mips: more fixes to the MIPS interrupt glue logic
[qemu.git] / target-mips / op_helper.c
bloba619b72610ad725152442da63729549657fc6285
1 /*
2 * MIPS emulation helpers for qemu.
4 * Copyright (c) 2004-2005 Jocelyn Mayer
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include <stdlib.h>
20 #include "exec.h"
22 #include "host-utils.h"
24 #include "helper.h"
26 #ifndef CONFIG_USER_ONLY
27 static inline void cpu_mips_tlb_flush (CPUState *env, int flush_global);
28 #endif
30 /*****************************************************************************/
31 /* Exceptions processing helpers */
33 void helper_raise_exception_err (uint32_t exception, int error_code)
35 #if 1
36 if (exception < 0x100)
37 qemu_log("%s: %d %d\n", __func__, exception, error_code);
38 #endif
39 env->exception_index = exception;
40 env->error_code = error_code;
41 cpu_loop_exit();
44 void helper_raise_exception (uint32_t exception)
46 helper_raise_exception_err(exception, 0);
49 #if !defined(CONFIG_USER_ONLY)
50 static void do_restore_state (void *pc_ptr)
52 TranslationBlock *tb;
53 unsigned long pc = (unsigned long) pc_ptr;
55 tb = tb_find_pc (pc);
56 if (tb) {
57 cpu_restore_state (tb, env, pc, NULL);
60 #endif
62 #if defined(CONFIG_USER_ONLY)
63 #define HELPER_LD(name, insn, type) \
64 static inline type do_##name(target_ulong addr, int mem_idx) \
65 { \
66 return (type) insn##_raw(addr); \
68 #else
69 #define HELPER_LD(name, insn, type) \
70 static inline type do_##name(target_ulong addr, int mem_idx) \
71 { \
72 switch (mem_idx) \
73 { \
74 case 0: return (type) insn##_kernel(addr); break; \
75 case 1: return (type) insn##_super(addr); break; \
76 default: \
77 case 2: return (type) insn##_user(addr); break; \
78 } \
80 #endif
81 HELPER_LD(lbu, ldub, uint8_t)
82 HELPER_LD(lw, ldl, int32_t)
83 #ifdef TARGET_MIPS64
84 HELPER_LD(ld, ldq, int64_t)
85 #endif
86 #undef HELPER_LD
88 #if defined(CONFIG_USER_ONLY)
89 #define HELPER_ST(name, insn, type) \
90 static inline void do_##name(target_ulong addr, type val, int mem_idx) \
91 { \
92 insn##_raw(addr, val); \
94 #else
95 #define HELPER_ST(name, insn, type) \
96 static inline void do_##name(target_ulong addr, type val, int mem_idx) \
97 { \
98 switch (mem_idx) \
99 { \
100 case 0: insn##_kernel(addr, val); break; \
101 case 1: insn##_super(addr, val); break; \
102 default: \
103 case 2: insn##_user(addr, val); break; \
106 #endif
107 HELPER_ST(sb, stb, uint8_t)
108 HELPER_ST(sw, stl, uint32_t)
109 #ifdef TARGET_MIPS64
110 HELPER_ST(sd, stq, uint64_t)
111 #endif
112 #undef HELPER_ST
114 target_ulong helper_clo (target_ulong arg1)
116 return clo32(arg1);
119 target_ulong helper_clz (target_ulong arg1)
121 return clz32(arg1);
124 #if defined(TARGET_MIPS64)
125 target_ulong helper_dclo (target_ulong arg1)
127 return clo64(arg1);
130 target_ulong helper_dclz (target_ulong arg1)
132 return clz64(arg1);
134 #endif /* TARGET_MIPS64 */
136 /* 64 bits arithmetic for 32 bits hosts */
137 static inline uint64_t get_HILO (void)
139 return ((uint64_t)(env->active_tc.HI[0]) << 32) | (uint32_t)env->active_tc.LO[0];
142 static inline void set_HILO (uint64_t HILO)
144 env->active_tc.LO[0] = (int32_t)HILO;
145 env->active_tc.HI[0] = (int32_t)(HILO >> 32);
148 static inline void set_HIT0_LO (target_ulong arg1, uint64_t HILO)
150 env->active_tc.LO[0] = (int32_t)(HILO & 0xFFFFFFFF);
151 arg1 = env->active_tc.HI[0] = (int32_t)(HILO >> 32);
154 static inline void set_HI_LOT0 (target_ulong arg1, uint64_t HILO)
156 arg1 = env->active_tc.LO[0] = (int32_t)(HILO & 0xFFFFFFFF);
157 env->active_tc.HI[0] = (int32_t)(HILO >> 32);
160 /* Multiplication variants of the vr54xx. */
161 target_ulong helper_muls (target_ulong arg1, target_ulong arg2)
163 set_HI_LOT0(arg1, 0 - ((int64_t)(int32_t)arg1 * (int64_t)(int32_t)arg2));
165 return arg1;
168 target_ulong helper_mulsu (target_ulong arg1, target_ulong arg2)
170 set_HI_LOT0(arg1, 0 - ((uint64_t)(uint32_t)arg1 * (uint64_t)(uint32_t)arg2));
172 return arg1;
175 target_ulong helper_macc (target_ulong arg1, target_ulong arg2)
177 set_HI_LOT0(arg1, ((int64_t)get_HILO()) + ((int64_t)(int32_t)arg1 * (int64_t)(int32_t)arg2));
179 return arg1;
182 target_ulong helper_macchi (target_ulong arg1, target_ulong arg2)
184 set_HIT0_LO(arg1, ((int64_t)get_HILO()) + ((int64_t)(int32_t)arg1 * (int64_t)(int32_t)arg2));
186 return arg1;
189 target_ulong helper_maccu (target_ulong arg1, target_ulong arg2)
191 set_HI_LOT0(arg1, ((uint64_t)get_HILO()) + ((uint64_t)(uint32_t)arg1 * (uint64_t)(uint32_t)arg2));
193 return arg1;
196 target_ulong helper_macchiu (target_ulong arg1, target_ulong arg2)
198 set_HIT0_LO(arg1, ((uint64_t)get_HILO()) + ((uint64_t)(uint32_t)arg1 * (uint64_t)(uint32_t)arg2));
200 return arg1;
203 target_ulong helper_msac (target_ulong arg1, target_ulong arg2)
205 set_HI_LOT0(arg1, ((int64_t)get_HILO()) - ((int64_t)(int32_t)arg1 * (int64_t)(int32_t)arg2));
207 return arg1;
210 target_ulong helper_msachi (target_ulong arg1, target_ulong arg2)
212 set_HIT0_LO(arg1, ((int64_t)get_HILO()) - ((int64_t)(int32_t)arg1 * (int64_t)(int32_t)arg2));
214 return arg1;
217 target_ulong helper_msacu (target_ulong arg1, target_ulong arg2)
219 set_HI_LOT0(arg1, ((uint64_t)get_HILO()) - ((uint64_t)(uint32_t)arg1 * (uint64_t)(uint32_t)arg2));
221 return arg1;
224 target_ulong helper_msachiu (target_ulong arg1, target_ulong arg2)
226 set_HIT0_LO(arg1, ((uint64_t)get_HILO()) - ((uint64_t)(uint32_t)arg1 * (uint64_t)(uint32_t)arg2));
228 return arg1;
231 target_ulong helper_mulhi (target_ulong arg1, target_ulong arg2)
233 set_HIT0_LO(arg1, (int64_t)(int32_t)arg1 * (int64_t)(int32_t)arg2);
235 return arg1;
238 target_ulong helper_mulhiu (target_ulong arg1, target_ulong arg2)
240 set_HIT0_LO(arg1, (uint64_t)(uint32_t)arg1 * (uint64_t)(uint32_t)arg2);
242 return arg1;
245 target_ulong helper_mulshi (target_ulong arg1, target_ulong arg2)
247 set_HIT0_LO(arg1, 0 - ((int64_t)(int32_t)arg1 * (int64_t)(int32_t)arg2));
249 return arg1;
252 target_ulong helper_mulshiu (target_ulong arg1, target_ulong arg2)
254 set_HIT0_LO(arg1, 0 - ((uint64_t)(uint32_t)arg1 * (uint64_t)(uint32_t)arg2));
256 return arg1;
259 #ifdef TARGET_MIPS64
260 void helper_dmult (target_ulong arg1, target_ulong arg2)
262 muls64(&(env->active_tc.LO[0]), &(env->active_tc.HI[0]), arg1, arg2);
265 void helper_dmultu (target_ulong arg1, target_ulong arg2)
267 mulu64(&(env->active_tc.LO[0]), &(env->active_tc.HI[0]), arg1, arg2);
269 #endif
271 #ifndef CONFIG_USER_ONLY
273 static inline target_phys_addr_t do_translate_address(target_ulong address, int rw)
275 target_phys_addr_t lladdr;
277 lladdr = cpu_mips_translate_address(env, address, rw);
279 if (lladdr == -1LL) {
280 cpu_loop_exit();
281 } else {
282 return lladdr;
286 #define HELPER_LD_ATOMIC(name, insn) \
287 target_ulong helper_##name(target_ulong arg, int mem_idx) \
289 env->lladdr = do_translate_address(arg, 0); \
290 env->llval = do_##insn(arg, mem_idx); \
291 return env->llval; \
293 HELPER_LD_ATOMIC(ll, lw)
294 #ifdef TARGET_MIPS64
295 HELPER_LD_ATOMIC(lld, ld)
296 #endif
297 #undef HELPER_LD_ATOMIC
299 #define HELPER_ST_ATOMIC(name, ld_insn, st_insn, almask) \
300 target_ulong helper_##name(target_ulong arg1, target_ulong arg2, int mem_idx) \
302 target_long tmp; \
304 if (arg2 & almask) { \
305 env->CP0_BadVAddr = arg2; \
306 helper_raise_exception(EXCP_AdES); \
308 if (do_translate_address(arg2, 1) == env->lladdr) { \
309 tmp = do_##ld_insn(arg2, mem_idx); \
310 if (tmp == env->llval) { \
311 do_##st_insn(arg2, arg1, mem_idx); \
312 return 1; \
315 return 0; \
317 HELPER_ST_ATOMIC(sc, lw, sw, 0x3)
318 #ifdef TARGET_MIPS64
319 HELPER_ST_ATOMIC(scd, ld, sd, 0x7)
320 #endif
321 #undef HELPER_ST_ATOMIC
322 #endif
324 #ifdef TARGET_WORDS_BIGENDIAN
325 #define GET_LMASK(v) ((v) & 3)
326 #define GET_OFFSET(addr, offset) (addr + (offset))
327 #else
328 #define GET_LMASK(v) (((v) & 3) ^ 3)
329 #define GET_OFFSET(addr, offset) (addr - (offset))
330 #endif
332 target_ulong helper_lwl(target_ulong arg1, target_ulong arg2, int mem_idx)
334 target_ulong tmp;
336 tmp = do_lbu(arg2, mem_idx);
337 arg1 = (arg1 & 0x00FFFFFF) | (tmp << 24);
339 if (GET_LMASK(arg2) <= 2) {
340 tmp = do_lbu(GET_OFFSET(arg2, 1), mem_idx);
341 arg1 = (arg1 & 0xFF00FFFF) | (tmp << 16);
344 if (GET_LMASK(arg2) <= 1) {
345 tmp = do_lbu(GET_OFFSET(arg2, 2), mem_idx);
346 arg1 = (arg1 & 0xFFFF00FF) | (tmp << 8);
349 if (GET_LMASK(arg2) == 0) {
350 tmp = do_lbu(GET_OFFSET(arg2, 3), mem_idx);
351 arg1 = (arg1 & 0xFFFFFF00) | tmp;
353 return (int32_t)arg1;
356 target_ulong helper_lwr(target_ulong arg1, target_ulong arg2, int mem_idx)
358 target_ulong tmp;
360 tmp = do_lbu(arg2, mem_idx);
361 arg1 = (arg1 & 0xFFFFFF00) | tmp;
363 if (GET_LMASK(arg2) >= 1) {
364 tmp = do_lbu(GET_OFFSET(arg2, -1), mem_idx);
365 arg1 = (arg1 & 0xFFFF00FF) | (tmp << 8);
368 if (GET_LMASK(arg2) >= 2) {
369 tmp = do_lbu(GET_OFFSET(arg2, -2), mem_idx);
370 arg1 = (arg1 & 0xFF00FFFF) | (tmp << 16);
373 if (GET_LMASK(arg2) == 3) {
374 tmp = do_lbu(GET_OFFSET(arg2, -3), mem_idx);
375 arg1 = (arg1 & 0x00FFFFFF) | (tmp << 24);
377 return (int32_t)arg1;
380 void helper_swl(target_ulong arg1, target_ulong arg2, int mem_idx)
382 do_sb(arg2, (uint8_t)(arg1 >> 24), mem_idx);
384 if (GET_LMASK(arg2) <= 2)
385 do_sb(GET_OFFSET(arg2, 1), (uint8_t)(arg1 >> 16), mem_idx);
387 if (GET_LMASK(arg2) <= 1)
388 do_sb(GET_OFFSET(arg2, 2), (uint8_t)(arg1 >> 8), mem_idx);
390 if (GET_LMASK(arg2) == 0)
391 do_sb(GET_OFFSET(arg2, 3), (uint8_t)arg1, mem_idx);
394 void helper_swr(target_ulong arg1, target_ulong arg2, int mem_idx)
396 do_sb(arg2, (uint8_t)arg1, mem_idx);
398 if (GET_LMASK(arg2) >= 1)
399 do_sb(GET_OFFSET(arg2, -1), (uint8_t)(arg1 >> 8), mem_idx);
401 if (GET_LMASK(arg2) >= 2)
402 do_sb(GET_OFFSET(arg2, -2), (uint8_t)(arg1 >> 16), mem_idx);
404 if (GET_LMASK(arg2) == 3)
405 do_sb(GET_OFFSET(arg2, -3), (uint8_t)(arg1 >> 24), mem_idx);
408 #if defined(TARGET_MIPS64)
409 /* "half" load and stores. We must do the memory access inline,
410 or fault handling won't work. */
412 #ifdef TARGET_WORDS_BIGENDIAN
413 #define GET_LMASK64(v) ((v) & 7)
414 #else
415 #define GET_LMASK64(v) (((v) & 7) ^ 7)
416 #endif
418 target_ulong helper_ldl(target_ulong arg1, target_ulong arg2, int mem_idx)
420 uint64_t tmp;
422 tmp = do_lbu(arg2, mem_idx);
423 arg1 = (arg1 & 0x00FFFFFFFFFFFFFFULL) | (tmp << 56);
425 if (GET_LMASK64(arg2) <= 6) {
426 tmp = do_lbu(GET_OFFSET(arg2, 1), mem_idx);
427 arg1 = (arg1 & 0xFF00FFFFFFFFFFFFULL) | (tmp << 48);
430 if (GET_LMASK64(arg2) <= 5) {
431 tmp = do_lbu(GET_OFFSET(arg2, 2), mem_idx);
432 arg1 = (arg1 & 0xFFFF00FFFFFFFFFFULL) | (tmp << 40);
435 if (GET_LMASK64(arg2) <= 4) {
436 tmp = do_lbu(GET_OFFSET(arg2, 3), mem_idx);
437 arg1 = (arg1 & 0xFFFFFF00FFFFFFFFULL) | (tmp << 32);
440 if (GET_LMASK64(arg2) <= 3) {
441 tmp = do_lbu(GET_OFFSET(arg2, 4), mem_idx);
442 arg1 = (arg1 & 0xFFFFFFFF00FFFFFFULL) | (tmp << 24);
445 if (GET_LMASK64(arg2) <= 2) {
446 tmp = do_lbu(GET_OFFSET(arg2, 5), mem_idx);
447 arg1 = (arg1 & 0xFFFFFFFFFF00FFFFULL) | (tmp << 16);
450 if (GET_LMASK64(arg2) <= 1) {
451 tmp = do_lbu(GET_OFFSET(arg2, 6), mem_idx);
452 arg1 = (arg1 & 0xFFFFFFFFFFFF00FFULL) | (tmp << 8);
455 if (GET_LMASK64(arg2) == 0) {
456 tmp = do_lbu(GET_OFFSET(arg2, 7), mem_idx);
457 arg1 = (arg1 & 0xFFFFFFFFFFFFFF00ULL) | tmp;
460 return arg1;
463 target_ulong helper_ldr(target_ulong arg1, target_ulong arg2, int mem_idx)
465 uint64_t tmp;
467 tmp = do_lbu(arg2, mem_idx);
468 arg1 = (arg1 & 0xFFFFFFFFFFFFFF00ULL) | tmp;
470 if (GET_LMASK64(arg2) >= 1) {
471 tmp = do_lbu(GET_OFFSET(arg2, -1), mem_idx);
472 arg1 = (arg1 & 0xFFFFFFFFFFFF00FFULL) | (tmp << 8);
475 if (GET_LMASK64(arg2) >= 2) {
476 tmp = do_lbu(GET_OFFSET(arg2, -2), mem_idx);
477 arg1 = (arg1 & 0xFFFFFFFFFF00FFFFULL) | (tmp << 16);
480 if (GET_LMASK64(arg2) >= 3) {
481 tmp = do_lbu(GET_OFFSET(arg2, -3), mem_idx);
482 arg1 = (arg1 & 0xFFFFFFFF00FFFFFFULL) | (tmp << 24);
485 if (GET_LMASK64(arg2) >= 4) {
486 tmp = do_lbu(GET_OFFSET(arg2, -4), mem_idx);
487 arg1 = (arg1 & 0xFFFFFF00FFFFFFFFULL) | (tmp << 32);
490 if (GET_LMASK64(arg2) >= 5) {
491 tmp = do_lbu(GET_OFFSET(arg2, -5), mem_idx);
492 arg1 = (arg1 & 0xFFFF00FFFFFFFFFFULL) | (tmp << 40);
495 if (GET_LMASK64(arg2) >= 6) {
496 tmp = do_lbu(GET_OFFSET(arg2, -6), mem_idx);
497 arg1 = (arg1 & 0xFF00FFFFFFFFFFFFULL) | (tmp << 48);
500 if (GET_LMASK64(arg2) == 7) {
501 tmp = do_lbu(GET_OFFSET(arg2, -7), mem_idx);
502 arg1 = (arg1 & 0x00FFFFFFFFFFFFFFULL) | (tmp << 56);
505 return arg1;
508 void helper_sdl(target_ulong arg1, target_ulong arg2, int mem_idx)
510 do_sb(arg2, (uint8_t)(arg1 >> 56), mem_idx);
512 if (GET_LMASK64(arg2) <= 6)
513 do_sb(GET_OFFSET(arg2, 1), (uint8_t)(arg1 >> 48), mem_idx);
515 if (GET_LMASK64(arg2) <= 5)
516 do_sb(GET_OFFSET(arg2, 2), (uint8_t)(arg1 >> 40), mem_idx);
518 if (GET_LMASK64(arg2) <= 4)
519 do_sb(GET_OFFSET(arg2, 3), (uint8_t)(arg1 >> 32), mem_idx);
521 if (GET_LMASK64(arg2) <= 3)
522 do_sb(GET_OFFSET(arg2, 4), (uint8_t)(arg1 >> 24), mem_idx);
524 if (GET_LMASK64(arg2) <= 2)
525 do_sb(GET_OFFSET(arg2, 5), (uint8_t)(arg1 >> 16), mem_idx);
527 if (GET_LMASK64(arg2) <= 1)
528 do_sb(GET_OFFSET(arg2, 6), (uint8_t)(arg1 >> 8), mem_idx);
530 if (GET_LMASK64(arg2) <= 0)
531 do_sb(GET_OFFSET(arg2, 7), (uint8_t)arg1, mem_idx);
534 void helper_sdr(target_ulong arg1, target_ulong arg2, int mem_idx)
536 do_sb(arg2, (uint8_t)arg1, mem_idx);
538 if (GET_LMASK64(arg2) >= 1)
539 do_sb(GET_OFFSET(arg2, -1), (uint8_t)(arg1 >> 8), mem_idx);
541 if (GET_LMASK64(arg2) >= 2)
542 do_sb(GET_OFFSET(arg2, -2), (uint8_t)(arg1 >> 16), mem_idx);
544 if (GET_LMASK64(arg2) >= 3)
545 do_sb(GET_OFFSET(arg2, -3), (uint8_t)(arg1 >> 24), mem_idx);
547 if (GET_LMASK64(arg2) >= 4)
548 do_sb(GET_OFFSET(arg2, -4), (uint8_t)(arg1 >> 32), mem_idx);
550 if (GET_LMASK64(arg2) >= 5)
551 do_sb(GET_OFFSET(arg2, -5), (uint8_t)(arg1 >> 40), mem_idx);
553 if (GET_LMASK64(arg2) >= 6)
554 do_sb(GET_OFFSET(arg2, -6), (uint8_t)(arg1 >> 48), mem_idx);
556 if (GET_LMASK64(arg2) == 7)
557 do_sb(GET_OFFSET(arg2, -7), (uint8_t)(arg1 >> 56), mem_idx);
559 #endif /* TARGET_MIPS64 */
561 static const int multiple_regs[] = { 16, 17, 18, 19, 20, 21, 22, 23, 30 };
563 void helper_lwm (target_ulong addr, target_ulong reglist, uint32_t mem_idx)
565 target_ulong base_reglist = reglist & 0xf;
566 target_ulong do_r31 = reglist & 0x10;
567 #ifdef CONFIG_USER_ONLY
568 #undef ldfun
569 #define ldfun ldl_raw
570 #else
571 uint32_t (*ldfun)(target_ulong);
573 switch (mem_idx)
575 case 0: ldfun = ldl_kernel; break;
576 case 1: ldfun = ldl_super; break;
577 default:
578 case 2: ldfun = ldl_user; break;
580 #endif
582 if (base_reglist > 0 && base_reglist <= ARRAY_SIZE (multiple_regs)) {
583 target_ulong i;
585 for (i = 0; i < base_reglist; i++) {
586 env->active_tc.gpr[multiple_regs[i]] = (target_long) ldfun(addr);
587 addr += 4;
591 if (do_r31) {
592 env->active_tc.gpr[31] = (target_long) ldfun(addr);
596 void helper_swm (target_ulong addr, target_ulong reglist, uint32_t mem_idx)
598 target_ulong base_reglist = reglist & 0xf;
599 target_ulong do_r31 = reglist & 0x10;
600 #ifdef CONFIG_USER_ONLY
601 #undef stfun
602 #define stfun stl_raw
603 #else
604 void (*stfun)(target_ulong, uint32_t);
606 switch (mem_idx)
608 case 0: stfun = stl_kernel; break;
609 case 1: stfun = stl_super; break;
610 default:
611 case 2: stfun = stl_user; break;
613 #endif
615 if (base_reglist > 0 && base_reglist <= ARRAY_SIZE (multiple_regs)) {
616 target_ulong i;
618 for (i = 0; i < base_reglist; i++) {
619 stfun(addr, env->active_tc.gpr[multiple_regs[i]]);
620 addr += 4;
624 if (do_r31) {
625 stfun(addr, env->active_tc.gpr[31]);
629 #if defined(TARGET_MIPS64)
630 void helper_ldm (target_ulong addr, target_ulong reglist, uint32_t mem_idx)
632 target_ulong base_reglist = reglist & 0xf;
633 target_ulong do_r31 = reglist & 0x10;
634 #ifdef CONFIG_USER_ONLY
635 #undef ldfun
636 #define ldfun ldq_raw
637 #else
638 uint64_t (*ldfun)(target_ulong);
640 switch (mem_idx)
642 case 0: ldfun = ldq_kernel; break;
643 case 1: ldfun = ldq_super; break;
644 default:
645 case 2: ldfun = ldq_user; break;
647 #endif
649 if (base_reglist > 0 && base_reglist <= ARRAY_SIZE (multiple_regs)) {
650 target_ulong i;
652 for (i = 0; i < base_reglist; i++) {
653 env->active_tc.gpr[multiple_regs[i]] = ldfun(addr);
654 addr += 8;
658 if (do_r31) {
659 env->active_tc.gpr[31] = ldfun(addr);
663 void helper_sdm (target_ulong addr, target_ulong reglist, uint32_t mem_idx)
665 target_ulong base_reglist = reglist & 0xf;
666 target_ulong do_r31 = reglist & 0x10;
667 #ifdef CONFIG_USER_ONLY
668 #undef stfun
669 #define stfun stq_raw
670 #else
671 void (*stfun)(target_ulong, uint64_t);
673 switch (mem_idx)
675 case 0: stfun = stq_kernel; break;
676 case 1: stfun = stq_super; break;
677 default:
678 case 2: stfun = stq_user; break;
680 #endif
682 if (base_reglist > 0 && base_reglist <= ARRAY_SIZE (multiple_regs)) {
683 target_ulong i;
685 for (i = 0; i < base_reglist; i++) {
686 stfun(addr, env->active_tc.gpr[multiple_regs[i]]);
687 addr += 8;
691 if (do_r31) {
692 stfun(addr, env->active_tc.gpr[31]);
695 #endif
697 #ifndef CONFIG_USER_ONLY
698 /* CP0 helpers */
699 target_ulong helper_mfc0_mvpcontrol (void)
701 return env->mvp->CP0_MVPControl;
704 target_ulong helper_mfc0_mvpconf0 (void)
706 return env->mvp->CP0_MVPConf0;
709 target_ulong helper_mfc0_mvpconf1 (void)
711 return env->mvp->CP0_MVPConf1;
714 target_ulong helper_mfc0_random (void)
716 return (int32_t)cpu_mips_get_random(env);
719 target_ulong helper_mfc0_tcstatus (void)
721 return env->active_tc.CP0_TCStatus;
724 target_ulong helper_mftc0_tcstatus(void)
726 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
728 if (other_tc == env->current_tc)
729 return env->active_tc.CP0_TCStatus;
730 else
731 return env->tcs[other_tc].CP0_TCStatus;
734 target_ulong helper_mfc0_tcbind (void)
736 return env->active_tc.CP0_TCBind;
739 target_ulong helper_mftc0_tcbind(void)
741 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
743 if (other_tc == env->current_tc)
744 return env->active_tc.CP0_TCBind;
745 else
746 return env->tcs[other_tc].CP0_TCBind;
749 target_ulong helper_mfc0_tcrestart (void)
751 return env->active_tc.PC;
754 target_ulong helper_mftc0_tcrestart(void)
756 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
758 if (other_tc == env->current_tc)
759 return env->active_tc.PC;
760 else
761 return env->tcs[other_tc].PC;
764 target_ulong helper_mfc0_tchalt (void)
766 return env->active_tc.CP0_TCHalt;
769 target_ulong helper_mftc0_tchalt(void)
771 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
773 if (other_tc == env->current_tc)
774 return env->active_tc.CP0_TCHalt;
775 else
776 return env->tcs[other_tc].CP0_TCHalt;
779 target_ulong helper_mfc0_tccontext (void)
781 return env->active_tc.CP0_TCContext;
784 target_ulong helper_mftc0_tccontext(void)
786 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
788 if (other_tc == env->current_tc)
789 return env->active_tc.CP0_TCContext;
790 else
791 return env->tcs[other_tc].CP0_TCContext;
794 target_ulong helper_mfc0_tcschedule (void)
796 return env->active_tc.CP0_TCSchedule;
799 target_ulong helper_mftc0_tcschedule(void)
801 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
803 if (other_tc == env->current_tc)
804 return env->active_tc.CP0_TCSchedule;
805 else
806 return env->tcs[other_tc].CP0_TCSchedule;
809 target_ulong helper_mfc0_tcschefback (void)
811 return env->active_tc.CP0_TCScheFBack;
814 target_ulong helper_mftc0_tcschefback(void)
816 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
818 if (other_tc == env->current_tc)
819 return env->active_tc.CP0_TCScheFBack;
820 else
821 return env->tcs[other_tc].CP0_TCScheFBack;
824 target_ulong helper_mfc0_count (void)
826 return (int32_t)cpu_mips_get_count(env);
829 target_ulong helper_mftc0_entryhi(void)
831 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
832 int32_t tcstatus;
834 if (other_tc == env->current_tc)
835 tcstatus = env->active_tc.CP0_TCStatus;
836 else
837 tcstatus = env->tcs[other_tc].CP0_TCStatus;
839 return (env->CP0_EntryHi & ~0xff) | (tcstatus & 0xff);
842 target_ulong helper_mftc0_status(void)
844 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
845 target_ulong t0;
846 int32_t tcstatus;
848 if (other_tc == env->current_tc)
849 tcstatus = env->active_tc.CP0_TCStatus;
850 else
851 tcstatus = env->tcs[other_tc].CP0_TCStatus;
853 t0 = env->CP0_Status & ~0xf1000018;
854 t0 |= tcstatus & (0xf << CP0TCSt_TCU0);
855 t0 |= (tcstatus & (1 << CP0TCSt_TMX)) >> (CP0TCSt_TMX - CP0St_MX);
856 t0 |= (tcstatus & (0x3 << CP0TCSt_TKSU)) >> (CP0TCSt_TKSU - CP0St_KSU);
858 return t0;
861 target_ulong helper_mfc0_lladdr (void)
863 return (int32_t)(env->lladdr >> env->CP0_LLAddr_shift);
866 target_ulong helper_mfc0_watchlo (uint32_t sel)
868 return (int32_t)env->CP0_WatchLo[sel];
871 target_ulong helper_mfc0_watchhi (uint32_t sel)
873 return env->CP0_WatchHi[sel];
876 target_ulong helper_mfc0_debug (void)
878 target_ulong t0 = env->CP0_Debug;
879 if (env->hflags & MIPS_HFLAG_DM)
880 t0 |= 1 << CP0DB_DM;
882 return t0;
885 target_ulong helper_mftc0_debug(void)
887 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
888 int32_t tcstatus;
890 if (other_tc == env->current_tc)
891 tcstatus = env->active_tc.CP0_Debug_tcstatus;
892 else
893 tcstatus = env->tcs[other_tc].CP0_Debug_tcstatus;
895 /* XXX: Might be wrong, check with EJTAG spec. */
896 return (env->CP0_Debug & ~((1 << CP0DB_SSt) | (1 << CP0DB_Halt))) |
897 (tcstatus & ((1 << CP0DB_SSt) | (1 << CP0DB_Halt)));
900 #if defined(TARGET_MIPS64)
901 target_ulong helper_dmfc0_tcrestart (void)
903 return env->active_tc.PC;
906 target_ulong helper_dmfc0_tchalt (void)
908 return env->active_tc.CP0_TCHalt;
911 target_ulong helper_dmfc0_tccontext (void)
913 return env->active_tc.CP0_TCContext;
916 target_ulong helper_dmfc0_tcschedule (void)
918 return env->active_tc.CP0_TCSchedule;
921 target_ulong helper_dmfc0_tcschefback (void)
923 return env->active_tc.CP0_TCScheFBack;
926 target_ulong helper_dmfc0_lladdr (void)
928 return env->lladdr >> env->CP0_LLAddr_shift;
931 target_ulong helper_dmfc0_watchlo (uint32_t sel)
933 return env->CP0_WatchLo[sel];
935 #endif /* TARGET_MIPS64 */
937 void helper_mtc0_index (target_ulong arg1)
939 int num = 1;
940 unsigned int tmp = env->tlb->nb_tlb;
942 do {
943 tmp >>= 1;
944 num <<= 1;
945 } while (tmp);
946 env->CP0_Index = (env->CP0_Index & 0x80000000) | (arg1 & (num - 1));
949 void helper_mtc0_mvpcontrol (target_ulong arg1)
951 uint32_t mask = 0;
952 uint32_t newval;
954 if (env->CP0_VPEConf0 & (1 << CP0VPEC0_MVP))
955 mask |= (1 << CP0MVPCo_CPA) | (1 << CP0MVPCo_VPC) |
956 (1 << CP0MVPCo_EVP);
957 if (env->mvp->CP0_MVPControl & (1 << CP0MVPCo_VPC))
958 mask |= (1 << CP0MVPCo_STLB);
959 newval = (env->mvp->CP0_MVPControl & ~mask) | (arg1 & mask);
961 // TODO: Enable/disable shared TLB, enable/disable VPEs.
963 env->mvp->CP0_MVPControl = newval;
966 void helper_mtc0_vpecontrol (target_ulong arg1)
968 uint32_t mask;
969 uint32_t newval;
971 mask = (1 << CP0VPECo_YSI) | (1 << CP0VPECo_GSI) |
972 (1 << CP0VPECo_TE) | (0xff << CP0VPECo_TargTC);
973 newval = (env->CP0_VPEControl & ~mask) | (arg1 & mask);
975 /* Yield scheduler intercept not implemented. */
976 /* Gating storage scheduler intercept not implemented. */
978 // TODO: Enable/disable TCs.
980 env->CP0_VPEControl = newval;
983 void helper_mtc0_vpeconf0 (target_ulong arg1)
985 uint32_t mask = 0;
986 uint32_t newval;
988 if (env->CP0_VPEConf0 & (1 << CP0VPEC0_MVP)) {
989 if (env->CP0_VPEConf0 & (1 << CP0VPEC0_VPA))
990 mask |= (0xff << CP0VPEC0_XTC);
991 mask |= (1 << CP0VPEC0_MVP) | (1 << CP0VPEC0_VPA);
993 newval = (env->CP0_VPEConf0 & ~mask) | (arg1 & mask);
995 // TODO: TC exclusive handling due to ERL/EXL.
997 env->CP0_VPEConf0 = newval;
1000 void helper_mtc0_vpeconf1 (target_ulong arg1)
1002 uint32_t mask = 0;
1003 uint32_t newval;
1005 if (env->mvp->CP0_MVPControl & (1 << CP0MVPCo_VPC))
1006 mask |= (0xff << CP0VPEC1_NCX) | (0xff << CP0VPEC1_NCP2) |
1007 (0xff << CP0VPEC1_NCP1);
1008 newval = (env->CP0_VPEConf1 & ~mask) | (arg1 & mask);
1010 /* UDI not implemented. */
1011 /* CP2 not implemented. */
1013 // TODO: Handle FPU (CP1) binding.
1015 env->CP0_VPEConf1 = newval;
1018 void helper_mtc0_yqmask (target_ulong arg1)
1020 /* Yield qualifier inputs not implemented. */
1021 env->CP0_YQMask = 0x00000000;
1024 void helper_mtc0_vpeopt (target_ulong arg1)
1026 env->CP0_VPEOpt = arg1 & 0x0000ffff;
1029 void helper_mtc0_entrylo0 (target_ulong arg1)
1031 /* Large physaddr (PABITS) not implemented */
1032 /* 1k pages not implemented */
1033 env->CP0_EntryLo0 = arg1 & 0x3FFFFFFF;
1036 void helper_mtc0_tcstatus (target_ulong arg1)
1038 uint32_t mask = env->CP0_TCStatus_rw_bitmask;
1039 uint32_t newval;
1041 newval = (env->active_tc.CP0_TCStatus & ~mask) | (arg1 & mask);
1043 // TODO: Sync with CP0_Status.
1045 env->active_tc.CP0_TCStatus = newval;
1048 void helper_mttc0_tcstatus (target_ulong arg1)
1050 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1052 // TODO: Sync with CP0_Status.
1054 if (other_tc == env->current_tc)
1055 env->active_tc.CP0_TCStatus = arg1;
1056 else
1057 env->tcs[other_tc].CP0_TCStatus = arg1;
1060 void helper_mtc0_tcbind (target_ulong arg1)
1062 uint32_t mask = (1 << CP0TCBd_TBE);
1063 uint32_t newval;
1065 if (env->mvp->CP0_MVPControl & (1 << CP0MVPCo_VPC))
1066 mask |= (1 << CP0TCBd_CurVPE);
1067 newval = (env->active_tc.CP0_TCBind & ~mask) | (arg1 & mask);
1068 env->active_tc.CP0_TCBind = newval;
1071 void helper_mttc0_tcbind (target_ulong arg1)
1073 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1074 uint32_t mask = (1 << CP0TCBd_TBE);
1075 uint32_t newval;
1077 if (env->mvp->CP0_MVPControl & (1 << CP0MVPCo_VPC))
1078 mask |= (1 << CP0TCBd_CurVPE);
1079 if (other_tc == env->current_tc) {
1080 newval = (env->active_tc.CP0_TCBind & ~mask) | (arg1 & mask);
1081 env->active_tc.CP0_TCBind = newval;
1082 } else {
1083 newval = (env->tcs[other_tc].CP0_TCBind & ~mask) | (arg1 & mask);
1084 env->tcs[other_tc].CP0_TCBind = newval;
1088 void helper_mtc0_tcrestart (target_ulong arg1)
1090 env->active_tc.PC = arg1;
1091 env->active_tc.CP0_TCStatus &= ~(1 << CP0TCSt_TDS);
1092 env->lladdr = 0ULL;
1093 /* MIPS16 not implemented. */
1096 void helper_mttc0_tcrestart (target_ulong arg1)
1098 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1100 if (other_tc == env->current_tc) {
1101 env->active_tc.PC = arg1;
1102 env->active_tc.CP0_TCStatus &= ~(1 << CP0TCSt_TDS);
1103 env->lladdr = 0ULL;
1104 /* MIPS16 not implemented. */
1105 } else {
1106 env->tcs[other_tc].PC = arg1;
1107 env->tcs[other_tc].CP0_TCStatus &= ~(1 << CP0TCSt_TDS);
1108 env->lladdr = 0ULL;
1109 /* MIPS16 not implemented. */
1113 void helper_mtc0_tchalt (target_ulong arg1)
1115 env->active_tc.CP0_TCHalt = arg1 & 0x1;
1117 // TODO: Halt TC / Restart (if allocated+active) TC.
1120 void helper_mttc0_tchalt (target_ulong arg1)
1122 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1124 // TODO: Halt TC / Restart (if allocated+active) TC.
1126 if (other_tc == env->current_tc)
1127 env->active_tc.CP0_TCHalt = arg1;
1128 else
1129 env->tcs[other_tc].CP0_TCHalt = arg1;
1132 void helper_mtc0_tccontext (target_ulong arg1)
1134 env->active_tc.CP0_TCContext = arg1;
1137 void helper_mttc0_tccontext (target_ulong arg1)
1139 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1141 if (other_tc == env->current_tc)
1142 env->active_tc.CP0_TCContext = arg1;
1143 else
1144 env->tcs[other_tc].CP0_TCContext = arg1;
1147 void helper_mtc0_tcschedule (target_ulong arg1)
1149 env->active_tc.CP0_TCSchedule = arg1;
1152 void helper_mttc0_tcschedule (target_ulong arg1)
1154 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1156 if (other_tc == env->current_tc)
1157 env->active_tc.CP0_TCSchedule = arg1;
1158 else
1159 env->tcs[other_tc].CP0_TCSchedule = arg1;
1162 void helper_mtc0_tcschefback (target_ulong arg1)
1164 env->active_tc.CP0_TCScheFBack = arg1;
1167 void helper_mttc0_tcschefback (target_ulong arg1)
1169 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1171 if (other_tc == env->current_tc)
1172 env->active_tc.CP0_TCScheFBack = arg1;
1173 else
1174 env->tcs[other_tc].CP0_TCScheFBack = arg1;
1177 void helper_mtc0_entrylo1 (target_ulong arg1)
1179 /* Large physaddr (PABITS) not implemented */
1180 /* 1k pages not implemented */
1181 env->CP0_EntryLo1 = arg1 & 0x3FFFFFFF;
1184 void helper_mtc0_context (target_ulong arg1)
1186 env->CP0_Context = (env->CP0_Context & 0x007FFFFF) | (arg1 & ~0x007FFFFF);
1189 void helper_mtc0_pagemask (target_ulong arg1)
1191 /* 1k pages not implemented */
1192 env->CP0_PageMask = arg1 & (0x1FFFFFFF & (TARGET_PAGE_MASK << 1));
1195 void helper_mtc0_pagegrain (target_ulong arg1)
1197 /* SmartMIPS not implemented */
1198 /* Large physaddr (PABITS) not implemented */
1199 /* 1k pages not implemented */
1200 env->CP0_PageGrain = 0;
1203 void helper_mtc0_wired (target_ulong arg1)
1205 env->CP0_Wired = arg1 % env->tlb->nb_tlb;
1208 void helper_mtc0_srsconf0 (target_ulong arg1)
1210 env->CP0_SRSConf0 |= arg1 & env->CP0_SRSConf0_rw_bitmask;
1213 void helper_mtc0_srsconf1 (target_ulong arg1)
1215 env->CP0_SRSConf1 |= arg1 & env->CP0_SRSConf1_rw_bitmask;
1218 void helper_mtc0_srsconf2 (target_ulong arg1)
1220 env->CP0_SRSConf2 |= arg1 & env->CP0_SRSConf2_rw_bitmask;
1223 void helper_mtc0_srsconf3 (target_ulong arg1)
1225 env->CP0_SRSConf3 |= arg1 & env->CP0_SRSConf3_rw_bitmask;
1228 void helper_mtc0_srsconf4 (target_ulong arg1)
1230 env->CP0_SRSConf4 |= arg1 & env->CP0_SRSConf4_rw_bitmask;
1233 void helper_mtc0_hwrena (target_ulong arg1)
1235 env->CP0_HWREna = arg1 & 0x0000000F;
1238 void helper_mtc0_count (target_ulong arg1)
1240 cpu_mips_store_count(env, arg1);
1243 void helper_mtc0_entryhi (target_ulong arg1)
1245 target_ulong old, val;
1247 /* 1k pages not implemented */
1248 val = arg1 & ((TARGET_PAGE_MASK << 1) | 0xFF);
1249 #if defined(TARGET_MIPS64)
1250 val &= env->SEGMask;
1251 #endif
1252 old = env->CP0_EntryHi;
1253 env->CP0_EntryHi = val;
1254 if (env->CP0_Config3 & (1 << CP0C3_MT)) {
1255 uint32_t tcst = env->active_tc.CP0_TCStatus & ~0xff;
1256 env->active_tc.CP0_TCStatus = tcst | (val & 0xff);
1258 /* If the ASID changes, flush qemu's TLB. */
1259 if ((old & 0xFF) != (val & 0xFF))
1260 cpu_mips_tlb_flush(env, 1);
1263 void helper_mttc0_entryhi(target_ulong arg1)
1265 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1266 int32_t tcstatus;
1268 env->CP0_EntryHi = (env->CP0_EntryHi & 0xff) | (arg1 & ~0xff);
1269 if (other_tc == env->current_tc) {
1270 tcstatus = (env->active_tc.CP0_TCStatus & ~0xff) | (arg1 & 0xff);
1271 env->active_tc.CP0_TCStatus = tcstatus;
1272 } else {
1273 tcstatus = (env->tcs[other_tc].CP0_TCStatus & ~0xff) | (arg1 & 0xff);
1274 env->tcs[other_tc].CP0_TCStatus = tcstatus;
1278 void helper_mtc0_compare (target_ulong arg1)
1280 cpu_mips_store_compare(env, arg1);
1283 void helper_mtc0_status (target_ulong arg1)
1285 uint32_t val, old;
1286 uint32_t mask = env->CP0_Status_rw_bitmask;
1288 val = arg1 & mask;
1289 old = env->CP0_Status;
1290 env->CP0_Status = (env->CP0_Status & ~mask) | val;
1291 compute_hflags(env);
1292 if (qemu_loglevel_mask(CPU_LOG_EXEC)) {
1293 qemu_log("Status %08x (%08x) => %08x (%08x) Cause %08x",
1294 old, old & env->CP0_Cause & CP0Ca_IP_mask,
1295 val, val & env->CP0_Cause & CP0Ca_IP_mask,
1296 env->CP0_Cause);
1297 switch (env->hflags & MIPS_HFLAG_KSU) {
1298 case MIPS_HFLAG_UM: qemu_log(", UM\n"); break;
1299 case MIPS_HFLAG_SM: qemu_log(", SM\n"); break;
1300 case MIPS_HFLAG_KM: qemu_log("\n"); break;
1301 default: cpu_abort(env, "Invalid MMU mode!\n"); break;
1306 void helper_mttc0_status(target_ulong arg1)
1308 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1309 int32_t tcstatus = env->tcs[other_tc].CP0_TCStatus;
1311 env->CP0_Status = arg1 & ~0xf1000018;
1312 tcstatus = (tcstatus & ~(0xf << CP0TCSt_TCU0)) | (arg1 & (0xf << CP0St_CU0));
1313 tcstatus = (tcstatus & ~(1 << CP0TCSt_TMX)) | ((arg1 & (1 << CP0St_MX)) << (CP0TCSt_TMX - CP0St_MX));
1314 tcstatus = (tcstatus & ~(0x3 << CP0TCSt_TKSU)) | ((arg1 & (0x3 << CP0St_KSU)) << (CP0TCSt_TKSU - CP0St_KSU));
1315 if (other_tc == env->current_tc)
1316 env->active_tc.CP0_TCStatus = tcstatus;
1317 else
1318 env->tcs[other_tc].CP0_TCStatus = tcstatus;
1321 void helper_mtc0_intctl (target_ulong arg1)
1323 /* vectored interrupts not implemented, no performance counters. */
1324 env->CP0_IntCtl = (env->CP0_IntCtl & ~0x000002e0) | (arg1 & 0x000002e0);
1327 void helper_mtc0_srsctl (target_ulong arg1)
1329 uint32_t mask = (0xf << CP0SRSCtl_ESS) | (0xf << CP0SRSCtl_PSS);
1330 env->CP0_SRSCtl = (env->CP0_SRSCtl & ~mask) | (arg1 & mask);
1333 void helper_mtc0_cause (target_ulong arg1)
1335 uint32_t mask = 0x00C00300;
1336 uint32_t old = env->CP0_Cause;
1337 int i;
1339 if (env->insn_flags & ISA_MIPS32R2)
1340 mask |= 1 << CP0Ca_DC;
1342 env->CP0_Cause = (env->CP0_Cause & ~mask) | (arg1 & mask);
1344 if ((old ^ env->CP0_Cause) & (1 << CP0Ca_DC)) {
1345 if (env->CP0_Cause & (1 << CP0Ca_DC))
1346 cpu_mips_stop_count(env);
1347 else
1348 cpu_mips_start_count(env);
1351 /* Set/reset software interrupts */
1352 for (i = 0 ; i < 2 ; i++) {
1353 if ((old ^ env->CP0_Cause) & (1 << (CP0Ca_IP + i))) {
1354 cpu_mips_soft_irq(env, i, env->CP0_Cause & (1 << (CP0Ca_IP + i)));
1359 void helper_mtc0_ebase (target_ulong arg1)
1361 /* vectored interrupts not implemented */
1362 /* Multi-CPU not implemented */
1363 env->CP0_EBase = 0x80000000 | (arg1 & 0x3FFFF000);
1366 void helper_mtc0_config0 (target_ulong arg1)
1368 env->CP0_Config0 = (env->CP0_Config0 & 0x81FFFFF8) | (arg1 & 0x00000007);
1371 void helper_mtc0_config2 (target_ulong arg1)
1373 /* tertiary/secondary caches not implemented */
1374 env->CP0_Config2 = (env->CP0_Config2 & 0x8FFF0FFF);
1377 void helper_mtc0_lladdr (target_ulong arg1)
1379 target_long mask = env->CP0_LLAddr_rw_bitmask;
1380 arg1 = arg1 << env->CP0_LLAddr_shift;
1381 env->lladdr = (env->lladdr & ~mask) | (arg1 & mask);
1384 void helper_mtc0_watchlo (target_ulong arg1, uint32_t sel)
1386 /* Watch exceptions for instructions, data loads, data stores
1387 not implemented. */
1388 env->CP0_WatchLo[sel] = (arg1 & ~0x7);
1391 void helper_mtc0_watchhi (target_ulong arg1, uint32_t sel)
1393 env->CP0_WatchHi[sel] = (arg1 & 0x40FF0FF8);
1394 env->CP0_WatchHi[sel] &= ~(env->CP0_WatchHi[sel] & arg1 & 0x7);
1397 void helper_mtc0_xcontext (target_ulong arg1)
1399 target_ulong mask = (1ULL << (env->SEGBITS - 7)) - 1;
1400 env->CP0_XContext = (env->CP0_XContext & mask) | (arg1 & ~mask);
1403 void helper_mtc0_framemask (target_ulong arg1)
1405 env->CP0_Framemask = arg1; /* XXX */
1408 void helper_mtc0_debug (target_ulong arg1)
1410 env->CP0_Debug = (env->CP0_Debug & 0x8C03FC1F) | (arg1 & 0x13300120);
1411 if (arg1 & (1 << CP0DB_DM))
1412 env->hflags |= MIPS_HFLAG_DM;
1413 else
1414 env->hflags &= ~MIPS_HFLAG_DM;
1417 void helper_mttc0_debug(target_ulong arg1)
1419 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1420 uint32_t val = arg1 & ((1 << CP0DB_SSt) | (1 << CP0DB_Halt));
1422 /* XXX: Might be wrong, check with EJTAG spec. */
1423 if (other_tc == env->current_tc)
1424 env->active_tc.CP0_Debug_tcstatus = val;
1425 else
1426 env->tcs[other_tc].CP0_Debug_tcstatus = val;
1427 env->CP0_Debug = (env->CP0_Debug & ((1 << CP0DB_SSt) | (1 << CP0DB_Halt))) |
1428 (arg1 & ~((1 << CP0DB_SSt) | (1 << CP0DB_Halt)));
1431 void helper_mtc0_performance0 (target_ulong arg1)
1433 env->CP0_Performance0 = arg1 & 0x000007ff;
1436 void helper_mtc0_taglo (target_ulong arg1)
1438 env->CP0_TagLo = arg1 & 0xFFFFFCF6;
1441 void helper_mtc0_datalo (target_ulong arg1)
1443 env->CP0_DataLo = arg1; /* XXX */
1446 void helper_mtc0_taghi (target_ulong arg1)
1448 env->CP0_TagHi = arg1; /* XXX */
1451 void helper_mtc0_datahi (target_ulong arg1)
1453 env->CP0_DataHi = arg1; /* XXX */
1456 /* MIPS MT functions */
1457 target_ulong helper_mftgpr(uint32_t sel)
1459 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1461 if (other_tc == env->current_tc)
1462 return env->active_tc.gpr[sel];
1463 else
1464 return env->tcs[other_tc].gpr[sel];
1467 target_ulong helper_mftlo(uint32_t sel)
1469 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1471 if (other_tc == env->current_tc)
1472 return env->active_tc.LO[sel];
1473 else
1474 return env->tcs[other_tc].LO[sel];
1477 target_ulong helper_mfthi(uint32_t sel)
1479 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1481 if (other_tc == env->current_tc)
1482 return env->active_tc.HI[sel];
1483 else
1484 return env->tcs[other_tc].HI[sel];
1487 target_ulong helper_mftacx(uint32_t sel)
1489 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1491 if (other_tc == env->current_tc)
1492 return env->active_tc.ACX[sel];
1493 else
1494 return env->tcs[other_tc].ACX[sel];
1497 target_ulong helper_mftdsp(void)
1499 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1501 if (other_tc == env->current_tc)
1502 return env->active_tc.DSPControl;
1503 else
1504 return env->tcs[other_tc].DSPControl;
1507 void helper_mttgpr(target_ulong arg1, uint32_t sel)
1509 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1511 if (other_tc == env->current_tc)
1512 env->active_tc.gpr[sel] = arg1;
1513 else
1514 env->tcs[other_tc].gpr[sel] = arg1;
1517 void helper_mttlo(target_ulong arg1, uint32_t sel)
1519 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1521 if (other_tc == env->current_tc)
1522 env->active_tc.LO[sel] = arg1;
1523 else
1524 env->tcs[other_tc].LO[sel] = arg1;
1527 void helper_mtthi(target_ulong arg1, uint32_t sel)
1529 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1531 if (other_tc == env->current_tc)
1532 env->active_tc.HI[sel] = arg1;
1533 else
1534 env->tcs[other_tc].HI[sel] = arg1;
1537 void helper_mttacx(target_ulong arg1, uint32_t sel)
1539 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1541 if (other_tc == env->current_tc)
1542 env->active_tc.ACX[sel] = arg1;
1543 else
1544 env->tcs[other_tc].ACX[sel] = arg1;
1547 void helper_mttdsp(target_ulong arg1)
1549 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1551 if (other_tc == env->current_tc)
1552 env->active_tc.DSPControl = arg1;
1553 else
1554 env->tcs[other_tc].DSPControl = arg1;
1557 /* MIPS MT functions */
1558 target_ulong helper_dmt(target_ulong arg1)
1560 // TODO
1561 arg1 = 0;
1562 // rt = arg1
1564 return arg1;
1567 target_ulong helper_emt(target_ulong arg1)
1569 // TODO
1570 arg1 = 0;
1571 // rt = arg1
1573 return arg1;
1576 target_ulong helper_dvpe(target_ulong arg1)
1578 // TODO
1579 arg1 = 0;
1580 // rt = arg1
1582 return arg1;
1585 target_ulong helper_evpe(target_ulong arg1)
1587 // TODO
1588 arg1 = 0;
1589 // rt = arg1
1591 return arg1;
1593 #endif /* !CONFIG_USER_ONLY */
1595 void helper_fork(target_ulong arg1, target_ulong arg2)
1597 // arg1 = rt, arg2 = rs
1598 arg1 = 0;
1599 // TODO: store to TC register
1602 target_ulong helper_yield(target_ulong arg1)
1604 if (arg1 < 0) {
1605 /* No scheduling policy implemented. */
1606 if (arg1 != -2) {
1607 if (env->CP0_VPEControl & (1 << CP0VPECo_YSI) &&
1608 env->active_tc.CP0_TCStatus & (1 << CP0TCSt_DT)) {
1609 env->CP0_VPEControl &= ~(0x7 << CP0VPECo_EXCPT);
1610 env->CP0_VPEControl |= 4 << CP0VPECo_EXCPT;
1611 helper_raise_exception(EXCP_THREAD);
1614 } else if (arg1 == 0) {
1615 if (0 /* TODO: TC underflow */) {
1616 env->CP0_VPEControl &= ~(0x7 << CP0VPECo_EXCPT);
1617 helper_raise_exception(EXCP_THREAD);
1618 } else {
1619 // TODO: Deallocate TC
1621 } else if (arg1 > 0) {
1622 /* Yield qualifier inputs not implemented. */
1623 env->CP0_VPEControl &= ~(0x7 << CP0VPECo_EXCPT);
1624 env->CP0_VPEControl |= 2 << CP0VPECo_EXCPT;
1625 helper_raise_exception(EXCP_THREAD);
1627 return env->CP0_YQMask;
1630 #ifndef CONFIG_USER_ONLY
1631 /* TLB management */
1632 static void cpu_mips_tlb_flush (CPUState *env, int flush_global)
1634 /* Flush qemu's TLB and discard all shadowed entries. */
1635 tlb_flush (env, flush_global);
1636 env->tlb->tlb_in_use = env->tlb->nb_tlb;
1639 static void r4k_mips_tlb_flush_extra (CPUState *env, int first)
1641 /* Discard entries from env->tlb[first] onwards. */
1642 while (env->tlb->tlb_in_use > first) {
1643 r4k_invalidate_tlb(env, --env->tlb->tlb_in_use, 0);
1647 static void r4k_fill_tlb (int idx)
1649 r4k_tlb_t *tlb;
1651 /* XXX: detect conflicting TLBs and raise a MCHECK exception when needed */
1652 tlb = &env->tlb->mmu.r4k.tlb[idx];
1653 tlb->VPN = env->CP0_EntryHi & (TARGET_PAGE_MASK << 1);
1654 #if defined(TARGET_MIPS64)
1655 tlb->VPN &= env->SEGMask;
1656 #endif
1657 tlb->ASID = env->CP0_EntryHi & 0xFF;
1658 tlb->PageMask = env->CP0_PageMask;
1659 tlb->G = env->CP0_EntryLo0 & env->CP0_EntryLo1 & 1;
1660 tlb->V0 = (env->CP0_EntryLo0 & 2) != 0;
1661 tlb->D0 = (env->CP0_EntryLo0 & 4) != 0;
1662 tlb->C0 = (env->CP0_EntryLo0 >> 3) & 0x7;
1663 tlb->PFN[0] = (env->CP0_EntryLo0 >> 6) << 12;
1664 tlb->V1 = (env->CP0_EntryLo1 & 2) != 0;
1665 tlb->D1 = (env->CP0_EntryLo1 & 4) != 0;
1666 tlb->C1 = (env->CP0_EntryLo1 >> 3) & 0x7;
1667 tlb->PFN[1] = (env->CP0_EntryLo1 >> 6) << 12;
1670 void r4k_helper_tlbwi (void)
1672 int idx;
1674 idx = (env->CP0_Index & ~0x80000000) % env->tlb->nb_tlb;
1676 /* Discard cached TLB entries. We could avoid doing this if the
1677 tlbwi is just upgrading access permissions on the current entry;
1678 that might be a further win. */
1679 r4k_mips_tlb_flush_extra (env, env->tlb->nb_tlb);
1681 r4k_invalidate_tlb(env, idx, 0);
1682 r4k_fill_tlb(idx);
1685 void r4k_helper_tlbwr (void)
1687 int r = cpu_mips_get_random(env);
1689 r4k_invalidate_tlb(env, r, 1);
1690 r4k_fill_tlb(r);
1693 void r4k_helper_tlbp (void)
1695 r4k_tlb_t *tlb;
1696 target_ulong mask;
1697 target_ulong tag;
1698 target_ulong VPN;
1699 uint8_t ASID;
1700 int i;
1702 ASID = env->CP0_EntryHi & 0xFF;
1703 for (i = 0; i < env->tlb->nb_tlb; i++) {
1704 tlb = &env->tlb->mmu.r4k.tlb[i];
1705 /* 1k pages are not supported. */
1706 mask = tlb->PageMask | ~(TARGET_PAGE_MASK << 1);
1707 tag = env->CP0_EntryHi & ~mask;
1708 VPN = tlb->VPN & ~mask;
1709 /* Check ASID, virtual page number & size */
1710 if ((tlb->G == 1 || tlb->ASID == ASID) && VPN == tag) {
1711 /* TLB match */
1712 env->CP0_Index = i;
1713 break;
1716 if (i == env->tlb->nb_tlb) {
1717 /* No match. Discard any shadow entries, if any of them match. */
1718 for (i = env->tlb->nb_tlb; i < env->tlb->tlb_in_use; i++) {
1719 tlb = &env->tlb->mmu.r4k.tlb[i];
1720 /* 1k pages are not supported. */
1721 mask = tlb->PageMask | ~(TARGET_PAGE_MASK << 1);
1722 tag = env->CP0_EntryHi & ~mask;
1723 VPN = tlb->VPN & ~mask;
1724 /* Check ASID, virtual page number & size */
1725 if ((tlb->G == 1 || tlb->ASID == ASID) && VPN == tag) {
1726 r4k_mips_tlb_flush_extra (env, i);
1727 break;
1731 env->CP0_Index |= 0x80000000;
1735 void r4k_helper_tlbr (void)
1737 r4k_tlb_t *tlb;
1738 uint8_t ASID;
1739 int idx;
1741 ASID = env->CP0_EntryHi & 0xFF;
1742 idx = (env->CP0_Index & ~0x80000000) % env->tlb->nb_tlb;
1743 tlb = &env->tlb->mmu.r4k.tlb[idx];
1745 /* If this will change the current ASID, flush qemu's TLB. */
1746 if (ASID != tlb->ASID)
1747 cpu_mips_tlb_flush (env, 1);
1749 r4k_mips_tlb_flush_extra(env, env->tlb->nb_tlb);
1751 env->CP0_EntryHi = tlb->VPN | tlb->ASID;
1752 env->CP0_PageMask = tlb->PageMask;
1753 env->CP0_EntryLo0 = tlb->G | (tlb->V0 << 1) | (tlb->D0 << 2) |
1754 (tlb->C0 << 3) | (tlb->PFN[0] >> 6);
1755 env->CP0_EntryLo1 = tlb->G | (tlb->V1 << 1) | (tlb->D1 << 2) |
1756 (tlb->C1 << 3) | (tlb->PFN[1] >> 6);
1759 void helper_tlbwi(void)
1761 env->tlb->helper_tlbwi();
1764 void helper_tlbwr(void)
1766 env->tlb->helper_tlbwr();
1769 void helper_tlbp(void)
1771 env->tlb->helper_tlbp();
1774 void helper_tlbr(void)
1776 env->tlb->helper_tlbr();
1779 /* Specials */
1780 target_ulong helper_di (void)
1782 target_ulong t0 = env->CP0_Status;
1784 env->CP0_Status = t0 & ~(1 << CP0St_IE);
1785 return t0;
1788 target_ulong helper_ei (void)
1790 target_ulong t0 = env->CP0_Status;
1792 env->CP0_Status = t0 | (1 << CP0St_IE);
1793 return t0;
1796 static void debug_pre_eret (void)
1798 if (qemu_loglevel_mask(CPU_LOG_EXEC)) {
1799 qemu_log("ERET: PC " TARGET_FMT_lx " EPC " TARGET_FMT_lx,
1800 env->active_tc.PC, env->CP0_EPC);
1801 if (env->CP0_Status & (1 << CP0St_ERL))
1802 qemu_log(" ErrorEPC " TARGET_FMT_lx, env->CP0_ErrorEPC);
1803 if (env->hflags & MIPS_HFLAG_DM)
1804 qemu_log(" DEPC " TARGET_FMT_lx, env->CP0_DEPC);
1805 qemu_log("\n");
1809 static void debug_post_eret (void)
1811 if (qemu_loglevel_mask(CPU_LOG_EXEC)) {
1812 qemu_log(" => PC " TARGET_FMT_lx " EPC " TARGET_FMT_lx,
1813 env->active_tc.PC, env->CP0_EPC);
1814 if (env->CP0_Status & (1 << CP0St_ERL))
1815 qemu_log(" ErrorEPC " TARGET_FMT_lx, env->CP0_ErrorEPC);
1816 if (env->hflags & MIPS_HFLAG_DM)
1817 qemu_log(" DEPC " TARGET_FMT_lx, env->CP0_DEPC);
1818 switch (env->hflags & MIPS_HFLAG_KSU) {
1819 case MIPS_HFLAG_UM: qemu_log(", UM\n"); break;
1820 case MIPS_HFLAG_SM: qemu_log(", SM\n"); break;
1821 case MIPS_HFLAG_KM: qemu_log("\n"); break;
1822 default: cpu_abort(env, "Invalid MMU mode!\n"); break;
1827 static void set_pc (target_ulong error_pc)
1829 env->active_tc.PC = error_pc & ~(target_ulong)1;
1830 if (error_pc & 1) {
1831 env->hflags |= MIPS_HFLAG_M16;
1832 } else {
1833 env->hflags &= ~(MIPS_HFLAG_M16);
1837 void helper_eret (void)
1839 debug_pre_eret();
1840 if (env->CP0_Status & (1 << CP0St_ERL)) {
1841 set_pc(env->CP0_ErrorEPC);
1842 env->CP0_Status &= ~(1 << CP0St_ERL);
1843 } else {
1844 set_pc(env->CP0_EPC);
1845 env->CP0_Status &= ~(1 << CP0St_EXL);
1847 compute_hflags(env);
1848 debug_post_eret();
1849 env->lladdr = 1;
1852 void helper_deret (void)
1854 debug_pre_eret();
1855 set_pc(env->CP0_DEPC);
1857 env->hflags &= MIPS_HFLAG_DM;
1858 compute_hflags(env);
1859 debug_post_eret();
1860 env->lladdr = 1;
1862 #endif /* !CONFIG_USER_ONLY */
1864 target_ulong helper_rdhwr_cpunum(void)
1866 if ((env->hflags & MIPS_HFLAG_CP0) ||
1867 (env->CP0_HWREna & (1 << 0)))
1868 return env->CP0_EBase & 0x3ff;
1869 else
1870 helper_raise_exception(EXCP_RI);
1872 return 0;
1875 target_ulong helper_rdhwr_synci_step(void)
1877 if ((env->hflags & MIPS_HFLAG_CP0) ||
1878 (env->CP0_HWREna & (1 << 1)))
1879 return env->SYNCI_Step;
1880 else
1881 helper_raise_exception(EXCP_RI);
1883 return 0;
1886 target_ulong helper_rdhwr_cc(void)
1888 if ((env->hflags & MIPS_HFLAG_CP0) ||
1889 (env->CP0_HWREna & (1 << 2)))
1890 return env->CP0_Count;
1891 else
1892 helper_raise_exception(EXCP_RI);
1894 return 0;
1897 target_ulong helper_rdhwr_ccres(void)
1899 if ((env->hflags & MIPS_HFLAG_CP0) ||
1900 (env->CP0_HWREna & (1 << 3)))
1901 return env->CCRes;
1902 else
1903 helper_raise_exception(EXCP_RI);
1905 return 0;
1908 void helper_pmon (int function)
1910 function /= 2;
1911 switch (function) {
1912 case 2: /* TODO: char inbyte(int waitflag); */
1913 if (env->active_tc.gpr[4] == 0)
1914 env->active_tc.gpr[2] = -1;
1915 /* Fall through */
1916 case 11: /* TODO: char inbyte (void); */
1917 env->active_tc.gpr[2] = -1;
1918 break;
1919 case 3:
1920 case 12:
1921 printf("%c", (char)(env->active_tc.gpr[4] & 0xFF));
1922 break;
1923 case 17:
1924 break;
1925 case 158:
1927 unsigned char *fmt = (void *)(unsigned long)env->active_tc.gpr[4];
1928 printf("%s", fmt);
1930 break;
1934 void helper_wait (void)
1936 env->halted = 1;
1937 helper_raise_exception(EXCP_HLT);
1940 #if !defined(CONFIG_USER_ONLY)
1942 static void do_unaligned_access (target_ulong addr, int is_write, int is_user, void *retaddr);
1944 #define MMUSUFFIX _mmu
1945 #define ALIGNED_ONLY
1947 #define SHIFT 0
1948 #include "softmmu_template.h"
1950 #define SHIFT 1
1951 #include "softmmu_template.h"
1953 #define SHIFT 2
1954 #include "softmmu_template.h"
1956 #define SHIFT 3
1957 #include "softmmu_template.h"
1959 static void do_unaligned_access (target_ulong addr, int is_write, int is_user, void *retaddr)
1961 env->CP0_BadVAddr = addr;
1962 do_restore_state (retaddr);
1963 helper_raise_exception ((is_write == 1) ? EXCP_AdES : EXCP_AdEL);
1966 void tlb_fill (target_ulong addr, int is_write, int mmu_idx, void *retaddr)
1968 TranslationBlock *tb;
1969 CPUState *saved_env;
1970 unsigned long pc;
1971 int ret;
1973 /* XXX: hack to restore env in all cases, even if not called from
1974 generated code */
1975 saved_env = env;
1976 env = cpu_single_env;
1977 ret = cpu_mips_handle_mmu_fault(env, addr, is_write, mmu_idx, 1);
1978 if (ret) {
1979 if (retaddr) {
1980 /* now we have a real cpu fault */
1981 pc = (unsigned long)retaddr;
1982 tb = tb_find_pc(pc);
1983 if (tb) {
1984 /* the PC is inside the translated code. It means that we have
1985 a virtual CPU fault */
1986 cpu_restore_state(tb, env, pc, NULL);
1989 helper_raise_exception_err(env->exception_index, env->error_code);
1991 env = saved_env;
1994 void do_unassigned_access(target_phys_addr_t addr, int is_write, int is_exec,
1995 int unused, int size)
1997 if (is_exec)
1998 helper_raise_exception(EXCP_IBE);
1999 else
2000 helper_raise_exception(EXCP_DBE);
2002 #endif /* !CONFIG_USER_ONLY */
2004 /* Complex FPU operations which may need stack space. */
2006 #define FLOAT_ONE32 make_float32(0x3f8 << 20)
2007 #define FLOAT_ONE64 make_float64(0x3ffULL << 52)
2008 #define FLOAT_TWO32 make_float32(1 << 30)
2009 #define FLOAT_TWO64 make_float64(1ULL << 62)
2010 #define FLOAT_QNAN32 0x7fbfffff
2011 #define FLOAT_QNAN64 0x7ff7ffffffffffffULL
2012 #define FLOAT_SNAN32 0x7fffffff
2013 #define FLOAT_SNAN64 0x7fffffffffffffffULL
2015 /* convert MIPS rounding mode in FCR31 to IEEE library */
2016 static unsigned int ieee_rm[] = {
2017 float_round_nearest_even,
2018 float_round_to_zero,
2019 float_round_up,
2020 float_round_down
2023 #define RESTORE_ROUNDING_MODE \
2024 set_float_rounding_mode(ieee_rm[env->active_fpu.fcr31 & 3], &env->active_fpu.fp_status)
2026 #define RESTORE_FLUSH_MODE \
2027 set_flush_to_zero((env->active_fpu.fcr31 & (1 << 24)) != 0, &env->active_fpu.fp_status);
2029 target_ulong helper_cfc1 (uint32_t reg)
2031 target_ulong arg1;
2033 switch (reg) {
2034 case 0:
2035 arg1 = (int32_t)env->active_fpu.fcr0;
2036 break;
2037 case 25:
2038 arg1 = ((env->active_fpu.fcr31 >> 24) & 0xfe) | ((env->active_fpu.fcr31 >> 23) & 0x1);
2039 break;
2040 case 26:
2041 arg1 = env->active_fpu.fcr31 & 0x0003f07c;
2042 break;
2043 case 28:
2044 arg1 = (env->active_fpu.fcr31 & 0x00000f83) | ((env->active_fpu.fcr31 >> 22) & 0x4);
2045 break;
2046 default:
2047 arg1 = (int32_t)env->active_fpu.fcr31;
2048 break;
2051 return arg1;
2054 void helper_ctc1 (target_ulong arg1, uint32_t reg)
2056 switch(reg) {
2057 case 25:
2058 if (arg1 & 0xffffff00)
2059 return;
2060 env->active_fpu.fcr31 = (env->active_fpu.fcr31 & 0x017fffff) | ((arg1 & 0xfe) << 24) |
2061 ((arg1 & 0x1) << 23);
2062 break;
2063 case 26:
2064 if (arg1 & 0x007c0000)
2065 return;
2066 env->active_fpu.fcr31 = (env->active_fpu.fcr31 & 0xfffc0f83) | (arg1 & 0x0003f07c);
2067 break;
2068 case 28:
2069 if (arg1 & 0x007c0000)
2070 return;
2071 env->active_fpu.fcr31 = (env->active_fpu.fcr31 & 0xfefff07c) | (arg1 & 0x00000f83) |
2072 ((arg1 & 0x4) << 22);
2073 break;
2074 case 31:
2075 if (arg1 & 0x007c0000)
2076 return;
2077 env->active_fpu.fcr31 = arg1;
2078 break;
2079 default:
2080 return;
2082 /* set rounding mode */
2083 RESTORE_ROUNDING_MODE;
2084 /* set flush-to-zero mode */
2085 RESTORE_FLUSH_MODE;
2086 set_float_exception_flags(0, &env->active_fpu.fp_status);
2087 if ((GET_FP_ENABLE(env->active_fpu.fcr31) | 0x20) & GET_FP_CAUSE(env->active_fpu.fcr31))
2088 helper_raise_exception(EXCP_FPE);
2091 static inline char ieee_ex_to_mips(char xcpt)
2093 return (xcpt & float_flag_inexact) >> 5 |
2094 (xcpt & float_flag_underflow) >> 3 |
2095 (xcpt & float_flag_overflow) >> 1 |
2096 (xcpt & float_flag_divbyzero) << 1 |
2097 (xcpt & float_flag_invalid) << 4;
2100 static inline char mips_ex_to_ieee(char xcpt)
2102 return (xcpt & FP_INEXACT) << 5 |
2103 (xcpt & FP_UNDERFLOW) << 3 |
2104 (xcpt & FP_OVERFLOW) << 1 |
2105 (xcpt & FP_DIV0) >> 1 |
2106 (xcpt & FP_INVALID) >> 4;
2109 static inline void update_fcr31(void)
2111 int tmp = ieee_ex_to_mips(get_float_exception_flags(&env->active_fpu.fp_status));
2113 SET_FP_CAUSE(env->active_fpu.fcr31, tmp);
2114 if (GET_FP_ENABLE(env->active_fpu.fcr31) & tmp)
2115 helper_raise_exception(EXCP_FPE);
2116 else
2117 UPDATE_FP_FLAGS(env->active_fpu.fcr31, tmp);
2120 /* Float support.
2121 Single precition routines have a "s" suffix, double precision a
2122 "d" suffix, 32bit integer "w", 64bit integer "l", paired single "ps",
2123 paired single lower "pl", paired single upper "pu". */
2125 /* unary operations, modifying fp status */
2126 uint64_t helper_float_sqrt_d(uint64_t fdt0)
2128 return float64_sqrt(fdt0, &env->active_fpu.fp_status);
2131 uint32_t helper_float_sqrt_s(uint32_t fst0)
2133 return float32_sqrt(fst0, &env->active_fpu.fp_status);
2136 uint64_t helper_float_cvtd_s(uint32_t fst0)
2138 uint64_t fdt2;
2140 set_float_exception_flags(0, &env->active_fpu.fp_status);
2141 fdt2 = float32_to_float64(fst0, &env->active_fpu.fp_status);
2142 update_fcr31();
2143 return fdt2;
2146 uint64_t helper_float_cvtd_w(uint32_t wt0)
2148 uint64_t fdt2;
2150 set_float_exception_flags(0, &env->active_fpu.fp_status);
2151 fdt2 = int32_to_float64(wt0, &env->active_fpu.fp_status);
2152 update_fcr31();
2153 return fdt2;
2156 uint64_t helper_float_cvtd_l(uint64_t dt0)
2158 uint64_t fdt2;
2160 set_float_exception_flags(0, &env->active_fpu.fp_status);
2161 fdt2 = int64_to_float64(dt0, &env->active_fpu.fp_status);
2162 update_fcr31();
2163 return fdt2;
2166 uint64_t helper_float_cvtl_d(uint64_t fdt0)
2168 uint64_t dt2;
2170 set_float_exception_flags(0, &env->active_fpu.fp_status);
2171 dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status);
2172 update_fcr31();
2173 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2174 dt2 = FLOAT_SNAN64;
2175 return dt2;
2178 uint64_t helper_float_cvtl_s(uint32_t fst0)
2180 uint64_t dt2;
2182 set_float_exception_flags(0, &env->active_fpu.fp_status);
2183 dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status);
2184 update_fcr31();
2185 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2186 dt2 = FLOAT_SNAN64;
2187 return dt2;
2190 uint64_t helper_float_cvtps_pw(uint64_t dt0)
2192 uint32_t fst2;
2193 uint32_t fsth2;
2195 set_float_exception_flags(0, &env->active_fpu.fp_status);
2196 fst2 = int32_to_float32(dt0 & 0XFFFFFFFF, &env->active_fpu.fp_status);
2197 fsth2 = int32_to_float32(dt0 >> 32, &env->active_fpu.fp_status);
2198 update_fcr31();
2199 return ((uint64_t)fsth2 << 32) | fst2;
2202 uint64_t helper_float_cvtpw_ps(uint64_t fdt0)
2204 uint32_t wt2;
2205 uint32_t wth2;
2207 set_float_exception_flags(0, &env->active_fpu.fp_status);
2208 wt2 = float32_to_int32(fdt0 & 0XFFFFFFFF, &env->active_fpu.fp_status);
2209 wth2 = float32_to_int32(fdt0 >> 32, &env->active_fpu.fp_status);
2210 update_fcr31();
2211 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID)) {
2212 wt2 = FLOAT_SNAN32;
2213 wth2 = FLOAT_SNAN32;
2215 return ((uint64_t)wth2 << 32) | wt2;
2218 uint32_t helper_float_cvts_d(uint64_t fdt0)
2220 uint32_t fst2;
2222 set_float_exception_flags(0, &env->active_fpu.fp_status);
2223 fst2 = float64_to_float32(fdt0, &env->active_fpu.fp_status);
2224 update_fcr31();
2225 return fst2;
2228 uint32_t helper_float_cvts_w(uint32_t wt0)
2230 uint32_t fst2;
2232 set_float_exception_flags(0, &env->active_fpu.fp_status);
2233 fst2 = int32_to_float32(wt0, &env->active_fpu.fp_status);
2234 update_fcr31();
2235 return fst2;
2238 uint32_t helper_float_cvts_l(uint64_t dt0)
2240 uint32_t fst2;
2242 set_float_exception_flags(0, &env->active_fpu.fp_status);
2243 fst2 = int64_to_float32(dt0, &env->active_fpu.fp_status);
2244 update_fcr31();
2245 return fst2;
2248 uint32_t helper_float_cvts_pl(uint32_t wt0)
2250 uint32_t wt2;
2252 set_float_exception_flags(0, &env->active_fpu.fp_status);
2253 wt2 = wt0;
2254 update_fcr31();
2255 return wt2;
2258 uint32_t helper_float_cvts_pu(uint32_t wth0)
2260 uint32_t wt2;
2262 set_float_exception_flags(0, &env->active_fpu.fp_status);
2263 wt2 = wth0;
2264 update_fcr31();
2265 return wt2;
2268 uint32_t helper_float_cvtw_s(uint32_t fst0)
2270 uint32_t wt2;
2272 set_float_exception_flags(0, &env->active_fpu.fp_status);
2273 wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status);
2274 update_fcr31();
2275 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2276 wt2 = FLOAT_SNAN32;
2277 return wt2;
2280 uint32_t helper_float_cvtw_d(uint64_t fdt0)
2282 uint32_t wt2;
2284 set_float_exception_flags(0, &env->active_fpu.fp_status);
2285 wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status);
2286 update_fcr31();
2287 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2288 wt2 = FLOAT_SNAN32;
2289 return wt2;
2292 uint64_t helper_float_roundl_d(uint64_t fdt0)
2294 uint64_t dt2;
2296 set_float_rounding_mode(float_round_nearest_even, &env->active_fpu.fp_status);
2297 dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status);
2298 RESTORE_ROUNDING_MODE;
2299 update_fcr31();
2300 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2301 dt2 = FLOAT_SNAN64;
2302 return dt2;
2305 uint64_t helper_float_roundl_s(uint32_t fst0)
2307 uint64_t dt2;
2309 set_float_rounding_mode(float_round_nearest_even, &env->active_fpu.fp_status);
2310 dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status);
2311 RESTORE_ROUNDING_MODE;
2312 update_fcr31();
2313 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2314 dt2 = FLOAT_SNAN64;
2315 return dt2;
2318 uint32_t helper_float_roundw_d(uint64_t fdt0)
2320 uint32_t wt2;
2322 set_float_rounding_mode(float_round_nearest_even, &env->active_fpu.fp_status);
2323 wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status);
2324 RESTORE_ROUNDING_MODE;
2325 update_fcr31();
2326 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2327 wt2 = FLOAT_SNAN32;
2328 return wt2;
2331 uint32_t helper_float_roundw_s(uint32_t fst0)
2333 uint32_t wt2;
2335 set_float_rounding_mode(float_round_nearest_even, &env->active_fpu.fp_status);
2336 wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status);
2337 RESTORE_ROUNDING_MODE;
2338 update_fcr31();
2339 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2340 wt2 = FLOAT_SNAN32;
2341 return wt2;
2344 uint64_t helper_float_truncl_d(uint64_t fdt0)
2346 uint64_t dt2;
2348 dt2 = float64_to_int64_round_to_zero(fdt0, &env->active_fpu.fp_status);
2349 update_fcr31();
2350 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2351 dt2 = FLOAT_SNAN64;
2352 return dt2;
2355 uint64_t helper_float_truncl_s(uint32_t fst0)
2357 uint64_t dt2;
2359 dt2 = float32_to_int64_round_to_zero(fst0, &env->active_fpu.fp_status);
2360 update_fcr31();
2361 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2362 dt2 = FLOAT_SNAN64;
2363 return dt2;
2366 uint32_t helper_float_truncw_d(uint64_t fdt0)
2368 uint32_t wt2;
2370 wt2 = float64_to_int32_round_to_zero(fdt0, &env->active_fpu.fp_status);
2371 update_fcr31();
2372 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2373 wt2 = FLOAT_SNAN32;
2374 return wt2;
2377 uint32_t helper_float_truncw_s(uint32_t fst0)
2379 uint32_t wt2;
2381 wt2 = float32_to_int32_round_to_zero(fst0, &env->active_fpu.fp_status);
2382 update_fcr31();
2383 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2384 wt2 = FLOAT_SNAN32;
2385 return wt2;
2388 uint64_t helper_float_ceill_d(uint64_t fdt0)
2390 uint64_t dt2;
2392 set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status);
2393 dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status);
2394 RESTORE_ROUNDING_MODE;
2395 update_fcr31();
2396 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2397 dt2 = FLOAT_SNAN64;
2398 return dt2;
2401 uint64_t helper_float_ceill_s(uint32_t fst0)
2403 uint64_t dt2;
2405 set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status);
2406 dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status);
2407 RESTORE_ROUNDING_MODE;
2408 update_fcr31();
2409 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2410 dt2 = FLOAT_SNAN64;
2411 return dt2;
2414 uint32_t helper_float_ceilw_d(uint64_t fdt0)
2416 uint32_t wt2;
2418 set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status);
2419 wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status);
2420 RESTORE_ROUNDING_MODE;
2421 update_fcr31();
2422 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2423 wt2 = FLOAT_SNAN32;
2424 return wt2;
2427 uint32_t helper_float_ceilw_s(uint32_t fst0)
2429 uint32_t wt2;
2431 set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status);
2432 wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status);
2433 RESTORE_ROUNDING_MODE;
2434 update_fcr31();
2435 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2436 wt2 = FLOAT_SNAN32;
2437 return wt2;
2440 uint64_t helper_float_floorl_d(uint64_t fdt0)
2442 uint64_t dt2;
2444 set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status);
2445 dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status);
2446 RESTORE_ROUNDING_MODE;
2447 update_fcr31();
2448 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2449 dt2 = FLOAT_SNAN64;
2450 return dt2;
2453 uint64_t helper_float_floorl_s(uint32_t fst0)
2455 uint64_t dt2;
2457 set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status);
2458 dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status);
2459 RESTORE_ROUNDING_MODE;
2460 update_fcr31();
2461 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2462 dt2 = FLOAT_SNAN64;
2463 return dt2;
2466 uint32_t helper_float_floorw_d(uint64_t fdt0)
2468 uint32_t wt2;
2470 set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status);
2471 wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status);
2472 RESTORE_ROUNDING_MODE;
2473 update_fcr31();
2474 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2475 wt2 = FLOAT_SNAN32;
2476 return wt2;
2479 uint32_t helper_float_floorw_s(uint32_t fst0)
2481 uint32_t wt2;
2483 set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status);
2484 wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status);
2485 RESTORE_ROUNDING_MODE;
2486 update_fcr31();
2487 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2488 wt2 = FLOAT_SNAN32;
2489 return wt2;
2492 /* unary operations, not modifying fp status */
2493 #define FLOAT_UNOP(name) \
2494 uint64_t helper_float_ ## name ## _d(uint64_t fdt0) \
2496 return float64_ ## name(fdt0); \
2498 uint32_t helper_float_ ## name ## _s(uint32_t fst0) \
2500 return float32_ ## name(fst0); \
2502 uint64_t helper_float_ ## name ## _ps(uint64_t fdt0) \
2504 uint32_t wt0; \
2505 uint32_t wth0; \
2507 wt0 = float32_ ## name(fdt0 & 0XFFFFFFFF); \
2508 wth0 = float32_ ## name(fdt0 >> 32); \
2509 return ((uint64_t)wth0 << 32) | wt0; \
2511 FLOAT_UNOP(abs)
2512 FLOAT_UNOP(chs)
2513 #undef FLOAT_UNOP
2515 /* MIPS specific unary operations */
2516 uint64_t helper_float_recip_d(uint64_t fdt0)
2518 uint64_t fdt2;
2520 set_float_exception_flags(0, &env->active_fpu.fp_status);
2521 fdt2 = float64_div(FLOAT_ONE64, fdt0, &env->active_fpu.fp_status);
2522 update_fcr31();
2523 return fdt2;
2526 uint32_t helper_float_recip_s(uint32_t fst0)
2528 uint32_t fst2;
2530 set_float_exception_flags(0, &env->active_fpu.fp_status);
2531 fst2 = float32_div(FLOAT_ONE32, fst0, &env->active_fpu.fp_status);
2532 update_fcr31();
2533 return fst2;
2536 uint64_t helper_float_rsqrt_d(uint64_t fdt0)
2538 uint64_t fdt2;
2540 set_float_exception_flags(0, &env->active_fpu.fp_status);
2541 fdt2 = float64_sqrt(fdt0, &env->active_fpu.fp_status);
2542 fdt2 = float64_div(FLOAT_ONE64, fdt2, &env->active_fpu.fp_status);
2543 update_fcr31();
2544 return fdt2;
2547 uint32_t helper_float_rsqrt_s(uint32_t fst0)
2549 uint32_t fst2;
2551 set_float_exception_flags(0, &env->active_fpu.fp_status);
2552 fst2 = float32_sqrt(fst0, &env->active_fpu.fp_status);
2553 fst2 = float32_div(FLOAT_ONE32, fst2, &env->active_fpu.fp_status);
2554 update_fcr31();
2555 return fst2;
2558 uint64_t helper_float_recip1_d(uint64_t fdt0)
2560 uint64_t fdt2;
2562 set_float_exception_flags(0, &env->active_fpu.fp_status);
2563 fdt2 = float64_div(FLOAT_ONE64, fdt0, &env->active_fpu.fp_status);
2564 update_fcr31();
2565 return fdt2;
2568 uint32_t helper_float_recip1_s(uint32_t fst0)
2570 uint32_t fst2;
2572 set_float_exception_flags(0, &env->active_fpu.fp_status);
2573 fst2 = float32_div(FLOAT_ONE32, fst0, &env->active_fpu.fp_status);
2574 update_fcr31();
2575 return fst2;
2578 uint64_t helper_float_recip1_ps(uint64_t fdt0)
2580 uint32_t fst2;
2581 uint32_t fsth2;
2583 set_float_exception_flags(0, &env->active_fpu.fp_status);
2584 fst2 = float32_div(FLOAT_ONE32, fdt0 & 0XFFFFFFFF, &env->active_fpu.fp_status);
2585 fsth2 = float32_div(FLOAT_ONE32, fdt0 >> 32, &env->active_fpu.fp_status);
2586 update_fcr31();
2587 return ((uint64_t)fsth2 << 32) | fst2;
2590 uint64_t helper_float_rsqrt1_d(uint64_t fdt0)
2592 uint64_t fdt2;
2594 set_float_exception_flags(0, &env->active_fpu.fp_status);
2595 fdt2 = float64_sqrt(fdt0, &env->active_fpu.fp_status);
2596 fdt2 = float64_div(FLOAT_ONE64, fdt2, &env->active_fpu.fp_status);
2597 update_fcr31();
2598 return fdt2;
2601 uint32_t helper_float_rsqrt1_s(uint32_t fst0)
2603 uint32_t fst2;
2605 set_float_exception_flags(0, &env->active_fpu.fp_status);
2606 fst2 = float32_sqrt(fst0, &env->active_fpu.fp_status);
2607 fst2 = float32_div(FLOAT_ONE32, fst2, &env->active_fpu.fp_status);
2608 update_fcr31();
2609 return fst2;
2612 uint64_t helper_float_rsqrt1_ps(uint64_t fdt0)
2614 uint32_t fst2;
2615 uint32_t fsth2;
2617 set_float_exception_flags(0, &env->active_fpu.fp_status);
2618 fst2 = float32_sqrt(fdt0 & 0XFFFFFFFF, &env->active_fpu.fp_status);
2619 fsth2 = float32_sqrt(fdt0 >> 32, &env->active_fpu.fp_status);
2620 fst2 = float32_div(FLOAT_ONE32, fst2, &env->active_fpu.fp_status);
2621 fsth2 = float32_div(FLOAT_ONE32, fsth2, &env->active_fpu.fp_status);
2622 update_fcr31();
2623 return ((uint64_t)fsth2 << 32) | fst2;
2626 #define FLOAT_OP(name, p) void helper_float_##name##_##p(void)
2628 /* binary operations */
2629 #define FLOAT_BINOP(name) \
2630 uint64_t helper_float_ ## name ## _d(uint64_t fdt0, uint64_t fdt1) \
2632 uint64_t dt2; \
2634 set_float_exception_flags(0, &env->active_fpu.fp_status); \
2635 dt2 = float64_ ## name (fdt0, fdt1, &env->active_fpu.fp_status); \
2636 update_fcr31(); \
2637 if (GET_FP_CAUSE(env->active_fpu.fcr31) & FP_INVALID) \
2638 dt2 = FLOAT_QNAN64; \
2639 return dt2; \
2642 uint32_t helper_float_ ## name ## _s(uint32_t fst0, uint32_t fst1) \
2644 uint32_t wt2; \
2646 set_float_exception_flags(0, &env->active_fpu.fp_status); \
2647 wt2 = float32_ ## name (fst0, fst1, &env->active_fpu.fp_status); \
2648 update_fcr31(); \
2649 if (GET_FP_CAUSE(env->active_fpu.fcr31) & FP_INVALID) \
2650 wt2 = FLOAT_QNAN32; \
2651 return wt2; \
2654 uint64_t helper_float_ ## name ## _ps(uint64_t fdt0, uint64_t fdt1) \
2656 uint32_t fst0 = fdt0 & 0XFFFFFFFF; \
2657 uint32_t fsth0 = fdt0 >> 32; \
2658 uint32_t fst1 = fdt1 & 0XFFFFFFFF; \
2659 uint32_t fsth1 = fdt1 >> 32; \
2660 uint32_t wt2; \
2661 uint32_t wth2; \
2663 set_float_exception_flags(0, &env->active_fpu.fp_status); \
2664 wt2 = float32_ ## name (fst0, fst1, &env->active_fpu.fp_status); \
2665 wth2 = float32_ ## name (fsth0, fsth1, &env->active_fpu.fp_status); \
2666 update_fcr31(); \
2667 if (GET_FP_CAUSE(env->active_fpu.fcr31) & FP_INVALID) { \
2668 wt2 = FLOAT_QNAN32; \
2669 wth2 = FLOAT_QNAN32; \
2671 return ((uint64_t)wth2 << 32) | wt2; \
2674 FLOAT_BINOP(add)
2675 FLOAT_BINOP(sub)
2676 FLOAT_BINOP(mul)
2677 FLOAT_BINOP(div)
2678 #undef FLOAT_BINOP
2680 /* ternary operations */
2681 #define FLOAT_TERNOP(name1, name2) \
2682 uint64_t helper_float_ ## name1 ## name2 ## _d(uint64_t fdt0, uint64_t fdt1, \
2683 uint64_t fdt2) \
2685 fdt0 = float64_ ## name1 (fdt0, fdt1, &env->active_fpu.fp_status); \
2686 return float64_ ## name2 (fdt0, fdt2, &env->active_fpu.fp_status); \
2689 uint32_t helper_float_ ## name1 ## name2 ## _s(uint32_t fst0, uint32_t fst1, \
2690 uint32_t fst2) \
2692 fst0 = float32_ ## name1 (fst0, fst1, &env->active_fpu.fp_status); \
2693 return float32_ ## name2 (fst0, fst2, &env->active_fpu.fp_status); \
2696 uint64_t helper_float_ ## name1 ## name2 ## _ps(uint64_t fdt0, uint64_t fdt1, \
2697 uint64_t fdt2) \
2699 uint32_t fst0 = fdt0 & 0XFFFFFFFF; \
2700 uint32_t fsth0 = fdt0 >> 32; \
2701 uint32_t fst1 = fdt1 & 0XFFFFFFFF; \
2702 uint32_t fsth1 = fdt1 >> 32; \
2703 uint32_t fst2 = fdt2 & 0XFFFFFFFF; \
2704 uint32_t fsth2 = fdt2 >> 32; \
2706 fst0 = float32_ ## name1 (fst0, fst1, &env->active_fpu.fp_status); \
2707 fsth0 = float32_ ## name1 (fsth0, fsth1, &env->active_fpu.fp_status); \
2708 fst2 = float32_ ## name2 (fst0, fst2, &env->active_fpu.fp_status); \
2709 fsth2 = float32_ ## name2 (fsth0, fsth2, &env->active_fpu.fp_status); \
2710 return ((uint64_t)fsth2 << 32) | fst2; \
2713 FLOAT_TERNOP(mul, add)
2714 FLOAT_TERNOP(mul, sub)
2715 #undef FLOAT_TERNOP
2717 /* negated ternary operations */
2718 #define FLOAT_NTERNOP(name1, name2) \
2719 uint64_t helper_float_n ## name1 ## name2 ## _d(uint64_t fdt0, uint64_t fdt1, \
2720 uint64_t fdt2) \
2722 fdt0 = float64_ ## name1 (fdt0, fdt1, &env->active_fpu.fp_status); \
2723 fdt2 = float64_ ## name2 (fdt0, fdt2, &env->active_fpu.fp_status); \
2724 return float64_chs(fdt2); \
2727 uint32_t helper_float_n ## name1 ## name2 ## _s(uint32_t fst0, uint32_t fst1, \
2728 uint32_t fst2) \
2730 fst0 = float32_ ## name1 (fst0, fst1, &env->active_fpu.fp_status); \
2731 fst2 = float32_ ## name2 (fst0, fst2, &env->active_fpu.fp_status); \
2732 return float32_chs(fst2); \
2735 uint64_t helper_float_n ## name1 ## name2 ## _ps(uint64_t fdt0, uint64_t fdt1,\
2736 uint64_t fdt2) \
2738 uint32_t fst0 = fdt0 & 0XFFFFFFFF; \
2739 uint32_t fsth0 = fdt0 >> 32; \
2740 uint32_t fst1 = fdt1 & 0XFFFFFFFF; \
2741 uint32_t fsth1 = fdt1 >> 32; \
2742 uint32_t fst2 = fdt2 & 0XFFFFFFFF; \
2743 uint32_t fsth2 = fdt2 >> 32; \
2745 fst0 = float32_ ## name1 (fst0, fst1, &env->active_fpu.fp_status); \
2746 fsth0 = float32_ ## name1 (fsth0, fsth1, &env->active_fpu.fp_status); \
2747 fst2 = float32_ ## name2 (fst0, fst2, &env->active_fpu.fp_status); \
2748 fsth2 = float32_ ## name2 (fsth0, fsth2, &env->active_fpu.fp_status); \
2749 fst2 = float32_chs(fst2); \
2750 fsth2 = float32_chs(fsth2); \
2751 return ((uint64_t)fsth2 << 32) | fst2; \
2754 FLOAT_NTERNOP(mul, add)
2755 FLOAT_NTERNOP(mul, sub)
2756 #undef FLOAT_NTERNOP
2758 /* MIPS specific binary operations */
2759 uint64_t helper_float_recip2_d(uint64_t fdt0, uint64_t fdt2)
2761 set_float_exception_flags(0, &env->active_fpu.fp_status);
2762 fdt2 = float64_mul(fdt0, fdt2, &env->active_fpu.fp_status);
2763 fdt2 = float64_chs(float64_sub(fdt2, FLOAT_ONE64, &env->active_fpu.fp_status));
2764 update_fcr31();
2765 return fdt2;
2768 uint32_t helper_float_recip2_s(uint32_t fst0, uint32_t fst2)
2770 set_float_exception_flags(0, &env->active_fpu.fp_status);
2771 fst2 = float32_mul(fst0, fst2, &env->active_fpu.fp_status);
2772 fst2 = float32_chs(float32_sub(fst2, FLOAT_ONE32, &env->active_fpu.fp_status));
2773 update_fcr31();
2774 return fst2;
2777 uint64_t helper_float_recip2_ps(uint64_t fdt0, uint64_t fdt2)
2779 uint32_t fst0 = fdt0 & 0XFFFFFFFF;
2780 uint32_t fsth0 = fdt0 >> 32;
2781 uint32_t fst2 = fdt2 & 0XFFFFFFFF;
2782 uint32_t fsth2 = fdt2 >> 32;
2784 set_float_exception_flags(0, &env->active_fpu.fp_status);
2785 fst2 = float32_mul(fst0, fst2, &env->active_fpu.fp_status);
2786 fsth2 = float32_mul(fsth0, fsth2, &env->active_fpu.fp_status);
2787 fst2 = float32_chs(float32_sub(fst2, FLOAT_ONE32, &env->active_fpu.fp_status));
2788 fsth2 = float32_chs(float32_sub(fsth2, FLOAT_ONE32, &env->active_fpu.fp_status));
2789 update_fcr31();
2790 return ((uint64_t)fsth2 << 32) | fst2;
2793 uint64_t helper_float_rsqrt2_d(uint64_t fdt0, uint64_t fdt2)
2795 set_float_exception_flags(0, &env->active_fpu.fp_status);
2796 fdt2 = float64_mul(fdt0, fdt2, &env->active_fpu.fp_status);
2797 fdt2 = float64_sub(fdt2, FLOAT_ONE64, &env->active_fpu.fp_status);
2798 fdt2 = float64_chs(float64_div(fdt2, FLOAT_TWO64, &env->active_fpu.fp_status));
2799 update_fcr31();
2800 return fdt2;
2803 uint32_t helper_float_rsqrt2_s(uint32_t fst0, uint32_t fst2)
2805 set_float_exception_flags(0, &env->active_fpu.fp_status);
2806 fst2 = float32_mul(fst0, fst2, &env->active_fpu.fp_status);
2807 fst2 = float32_sub(fst2, FLOAT_ONE32, &env->active_fpu.fp_status);
2808 fst2 = float32_chs(float32_div(fst2, FLOAT_TWO32, &env->active_fpu.fp_status));
2809 update_fcr31();
2810 return fst2;
2813 uint64_t helper_float_rsqrt2_ps(uint64_t fdt0, uint64_t fdt2)
2815 uint32_t fst0 = fdt0 & 0XFFFFFFFF;
2816 uint32_t fsth0 = fdt0 >> 32;
2817 uint32_t fst2 = fdt2 & 0XFFFFFFFF;
2818 uint32_t fsth2 = fdt2 >> 32;
2820 set_float_exception_flags(0, &env->active_fpu.fp_status);
2821 fst2 = float32_mul(fst0, fst2, &env->active_fpu.fp_status);
2822 fsth2 = float32_mul(fsth0, fsth2, &env->active_fpu.fp_status);
2823 fst2 = float32_sub(fst2, FLOAT_ONE32, &env->active_fpu.fp_status);
2824 fsth2 = float32_sub(fsth2, FLOAT_ONE32, &env->active_fpu.fp_status);
2825 fst2 = float32_chs(float32_div(fst2, FLOAT_TWO32, &env->active_fpu.fp_status));
2826 fsth2 = float32_chs(float32_div(fsth2, FLOAT_TWO32, &env->active_fpu.fp_status));
2827 update_fcr31();
2828 return ((uint64_t)fsth2 << 32) | fst2;
2831 uint64_t helper_float_addr_ps(uint64_t fdt0, uint64_t fdt1)
2833 uint32_t fst0 = fdt0 & 0XFFFFFFFF;
2834 uint32_t fsth0 = fdt0 >> 32;
2835 uint32_t fst1 = fdt1 & 0XFFFFFFFF;
2836 uint32_t fsth1 = fdt1 >> 32;
2837 uint32_t fst2;
2838 uint32_t fsth2;
2840 set_float_exception_flags(0, &env->active_fpu.fp_status);
2841 fst2 = float32_add (fst0, fsth0, &env->active_fpu.fp_status);
2842 fsth2 = float32_add (fst1, fsth1, &env->active_fpu.fp_status);
2843 update_fcr31();
2844 return ((uint64_t)fsth2 << 32) | fst2;
2847 uint64_t helper_float_mulr_ps(uint64_t fdt0, uint64_t fdt1)
2849 uint32_t fst0 = fdt0 & 0XFFFFFFFF;
2850 uint32_t fsth0 = fdt0 >> 32;
2851 uint32_t fst1 = fdt1 & 0XFFFFFFFF;
2852 uint32_t fsth1 = fdt1 >> 32;
2853 uint32_t fst2;
2854 uint32_t fsth2;
2856 set_float_exception_flags(0, &env->active_fpu.fp_status);
2857 fst2 = float32_mul (fst0, fsth0, &env->active_fpu.fp_status);
2858 fsth2 = float32_mul (fst1, fsth1, &env->active_fpu.fp_status);
2859 update_fcr31();
2860 return ((uint64_t)fsth2 << 32) | fst2;
2863 /* compare operations */
2864 #define FOP_COND_D(op, cond) \
2865 void helper_cmp_d_ ## op (uint64_t fdt0, uint64_t fdt1, int cc) \
2867 int c = cond; \
2868 update_fcr31(); \
2869 if (c) \
2870 SET_FP_COND(cc, env->active_fpu); \
2871 else \
2872 CLEAR_FP_COND(cc, env->active_fpu); \
2874 void helper_cmpabs_d_ ## op (uint64_t fdt0, uint64_t fdt1, int cc) \
2876 int c; \
2877 fdt0 = float64_abs(fdt0); \
2878 fdt1 = float64_abs(fdt1); \
2879 c = cond; \
2880 update_fcr31(); \
2881 if (c) \
2882 SET_FP_COND(cc, env->active_fpu); \
2883 else \
2884 CLEAR_FP_COND(cc, env->active_fpu); \
2887 static int float64_is_unordered(int sig, float64 a, float64 b STATUS_PARAM)
2889 if (float64_is_signaling_nan(a) ||
2890 float64_is_signaling_nan(b) ||
2891 (sig && (float64_is_nan(a) || float64_is_nan(b)))) {
2892 float_raise(float_flag_invalid, status);
2893 return 1;
2894 } else if (float64_is_nan(a) || float64_is_nan(b)) {
2895 return 1;
2896 } else {
2897 return 0;
2901 /* NOTE: the comma operator will make "cond" to eval to false,
2902 * but float*_is_unordered() is still called. */
2903 FOP_COND_D(f, (float64_is_unordered(0, fdt1, fdt0, &env->active_fpu.fp_status), 0))
2904 FOP_COND_D(un, float64_is_unordered(0, fdt1, fdt0, &env->active_fpu.fp_status))
2905 FOP_COND_D(eq, !float64_is_unordered(0, fdt1, fdt0, &env->active_fpu.fp_status) && float64_eq(fdt0, fdt1, &env->active_fpu.fp_status))
2906 FOP_COND_D(ueq, float64_is_unordered(0, fdt1, fdt0, &env->active_fpu.fp_status) || float64_eq(fdt0, fdt1, &env->active_fpu.fp_status))
2907 FOP_COND_D(olt, !float64_is_unordered(0, fdt1, fdt0, &env->active_fpu.fp_status) && float64_lt(fdt0, fdt1, &env->active_fpu.fp_status))
2908 FOP_COND_D(ult, float64_is_unordered(0, fdt1, fdt0, &env->active_fpu.fp_status) || float64_lt(fdt0, fdt1, &env->active_fpu.fp_status))
2909 FOP_COND_D(ole, !float64_is_unordered(0, fdt1, fdt0, &env->active_fpu.fp_status) && float64_le(fdt0, fdt1, &env->active_fpu.fp_status))
2910 FOP_COND_D(ule, float64_is_unordered(0, fdt1, fdt0, &env->active_fpu.fp_status) || float64_le(fdt0, fdt1, &env->active_fpu.fp_status))
2911 /* NOTE: the comma operator will make "cond" to eval to false,
2912 * but float*_is_unordered() is still called. */
2913 FOP_COND_D(sf, (float64_is_unordered(1, fdt1, fdt0, &env->active_fpu.fp_status), 0))
2914 FOP_COND_D(ngle,float64_is_unordered(1, fdt1, fdt0, &env->active_fpu.fp_status))
2915 FOP_COND_D(seq, !float64_is_unordered(1, fdt1, fdt0, &env->active_fpu.fp_status) && float64_eq(fdt0, fdt1, &env->active_fpu.fp_status))
2916 FOP_COND_D(ngl, float64_is_unordered(1, fdt1, fdt0, &env->active_fpu.fp_status) || float64_eq(fdt0, fdt1, &env->active_fpu.fp_status))
2917 FOP_COND_D(lt, !float64_is_unordered(1, fdt1, fdt0, &env->active_fpu.fp_status) && float64_lt(fdt0, fdt1, &env->active_fpu.fp_status))
2918 FOP_COND_D(nge, float64_is_unordered(1, fdt1, fdt0, &env->active_fpu.fp_status) || float64_lt(fdt0, fdt1, &env->active_fpu.fp_status))
2919 FOP_COND_D(le, !float64_is_unordered(1, fdt1, fdt0, &env->active_fpu.fp_status) && float64_le(fdt0, fdt1, &env->active_fpu.fp_status))
2920 FOP_COND_D(ngt, float64_is_unordered(1, fdt1, fdt0, &env->active_fpu.fp_status) || float64_le(fdt0, fdt1, &env->active_fpu.fp_status))
2922 #define FOP_COND_S(op, cond) \
2923 void helper_cmp_s_ ## op (uint32_t fst0, uint32_t fst1, int cc) \
2925 int c = cond; \
2926 update_fcr31(); \
2927 if (c) \
2928 SET_FP_COND(cc, env->active_fpu); \
2929 else \
2930 CLEAR_FP_COND(cc, env->active_fpu); \
2932 void helper_cmpabs_s_ ## op (uint32_t fst0, uint32_t fst1, int cc) \
2934 int c; \
2935 fst0 = float32_abs(fst0); \
2936 fst1 = float32_abs(fst1); \
2937 c = cond; \
2938 update_fcr31(); \
2939 if (c) \
2940 SET_FP_COND(cc, env->active_fpu); \
2941 else \
2942 CLEAR_FP_COND(cc, env->active_fpu); \
2945 static flag float32_is_unordered(int sig, float32 a, float32 b STATUS_PARAM)
2947 if (float32_is_signaling_nan(a) ||
2948 float32_is_signaling_nan(b) ||
2949 (sig && (float32_is_nan(a) || float32_is_nan(b)))) {
2950 float_raise(float_flag_invalid, status);
2951 return 1;
2952 } else if (float32_is_nan(a) || float32_is_nan(b)) {
2953 return 1;
2954 } else {
2955 return 0;
2959 /* NOTE: the comma operator will make "cond" to eval to false,
2960 * but float*_is_unordered() is still called. */
2961 FOP_COND_S(f, (float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status), 0))
2962 FOP_COND_S(un, float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status))
2963 FOP_COND_S(eq, !float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status) && float32_eq(fst0, fst1, &env->active_fpu.fp_status))
2964 FOP_COND_S(ueq, float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status) || float32_eq(fst0, fst1, &env->active_fpu.fp_status))
2965 FOP_COND_S(olt, !float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status) && float32_lt(fst0, fst1, &env->active_fpu.fp_status))
2966 FOP_COND_S(ult, float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status) || float32_lt(fst0, fst1, &env->active_fpu.fp_status))
2967 FOP_COND_S(ole, !float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status) && float32_le(fst0, fst1, &env->active_fpu.fp_status))
2968 FOP_COND_S(ule, float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status) || float32_le(fst0, fst1, &env->active_fpu.fp_status))
2969 /* NOTE: the comma operator will make "cond" to eval to false,
2970 * but float*_is_unordered() is still called. */
2971 FOP_COND_S(sf, (float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status), 0))
2972 FOP_COND_S(ngle,float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status))
2973 FOP_COND_S(seq, !float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status) && float32_eq(fst0, fst1, &env->active_fpu.fp_status))
2974 FOP_COND_S(ngl, float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status) || float32_eq(fst0, fst1, &env->active_fpu.fp_status))
2975 FOP_COND_S(lt, !float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status) && float32_lt(fst0, fst1, &env->active_fpu.fp_status))
2976 FOP_COND_S(nge, float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status) || float32_lt(fst0, fst1, &env->active_fpu.fp_status))
2977 FOP_COND_S(le, !float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status) && float32_le(fst0, fst1, &env->active_fpu.fp_status))
2978 FOP_COND_S(ngt, float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status) || float32_le(fst0, fst1, &env->active_fpu.fp_status))
2980 #define FOP_COND_PS(op, condl, condh) \
2981 void helper_cmp_ps_ ## op (uint64_t fdt0, uint64_t fdt1, int cc) \
2983 uint32_t fst0 = float32_abs(fdt0 & 0XFFFFFFFF); \
2984 uint32_t fsth0 = float32_abs(fdt0 >> 32); \
2985 uint32_t fst1 = float32_abs(fdt1 & 0XFFFFFFFF); \
2986 uint32_t fsth1 = float32_abs(fdt1 >> 32); \
2987 int cl = condl; \
2988 int ch = condh; \
2990 update_fcr31(); \
2991 if (cl) \
2992 SET_FP_COND(cc, env->active_fpu); \
2993 else \
2994 CLEAR_FP_COND(cc, env->active_fpu); \
2995 if (ch) \
2996 SET_FP_COND(cc + 1, env->active_fpu); \
2997 else \
2998 CLEAR_FP_COND(cc + 1, env->active_fpu); \
3000 void helper_cmpabs_ps_ ## op (uint64_t fdt0, uint64_t fdt1, int cc) \
3002 uint32_t fst0 = float32_abs(fdt0 & 0XFFFFFFFF); \
3003 uint32_t fsth0 = float32_abs(fdt0 >> 32); \
3004 uint32_t fst1 = float32_abs(fdt1 & 0XFFFFFFFF); \
3005 uint32_t fsth1 = float32_abs(fdt1 >> 32); \
3006 int cl = condl; \
3007 int ch = condh; \
3009 update_fcr31(); \
3010 if (cl) \
3011 SET_FP_COND(cc, env->active_fpu); \
3012 else \
3013 CLEAR_FP_COND(cc, env->active_fpu); \
3014 if (ch) \
3015 SET_FP_COND(cc + 1, env->active_fpu); \
3016 else \
3017 CLEAR_FP_COND(cc + 1, env->active_fpu); \
3020 /* NOTE: the comma operator will make "cond" to eval to false,
3021 * but float*_is_unordered() is still called. */
3022 FOP_COND_PS(f, (float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status), 0),
3023 (float32_is_unordered(0, fsth1, fsth0, &env->active_fpu.fp_status), 0))
3024 FOP_COND_PS(un, float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status),
3025 float32_is_unordered(0, fsth1, fsth0, &env->active_fpu.fp_status))
3026 FOP_COND_PS(eq, !float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status) && float32_eq(fst0, fst1, &env->active_fpu.fp_status),
3027 !float32_is_unordered(0, fsth1, fsth0, &env->active_fpu.fp_status) && float32_eq(fsth0, fsth1, &env->active_fpu.fp_status))
3028 FOP_COND_PS(ueq, float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status) || float32_eq(fst0, fst1, &env->active_fpu.fp_status),
3029 float32_is_unordered(0, fsth1, fsth0, &env->active_fpu.fp_status) || float32_eq(fsth0, fsth1, &env->active_fpu.fp_status))
3030 FOP_COND_PS(olt, !float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status) && float32_lt(fst0, fst1, &env->active_fpu.fp_status),
3031 !float32_is_unordered(0, fsth1, fsth0, &env->active_fpu.fp_status) && float32_lt(fsth0, fsth1, &env->active_fpu.fp_status))
3032 FOP_COND_PS(ult, float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status) || float32_lt(fst0, fst1, &env->active_fpu.fp_status),
3033 float32_is_unordered(0, fsth1, fsth0, &env->active_fpu.fp_status) || float32_lt(fsth0, fsth1, &env->active_fpu.fp_status))
3034 FOP_COND_PS(ole, !float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status) && float32_le(fst0, fst1, &env->active_fpu.fp_status),
3035 !float32_is_unordered(0, fsth1, fsth0, &env->active_fpu.fp_status) && float32_le(fsth0, fsth1, &env->active_fpu.fp_status))
3036 FOP_COND_PS(ule, float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status) || float32_le(fst0, fst1, &env->active_fpu.fp_status),
3037 float32_is_unordered(0, fsth1, fsth0, &env->active_fpu.fp_status) || float32_le(fsth0, fsth1, &env->active_fpu.fp_status))
3038 /* NOTE: the comma operator will make "cond" to eval to false,
3039 * but float*_is_unordered() is still called. */
3040 FOP_COND_PS(sf, (float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status), 0),
3041 (float32_is_unordered(1, fsth1, fsth0, &env->active_fpu.fp_status), 0))
3042 FOP_COND_PS(ngle,float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status),
3043 float32_is_unordered(1, fsth1, fsth0, &env->active_fpu.fp_status))
3044 FOP_COND_PS(seq, !float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status) && float32_eq(fst0, fst1, &env->active_fpu.fp_status),
3045 !float32_is_unordered(1, fsth1, fsth0, &env->active_fpu.fp_status) && float32_eq(fsth0, fsth1, &env->active_fpu.fp_status))
3046 FOP_COND_PS(ngl, float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status) || float32_eq(fst0, fst1, &env->active_fpu.fp_status),
3047 float32_is_unordered(1, fsth1, fsth0, &env->active_fpu.fp_status) || float32_eq(fsth0, fsth1, &env->active_fpu.fp_status))
3048 FOP_COND_PS(lt, !float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status) && float32_lt(fst0, fst1, &env->active_fpu.fp_status),
3049 !float32_is_unordered(1, fsth1, fsth0, &env->active_fpu.fp_status) && float32_lt(fsth0, fsth1, &env->active_fpu.fp_status))
3050 FOP_COND_PS(nge, float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status) || float32_lt(fst0, fst1, &env->active_fpu.fp_status),
3051 float32_is_unordered(1, fsth1, fsth0, &env->active_fpu.fp_status) || float32_lt(fsth0, fsth1, &env->active_fpu.fp_status))
3052 FOP_COND_PS(le, !float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status) && float32_le(fst0, fst1, &env->active_fpu.fp_status),
3053 !float32_is_unordered(1, fsth1, fsth0, &env->active_fpu.fp_status) && float32_le(fsth0, fsth1, &env->active_fpu.fp_status))
3054 FOP_COND_PS(ngt, float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status) || float32_le(fst0, fst1, &env->active_fpu.fp_status),
3055 float32_is_unordered(1, fsth1, fsth0, &env->active_fpu.fp_status) || float32_le(fsth0, fsth1, &env->active_fpu.fp_status))