sev/i386: finalize the SEV guest launch flow
[qemu.git] / hw / arm / iotkit.c
blobc5f0a5b98abc8d4583bdba2f7c9293cf76475570
1 /*
2 * Arm IoT Kit
4 * Copyright (c) 2018 Linaro Limited
5 * Written by Peter Maydell
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 or
9 * (at your option) any later version.
12 #include "qemu/osdep.h"
13 #include "qemu/log.h"
14 #include "qapi/error.h"
15 #include "trace.h"
16 #include "hw/sysbus.h"
17 #include "hw/registerfields.h"
18 #include "hw/arm/iotkit.h"
19 #include "hw/misc/unimp.h"
20 #include "hw/arm/arm.h"
22 /* Create an alias region of @size bytes starting at @base
23 * which mirrors the memory starting at @orig.
25 static void make_alias(IoTKit *s, MemoryRegion *mr, const char *name,
26 hwaddr base, hwaddr size, hwaddr orig)
28 memory_region_init_alias(mr, NULL, name, &s->container, orig, size);
29 /* The alias is even lower priority than unimplemented_device regions */
30 memory_region_add_subregion_overlap(&s->container, base, mr, -1500);
33 static void init_sysbus_child(Object *parent, const char *childname,
34 void *child, size_t childsize,
35 const char *childtype)
37 object_initialize(child, childsize, childtype);
38 object_property_add_child(parent, childname, OBJECT(child), &error_abort);
39 qdev_set_parent_bus(DEVICE(child), sysbus_get_default());
42 static void irq_status_forwarder(void *opaque, int n, int level)
44 qemu_irq destirq = opaque;
46 qemu_set_irq(destirq, level);
49 static void nsccfg_handler(void *opaque, int n, int level)
51 IoTKit *s = IOTKIT(opaque);
53 s->nsccfg = level;
56 static void iotkit_forward_ppc(IoTKit *s, const char *ppcname, int ppcnum)
58 /* Each of the 4 AHB and 4 APB PPCs that might be present in a
59 * system using the IoTKit has a collection of control lines which
60 * are provided by the security controller and which we want to
61 * expose as control lines on the IoTKit device itself, so the
62 * code using the IoTKit can wire them up to the PPCs.
64 SplitIRQ *splitter = &s->ppc_irq_splitter[ppcnum];
65 DeviceState *iotkitdev = DEVICE(s);
66 DeviceState *dev_secctl = DEVICE(&s->secctl);
67 DeviceState *dev_splitter = DEVICE(splitter);
68 char *name;
70 name = g_strdup_printf("%s_nonsec", ppcname);
71 qdev_pass_gpios(dev_secctl, iotkitdev, name);
72 g_free(name);
73 name = g_strdup_printf("%s_ap", ppcname);
74 qdev_pass_gpios(dev_secctl, iotkitdev, name);
75 g_free(name);
76 name = g_strdup_printf("%s_irq_enable", ppcname);
77 qdev_pass_gpios(dev_secctl, iotkitdev, name);
78 g_free(name);
79 name = g_strdup_printf("%s_irq_clear", ppcname);
80 qdev_pass_gpios(dev_secctl, iotkitdev, name);
81 g_free(name);
83 /* irq_status is a little more tricky, because we need to
84 * split it so we can send it both to the security controller
85 * and to our OR gate for the NVIC interrupt line.
86 * Connect up the splitter's outputs, and create a GPIO input
87 * which will pass the line state to the input splitter.
89 name = g_strdup_printf("%s_irq_status", ppcname);
90 qdev_connect_gpio_out(dev_splitter, 0,
91 qdev_get_gpio_in_named(dev_secctl,
92 name, 0));
93 qdev_connect_gpio_out(dev_splitter, 1,
94 qdev_get_gpio_in(DEVICE(&s->ppc_irq_orgate), ppcnum));
95 s->irq_status_in[ppcnum] = qdev_get_gpio_in(dev_splitter, 0);
96 qdev_init_gpio_in_named_with_opaque(iotkitdev, irq_status_forwarder,
97 s->irq_status_in[ppcnum], name, 1);
98 g_free(name);
101 static void iotkit_forward_sec_resp_cfg(IoTKit *s)
103 /* Forward the 3rd output from the splitter device as a
104 * named GPIO output of the iotkit object.
106 DeviceState *dev = DEVICE(s);
107 DeviceState *dev_splitter = DEVICE(&s->sec_resp_splitter);
109 qdev_init_gpio_out_named(dev, &s->sec_resp_cfg, "sec_resp_cfg", 1);
110 s->sec_resp_cfg_in = qemu_allocate_irq(irq_status_forwarder,
111 s->sec_resp_cfg, 1);
112 qdev_connect_gpio_out(dev_splitter, 2, s->sec_resp_cfg_in);
115 static void iotkit_init(Object *obj)
117 IoTKit *s = IOTKIT(obj);
118 int i;
120 memory_region_init(&s->container, obj, "iotkit-container", UINT64_MAX);
122 init_sysbus_child(obj, "armv7m", &s->armv7m, sizeof(s->armv7m),
123 TYPE_ARMV7M);
124 qdev_prop_set_string(DEVICE(&s->armv7m), "cpu-type",
125 ARM_CPU_TYPE_NAME("cortex-m33"));
127 init_sysbus_child(obj, "secctl", &s->secctl, sizeof(s->secctl),
128 TYPE_IOTKIT_SECCTL);
129 init_sysbus_child(obj, "apb-ppc0", &s->apb_ppc0, sizeof(s->apb_ppc0),
130 TYPE_TZ_PPC);
131 init_sysbus_child(obj, "apb-ppc1", &s->apb_ppc1, sizeof(s->apb_ppc1),
132 TYPE_TZ_PPC);
133 init_sysbus_child(obj, "timer0", &s->timer0, sizeof(s->timer0),
134 TYPE_CMSDK_APB_TIMER);
135 init_sysbus_child(obj, "timer1", &s->timer1, sizeof(s->timer1),
136 TYPE_CMSDK_APB_TIMER);
137 init_sysbus_child(obj, "dualtimer", &s->dualtimer, sizeof(s->dualtimer),
138 TYPE_UNIMPLEMENTED_DEVICE);
139 object_initialize(&s->ppc_irq_orgate, sizeof(s->ppc_irq_orgate),
140 TYPE_OR_IRQ);
141 object_property_add_child(obj, "ppc-irq-orgate",
142 OBJECT(&s->ppc_irq_orgate), &error_abort);
143 object_initialize(&s->sec_resp_splitter, sizeof(s->sec_resp_splitter),
144 TYPE_SPLIT_IRQ);
145 object_property_add_child(obj, "sec-resp-splitter",
146 OBJECT(&s->sec_resp_splitter), &error_abort);
147 for (i = 0; i < ARRAY_SIZE(s->ppc_irq_splitter); i++) {
148 char *name = g_strdup_printf("ppc-irq-splitter-%d", i);
149 SplitIRQ *splitter = &s->ppc_irq_splitter[i];
151 object_initialize(splitter, sizeof(*splitter), TYPE_SPLIT_IRQ);
152 object_property_add_child(obj, name, OBJECT(splitter), &error_abort);
154 init_sysbus_child(obj, "s32ktimer", &s->s32ktimer, sizeof(s->s32ktimer),
155 TYPE_UNIMPLEMENTED_DEVICE);
158 static void iotkit_exp_irq(void *opaque, int n, int level)
160 IoTKit *s = IOTKIT(opaque);
162 qemu_set_irq(s->exp_irqs[n], level);
165 static void iotkit_realize(DeviceState *dev, Error **errp)
167 IoTKit *s = IOTKIT(dev);
168 int i;
169 MemoryRegion *mr;
170 Error *err = NULL;
171 SysBusDevice *sbd_apb_ppc0;
172 SysBusDevice *sbd_secctl;
173 DeviceState *dev_apb_ppc0;
174 DeviceState *dev_apb_ppc1;
175 DeviceState *dev_secctl;
176 DeviceState *dev_splitter;
178 if (!s->board_memory) {
179 error_setg(errp, "memory property was not set");
180 return;
183 if (!s->mainclk_frq) {
184 error_setg(errp, "MAINCLK property was not set");
185 return;
188 /* Handling of which devices should be available only to secure
189 * code is usually done differently for M profile than for A profile.
190 * Instead of putting some devices only into the secure address space,
191 * devices exist in both address spaces but with hard-wired security
192 * permissions that will cause the CPU to fault for non-secure accesses.
194 * The IoTKit has an IDAU (Implementation Defined Access Unit),
195 * which specifies hard-wired security permissions for different
196 * areas of the physical address space. For the IoTKit IDAU, the
197 * top 4 bits of the physical address are the IDAU region ID, and
198 * if bit 28 (ie the lowest bit of the ID) is 0 then this is an NS
199 * region, otherwise it is an S region.
201 * The various devices and RAMs are generally all mapped twice,
202 * once into a region that the IDAU defines as secure and once
203 * into a non-secure region. They sit behind either a Memory
204 * Protection Controller (for RAM) or a Peripheral Protection
205 * Controller (for devices), which allow a more fine grained
206 * configuration of whether non-secure accesses are permitted.
208 * (The other place that guest software can configure security
209 * permissions is in the architected SAU (Security Attribution
210 * Unit), which is entirely inside the CPU. The IDAU can upgrade
211 * the security attributes for a region to more restrictive than
212 * the SAU specifies, but cannot downgrade them.)
214 * 0x10000000..0x1fffffff alias of 0x00000000..0x0fffffff
215 * 0x20000000..0x2007ffff 32KB FPGA block RAM
216 * 0x30000000..0x3fffffff alias of 0x20000000..0x2fffffff
217 * 0x40000000..0x4000ffff base peripheral region 1
218 * 0x40010000..0x4001ffff CPU peripherals (none for IoTKit)
219 * 0x40020000..0x4002ffff system control element peripherals
220 * 0x40080000..0x400fffff base peripheral region 2
221 * 0x50000000..0x5fffffff alias of 0x40000000..0x4fffffff
224 memory_region_add_subregion_overlap(&s->container, 0, s->board_memory, -1);
226 qdev_prop_set_uint32(DEVICE(&s->armv7m), "num-irq", s->exp_numirq + 32);
227 /* In real hardware the initial Secure VTOR is set from the INITSVTOR0
228 * register in the IoT Kit System Control Register block, and the
229 * initial value of that is in turn specifiable by the FPGA that
230 * instantiates the IoT Kit. In QEMU we don't implement this wrinkle,
231 * and simply set the CPU's init-svtor to the IoT Kit default value.
233 qdev_prop_set_uint32(DEVICE(&s->armv7m), "init-svtor", 0x10000000);
234 object_property_set_link(OBJECT(&s->armv7m), OBJECT(&s->container),
235 "memory", &err);
236 if (err) {
237 error_propagate(errp, err);
238 return;
240 object_property_set_link(OBJECT(&s->armv7m), OBJECT(s), "idau", &err);
241 if (err) {
242 error_propagate(errp, err);
243 return;
245 object_property_set_bool(OBJECT(&s->armv7m), true, "realized", &err);
246 if (err) {
247 error_propagate(errp, err);
248 return;
251 /* Connect our EXP_IRQ GPIOs to the NVIC's lines 32 and up. */
252 s->exp_irqs = g_new(qemu_irq, s->exp_numirq);
253 for (i = 0; i < s->exp_numirq; i++) {
254 s->exp_irqs[i] = qdev_get_gpio_in(DEVICE(&s->armv7m), i + 32);
256 qdev_init_gpio_in_named(dev, iotkit_exp_irq, "EXP_IRQ", s->exp_numirq);
258 /* Set up the big aliases first */
259 make_alias(s, &s->alias1, "alias 1", 0x10000000, 0x10000000, 0x00000000);
260 make_alias(s, &s->alias2, "alias 2", 0x30000000, 0x10000000, 0x20000000);
261 /* The 0x50000000..0x5fffffff region is not a pure alias: it has
262 * a few extra devices that only appear there (generally the
263 * control interfaces for the protection controllers).
264 * We implement this by mapping those devices over the top of this
265 * alias MR at a higher priority.
267 make_alias(s, &s->alias3, "alias 3", 0x50000000, 0x10000000, 0x40000000);
269 /* This RAM should be behind a Memory Protection Controller, but we
270 * don't implement that yet.
272 memory_region_init_ram(&s->sram0, NULL, "iotkit.sram0", 0x00008000, &err);
273 if (err) {
274 error_propagate(errp, err);
275 return;
277 memory_region_add_subregion(&s->container, 0x20000000, &s->sram0);
279 /* Security controller */
280 object_property_set_bool(OBJECT(&s->secctl), true, "realized", &err);
281 if (err) {
282 error_propagate(errp, err);
283 return;
285 sbd_secctl = SYS_BUS_DEVICE(&s->secctl);
286 dev_secctl = DEVICE(&s->secctl);
287 sysbus_mmio_map(sbd_secctl, 0, 0x50080000);
288 sysbus_mmio_map(sbd_secctl, 1, 0x40080000);
290 s->nsc_cfg_in = qemu_allocate_irq(nsccfg_handler, s, 1);
291 qdev_connect_gpio_out_named(dev_secctl, "nsc_cfg", 0, s->nsc_cfg_in);
293 /* The sec_resp_cfg output from the security controller must be split into
294 * multiple lines, one for each of the PPCs within the IoTKit and one
295 * that will be an output from the IoTKit to the system.
297 object_property_set_int(OBJECT(&s->sec_resp_splitter), 3,
298 "num-lines", &err);
299 if (err) {
300 error_propagate(errp, err);
301 return;
303 object_property_set_bool(OBJECT(&s->sec_resp_splitter), true,
304 "realized", &err);
305 if (err) {
306 error_propagate(errp, err);
307 return;
309 dev_splitter = DEVICE(&s->sec_resp_splitter);
310 qdev_connect_gpio_out_named(dev_secctl, "sec_resp_cfg", 0,
311 qdev_get_gpio_in(dev_splitter, 0));
313 /* Devices behind APB PPC0:
314 * 0x40000000: timer0
315 * 0x40001000: timer1
316 * 0x40002000: dual timer
317 * We must configure and realize each downstream device and connect
318 * it to the appropriate PPC port; then we can realize the PPC and
319 * map its upstream ends to the right place in the container.
321 qdev_prop_set_uint32(DEVICE(&s->timer0), "pclk-frq", s->mainclk_frq);
322 object_property_set_bool(OBJECT(&s->timer0), true, "realized", &err);
323 if (err) {
324 error_propagate(errp, err);
325 return;
327 sysbus_connect_irq(SYS_BUS_DEVICE(&s->timer0), 0,
328 qdev_get_gpio_in(DEVICE(&s->armv7m), 3));
329 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->timer0), 0);
330 object_property_set_link(OBJECT(&s->apb_ppc0), OBJECT(mr), "port[0]", &err);
331 if (err) {
332 error_propagate(errp, err);
333 return;
336 qdev_prop_set_uint32(DEVICE(&s->timer1), "pclk-frq", s->mainclk_frq);
337 object_property_set_bool(OBJECT(&s->timer1), true, "realized", &err);
338 if (err) {
339 error_propagate(errp, err);
340 return;
342 sysbus_connect_irq(SYS_BUS_DEVICE(&s->timer1), 0,
343 qdev_get_gpio_in(DEVICE(&s->armv7m), 3));
344 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->timer1), 0);
345 object_property_set_link(OBJECT(&s->apb_ppc0), OBJECT(mr), "port[1]", &err);
346 if (err) {
347 error_propagate(errp, err);
348 return;
351 qdev_prop_set_string(DEVICE(&s->dualtimer), "name", "Dual timer");
352 qdev_prop_set_uint64(DEVICE(&s->dualtimer), "size", 0x1000);
353 object_property_set_bool(OBJECT(&s->dualtimer), true, "realized", &err);
354 if (err) {
355 error_propagate(errp, err);
356 return;
358 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->dualtimer), 0);
359 object_property_set_link(OBJECT(&s->apb_ppc0), OBJECT(mr), "port[2]", &err);
360 if (err) {
361 error_propagate(errp, err);
362 return;
365 object_property_set_bool(OBJECT(&s->apb_ppc0), true, "realized", &err);
366 if (err) {
367 error_propagate(errp, err);
368 return;
371 sbd_apb_ppc0 = SYS_BUS_DEVICE(&s->apb_ppc0);
372 dev_apb_ppc0 = DEVICE(&s->apb_ppc0);
374 mr = sysbus_mmio_get_region(sbd_apb_ppc0, 0);
375 memory_region_add_subregion(&s->container, 0x40000000, mr);
376 mr = sysbus_mmio_get_region(sbd_apb_ppc0, 1);
377 memory_region_add_subregion(&s->container, 0x40001000, mr);
378 mr = sysbus_mmio_get_region(sbd_apb_ppc0, 2);
379 memory_region_add_subregion(&s->container, 0x40002000, mr);
380 for (i = 0; i < IOTS_APB_PPC0_NUM_PORTS; i++) {
381 qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_nonsec", i,
382 qdev_get_gpio_in_named(dev_apb_ppc0,
383 "cfg_nonsec", i));
384 qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_ap", i,
385 qdev_get_gpio_in_named(dev_apb_ppc0,
386 "cfg_ap", i));
388 qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_irq_enable", 0,
389 qdev_get_gpio_in_named(dev_apb_ppc0,
390 "irq_enable", 0));
391 qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_irq_clear", 0,
392 qdev_get_gpio_in_named(dev_apb_ppc0,
393 "irq_clear", 0));
394 qdev_connect_gpio_out(dev_splitter, 0,
395 qdev_get_gpio_in_named(dev_apb_ppc0,
396 "cfg_sec_resp", 0));
398 /* All the PPC irq lines (from the 2 internal PPCs and the 8 external
399 * ones) are sent individually to the security controller, and also
400 * ORed together to give a single combined PPC interrupt to the NVIC.
402 object_property_set_int(OBJECT(&s->ppc_irq_orgate),
403 NUM_PPCS, "num-lines", &err);
404 if (err) {
405 error_propagate(errp, err);
406 return;
408 object_property_set_bool(OBJECT(&s->ppc_irq_orgate), true,
409 "realized", &err);
410 if (err) {
411 error_propagate(errp, err);
412 return;
414 qdev_connect_gpio_out(DEVICE(&s->ppc_irq_orgate), 0,
415 qdev_get_gpio_in(DEVICE(&s->armv7m), 10));
417 /* 0x40010000 .. 0x4001ffff: private CPU region: unused in IoTKit */
419 /* 0x40020000 .. 0x4002ffff : IoTKit system control peripheral region */
420 /* Devices behind APB PPC1:
421 * 0x4002f000: S32K timer
423 qdev_prop_set_string(DEVICE(&s->s32ktimer), "name", "S32KTIMER");
424 qdev_prop_set_uint64(DEVICE(&s->s32ktimer), "size", 0x1000);
425 object_property_set_bool(OBJECT(&s->s32ktimer), true, "realized", &err);
426 if (err) {
427 error_propagate(errp, err);
428 return;
430 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->s32ktimer), 0);
431 object_property_set_link(OBJECT(&s->apb_ppc1), OBJECT(mr), "port[0]", &err);
432 if (err) {
433 error_propagate(errp, err);
434 return;
437 object_property_set_bool(OBJECT(&s->apb_ppc1), true, "realized", &err);
438 if (err) {
439 error_propagate(errp, err);
440 return;
442 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->apb_ppc1), 0);
443 memory_region_add_subregion(&s->container, 0x4002f000, mr);
445 dev_apb_ppc1 = DEVICE(&s->apb_ppc1);
446 qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_nonsec", 0,
447 qdev_get_gpio_in_named(dev_apb_ppc1,
448 "cfg_nonsec", 0));
449 qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_ap", 0,
450 qdev_get_gpio_in_named(dev_apb_ppc1,
451 "cfg_ap", 0));
452 qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_irq_enable", 0,
453 qdev_get_gpio_in_named(dev_apb_ppc1,
454 "irq_enable", 0));
455 qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_irq_clear", 0,
456 qdev_get_gpio_in_named(dev_apb_ppc1,
457 "irq_clear", 0));
458 qdev_connect_gpio_out(dev_splitter, 1,
459 qdev_get_gpio_in_named(dev_apb_ppc1,
460 "cfg_sec_resp", 0));
462 /* Using create_unimplemented_device() maps the stub into the
463 * system address space rather than into our container, but the
464 * overall effect to the guest is the same.
466 create_unimplemented_device("SYSINFO", 0x40020000, 0x1000);
468 create_unimplemented_device("SYSCONTROL", 0x50021000, 0x1000);
469 create_unimplemented_device("S32KWATCHDOG", 0x5002e000, 0x1000);
471 /* 0x40080000 .. 0x4008ffff : IoTKit second Base peripheral region */
473 create_unimplemented_device("NS watchdog", 0x40081000, 0x1000);
474 create_unimplemented_device("S watchdog", 0x50081000, 0x1000);
476 create_unimplemented_device("SRAM0 MPC", 0x50083000, 0x1000);
478 for (i = 0; i < ARRAY_SIZE(s->ppc_irq_splitter); i++) {
479 Object *splitter = OBJECT(&s->ppc_irq_splitter[i]);
481 object_property_set_int(splitter, 2, "num-lines", &err);
482 if (err) {
483 error_propagate(errp, err);
484 return;
486 object_property_set_bool(splitter, true, "realized", &err);
487 if (err) {
488 error_propagate(errp, err);
489 return;
493 for (i = 0; i < IOTS_NUM_AHB_EXP_PPC; i++) {
494 char *ppcname = g_strdup_printf("ahb_ppcexp%d", i);
496 iotkit_forward_ppc(s, ppcname, i);
497 g_free(ppcname);
500 for (i = 0; i < IOTS_NUM_APB_EXP_PPC; i++) {
501 char *ppcname = g_strdup_printf("apb_ppcexp%d", i);
503 iotkit_forward_ppc(s, ppcname, i + IOTS_NUM_AHB_EXP_PPC);
504 g_free(ppcname);
507 for (i = NUM_EXTERNAL_PPCS; i < NUM_PPCS; i++) {
508 /* Wire up IRQ splitter for internal PPCs */
509 DeviceState *devs = DEVICE(&s->ppc_irq_splitter[i]);
510 char *gpioname = g_strdup_printf("apb_ppc%d_irq_status",
511 i - NUM_EXTERNAL_PPCS);
512 TZPPC *ppc = (i == NUM_EXTERNAL_PPCS) ? &s->apb_ppc0 : &s->apb_ppc1;
514 qdev_connect_gpio_out(devs, 0,
515 qdev_get_gpio_in_named(dev_secctl, gpioname, 0));
516 qdev_connect_gpio_out(devs, 1,
517 qdev_get_gpio_in(DEVICE(&s->ppc_irq_orgate), i));
518 qdev_connect_gpio_out_named(DEVICE(ppc), "irq", 0,
519 qdev_get_gpio_in(devs, 0));
522 iotkit_forward_sec_resp_cfg(s);
524 system_clock_scale = NANOSECONDS_PER_SECOND / s->mainclk_frq;
527 static void iotkit_idau_check(IDAUInterface *ii, uint32_t address,
528 int *iregion, bool *exempt, bool *ns, bool *nsc)
530 /* For IoTKit systems the IDAU responses are simple logical functions
531 * of the address bits. The NSC attribute is guest-adjustable via the
532 * NSCCFG register in the security controller.
534 IoTKit *s = IOTKIT(ii);
535 int region = extract32(address, 28, 4);
537 *ns = !(region & 1);
538 *nsc = (region == 1 && (s->nsccfg & 1)) || (region == 3 && (s->nsccfg & 2));
539 /* 0xe0000000..0xe00fffff and 0xf0000000..0xf00fffff are exempt */
540 *exempt = (address & 0xeff00000) == 0xe0000000;
541 *iregion = region;
544 static const VMStateDescription iotkit_vmstate = {
545 .name = "iotkit",
546 .version_id = 1,
547 .minimum_version_id = 1,
548 .fields = (VMStateField[]) {
549 VMSTATE_UINT32(nsccfg, IoTKit),
550 VMSTATE_END_OF_LIST()
554 static Property iotkit_properties[] = {
555 DEFINE_PROP_LINK("memory", IoTKit, board_memory, TYPE_MEMORY_REGION,
556 MemoryRegion *),
557 DEFINE_PROP_UINT32("EXP_NUMIRQ", IoTKit, exp_numirq, 64),
558 DEFINE_PROP_UINT32("MAINCLK", IoTKit, mainclk_frq, 0),
559 DEFINE_PROP_END_OF_LIST()
562 static void iotkit_reset(DeviceState *dev)
564 IoTKit *s = IOTKIT(dev);
566 s->nsccfg = 0;
569 static void iotkit_class_init(ObjectClass *klass, void *data)
571 DeviceClass *dc = DEVICE_CLASS(klass);
572 IDAUInterfaceClass *iic = IDAU_INTERFACE_CLASS(klass);
574 dc->realize = iotkit_realize;
575 dc->vmsd = &iotkit_vmstate;
576 dc->props = iotkit_properties;
577 dc->reset = iotkit_reset;
578 iic->check = iotkit_idau_check;
581 static const TypeInfo iotkit_info = {
582 .name = TYPE_IOTKIT,
583 .parent = TYPE_SYS_BUS_DEVICE,
584 .instance_size = sizeof(IoTKit),
585 .instance_init = iotkit_init,
586 .class_init = iotkit_class_init,
587 .interfaces = (InterfaceInfo[]) {
588 { TYPE_IDAU_INTERFACE },
593 static void iotkit_register_types(void)
595 type_register_static(&iotkit_info);
598 type_init(iotkit_register_types);