ahci: Separate the AHCI state structure into the header
[qemu.git] / cputlb.c
blob4bc6c24e11aef739c0a6861f470173a85ab2d4ea
1 /*
2 * Common CPU TLB handling
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "config.h"
21 #include "cpu.h"
22 #include "exec/exec-all.h"
23 #include "exec/memory.h"
24 #include "exec/address-spaces.h"
25 #include "exec/cpu_ldst.h"
27 #include "exec/cputlb.h"
29 #include "exec/memory-internal.h"
30 #include "exec/ram_addr.h"
31 #include "tcg/tcg.h"
33 //#define DEBUG_TLB
34 //#define DEBUG_TLB_CHECK
36 /* statistics */
37 int tlb_flush_count;
39 /* NOTE:
40 * If flush_global is true (the usual case), flush all tlb entries.
41 * If flush_global is false, flush (at least) all tlb entries not
42 * marked global.
44 * Since QEMU doesn't currently implement a global/not-global flag
45 * for tlb entries, at the moment tlb_flush() will also flush all
46 * tlb entries in the flush_global == false case. This is OK because
47 * CPU architectures generally permit an implementation to drop
48 * entries from the TLB at any time, so flushing more entries than
49 * required is only an efficiency issue, not a correctness issue.
51 void tlb_flush(CPUState *cpu, int flush_global)
53 CPUArchState *env = cpu->env_ptr;
55 #if defined(DEBUG_TLB)
56 printf("tlb_flush:\n");
57 #endif
58 /* must reset current TB so that interrupts cannot modify the
59 links while we are modifying them */
60 cpu->current_tb = NULL;
62 memset(env->tlb_table, -1, sizeof(env->tlb_table));
63 memset(env->tlb_v_table, -1, sizeof(env->tlb_v_table));
64 memset(cpu->tb_jmp_cache, 0, sizeof(cpu->tb_jmp_cache));
66 env->vtlb_index = 0;
67 env->tlb_flush_addr = -1;
68 env->tlb_flush_mask = 0;
69 tlb_flush_count++;
72 static inline void v_tlb_flush_by_mmuidx(CPUState *cpu, va_list argp)
74 CPUArchState *env = cpu->env_ptr;
76 #if defined(DEBUG_TLB)
77 printf("tlb_flush_by_mmuidx:");
78 #endif
79 /* must reset current TB so that interrupts cannot modify the
80 links while we are modifying them */
81 cpu->current_tb = NULL;
83 for (;;) {
84 int mmu_idx = va_arg(argp, int);
86 if (mmu_idx < 0) {
87 break;
90 #if defined(DEBUG_TLB)
91 printf(" %d", mmu_idx);
92 #endif
94 memset(env->tlb_table[mmu_idx], -1, sizeof(env->tlb_table[0]));
95 memset(env->tlb_v_table[mmu_idx], -1, sizeof(env->tlb_v_table[0]));
98 #if defined(DEBUG_TLB)
99 printf("\n");
100 #endif
102 memset(cpu->tb_jmp_cache, 0, sizeof(cpu->tb_jmp_cache));
105 void tlb_flush_by_mmuidx(CPUState *cpu, ...)
107 va_list argp;
108 va_start(argp, cpu);
109 v_tlb_flush_by_mmuidx(cpu, argp);
110 va_end(argp);
113 static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
115 if (addr == (tlb_entry->addr_read &
116 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
117 addr == (tlb_entry->addr_write &
118 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
119 addr == (tlb_entry->addr_code &
120 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
121 memset(tlb_entry, -1, sizeof(*tlb_entry));
125 void tlb_flush_page(CPUState *cpu, target_ulong addr)
127 CPUArchState *env = cpu->env_ptr;
128 int i;
129 int mmu_idx;
131 #if defined(DEBUG_TLB)
132 printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
133 #endif
134 /* Check if we need to flush due to large pages. */
135 if ((addr & env->tlb_flush_mask) == env->tlb_flush_addr) {
136 #if defined(DEBUG_TLB)
137 printf("tlb_flush_page: forced full flush ("
138 TARGET_FMT_lx "/" TARGET_FMT_lx ")\n",
139 env->tlb_flush_addr, env->tlb_flush_mask);
140 #endif
141 tlb_flush(cpu, 1);
142 return;
144 /* must reset current TB so that interrupts cannot modify the
145 links while we are modifying them */
146 cpu->current_tb = NULL;
148 addr &= TARGET_PAGE_MASK;
149 i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
150 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
151 tlb_flush_entry(&env->tlb_table[mmu_idx][i], addr);
154 /* check whether there are entries that need to be flushed in the vtlb */
155 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
156 int k;
157 for (k = 0; k < CPU_VTLB_SIZE; k++) {
158 tlb_flush_entry(&env->tlb_v_table[mmu_idx][k], addr);
162 tb_flush_jmp_cache(cpu, addr);
165 void tlb_flush_page_by_mmuidx(CPUState *cpu, target_ulong addr, ...)
167 CPUArchState *env = cpu->env_ptr;
168 int i, k;
169 va_list argp;
171 va_start(argp, addr);
173 #if defined(DEBUG_TLB)
174 printf("tlb_flush_page_by_mmu_idx: " TARGET_FMT_lx, addr);
175 #endif
176 /* Check if we need to flush due to large pages. */
177 if ((addr & env->tlb_flush_mask) == env->tlb_flush_addr) {
178 #if defined(DEBUG_TLB)
179 printf(" forced full flush ("
180 TARGET_FMT_lx "/" TARGET_FMT_lx ")\n",
181 env->tlb_flush_addr, env->tlb_flush_mask);
182 #endif
183 v_tlb_flush_by_mmuidx(cpu, argp);
184 va_end(argp);
185 return;
187 /* must reset current TB so that interrupts cannot modify the
188 links while we are modifying them */
189 cpu->current_tb = NULL;
191 addr &= TARGET_PAGE_MASK;
192 i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
194 for (;;) {
195 int mmu_idx = va_arg(argp, int);
197 if (mmu_idx < 0) {
198 break;
201 #if defined(DEBUG_TLB)
202 printf(" %d", mmu_idx);
203 #endif
205 tlb_flush_entry(&env->tlb_table[mmu_idx][i], addr);
207 /* check whether there are vltb entries that need to be flushed */
208 for (k = 0; k < CPU_VTLB_SIZE; k++) {
209 tlb_flush_entry(&env->tlb_v_table[mmu_idx][k], addr);
212 va_end(argp);
214 #if defined(DEBUG_TLB)
215 printf("\n");
216 #endif
218 tb_flush_jmp_cache(cpu, addr);
221 /* update the TLBs so that writes to code in the virtual page 'addr'
222 can be detected */
223 void tlb_protect_code(ram_addr_t ram_addr)
225 cpu_physical_memory_test_and_clear_dirty(ram_addr, TARGET_PAGE_SIZE,
226 DIRTY_MEMORY_CODE);
229 /* update the TLB so that writes in physical page 'phys_addr' are no longer
230 tested for self modifying code */
231 void tlb_unprotect_code(ram_addr_t ram_addr)
233 cpu_physical_memory_set_dirty_flag(ram_addr, DIRTY_MEMORY_CODE);
236 static bool tlb_is_dirty_ram(CPUTLBEntry *tlbe)
238 return (tlbe->addr_write & (TLB_INVALID_MASK|TLB_MMIO|TLB_NOTDIRTY)) == 0;
241 void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry, uintptr_t start,
242 uintptr_t length)
244 uintptr_t addr;
246 if (tlb_is_dirty_ram(tlb_entry)) {
247 addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
248 if ((addr - start) < length) {
249 tlb_entry->addr_write |= TLB_NOTDIRTY;
254 static inline ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr)
256 ram_addr_t ram_addr;
258 if (qemu_ram_addr_from_host(ptr, &ram_addr) == NULL) {
259 fprintf(stderr, "Bad ram pointer %p\n", ptr);
260 abort();
262 return ram_addr;
265 void cpu_tlb_reset_dirty_all(ram_addr_t start1, ram_addr_t length)
267 CPUState *cpu;
268 CPUArchState *env;
270 CPU_FOREACH(cpu) {
271 int mmu_idx;
273 env = cpu->env_ptr;
274 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
275 unsigned int i;
277 for (i = 0; i < CPU_TLB_SIZE; i++) {
278 tlb_reset_dirty_range(&env->tlb_table[mmu_idx][i],
279 start1, length);
282 for (i = 0; i < CPU_VTLB_SIZE; i++) {
283 tlb_reset_dirty_range(&env->tlb_v_table[mmu_idx][i],
284 start1, length);
290 static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
292 if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY)) {
293 tlb_entry->addr_write = vaddr;
297 /* update the TLB corresponding to virtual page vaddr
298 so that it is no longer dirty */
299 void tlb_set_dirty(CPUArchState *env, target_ulong vaddr)
301 int i;
302 int mmu_idx;
304 vaddr &= TARGET_PAGE_MASK;
305 i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
306 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
307 tlb_set_dirty1(&env->tlb_table[mmu_idx][i], vaddr);
310 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
311 int k;
312 for (k = 0; k < CPU_VTLB_SIZE; k++) {
313 tlb_set_dirty1(&env->tlb_v_table[mmu_idx][k], vaddr);
318 /* Our TLB does not support large pages, so remember the area covered by
319 large pages and trigger a full TLB flush if these are invalidated. */
320 static void tlb_add_large_page(CPUArchState *env, target_ulong vaddr,
321 target_ulong size)
323 target_ulong mask = ~(size - 1);
325 if (env->tlb_flush_addr == (target_ulong)-1) {
326 env->tlb_flush_addr = vaddr & mask;
327 env->tlb_flush_mask = mask;
328 return;
330 /* Extend the existing region to include the new page.
331 This is a compromise between unnecessary flushes and the cost
332 of maintaining a full variable size TLB. */
333 mask &= env->tlb_flush_mask;
334 while (((env->tlb_flush_addr ^ vaddr) & mask) != 0) {
335 mask <<= 1;
337 env->tlb_flush_addr &= mask;
338 env->tlb_flush_mask = mask;
341 /* Add a new TLB entry. At most one entry for a given virtual address
342 * is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
343 * supplied size is only used by tlb_flush_page.
345 * Called from TCG-generated code, which is under an RCU read-side
346 * critical section.
348 void tlb_set_page_with_attrs(CPUState *cpu, target_ulong vaddr,
349 hwaddr paddr, MemTxAttrs attrs, int prot,
350 int mmu_idx, target_ulong size)
352 CPUArchState *env = cpu->env_ptr;
353 MemoryRegionSection *section;
354 unsigned int index;
355 target_ulong address;
356 target_ulong code_address;
357 uintptr_t addend;
358 CPUTLBEntry *te;
359 hwaddr iotlb, xlat, sz;
360 unsigned vidx = env->vtlb_index++ % CPU_VTLB_SIZE;
362 assert(size >= TARGET_PAGE_SIZE);
363 if (size != TARGET_PAGE_SIZE) {
364 tlb_add_large_page(env, vaddr, size);
367 sz = size;
368 section = address_space_translate_for_iotlb(cpu, paddr, &xlat, &sz);
369 assert(sz >= TARGET_PAGE_SIZE);
371 #if defined(DEBUG_TLB)
372 qemu_log_mask(CPU_LOG_MMU,
373 "tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x" TARGET_FMT_plx
374 " prot=%x idx=%d\n",
375 vaddr, paddr, prot, mmu_idx);
376 #endif
378 address = vaddr;
379 if (!memory_region_is_ram(section->mr) && !memory_region_is_romd(section->mr)) {
380 /* IO memory case */
381 address |= TLB_MMIO;
382 addend = 0;
383 } else {
384 /* TLB_MMIO for rom/romd handled below */
385 addend = (uintptr_t)memory_region_get_ram_ptr(section->mr) + xlat;
388 code_address = address;
389 iotlb = memory_region_section_get_iotlb(cpu, section, vaddr, paddr, xlat,
390 prot, &address);
392 index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
393 te = &env->tlb_table[mmu_idx][index];
395 /* do not discard the translation in te, evict it into a victim tlb */
396 env->tlb_v_table[mmu_idx][vidx] = *te;
397 env->iotlb_v[mmu_idx][vidx] = env->iotlb[mmu_idx][index];
399 /* refill the tlb */
400 env->iotlb[mmu_idx][index].addr = iotlb - vaddr;
401 env->iotlb[mmu_idx][index].attrs = attrs;
402 te->addend = addend - vaddr;
403 if (prot & PAGE_READ) {
404 te->addr_read = address;
405 } else {
406 te->addr_read = -1;
409 if (prot & PAGE_EXEC) {
410 te->addr_code = code_address;
411 } else {
412 te->addr_code = -1;
414 if (prot & PAGE_WRITE) {
415 if ((memory_region_is_ram(section->mr) && section->readonly)
416 || memory_region_is_romd(section->mr)) {
417 /* Write access calls the I/O callback. */
418 te->addr_write = address | TLB_MMIO;
419 } else if (memory_region_is_ram(section->mr)
420 && cpu_physical_memory_is_clean(section->mr->ram_addr
421 + xlat)) {
422 te->addr_write = address | TLB_NOTDIRTY;
423 } else {
424 te->addr_write = address;
426 } else {
427 te->addr_write = -1;
431 /* Add a new TLB entry, but without specifying the memory
432 * transaction attributes to be used.
434 void tlb_set_page(CPUState *cpu, target_ulong vaddr,
435 hwaddr paddr, int prot,
436 int mmu_idx, target_ulong size)
438 tlb_set_page_with_attrs(cpu, vaddr, paddr, MEMTXATTRS_UNSPECIFIED,
439 prot, mmu_idx, size);
442 /* NOTE: this function can trigger an exception */
443 /* NOTE2: the returned address is not exactly the physical address: it
444 * is actually a ram_addr_t (in system mode; the user mode emulation
445 * version of this function returns a guest virtual address).
447 tb_page_addr_t get_page_addr_code(CPUArchState *env1, target_ulong addr)
449 int mmu_idx, page_index, pd;
450 void *p;
451 MemoryRegion *mr;
452 CPUState *cpu = ENV_GET_CPU(env1);
454 page_index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
455 mmu_idx = cpu_mmu_index(env1);
456 if (unlikely(env1->tlb_table[mmu_idx][page_index].addr_code !=
457 (addr & TARGET_PAGE_MASK))) {
458 cpu_ldub_code(env1, addr);
460 pd = env1->iotlb[mmu_idx][page_index].addr & ~TARGET_PAGE_MASK;
461 mr = iotlb_to_region(cpu, pd);
462 if (memory_region_is_unassigned(mr)) {
463 CPUClass *cc = CPU_GET_CLASS(cpu);
465 if (cc->do_unassigned_access) {
466 cc->do_unassigned_access(cpu, addr, false, true, 0, 4);
467 } else {
468 cpu_abort(cpu, "Trying to execute code outside RAM or ROM at 0x"
469 TARGET_FMT_lx "\n", addr);
472 p = (void *)((uintptr_t)addr + env1->tlb_table[mmu_idx][page_index].addend);
473 return qemu_ram_addr_from_host_nofail(p);
476 #define MMUSUFFIX _mmu
478 #define SHIFT 0
479 #include "softmmu_template.h"
481 #define SHIFT 1
482 #include "softmmu_template.h"
484 #define SHIFT 2
485 #include "softmmu_template.h"
487 #define SHIFT 3
488 #include "softmmu_template.h"
489 #undef MMUSUFFIX
491 #define MMUSUFFIX _cmmu
492 #undef GETPC_ADJ
493 #define GETPC_ADJ 0
494 #undef GETRA
495 #define GETRA() ((uintptr_t)0)
496 #define SOFTMMU_CODE_ACCESS
498 #define SHIFT 0
499 #include "softmmu_template.h"
501 #define SHIFT 1
502 #include "softmmu_template.h"
504 #define SHIFT 2
505 #include "softmmu_template.h"
507 #define SHIFT 3
508 #include "softmmu_template.h"