*OPL
,int slot
,int v
)
428 OPL_CH
*CH
= &OPL
->P_CH
[slot
/2];
429 OPL_SLOT
*SLOT
= &CH
->SLOT
[slot
&1];
433 SLOT
->SL
= SL_TABLE
[sl
];
434 if( SLOT
->evm
== ENV_MOD_DR
) SLOT
->eve
= SLOT
->SL
;
435 SLOT
->RR
= &OPL
->DR_TABLE
[rr
<<2];
436 SLOT
->evsr
= SLOT
->RR
[SLOT
->ksr
];
437 if( SLOT
->evm
== ENV_MOD_RR
) SLOT
->evs
= SLOT
->evsr
;
440 /* operator output calcrator */
441 #define OP_OUT(slot,env,con) slot->wavetable[((slot->Cnt+con)/(0x1000000/SIN_ENT))&(SIN_ENT-1)][env]
442 /* ---------- calcrate one of channel ---------- */
443 static inline void OPL_CALC_CH( OPL_CH
*CH
)
450 SLOT
= &CH
->SLOT
[SLOT1
];
451 env_out
=OPL_CALC_SLOT(SLOT
);
452 if( env_out
< EG_ENT
-1 )
455 if(SLOT
->vib
) SLOT
->Cnt
+= (SLOT
->Incr
*vib
/VIB_RATE
);
456 else SLOT
->Cnt
+= SLOT
->Incr
;
460 int feedback1
= (CH
->op1_out
[0]+CH
->op1_out
[1])>>CH
->FB
;
461 CH
->op1_out
[1] = CH
->op1_out
[0];
462 *CH
->connect1
+= CH
->op1_out
[0] = OP_OUT(SLOT
,env_out
,feedback1
);
466 *CH
->connect1
+= OP_OUT(SLOT
,env_out
,0);
470 CH
->op1_out
[1] = CH
->op1_out
[0];
474 SLOT
= &CH
->SLOT
[SLOT2
];
475 env_out
=OPL_CALC_SLOT(SLOT
);
476 if( env_out
< EG_ENT
-1 )
479 if(SLOT
->vib
) SLOT
->Cnt
+= (SLOT
->Incr
*vib
/VIB_RATE
);
480 else SLOT
->Cnt
+= SLOT
->Incr
;
482 outd
[0] += OP_OUT(SLOT
,env_out
, feedback2
);
486 /* ---------- calcrate rhythm block ---------- */
487 #define WHITE_NOISE_db 6.0
488 static inline void OPL_CALC_RH( OPL_CH
*CH
)
490 uint32_t env_tam
,env_sd
,env_top
,env_hh
;
491 int whitenoise
= (rand()&1)*(WHITE_NOISE_db
/EG_STEP
);
497 /* BD : same as FM serial mode and output level is large */
500 SLOT
= &CH
[6].SLOT
[SLOT1
];
501 env_out
=OPL_CALC_SLOT(SLOT
);
502 if( env_out
< EG_ENT
-1 )
505 if(SLOT
->vib
) SLOT
->Cnt
+= (SLOT
->Incr
*vib
/VIB_RATE
);
506 else SLOT
->Cnt
+= SLOT
->Incr
;
510 int feedback1
= (CH
[6].op1_out
[0]+CH
[6].op1_out
[1])>>CH
[6].FB
;
511 CH
[6].op1_out
[1] = CH
[6].op1_out
[0];
512 feedback2
= CH
[6].op1_out
[0] = OP_OUT(SLOT
,env_out
,feedback1
);
516 feedback2
= OP_OUT(SLOT
,env_out
,0);
521 CH
[6].op1_out
[1] = CH
[6].op1_out
[0];
522 CH
[6].op1_out
[0] = 0;
525 SLOT
= &CH
[6].SLOT
[SLOT2
];
526 env_out
=OPL_CALC_SLOT(SLOT
);
527 if( env_out
< EG_ENT
-1 )
530 if(SLOT
->vib
) SLOT
->Cnt
+= (SLOT
->Incr
*vib
/VIB_RATE
);
531 else SLOT
->Cnt
+= SLOT
->Incr
;
533 outd
[0] += OP_OUT(SLOT
,env_out
, feedback2
)*2;
536 // SD (17) = mul14[fnum7] + white noise
537 // TAM (15) = mul15[fnum8]
538 // TOP (18) = fnum6(mul18[fnum8]+whitenoise)
539 // HH (14) = fnum7(mul18[fnum8]+whitenoise) + white noise
540 env_sd
=OPL_CALC_SLOT(SLOT7_2
) + whitenoise
;
541 env_tam
=OPL_CALC_SLOT(SLOT8_1
);
542 env_top
=OPL_CALC_SLOT(SLOT8_2
);
543 env_hh
=OPL_CALC_SLOT(SLOT7_1
) + whitenoise
;
546 if(SLOT7_1
->vib
) SLOT7_1
->Cnt
+= (2*SLOT7_1
->Incr
*vib
/VIB_RATE
);
547 else SLOT7_1
->Cnt
+= 2*SLOT7_1
->Incr
;
548 if(SLOT7_2
->vib
) SLOT7_2
->Cnt
+= ((CH
[7].fc
*8)*vib
/VIB_RATE
);
549 else SLOT7_2
->Cnt
+= (CH
[7].fc
*8);
550 if(SLOT8_1
->vib
) SLOT8_1
->Cnt
+= (SLOT8_1
->Incr
*vib
/VIB_RATE
);
551 else SLOT8_1
->Cnt
+= SLOT8_1
->Incr
;
552 if(SLOT8_2
->vib
) SLOT8_2
->Cnt
+= ((CH
[8].fc
*48)*vib
/VIB_RATE
);
553 else SLOT8_2
->Cnt
+= (CH
[8].fc
*48);
555 tone8
= OP_OUT(SLOT8_2
,whitenoise
,0 );
558 if( env_sd
< EG_ENT
-1 )
559 outd
[0] += OP_OUT(SLOT7_1
,env_sd
, 0)*8;
561 if( env_tam
< EG_ENT
-1 )
562 outd
[0] += OP_OUT(SLOT8_1
,env_tam
, 0)*2;
564 if( env_top
< EG_ENT
-1 )
565 outd
[0] += OP_OUT(SLOT7_2
,env_top
,tone8
)*2;
567 if( env_hh
< EG_ENT
-1 )
568 outd
[0] += OP_OUT(SLOT7_2
,env_hh
,tone8
)*2;
571 /* ----------- initialize time tabls ----------- */
572 static void init_timetables( FM_OPL
*OPL
, int ARRATE
, int DRRATE
)
577 /* make attack rate & decay rate tables */
578 for (i
= 0;i
< 4;i
++) OPL
->AR_TABLE
[i
] = OPL
->DR_TABLE
[i
] = 0;
579 for (i
= 4;i
<= 60;i
++){
580 rate
= OPL
->freqbase
; /* frequency rate */
581 if( i
< 60 ) rate
*= 1.0+(i
&3)*0.25; /* b0-1 : x1 , x1.25 , x1.5 , x1.75 */
582 rate
*= 1<<((i
>>2)-1); /* b2-5 : shift bit */
583 rate
*= (double)(EG_ENT
<<ENV_BITS
);
584 OPL
->AR_TABLE
[i
] = rate
/ ARRATE
;
585 OPL
->DR_TABLE
[i
] = rate
/ DRRATE
;
587 for (i
= 60; i
< ARRAY_SIZE(OPL
->AR_TABLE
); i
++)
589 OPL
->AR_TABLE
[i
] = EG_AED
-1;
590 OPL
->DR_TABLE
[i
] = OPL
->DR_TABLE
[60];
593 for (i
= 0;i
< 64 ;i
++){ /* make for overflow area */
594 LOG(LOG_WAR
, ("rate %2d , ar %f ms , dr %f ms\n", i
,
595 ((double)(EG_ENT
<<ENV_BITS
) / OPL
->AR_TABLE
[i
]) * (1000.0 / OPL
->rate
),
596 ((double)(EG_ENT
<<ENV_BITS
) / OPL
->DR_TABLE
[i
]) * (1000.0 / OPL
->rate
) ));
601 /* ---------- generic table initialize ---------- */
602 static int OPLOpenTable( void )
609 /* allocate dynamic tables */
610 if( (TL_TABLE
= malloc(TL_MAX
*2*sizeof(int32_t))) == NULL
)
612 if( (SIN_TABLE
= malloc(SIN_ENT
*4 *sizeof(int32_t *))) == NULL
)
617 if( (AMS_TABLE
= malloc(AMS_ENT
*2 *sizeof(int32_t))) == NULL
)
623 if( (VIB_TABLE
= malloc(VIB_ENT
*2 *sizeof(int32_t))) == NULL
)
630 /* make total level table */
631 for (t
= 0;t
< EG_ENT
-1 ;t
++){
632 rate
= ((1<<TL_BITS
)-1)/pow(10,EG_STEP
*t
/20); /* dB -> voltage */
633 TL_TABLE
[ t
] = (int)rate
;
634 TL_TABLE
[TL_MAX
+t
] = -TL_TABLE
[t
];
635 /* LOG(LOG_INF,("TotalLevel(%3d) = %x\n",t,TL_TABLE[t]));*/
637 /* fill volume off area */
638 for ( t
= EG_ENT
-1; t
< TL_MAX
;t
++){
639 TL_TABLE
[t
] = TL_TABLE
[TL_MAX
+t
] = 0;
642 /* make sinwave table (total level offet) */
643 /* degree 0 = degree 180 = off */
644 SIN_TABLE
[0] = SIN_TABLE
[SIN_ENT
/2] = &TL_TABLE
[EG_ENT
-1];
645 for (s
= 1;s
<= SIN_ENT
/4;s
++){
646 pom
= sin(2*PI
*s
/SIN_ENT
); /* sin */
647 pom
= 20*log10(1/pom
); /* decibel */
648 j
= pom
/ EG_STEP
; /* TL_TABLE steps */
650 /* degree 0 - 90 , degree 180 - 90 : plus section */
651 SIN_TABLE
[ s
] = SIN_TABLE
[SIN_ENT
/2-s
] = &TL_TABLE
[j
];
652 /* degree 180 - 270 , degree 360 - 270 : minus section */
653 SIN_TABLE
[SIN_ENT
/2+s
] = SIN_TABLE
[SIN_ENT
-s
] = &TL_TABLE
[TL_MAX
+j
];
654 /* LOG(LOG_INF,("sin(%3d) = %f:%f db\n",s,pom,(double)j * EG_STEP));*/
656 for (s
= 0;s
< SIN_ENT
;s
++)
658 SIN_TABLE
[SIN_ENT
*1+s
] = s
<(SIN_ENT
/2) ? SIN_TABLE
[s
] : &TL_TABLE
[EG_ENT
];
659 SIN_TABLE
[SIN_ENT
*2+s
] = SIN_TABLE
[s
% (SIN_ENT
/2)];
660 SIN_TABLE
[SIN_ENT
*3+s
] = (s
/(SIN_ENT
/4))&1 ? &TL_TABLE
[EG_ENT
] : SIN_TABLE
[SIN_ENT
*2+s
];
663 /* envelope counter -> envelope output table */
664 for (i
=0; i
<EG_ENT
; i
++)
667 pom
= pow( ((double)(EG_ENT
-1-i
)/EG_ENT
) , 8 ) * EG_ENT
;
668 /* if( pom >= EG_ENT ) pom = EG_ENT-1; */
669 ENV_CURVE
[i
] = (int)pom
;
670 /* DECAY ,RELEASE curve */
671 ENV_CURVE
[(EG_DST
>>ENV_BITS
)+i
]= i
;
674 ENV_CURVE
[EG_OFF
>>ENV_BITS
]= EG_ENT
-1;
675 /* make LFO ams table */
676 for (i
=0; i
<AMS_ENT
; i
++)
678 pom
= (1.0+sin(2*PI
*i
/AMS_ENT
))/2; /* sin */
679 AMS_TABLE
[i
] = (1.0/EG_STEP
)*pom
; /* 1dB */
680 AMS_TABLE
[AMS_ENT
+i
] = (4.8/EG_STEP
)*pom
; /* 4.8dB */
682 /* make LFO vibrate table */
683 for (i
=0; i
<VIB_ENT
; i
++)
685 /* 100cent = 1seminote = 6% ?? */
686 pom
= (double)VIB_RATE
*0.06*sin(2*PI
*i
/VIB_ENT
); /* +-100sect step */
687 VIB_TABLE
[i
] = VIB_RATE
+ (pom
*0.07); /* +- 7cent */
688 VIB_TABLE
[VIB_ENT
+i
] = VIB_RATE
+ (pom
*0.14); /* +-14cent */
689 /* LOG(LOG_INF,("vib %d=%d\n",i,VIB_TABLE[VIB_ENT+i])); */
695 static void OPLCloseTable( void )
703 /* CSM Key Control */
704 static inline void CSMKeyControll(OPL_CH
*CH
)
706 OPL_SLOT
*slot1
= &CH
->SLOT
[SLOT1
];
707 OPL_SLOT
*slot2
= &CH
->SLOT
[SLOT2
];
711 /* total level latch */
712 slot1
->TLL
= slot1
->TL
+ (CH
->ksl_base
>>slot1
->ksl
);
713 slot1
->TLL
= slot1
->TL
+ (CH
->ksl_base
>>slot1
->ksl
);
715 CH
->op1_out
[0] = CH
->op1_out
[1] = 0;
720 /* ---------- opl initialize ---------- */
721 static void OPL_initialize(FM_OPL
*OPL
)
726 OPL
->freqbase
= (OPL
->rate
) ? ((double)OPL
->clock
/ OPL
->rate
) / 72 : 0;
727 /* Timer base time */
728 OPL
->TimerBase
= 1.0/((double)OPL
->clock
/ 72.0 );
729 /* make time tables */
730 init_timetables( OPL
, OPL_ARRATE
, OPL_DRRATE
);
731 /* make fnumber -> increment counter table */
732 for( fn
=0 ; fn
< 1024 ; fn
++ )
734 OPL
->FN_TABLE
[fn
] = OPL
->freqbase
* fn
* FREQ_RATE
* (1<<7) / 2;
737 OPL
->amsIncr
= OPL
->rate
? (double)AMS_ENT
*(1<<AMS_SHIFT
) / OPL
->rate
* 3.7 * ((double)OPL
->clock
/3600000) : 0;
738 OPL
->vibIncr
= OPL
->rate
? (double)VIB_ENT
*(1<<VIB_SHIFT
) / OPL
->rate
* 6.4 * ((double)OPL
->clock
/3600000) : 0;
741 /* ---------- write a OPL registers ---------- */
742 static void OPLWriteReg(FM_OPL
*OPL
, int r
, int v
)
750 case 0x00: /* 00-1f:control */
754 /* wave selector enable */
755 OPL
->wavesel
= v
&0x20;
758 /* preset compatible mode */
760 for(c
=0;c
<OPL
->max_ch
;c
++)
762 OPL
->P_CH
[c
].SLOT
[SLOT1
].wavetable
= &SIN_TABLE
[0];
763 OPL
->P_CH
[c
].SLOT
[SLOT2
].wavetable
= &SIN_TABLE
[0];
767 case 0x02: /* Timer 1 */
768 OPL
->T
[0] = (256-v
)*4;
770 case 0x03: /* Timer 2 */
771 OPL
->T
[1] = (256-v
)*16;
773 case 0x04: /* IRQ clear / mask and Timer enable */
775 { /* IRQ flag clear */
776 OPL_STATUS_RESET(OPL
,0x7f);
779 { /* set IRQ mask ,timer enable*/
781 uint8_t st2
= (v
>>1)&1;
782 /* IRQRST,T1MSK,t2MSK,EOSMSK,BRMSK,x,ST2,ST1 */
783 OPL_STATUS_RESET(OPL
,v
&0x78);
784 OPL_STATUSMASK_SET(OPL
,((~v
)&0x78)|0x01);
786 if(OPL
->st
[1] != st2
)
788 double interval
= st2
? (double)OPL
->T
[1]*OPL
->TimerBase
: 0.0;
790 if (OPL
->TimerHandler
) {
791 (OPL
->TimerHandler
)(OPL
->TimerParam
, 1, interval
);
795 if(OPL
->st
[0] != st1
)
797 double interval
= st1
? (double)OPL
->T
[0]*OPL
->TimerBase
: 0.0;
799 if (OPL
->TimerHandler
) {
800 (OPL
->TimerHandler
)(OPL
->TimerParam
, 0, interval
);
807 case 0x20: /* am,vib,ksr,eg type,mul */
808 slot
= slot_array
[r
&0x1f];
809 if(slot
== -1) return;
813 slot
= slot_array
[r
&0x1f];
814 if(slot
== -1) return;
815 set_ksl_tl(OPL
,slot
,v
);
818 slot
= slot_array
[r
&0x1f];
819 if(slot
== -1) return;
820 set_ar_dr(OPL
,slot
,v
);
823 slot
= slot_array
[r
&0x1f];
824 if(slot
== -1) return;
825 set_sl_rr(OPL
,slot
,v
);
831 /* amsep,vibdep,r,bd,sd,tom,tc,hh */
833 uint8_t rkey
= OPL
->rhythm
^v
;
834 OPL
->ams_table
= &AMS_TABLE
[v
&0x80 ? AMS_ENT
: 0];
835 OPL
->vib_table
= &VIB_TABLE
[v
&0x40 ? VIB_ENT
: 0];
836 OPL
->rhythm
= v
&0x3f;
840 usrintf_showmessage("OPL Rhythm mode select");
847 OPL
->P_CH
[6].op1_out
[0] = OPL
->P_CH
[6].op1_out
[1] = 0;
848 OPL_KEYON(&OPL
->P_CH
[6].SLOT
[SLOT1
]);
849 OPL_KEYON(&OPL
->P_CH
[6].SLOT
[SLOT2
]);
853 OPL_KEYOFF(&OPL
->P_CH
[6].SLOT
[SLOT1
]);
854 OPL_KEYOFF(&OPL
->P_CH
[6].SLOT
[SLOT2
]);
860 if(v
&0x08) OPL_KEYON(&OPL
->P_CH
[7].SLOT
[SLOT2
]);
861 else OPL_KEYOFF(&OPL
->P_CH
[7].SLOT
[SLOT2
]);
862 }/* TAM key on/off */
865 if(v
&0x04) OPL_KEYON(&OPL
->P_CH
[8].SLOT
[SLOT1
]);
866 else OPL_KEYOFF(&OPL
->P_CH
[8].SLOT
[SLOT1
]);
868 /* TOP-CY key on/off */
871 if(v
&0x02) OPL_KEYON(&OPL
->P_CH
[8].SLOT
[SLOT2
]);
872 else OPL_KEYOFF(&OPL
->P_CH
[8].SLOT
[SLOT2
]);
877 if(v
&0x01) OPL_KEYON(&OPL
->P_CH
[7].SLOT
[SLOT1
]);
878 else OPL_KEYOFF(&OPL
->P_CH
[7].SLOT
[SLOT1
]);
884 /* keyon,block,fnum */
885 if( (r
&0x0f) > 8) return;
886 CH
= &OPL
->P_CH
[r
&0x0f];
889 block_fnum
= (CH
->block_fnum
&0x1f00) | v
;
893 int keyon
= (v
>>5)&1;
894 block_fnum
= ((v
&0x1f)<<8) | (CH
->block_fnum
&0xff);
895 if(CH
->keyon
!= keyon
)
897 if( (CH
->keyon
=keyon
) )
899 CH
->op1_out
[0] = CH
->op1_out
[1] = 0;
900 OPL_KEYON(&CH
->SLOT
[SLOT1
]);
901 OPL_KEYON(&CH
->SLOT
[SLOT2
]);
905 OPL_KEYOFF(&CH
->SLOT
[SLOT1
]);
906 OPL_KEYOFF(&CH
->SLOT
[SLOT2
]);
911 if(CH
->block_fnum
!= block_fnum
)
913 int blockRv
= 7-(block_fnum
>>10);
914 int fnum
= block_fnum
&0x3ff;
915 CH
->block_fnum
= block_fnum
;
917 CH
->ksl_base
= KSL_TABLE
[block_fnum
>>6];
918 CH
->fc
= OPL
->FN_TABLE
[fnum
]>>blockRv
;
919 CH
->kcode
= CH
->block_fnum
>>9;
920 if( (OPL
->mode
&0x40) && CH
->block_fnum
&0x100) CH
->kcode
|=1;
921 CALC_FCSLOT(CH
,&CH
->SLOT
[SLOT1
]);
922 CALC_FCSLOT(CH
,&CH
->SLOT
[SLOT2
]);
927 if( (r
&0x0f) > 8) return;
928 CH
= &OPL
->P_CH
[r
&0x0f];
930 int feedback
= (v
>>1)&7;
931 CH
->FB
= feedback
? (8+1) - feedback
: 0;
936 case 0xe0: /* wave type */
937 slot
= slot_array
[r
&0x1f];
938 if(slot
== -1) return;
939 CH
= &OPL
->P_CH
[slot
/2];
942 /* LOG(LOG_INF,("OPL SLOT %d wave select %d\n",slot,v&3)); */
943 CH
->SLOT
[slot
&1].wavetable
= &SIN_TABLE
[(v
&0x03)*SIN_ENT
];
949 /* lock/unlock for common table */
950 static int OPL_LockTable(void)
953 if(num_lock
>1) return 0;
956 /* allocate total level table (128kb space) */
957 if( !OPLOpenTable() )
965 static void OPL_UnLockTable(void)
967 if(num_lock
) num_lock
--;
974 /*******************************************************************************/
975 /* YM3812 local section */
976 /*******************************************************************************/
978 /* ---------- update one of chip ----------- */
979 void YM3812UpdateOne(FM_OPL
*OPL
, int16_t *buffer
, int length
)
983 int16_t *buf
= buffer
;
984 uint32_t amsCnt
= OPL
->amsCnt
;
985 uint32_t vibCnt
= OPL
->vibCnt
;
986 uint8_t rhythm
= OPL
->rhythm
&0x20;
989 if( (void *)OPL
!= cur_chip
){
990 cur_chip
= (void *)OPL
;
991 /* channel pointers */
995 SLOT7_1
= &S_CH
[7].SLOT
[SLOT1
];
996 SLOT7_2
= &S_CH
[7].SLOT
[SLOT2
];
997 SLOT8_1
= &S_CH
[8].SLOT
[SLOT1
];
998 SLOT8_2
= &S_CH
[8].SLOT
[SLOT2
];
1000 amsIncr
= OPL
->amsIncr
;
1001 vibIncr
= OPL
->vibIncr
;
1002 ams_table
= OPL
->ams_table
;
1003 vib_table
= OPL
->vib_table
;
1005 R_CH
= rhythm
? &S_CH
[6] : E_CH
;
1006 for( i
=0; i
< length
; i
++ )
1008 /* channel A channel B channel C */
1010 ams
= ams_table
[(amsCnt
+=amsIncr
)>>AMS_SHIFT
];
1011 vib
= vib_table
[(vibCnt
+=vibIncr
)>>VIB_SHIFT
];
1014 for(CH
=S_CH
; CH
< R_CH
; CH
++)
1020 data
= Limit( outd
[0] , OPL_MAXOUT
, OPL_MINOUT
);
1021 /* store to sound buffer */
1022 buf
[i
] = data
>> OPL_OUTSB
;
1025 OPL
->amsCnt
= amsCnt
;
1026 OPL
->vibCnt
= vibCnt
;
1027 #ifdef OPL_OUTPUT_LOG
1030 for(opl_dbg_chip
=0;opl_dbg_chip
<opl_dbg_maxchip
;opl_dbg_chip
++)
1031 if( opl_dbg_opl
[opl_dbg_chip
] == OPL
) break;
1032 fprintf(opl_dbg_fp
,"%c%c%c",0x20+opl_dbg_chip
,length
&0xff,length
/256);
1037 /* ---------- reset one of chip ---------- */
1038 static void OPLResetChip(FM_OPL
*OPL
)
1044 OPL
->mode
= 0; /* normal mode */
1045 OPL_STATUS_RESET(OPL
,0x7f);
1046 /* reset with register write */
1047 OPLWriteReg(OPL
,0x01,0); /* wabesel disable */
1048 OPLWriteReg(OPL
,0x02,0); /* Timer1 */
1049 OPLWriteReg(OPL
,0x03,0); /* Timer2 */
1050 OPLWriteReg(OPL
,0x04,0); /* IRQ mask clear */
1051 for(i
= 0xff ; i
>= 0x20 ; i
-- ) OPLWriteReg(OPL
,i
,0);
1052 /* reset operator parameter */
1053 for( c
= 0 ; c
< OPL
->max_ch
; c
++ )
1055 OPL_CH
*CH
= &OPL
->P_CH
[c
];
1056 /* OPL->P_CH[c].PAN = OPN_CENTER; */
1057 for(s
= 0 ; s
< 2 ; s
++ )
1060 CH
->SLOT
[s
].wavetable
= &SIN_TABLE
[0];
1061 /* CH->SLOT[s].evm = ENV_MOD_RR; */
1062 CH
->SLOT
[s
].evc
= EG_OFF
;
1063 CH
->SLOT
[s
].eve
= EG_OFF
+1;
1064 CH
->SLOT
[s
].evs
= 0;
1069 /* ---------- Create one of vietual YM3812 ---------- */
1070 /* 'rate' is sampling rate and 'bufsiz' is the size of the */
1071 FM_OPL
*OPLCreate(int clock
, int rate
)
1076 int max_ch
= 9; /* normaly 9 channels */
1078 if( OPL_LockTable() ==-1) return NULL
;
1079 /* allocate OPL state space */
1080 state_size
= sizeof(FM_OPL
);
1081 state_size
+= sizeof(OPL_CH
)*max_ch
;
1082 /* allocate memory block */
1083 ptr
= malloc(state_size
);
1084 if(ptr
==NULL
) return NULL
;
1086 memset(ptr
,0,state_size
);
1087 OPL
= (FM_OPL
*)ptr
; ptr
+=sizeof(FM_OPL
);
1088 OPL
->P_CH
= (OPL_CH
*)ptr
; ptr
+=sizeof(OPL_CH
)*max_ch
;
1089 /* set channel state pointer */
1092 OPL
->max_ch
= max_ch
;
1093 /* init grobal tables */
1094 OPL_initialize(OPL
);
1097 #ifdef OPL_OUTPUT_LOG
1100 opl_dbg_fp
= fopen("opllog.opl","wb");
1101 opl_dbg_maxchip
= 0;
1105 opl_dbg_opl
[opl_dbg_maxchip
] = OPL
;
1106 fprintf(opl_dbg_fp
,"%c%c%c%c%c%c",0x00+opl_dbg_maxchip
,
1110 (clock
/0x10000)&0xff,
1111 (clock
/0x1000000)&0xff);
1118 /* ---------- Destroy one of vietual YM3812 ---------- */
1119 void OPLDestroy(FM_OPL
*OPL
)
1121 #ifdef OPL_OUTPUT_LOG
1132 /* ---------- Option handlers ---------- */
1134 void OPLSetTimerHandler(FM_OPL
*OPL
, OPL_TIMERHANDLER TimerHandler
,
1137 OPL
->TimerHandler
= TimerHandler
;
1138 OPL
->TimerParam
= param
;
1141 /* ---------- YM3812 I/O interface ---------- */
1142 int OPLWrite(FM_OPL
*OPL
,int a
,int v
)
1145 { /* address port */
1146 OPL
->address
= v
& 0xff;
1150 #ifdef OPL_OUTPUT_LOG
1153 for(opl_dbg_chip
=0;opl_dbg_chip
<opl_dbg_maxchip
;opl_dbg_chip
++)
1154 if( opl_dbg_opl
[opl_dbg_chip
] == OPL
) break;
1155 fprintf(opl_dbg_fp
,"%c%c%c",0x10+opl_dbg_chip
,OPL
->address
,v
);
1158 OPLWriteReg(OPL
,OPL
->address
,v
);
1160 return OPL
->status
>>7;
1163 unsigned char OPLRead(FM_OPL
*OPL
,int a
)
1167 return OPL
->status
& (OPL
->statusmask
|0x80);
1170 switch(OPL
->address
)
1172 case 0x05: /* KeyBoard IN */
1175 case 0x0f: /* ADPCM-DATA */
1178 case 0x19: /* I/O DATA */
1180 case 0x1a: /* PCM-DATA */
1186 int OPLTimerOver(FM_OPL
*OPL
,int c
)
1190 OPL_STATUS_SET(OPL
,0x20);
1194 OPL_STATUS_SET(OPL
,0x40);
1195 /* CSM mode key,TL control */
1196 if( OPL
->mode
& 0x80 )
1197 { /* CSM mode total level latch and auto key on */
1200 CSMKeyControll( &OPL
->P_CH
[ch
] );
1204 if (OPL
->TimerHandler
) {
1205 (OPL
->TimerHandler
)(OPL
->TimerParam
, c
,
1206 (double)OPL
->T
[c
] * OPL
->TimerBase
);
1208 return OPL
->status
>>7;