Merge remote branch 'mst/for_anthony' into staging
[qemu.git] / target-i386 / kvm.c
blob7dfc357e42f92222da2680bf4a41a8f5d7b6806d
1 /*
2 * QEMU KVM support
4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
15 #include <sys/types.h>
16 #include <sys/ioctl.h>
17 #include <sys/mman.h>
18 #include <sys/utsname.h>
20 #include <linux/kvm.h>
22 #include "qemu-common.h"
23 #include "sysemu.h"
24 #include "kvm.h"
25 #include "cpu.h"
26 #include "gdbstub.h"
27 #include "host-utils.h"
28 #include "hw/pc.h"
29 #include "hw/apic.h"
30 #include "ioport.h"
31 #include "kvm_x86.h"
33 #ifdef CONFIG_KVM_PARA
34 #include <linux/kvm_para.h>
35 #endif
37 //#define DEBUG_KVM
39 #ifdef DEBUG_KVM
40 #define DPRINTF(fmt, ...) \
41 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
42 #else
43 #define DPRINTF(fmt, ...) \
44 do { } while (0)
45 #endif
47 #define MSR_KVM_WALL_CLOCK 0x11
48 #define MSR_KVM_SYSTEM_TIME 0x12
50 #ifndef BUS_MCEERR_AR
51 #define BUS_MCEERR_AR 4
52 #endif
53 #ifndef BUS_MCEERR_AO
54 #define BUS_MCEERR_AO 5
55 #endif
57 static int lm_capable_kernel;
59 #ifdef KVM_CAP_EXT_CPUID
61 static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
63 struct kvm_cpuid2 *cpuid;
64 int r, size;
66 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
67 cpuid = (struct kvm_cpuid2 *)qemu_mallocz(size);
68 cpuid->nent = max;
69 r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
70 if (r == 0 && cpuid->nent >= max) {
71 r = -E2BIG;
73 if (r < 0) {
74 if (r == -E2BIG) {
75 qemu_free(cpuid);
76 return NULL;
77 } else {
78 fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
79 strerror(-r));
80 exit(1);
83 return cpuid;
86 uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function,
87 uint32_t index, int reg)
89 struct kvm_cpuid2 *cpuid;
90 int i, max;
91 uint32_t ret = 0;
92 uint32_t cpuid_1_edx;
94 if (!kvm_check_extension(env->kvm_state, KVM_CAP_EXT_CPUID)) {
95 return -1U;
98 max = 1;
99 while ((cpuid = try_get_cpuid(env->kvm_state, max)) == NULL) {
100 max *= 2;
103 for (i = 0; i < cpuid->nent; ++i) {
104 if (cpuid->entries[i].function == function &&
105 cpuid->entries[i].index == index) {
106 switch (reg) {
107 case R_EAX:
108 ret = cpuid->entries[i].eax;
109 break;
110 case R_EBX:
111 ret = cpuid->entries[i].ebx;
112 break;
113 case R_ECX:
114 ret = cpuid->entries[i].ecx;
115 break;
116 case R_EDX:
117 ret = cpuid->entries[i].edx;
118 switch (function) {
119 case 1:
120 /* KVM before 2.6.30 misreports the following features */
121 ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
122 break;
123 case 0x80000001:
124 /* On Intel, kvm returns cpuid according to the Intel spec,
125 * so add missing bits according to the AMD spec:
127 cpuid_1_edx = kvm_arch_get_supported_cpuid(env, 1, 0, R_EDX);
128 ret |= cpuid_1_edx & 0x183f7ff;
129 break;
131 break;
136 qemu_free(cpuid);
138 return ret;
141 #else
143 uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function,
144 uint32_t index, int reg)
146 return -1U;
149 #endif
151 #ifdef CONFIG_KVM_PARA
152 struct kvm_para_features {
153 int cap;
154 int feature;
155 } para_features[] = {
156 #ifdef KVM_CAP_CLOCKSOURCE
157 { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
158 #endif
159 #ifdef KVM_CAP_NOP_IO_DELAY
160 { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
161 #endif
162 #ifdef KVM_CAP_PV_MMU
163 { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
164 #endif
165 #ifdef KVM_CAP_ASYNC_PF
166 { KVM_CAP_ASYNC_PF, KVM_FEATURE_ASYNC_PF },
167 #endif
168 { -1, -1 }
171 static int get_para_features(CPUState *env)
173 int i, features = 0;
175 for (i = 0; i < ARRAY_SIZE(para_features) - 1; i++) {
176 if (kvm_check_extension(env->kvm_state, para_features[i].cap))
177 features |= (1 << para_features[i].feature);
180 return features;
182 #endif
184 #ifdef KVM_CAP_MCE
185 static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
186 int *max_banks)
188 int r;
190 r = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_MCE);
191 if (r > 0) {
192 *max_banks = r;
193 return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
195 return -ENOSYS;
198 static int kvm_setup_mce(CPUState *env, uint64_t *mcg_cap)
200 return kvm_vcpu_ioctl(env, KVM_X86_SETUP_MCE, mcg_cap);
203 static int kvm_set_mce(CPUState *env, struct kvm_x86_mce *m)
205 return kvm_vcpu_ioctl(env, KVM_X86_SET_MCE, m);
208 static int kvm_get_msr(CPUState *env, struct kvm_msr_entry *msrs, int n)
210 struct kvm_msrs *kmsrs = qemu_malloc(sizeof *kmsrs + n * sizeof *msrs);
211 int r;
213 kmsrs->nmsrs = n;
214 memcpy(kmsrs->entries, msrs, n * sizeof *msrs);
215 r = kvm_vcpu_ioctl(env, KVM_GET_MSRS, kmsrs);
216 memcpy(msrs, kmsrs->entries, n * sizeof *msrs);
217 free(kmsrs);
218 return r;
221 /* FIXME: kill this and kvm_get_msr, use env->mcg_status instead */
222 static int kvm_mce_in_exception(CPUState *env)
224 struct kvm_msr_entry msr_mcg_status = {
225 .index = MSR_MCG_STATUS,
227 int r;
229 r = kvm_get_msr(env, &msr_mcg_status, 1);
230 if (r == -1 || r == 0) {
231 return -1;
233 return !!(msr_mcg_status.data & MCG_STATUS_MCIP);
236 struct kvm_x86_mce_data
238 CPUState *env;
239 struct kvm_x86_mce *mce;
240 int abort_on_error;
243 static void kvm_do_inject_x86_mce(void *_data)
245 struct kvm_x86_mce_data *data = _data;
246 int r;
248 /* If there is an MCE exception being processed, ignore this SRAO MCE */
249 if ((data->env->mcg_cap & MCG_SER_P) &&
250 !(data->mce->status & MCI_STATUS_AR)) {
251 r = kvm_mce_in_exception(data->env);
252 if (r == -1) {
253 fprintf(stderr, "Failed to get MCE status\n");
254 } else if (r) {
255 return;
259 r = kvm_set_mce(data->env, data->mce);
260 if (r < 0) {
261 perror("kvm_set_mce FAILED");
262 if (data->abort_on_error) {
263 abort();
267 #endif
269 void kvm_inject_x86_mce(CPUState *cenv, int bank, uint64_t status,
270 uint64_t mcg_status, uint64_t addr, uint64_t misc,
271 int abort_on_error)
273 #ifdef KVM_CAP_MCE
274 struct kvm_x86_mce mce = {
275 .bank = bank,
276 .status = status,
277 .mcg_status = mcg_status,
278 .addr = addr,
279 .misc = misc,
281 struct kvm_x86_mce_data data = {
282 .env = cenv,
283 .mce = &mce,
286 if (!cenv->mcg_cap) {
287 fprintf(stderr, "MCE support is not enabled!\n");
288 return;
291 run_on_cpu(cenv, kvm_do_inject_x86_mce, &data);
292 #else
293 if (abort_on_error)
294 abort();
295 #endif
298 int kvm_arch_init_vcpu(CPUState *env)
300 struct {
301 struct kvm_cpuid2 cpuid;
302 struct kvm_cpuid_entry2 entries[100];
303 } __attribute__((packed)) cpuid_data;
304 uint32_t limit, i, j, cpuid_i;
305 uint32_t unused;
306 struct kvm_cpuid_entry2 *c;
307 #ifdef KVM_CPUID_SIGNATURE
308 uint32_t signature[3];
309 #endif
311 env->mp_state = KVM_MP_STATE_RUNNABLE;
313 env->cpuid_features &= kvm_arch_get_supported_cpuid(env, 1, 0, R_EDX);
315 i = env->cpuid_ext_features & CPUID_EXT_HYPERVISOR;
316 env->cpuid_ext_features &= kvm_arch_get_supported_cpuid(env, 1, 0, R_ECX);
317 env->cpuid_ext_features |= i;
319 env->cpuid_ext2_features &= kvm_arch_get_supported_cpuid(env, 0x80000001,
320 0, R_EDX);
321 env->cpuid_ext3_features &= kvm_arch_get_supported_cpuid(env, 0x80000001,
322 0, R_ECX);
323 env->cpuid_svm_features &= kvm_arch_get_supported_cpuid(env, 0x8000000A,
324 0, R_EDX);
327 cpuid_i = 0;
329 #ifdef CONFIG_KVM_PARA
330 /* Paravirtualization CPUIDs */
331 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
332 c = &cpuid_data.entries[cpuid_i++];
333 memset(c, 0, sizeof(*c));
334 c->function = KVM_CPUID_SIGNATURE;
335 c->eax = 0;
336 c->ebx = signature[0];
337 c->ecx = signature[1];
338 c->edx = signature[2];
340 c = &cpuid_data.entries[cpuid_i++];
341 memset(c, 0, sizeof(*c));
342 c->function = KVM_CPUID_FEATURES;
343 c->eax = env->cpuid_kvm_features & get_para_features(env);
344 #endif
346 cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
348 for (i = 0; i <= limit; i++) {
349 c = &cpuid_data.entries[cpuid_i++];
351 switch (i) {
352 case 2: {
353 /* Keep reading function 2 till all the input is received */
354 int times;
356 c->function = i;
357 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
358 KVM_CPUID_FLAG_STATE_READ_NEXT;
359 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
360 times = c->eax & 0xff;
362 for (j = 1; j < times; ++j) {
363 c = &cpuid_data.entries[cpuid_i++];
364 c->function = i;
365 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
366 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
368 break;
370 case 4:
371 case 0xb:
372 case 0xd:
373 for (j = 0; ; j++) {
374 c->function = i;
375 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
376 c->index = j;
377 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
379 if (i == 4 && c->eax == 0)
380 break;
381 if (i == 0xb && !(c->ecx & 0xff00))
382 break;
383 if (i == 0xd && c->eax == 0)
384 break;
386 c = &cpuid_data.entries[cpuid_i++];
388 break;
389 default:
390 c->function = i;
391 c->flags = 0;
392 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
393 break;
396 cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
398 for (i = 0x80000000; i <= limit; i++) {
399 c = &cpuid_data.entries[cpuid_i++];
401 c->function = i;
402 c->flags = 0;
403 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
406 cpuid_data.cpuid.nent = cpuid_i;
408 #ifdef KVM_CAP_MCE
409 if (((env->cpuid_version >> 8)&0xF) >= 6
410 && (env->cpuid_features&(CPUID_MCE|CPUID_MCA)) == (CPUID_MCE|CPUID_MCA)
411 && kvm_check_extension(env->kvm_state, KVM_CAP_MCE) > 0) {
412 uint64_t mcg_cap;
413 int banks;
415 if (kvm_get_mce_cap_supported(env->kvm_state, &mcg_cap, &banks))
416 perror("kvm_get_mce_cap_supported FAILED");
417 else {
418 if (banks > MCE_BANKS_DEF)
419 banks = MCE_BANKS_DEF;
420 mcg_cap &= MCE_CAP_DEF;
421 mcg_cap |= banks;
422 if (kvm_setup_mce(env, &mcg_cap))
423 perror("kvm_setup_mce FAILED");
424 else
425 env->mcg_cap = mcg_cap;
428 #endif
430 return kvm_vcpu_ioctl(env, KVM_SET_CPUID2, &cpuid_data);
433 void kvm_arch_reset_vcpu(CPUState *env)
435 env->exception_injected = -1;
436 env->interrupt_injected = -1;
437 env->nmi_injected = 0;
438 env->nmi_pending = 0;
439 if (kvm_irqchip_in_kernel()) {
440 env->mp_state = cpu_is_bsp(env) ? KVM_MP_STATE_RUNNABLE :
441 KVM_MP_STATE_UNINITIALIZED;
442 } else {
443 env->mp_state = KVM_MP_STATE_RUNNABLE;
447 int has_msr_star;
448 int has_msr_hsave_pa;
450 static void kvm_supported_msrs(CPUState *env)
452 static int kvm_supported_msrs;
453 int ret;
455 /* first time */
456 if (kvm_supported_msrs == 0) {
457 struct kvm_msr_list msr_list, *kvm_msr_list;
459 kvm_supported_msrs = -1;
461 /* Obtain MSR list from KVM. These are the MSRs that we must
462 * save/restore */
463 msr_list.nmsrs = 0;
464 ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, &msr_list);
465 if (ret < 0 && ret != -E2BIG) {
466 return;
468 /* Old kernel modules had a bug and could write beyond the provided
469 memory. Allocate at least a safe amount of 1K. */
470 kvm_msr_list = qemu_mallocz(MAX(1024, sizeof(msr_list) +
471 msr_list.nmsrs *
472 sizeof(msr_list.indices[0])));
474 kvm_msr_list->nmsrs = msr_list.nmsrs;
475 ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
476 if (ret >= 0) {
477 int i;
479 for (i = 0; i < kvm_msr_list->nmsrs; i++) {
480 if (kvm_msr_list->indices[i] == MSR_STAR) {
481 has_msr_star = 1;
482 continue;
484 if (kvm_msr_list->indices[i] == MSR_VM_HSAVE_PA) {
485 has_msr_hsave_pa = 1;
486 continue;
491 free(kvm_msr_list);
494 return;
497 static int kvm_has_msr_hsave_pa(CPUState *env)
499 kvm_supported_msrs(env);
500 return has_msr_hsave_pa;
503 static int kvm_has_msr_star(CPUState *env)
505 kvm_supported_msrs(env);
506 return has_msr_star;
509 static int kvm_init_identity_map_page(KVMState *s)
511 #ifdef KVM_CAP_SET_IDENTITY_MAP_ADDR
512 int ret;
513 uint64_t addr = 0xfffbc000;
515 if (!kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
516 return 0;
519 ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &addr);
520 if (ret < 0) {
521 fprintf(stderr, "kvm_set_identity_map_addr: %s\n", strerror(ret));
522 return ret;
524 #endif
525 return 0;
528 int kvm_arch_init(KVMState *s, int smp_cpus)
530 int ret;
532 struct utsname utsname;
534 uname(&utsname);
535 lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
537 /* create vm86 tss. KVM uses vm86 mode to emulate 16-bit code
538 * directly. In order to use vm86 mode, a TSS is needed. Since this
539 * must be part of guest physical memory, we need to allocate it. Older
540 * versions of KVM just assumed that it would be at the end of physical
541 * memory but that doesn't work with more than 4GB of memory. We simply
542 * refuse to work with those older versions of KVM. */
543 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_SET_TSS_ADDR);
544 if (ret <= 0) {
545 fprintf(stderr, "kvm does not support KVM_CAP_SET_TSS_ADDR\n");
546 return ret;
549 /* this address is 3 pages before the bios, and the bios should present
550 * as unavaible memory. FIXME, need to ensure the e820 map deals with
551 * this?
554 * Tell fw_cfg to notify the BIOS to reserve the range.
556 if (e820_add_entry(0xfffbc000, 0x4000, E820_RESERVED) < 0) {
557 perror("e820_add_entry() table is full");
558 exit(1);
560 ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, 0xfffbd000);
561 if (ret < 0) {
562 return ret;
565 return kvm_init_identity_map_page(s);
568 static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
570 lhs->selector = rhs->selector;
571 lhs->base = rhs->base;
572 lhs->limit = rhs->limit;
573 lhs->type = 3;
574 lhs->present = 1;
575 lhs->dpl = 3;
576 lhs->db = 0;
577 lhs->s = 1;
578 lhs->l = 0;
579 lhs->g = 0;
580 lhs->avl = 0;
581 lhs->unusable = 0;
584 static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
586 unsigned flags = rhs->flags;
587 lhs->selector = rhs->selector;
588 lhs->base = rhs->base;
589 lhs->limit = rhs->limit;
590 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
591 lhs->present = (flags & DESC_P_MASK) != 0;
592 lhs->dpl = rhs->selector & 3;
593 lhs->db = (flags >> DESC_B_SHIFT) & 1;
594 lhs->s = (flags & DESC_S_MASK) != 0;
595 lhs->l = (flags >> DESC_L_SHIFT) & 1;
596 lhs->g = (flags & DESC_G_MASK) != 0;
597 lhs->avl = (flags & DESC_AVL_MASK) != 0;
598 lhs->unusable = 0;
601 static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
603 lhs->selector = rhs->selector;
604 lhs->base = rhs->base;
605 lhs->limit = rhs->limit;
606 lhs->flags =
607 (rhs->type << DESC_TYPE_SHIFT)
608 | (rhs->present * DESC_P_MASK)
609 | (rhs->dpl << DESC_DPL_SHIFT)
610 | (rhs->db << DESC_B_SHIFT)
611 | (rhs->s * DESC_S_MASK)
612 | (rhs->l << DESC_L_SHIFT)
613 | (rhs->g * DESC_G_MASK)
614 | (rhs->avl * DESC_AVL_MASK);
617 static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
619 if (set)
620 *kvm_reg = *qemu_reg;
621 else
622 *qemu_reg = *kvm_reg;
625 static int kvm_getput_regs(CPUState *env, int set)
627 struct kvm_regs regs;
628 int ret = 0;
630 if (!set) {
631 ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, &regs);
632 if (ret < 0)
633 return ret;
636 kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
637 kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
638 kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
639 kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
640 kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
641 kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
642 kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
643 kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
644 #ifdef TARGET_X86_64
645 kvm_getput_reg(&regs.r8, &env->regs[8], set);
646 kvm_getput_reg(&regs.r9, &env->regs[9], set);
647 kvm_getput_reg(&regs.r10, &env->regs[10], set);
648 kvm_getput_reg(&regs.r11, &env->regs[11], set);
649 kvm_getput_reg(&regs.r12, &env->regs[12], set);
650 kvm_getput_reg(&regs.r13, &env->regs[13], set);
651 kvm_getput_reg(&regs.r14, &env->regs[14], set);
652 kvm_getput_reg(&regs.r15, &env->regs[15], set);
653 #endif
655 kvm_getput_reg(&regs.rflags, &env->eflags, set);
656 kvm_getput_reg(&regs.rip, &env->eip, set);
658 if (set)
659 ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, &regs);
661 return ret;
664 static int kvm_put_fpu(CPUState *env)
666 struct kvm_fpu fpu;
667 int i;
669 memset(&fpu, 0, sizeof fpu);
670 fpu.fsw = env->fpus & ~(7 << 11);
671 fpu.fsw |= (env->fpstt & 7) << 11;
672 fpu.fcw = env->fpuc;
673 for (i = 0; i < 8; ++i)
674 fpu.ftwx |= (!env->fptags[i]) << i;
675 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
676 memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
677 fpu.mxcsr = env->mxcsr;
679 return kvm_vcpu_ioctl(env, KVM_SET_FPU, &fpu);
682 #ifdef KVM_CAP_XSAVE
683 #define XSAVE_CWD_RIP 2
684 #define XSAVE_CWD_RDP 4
685 #define XSAVE_MXCSR 6
686 #define XSAVE_ST_SPACE 8
687 #define XSAVE_XMM_SPACE 40
688 #define XSAVE_XSTATE_BV 128
689 #define XSAVE_YMMH_SPACE 144
690 #endif
692 static int kvm_put_xsave(CPUState *env)
694 #ifdef KVM_CAP_XSAVE
695 int i, r;
696 struct kvm_xsave* xsave;
697 uint16_t cwd, swd, twd, fop;
699 if (!kvm_has_xsave())
700 return kvm_put_fpu(env);
702 xsave = qemu_memalign(4096, sizeof(struct kvm_xsave));
703 memset(xsave, 0, sizeof(struct kvm_xsave));
704 cwd = swd = twd = fop = 0;
705 swd = env->fpus & ~(7 << 11);
706 swd |= (env->fpstt & 7) << 11;
707 cwd = env->fpuc;
708 for (i = 0; i < 8; ++i)
709 twd |= (!env->fptags[i]) << i;
710 xsave->region[0] = (uint32_t)(swd << 16) + cwd;
711 xsave->region[1] = (uint32_t)(fop << 16) + twd;
712 memcpy(&xsave->region[XSAVE_ST_SPACE], env->fpregs,
713 sizeof env->fpregs);
714 memcpy(&xsave->region[XSAVE_XMM_SPACE], env->xmm_regs,
715 sizeof env->xmm_regs);
716 xsave->region[XSAVE_MXCSR] = env->mxcsr;
717 *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV] = env->xstate_bv;
718 memcpy(&xsave->region[XSAVE_YMMH_SPACE], env->ymmh_regs,
719 sizeof env->ymmh_regs);
720 r = kvm_vcpu_ioctl(env, KVM_SET_XSAVE, xsave);
721 qemu_free(xsave);
722 return r;
723 #else
724 return kvm_put_fpu(env);
725 #endif
728 static int kvm_put_xcrs(CPUState *env)
730 #ifdef KVM_CAP_XCRS
731 struct kvm_xcrs xcrs;
733 if (!kvm_has_xcrs())
734 return 0;
736 xcrs.nr_xcrs = 1;
737 xcrs.flags = 0;
738 xcrs.xcrs[0].xcr = 0;
739 xcrs.xcrs[0].value = env->xcr0;
740 return kvm_vcpu_ioctl(env, KVM_SET_XCRS, &xcrs);
741 #else
742 return 0;
743 #endif
746 static int kvm_put_sregs(CPUState *env)
748 struct kvm_sregs sregs;
750 memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
751 if (env->interrupt_injected >= 0) {
752 sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
753 (uint64_t)1 << (env->interrupt_injected % 64);
756 if ((env->eflags & VM_MASK)) {
757 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
758 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
759 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
760 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
761 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
762 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
763 } else {
764 set_seg(&sregs.cs, &env->segs[R_CS]);
765 set_seg(&sregs.ds, &env->segs[R_DS]);
766 set_seg(&sregs.es, &env->segs[R_ES]);
767 set_seg(&sregs.fs, &env->segs[R_FS]);
768 set_seg(&sregs.gs, &env->segs[R_GS]);
769 set_seg(&sregs.ss, &env->segs[R_SS]);
771 if (env->cr[0] & CR0_PE_MASK) {
772 /* force ss cpl to cs cpl */
773 sregs.ss.selector = (sregs.ss.selector & ~3) |
774 (sregs.cs.selector & 3);
775 sregs.ss.dpl = sregs.ss.selector & 3;
779 set_seg(&sregs.tr, &env->tr);
780 set_seg(&sregs.ldt, &env->ldt);
782 sregs.idt.limit = env->idt.limit;
783 sregs.idt.base = env->idt.base;
784 sregs.gdt.limit = env->gdt.limit;
785 sregs.gdt.base = env->gdt.base;
787 sregs.cr0 = env->cr[0];
788 sregs.cr2 = env->cr[2];
789 sregs.cr3 = env->cr[3];
790 sregs.cr4 = env->cr[4];
792 sregs.cr8 = cpu_get_apic_tpr(env->apic_state);
793 sregs.apic_base = cpu_get_apic_base(env->apic_state);
795 sregs.efer = env->efer;
797 return kvm_vcpu_ioctl(env, KVM_SET_SREGS, &sregs);
800 static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
801 uint32_t index, uint64_t value)
803 entry->index = index;
804 entry->data = value;
807 static int kvm_put_msrs(CPUState *env, int level)
809 struct {
810 struct kvm_msrs info;
811 struct kvm_msr_entry entries[100];
812 } msr_data;
813 struct kvm_msr_entry *msrs = msr_data.entries;
814 int n = 0;
816 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
817 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
818 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
819 if (kvm_has_msr_star(env))
820 kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
821 if (kvm_has_msr_hsave_pa(env))
822 kvm_msr_entry_set(&msrs[n++], MSR_VM_HSAVE_PA, env->vm_hsave);
823 #ifdef TARGET_X86_64
824 if (lm_capable_kernel) {
825 kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
826 kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
827 kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
828 kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
830 #endif
831 if (level == KVM_PUT_FULL_STATE) {
833 * KVM is yet unable to synchronize TSC values of multiple VCPUs on
834 * writeback. Until this is fixed, we only write the offset to SMP
835 * guests after migration, desynchronizing the VCPUs, but avoiding
836 * huge jump-backs that would occur without any writeback at all.
838 if (smp_cpus == 1 || env->tsc != 0) {
839 kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
841 kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME,
842 env->system_time_msr);
843 kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
844 #ifdef KVM_CAP_ASYNC_PF
845 kvm_msr_entry_set(&msrs[n++], MSR_KVM_ASYNC_PF_EN, env->async_pf_en_msr);
846 #endif
848 #ifdef KVM_CAP_MCE
849 if (env->mcg_cap) {
850 int i;
851 if (level == KVM_PUT_RESET_STATE)
852 kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status);
853 else if (level == KVM_PUT_FULL_STATE) {
854 kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status);
855 kvm_msr_entry_set(&msrs[n++], MSR_MCG_CTL, env->mcg_ctl);
856 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++)
857 kvm_msr_entry_set(&msrs[n++], MSR_MC0_CTL + i, env->mce_banks[i]);
860 #endif
862 msr_data.info.nmsrs = n;
864 return kvm_vcpu_ioctl(env, KVM_SET_MSRS, &msr_data);
869 static int kvm_get_fpu(CPUState *env)
871 struct kvm_fpu fpu;
872 int i, ret;
874 ret = kvm_vcpu_ioctl(env, KVM_GET_FPU, &fpu);
875 if (ret < 0)
876 return ret;
878 env->fpstt = (fpu.fsw >> 11) & 7;
879 env->fpus = fpu.fsw;
880 env->fpuc = fpu.fcw;
881 for (i = 0; i < 8; ++i)
882 env->fptags[i] = !((fpu.ftwx >> i) & 1);
883 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
884 memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
885 env->mxcsr = fpu.mxcsr;
887 return 0;
890 static int kvm_get_xsave(CPUState *env)
892 #ifdef KVM_CAP_XSAVE
893 struct kvm_xsave* xsave;
894 int ret, i;
895 uint16_t cwd, swd, twd, fop;
897 if (!kvm_has_xsave())
898 return kvm_get_fpu(env);
900 xsave = qemu_memalign(4096, sizeof(struct kvm_xsave));
901 ret = kvm_vcpu_ioctl(env, KVM_GET_XSAVE, xsave);
902 if (ret < 0) {
903 qemu_free(xsave);
904 return ret;
907 cwd = (uint16_t)xsave->region[0];
908 swd = (uint16_t)(xsave->region[0] >> 16);
909 twd = (uint16_t)xsave->region[1];
910 fop = (uint16_t)(xsave->region[1] >> 16);
911 env->fpstt = (swd >> 11) & 7;
912 env->fpus = swd;
913 env->fpuc = cwd;
914 for (i = 0; i < 8; ++i)
915 env->fptags[i] = !((twd >> i) & 1);
916 env->mxcsr = xsave->region[XSAVE_MXCSR];
917 memcpy(env->fpregs, &xsave->region[XSAVE_ST_SPACE],
918 sizeof env->fpregs);
919 memcpy(env->xmm_regs, &xsave->region[XSAVE_XMM_SPACE],
920 sizeof env->xmm_regs);
921 env->xstate_bv = *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV];
922 memcpy(env->ymmh_regs, &xsave->region[XSAVE_YMMH_SPACE],
923 sizeof env->ymmh_regs);
924 qemu_free(xsave);
925 return 0;
926 #else
927 return kvm_get_fpu(env);
928 #endif
931 static int kvm_get_xcrs(CPUState *env)
933 #ifdef KVM_CAP_XCRS
934 int i, ret;
935 struct kvm_xcrs xcrs;
937 if (!kvm_has_xcrs())
938 return 0;
940 ret = kvm_vcpu_ioctl(env, KVM_GET_XCRS, &xcrs);
941 if (ret < 0)
942 return ret;
944 for (i = 0; i < xcrs.nr_xcrs; i++)
945 /* Only support xcr0 now */
946 if (xcrs.xcrs[0].xcr == 0) {
947 env->xcr0 = xcrs.xcrs[0].value;
948 break;
950 return 0;
951 #else
952 return 0;
953 #endif
956 static int kvm_get_sregs(CPUState *env)
958 struct kvm_sregs sregs;
959 uint32_t hflags;
960 int bit, i, ret;
962 ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
963 if (ret < 0)
964 return ret;
966 /* There can only be one pending IRQ set in the bitmap at a time, so try
967 to find it and save its number instead (-1 for none). */
968 env->interrupt_injected = -1;
969 for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
970 if (sregs.interrupt_bitmap[i]) {
971 bit = ctz64(sregs.interrupt_bitmap[i]);
972 env->interrupt_injected = i * 64 + bit;
973 break;
977 get_seg(&env->segs[R_CS], &sregs.cs);
978 get_seg(&env->segs[R_DS], &sregs.ds);
979 get_seg(&env->segs[R_ES], &sregs.es);
980 get_seg(&env->segs[R_FS], &sregs.fs);
981 get_seg(&env->segs[R_GS], &sregs.gs);
982 get_seg(&env->segs[R_SS], &sregs.ss);
984 get_seg(&env->tr, &sregs.tr);
985 get_seg(&env->ldt, &sregs.ldt);
987 env->idt.limit = sregs.idt.limit;
988 env->idt.base = sregs.idt.base;
989 env->gdt.limit = sregs.gdt.limit;
990 env->gdt.base = sregs.gdt.base;
992 env->cr[0] = sregs.cr0;
993 env->cr[2] = sregs.cr2;
994 env->cr[3] = sregs.cr3;
995 env->cr[4] = sregs.cr4;
997 cpu_set_apic_base(env->apic_state, sregs.apic_base);
999 env->efer = sregs.efer;
1000 //cpu_set_apic_tpr(env->apic_state, sregs.cr8);
1002 #define HFLAG_COPY_MASK ~( \
1003 HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
1004 HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
1005 HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
1006 HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
1010 hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
1011 hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
1012 hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
1013 (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
1014 hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
1015 hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
1016 (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
1018 if (env->efer & MSR_EFER_LMA) {
1019 hflags |= HF_LMA_MASK;
1022 if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
1023 hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
1024 } else {
1025 hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
1026 (DESC_B_SHIFT - HF_CS32_SHIFT);
1027 hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
1028 (DESC_B_SHIFT - HF_SS32_SHIFT);
1029 if (!(env->cr[0] & CR0_PE_MASK) ||
1030 (env->eflags & VM_MASK) ||
1031 !(hflags & HF_CS32_MASK)) {
1032 hflags |= HF_ADDSEG_MASK;
1033 } else {
1034 hflags |= ((env->segs[R_DS].base |
1035 env->segs[R_ES].base |
1036 env->segs[R_SS].base) != 0) <<
1037 HF_ADDSEG_SHIFT;
1040 env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
1042 return 0;
1045 static int kvm_get_msrs(CPUState *env)
1047 struct {
1048 struct kvm_msrs info;
1049 struct kvm_msr_entry entries[100];
1050 } msr_data;
1051 struct kvm_msr_entry *msrs = msr_data.entries;
1052 int ret, i, n;
1054 n = 0;
1055 msrs[n++].index = MSR_IA32_SYSENTER_CS;
1056 msrs[n++].index = MSR_IA32_SYSENTER_ESP;
1057 msrs[n++].index = MSR_IA32_SYSENTER_EIP;
1058 if (kvm_has_msr_star(env))
1059 msrs[n++].index = MSR_STAR;
1060 if (kvm_has_msr_hsave_pa(env))
1061 msrs[n++].index = MSR_VM_HSAVE_PA;
1062 msrs[n++].index = MSR_IA32_TSC;
1063 #ifdef TARGET_X86_64
1064 if (lm_capable_kernel) {
1065 msrs[n++].index = MSR_CSTAR;
1066 msrs[n++].index = MSR_KERNELGSBASE;
1067 msrs[n++].index = MSR_FMASK;
1068 msrs[n++].index = MSR_LSTAR;
1070 #endif
1071 msrs[n++].index = MSR_KVM_SYSTEM_TIME;
1072 msrs[n++].index = MSR_KVM_WALL_CLOCK;
1073 #ifdef KVM_CAP_ASYNC_PF
1074 msrs[n++].index = MSR_KVM_ASYNC_PF_EN;
1075 #endif
1077 #ifdef KVM_CAP_MCE
1078 if (env->mcg_cap) {
1079 msrs[n++].index = MSR_MCG_STATUS;
1080 msrs[n++].index = MSR_MCG_CTL;
1081 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++)
1082 msrs[n++].index = MSR_MC0_CTL + i;
1084 #endif
1086 msr_data.info.nmsrs = n;
1087 ret = kvm_vcpu_ioctl(env, KVM_GET_MSRS, &msr_data);
1088 if (ret < 0)
1089 return ret;
1091 for (i = 0; i < ret; i++) {
1092 switch (msrs[i].index) {
1093 case MSR_IA32_SYSENTER_CS:
1094 env->sysenter_cs = msrs[i].data;
1095 break;
1096 case MSR_IA32_SYSENTER_ESP:
1097 env->sysenter_esp = msrs[i].data;
1098 break;
1099 case MSR_IA32_SYSENTER_EIP:
1100 env->sysenter_eip = msrs[i].data;
1101 break;
1102 case MSR_STAR:
1103 env->star = msrs[i].data;
1104 break;
1105 #ifdef TARGET_X86_64
1106 case MSR_CSTAR:
1107 env->cstar = msrs[i].data;
1108 break;
1109 case MSR_KERNELGSBASE:
1110 env->kernelgsbase = msrs[i].data;
1111 break;
1112 case MSR_FMASK:
1113 env->fmask = msrs[i].data;
1114 break;
1115 case MSR_LSTAR:
1116 env->lstar = msrs[i].data;
1117 break;
1118 #endif
1119 case MSR_IA32_TSC:
1120 env->tsc = msrs[i].data;
1121 break;
1122 case MSR_VM_HSAVE_PA:
1123 env->vm_hsave = msrs[i].data;
1124 break;
1125 case MSR_KVM_SYSTEM_TIME:
1126 env->system_time_msr = msrs[i].data;
1127 break;
1128 case MSR_KVM_WALL_CLOCK:
1129 env->wall_clock_msr = msrs[i].data;
1130 break;
1131 #ifdef KVM_CAP_MCE
1132 case MSR_MCG_STATUS:
1133 env->mcg_status = msrs[i].data;
1134 break;
1135 case MSR_MCG_CTL:
1136 env->mcg_ctl = msrs[i].data;
1137 break;
1138 #endif
1139 default:
1140 #ifdef KVM_CAP_MCE
1141 if (msrs[i].index >= MSR_MC0_CTL &&
1142 msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
1143 env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
1145 #endif
1146 break;
1147 #ifdef KVM_CAP_ASYNC_PF
1148 case MSR_KVM_ASYNC_PF_EN:
1149 env->async_pf_en_msr = msrs[i].data;
1150 break;
1151 #endif
1155 return 0;
1158 static int kvm_put_mp_state(CPUState *env)
1160 struct kvm_mp_state mp_state = { .mp_state = env->mp_state };
1162 return kvm_vcpu_ioctl(env, KVM_SET_MP_STATE, &mp_state);
1165 static int kvm_get_mp_state(CPUState *env)
1167 struct kvm_mp_state mp_state;
1168 int ret;
1170 ret = kvm_vcpu_ioctl(env, KVM_GET_MP_STATE, &mp_state);
1171 if (ret < 0) {
1172 return ret;
1174 env->mp_state = mp_state.mp_state;
1175 return 0;
1178 static int kvm_put_vcpu_events(CPUState *env, int level)
1180 #ifdef KVM_CAP_VCPU_EVENTS
1181 struct kvm_vcpu_events events;
1183 if (!kvm_has_vcpu_events()) {
1184 return 0;
1187 events.exception.injected = (env->exception_injected >= 0);
1188 events.exception.nr = env->exception_injected;
1189 events.exception.has_error_code = env->has_error_code;
1190 events.exception.error_code = env->error_code;
1192 events.interrupt.injected = (env->interrupt_injected >= 0);
1193 events.interrupt.nr = env->interrupt_injected;
1194 events.interrupt.soft = env->soft_interrupt;
1196 events.nmi.injected = env->nmi_injected;
1197 events.nmi.pending = env->nmi_pending;
1198 events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
1200 events.sipi_vector = env->sipi_vector;
1202 events.flags = 0;
1203 if (level >= KVM_PUT_RESET_STATE) {
1204 events.flags |=
1205 KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR;
1208 return kvm_vcpu_ioctl(env, KVM_SET_VCPU_EVENTS, &events);
1209 #else
1210 return 0;
1211 #endif
1214 static int kvm_get_vcpu_events(CPUState *env)
1216 #ifdef KVM_CAP_VCPU_EVENTS
1217 struct kvm_vcpu_events events;
1218 int ret;
1220 if (!kvm_has_vcpu_events()) {
1221 return 0;
1224 ret = kvm_vcpu_ioctl(env, KVM_GET_VCPU_EVENTS, &events);
1225 if (ret < 0) {
1226 return ret;
1228 env->exception_injected =
1229 events.exception.injected ? events.exception.nr : -1;
1230 env->has_error_code = events.exception.has_error_code;
1231 env->error_code = events.exception.error_code;
1233 env->interrupt_injected =
1234 events.interrupt.injected ? events.interrupt.nr : -1;
1235 env->soft_interrupt = events.interrupt.soft;
1237 env->nmi_injected = events.nmi.injected;
1238 env->nmi_pending = events.nmi.pending;
1239 if (events.nmi.masked) {
1240 env->hflags2 |= HF2_NMI_MASK;
1241 } else {
1242 env->hflags2 &= ~HF2_NMI_MASK;
1245 env->sipi_vector = events.sipi_vector;
1246 #endif
1248 return 0;
1251 static int kvm_guest_debug_workarounds(CPUState *env)
1253 int ret = 0;
1254 #ifdef KVM_CAP_SET_GUEST_DEBUG
1255 unsigned long reinject_trap = 0;
1257 if (!kvm_has_vcpu_events()) {
1258 if (env->exception_injected == 1) {
1259 reinject_trap = KVM_GUESTDBG_INJECT_DB;
1260 } else if (env->exception_injected == 3) {
1261 reinject_trap = KVM_GUESTDBG_INJECT_BP;
1263 env->exception_injected = -1;
1267 * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
1268 * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
1269 * by updating the debug state once again if single-stepping is on.
1270 * Another reason to call kvm_update_guest_debug here is a pending debug
1271 * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
1272 * reinject them via SET_GUEST_DEBUG.
1274 if (reinject_trap ||
1275 (!kvm_has_robust_singlestep() && env->singlestep_enabled)) {
1276 ret = kvm_update_guest_debug(env, reinject_trap);
1278 #endif /* KVM_CAP_SET_GUEST_DEBUG */
1279 return ret;
1282 static int kvm_put_debugregs(CPUState *env)
1284 #ifdef KVM_CAP_DEBUGREGS
1285 struct kvm_debugregs dbgregs;
1286 int i;
1288 if (!kvm_has_debugregs()) {
1289 return 0;
1292 for (i = 0; i < 4; i++) {
1293 dbgregs.db[i] = env->dr[i];
1295 dbgregs.dr6 = env->dr[6];
1296 dbgregs.dr7 = env->dr[7];
1297 dbgregs.flags = 0;
1299 return kvm_vcpu_ioctl(env, KVM_SET_DEBUGREGS, &dbgregs);
1300 #else
1301 return 0;
1302 #endif
1305 static int kvm_get_debugregs(CPUState *env)
1307 #ifdef KVM_CAP_DEBUGREGS
1308 struct kvm_debugregs dbgregs;
1309 int i, ret;
1311 if (!kvm_has_debugregs()) {
1312 return 0;
1315 ret = kvm_vcpu_ioctl(env, KVM_GET_DEBUGREGS, &dbgregs);
1316 if (ret < 0) {
1317 return ret;
1319 for (i = 0; i < 4; i++) {
1320 env->dr[i] = dbgregs.db[i];
1322 env->dr[4] = env->dr[6] = dbgregs.dr6;
1323 env->dr[5] = env->dr[7] = dbgregs.dr7;
1324 #endif
1326 return 0;
1329 int kvm_arch_put_registers(CPUState *env, int level)
1331 int ret;
1333 assert(cpu_is_stopped(env) || qemu_cpu_self(env));
1335 ret = kvm_getput_regs(env, 1);
1336 if (ret < 0)
1337 return ret;
1339 ret = kvm_put_xsave(env);
1340 if (ret < 0)
1341 return ret;
1343 ret = kvm_put_xcrs(env);
1344 if (ret < 0)
1345 return ret;
1347 ret = kvm_put_sregs(env);
1348 if (ret < 0)
1349 return ret;
1351 ret = kvm_put_msrs(env, level);
1352 if (ret < 0)
1353 return ret;
1355 if (level >= KVM_PUT_RESET_STATE) {
1356 ret = kvm_put_mp_state(env);
1357 if (ret < 0)
1358 return ret;
1361 ret = kvm_put_vcpu_events(env, level);
1362 if (ret < 0)
1363 return ret;
1365 /* must be last */
1366 ret = kvm_guest_debug_workarounds(env);
1367 if (ret < 0)
1368 return ret;
1370 ret = kvm_put_debugregs(env);
1371 if (ret < 0)
1372 return ret;
1374 return 0;
1377 int kvm_arch_get_registers(CPUState *env)
1379 int ret;
1381 assert(cpu_is_stopped(env) || qemu_cpu_self(env));
1383 ret = kvm_getput_regs(env, 0);
1384 if (ret < 0)
1385 return ret;
1387 ret = kvm_get_xsave(env);
1388 if (ret < 0)
1389 return ret;
1391 ret = kvm_get_xcrs(env);
1392 if (ret < 0)
1393 return ret;
1395 ret = kvm_get_sregs(env);
1396 if (ret < 0)
1397 return ret;
1399 ret = kvm_get_msrs(env);
1400 if (ret < 0)
1401 return ret;
1403 ret = kvm_get_mp_state(env);
1404 if (ret < 0)
1405 return ret;
1407 ret = kvm_get_vcpu_events(env);
1408 if (ret < 0)
1409 return ret;
1411 ret = kvm_get_debugregs(env);
1412 if (ret < 0)
1413 return ret;
1415 return 0;
1418 int kvm_arch_pre_run(CPUState *env, struct kvm_run *run)
1420 /* Try to inject an interrupt if the guest can accept it */
1421 if (run->ready_for_interrupt_injection &&
1422 (env->interrupt_request & CPU_INTERRUPT_HARD) &&
1423 (env->eflags & IF_MASK)) {
1424 int irq;
1426 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
1427 irq = cpu_get_pic_interrupt(env);
1428 if (irq >= 0) {
1429 struct kvm_interrupt intr;
1430 intr.irq = irq;
1431 /* FIXME: errors */
1432 DPRINTF("injected interrupt %d\n", irq);
1433 kvm_vcpu_ioctl(env, KVM_INTERRUPT, &intr);
1437 /* If we have an interrupt but the guest is not ready to receive an
1438 * interrupt, request an interrupt window exit. This will
1439 * cause a return to userspace as soon as the guest is ready to
1440 * receive interrupts. */
1441 if ((env->interrupt_request & CPU_INTERRUPT_HARD))
1442 run->request_interrupt_window = 1;
1443 else
1444 run->request_interrupt_window = 0;
1446 DPRINTF("setting tpr\n");
1447 run->cr8 = cpu_get_apic_tpr(env->apic_state);
1449 return 0;
1452 int kvm_arch_post_run(CPUState *env, struct kvm_run *run)
1454 if (run->if_flag)
1455 env->eflags |= IF_MASK;
1456 else
1457 env->eflags &= ~IF_MASK;
1459 cpu_set_apic_tpr(env->apic_state, run->cr8);
1460 cpu_set_apic_base(env->apic_state, run->apic_base);
1462 return 0;
1465 int kvm_arch_process_irqchip_events(CPUState *env)
1467 if (env->interrupt_request & CPU_INTERRUPT_INIT) {
1468 kvm_cpu_synchronize_state(env);
1469 do_cpu_init(env);
1470 env->exception_index = EXCP_HALTED;
1473 if (env->interrupt_request & CPU_INTERRUPT_SIPI) {
1474 kvm_cpu_synchronize_state(env);
1475 do_cpu_sipi(env);
1478 return env->halted;
1481 static int kvm_handle_halt(CPUState *env)
1483 if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
1484 (env->eflags & IF_MASK)) &&
1485 !(env->interrupt_request & CPU_INTERRUPT_NMI)) {
1486 env->halted = 1;
1487 env->exception_index = EXCP_HLT;
1488 return 0;
1491 return 1;
1494 int kvm_arch_handle_exit(CPUState *env, struct kvm_run *run)
1496 int ret = 0;
1498 switch (run->exit_reason) {
1499 case KVM_EXIT_HLT:
1500 DPRINTF("handle_hlt\n");
1501 ret = kvm_handle_halt(env);
1502 break;
1505 return ret;
1508 #ifdef KVM_CAP_SET_GUEST_DEBUG
1509 int kvm_arch_insert_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1511 static const uint8_t int3 = 0xcc;
1513 if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
1514 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&int3, 1, 1))
1515 return -EINVAL;
1516 return 0;
1519 int kvm_arch_remove_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1521 uint8_t int3;
1523 if (cpu_memory_rw_debug(env, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
1524 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1))
1525 return -EINVAL;
1526 return 0;
1529 static struct {
1530 target_ulong addr;
1531 int len;
1532 int type;
1533 } hw_breakpoint[4];
1535 static int nb_hw_breakpoint;
1537 static int find_hw_breakpoint(target_ulong addr, int len, int type)
1539 int n;
1541 for (n = 0; n < nb_hw_breakpoint; n++)
1542 if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
1543 (hw_breakpoint[n].len == len || len == -1))
1544 return n;
1545 return -1;
1548 int kvm_arch_insert_hw_breakpoint(target_ulong addr,
1549 target_ulong len, int type)
1551 switch (type) {
1552 case GDB_BREAKPOINT_HW:
1553 len = 1;
1554 break;
1555 case GDB_WATCHPOINT_WRITE:
1556 case GDB_WATCHPOINT_ACCESS:
1557 switch (len) {
1558 case 1:
1559 break;
1560 case 2:
1561 case 4:
1562 case 8:
1563 if (addr & (len - 1))
1564 return -EINVAL;
1565 break;
1566 default:
1567 return -EINVAL;
1569 break;
1570 default:
1571 return -ENOSYS;
1574 if (nb_hw_breakpoint == 4)
1575 return -ENOBUFS;
1577 if (find_hw_breakpoint(addr, len, type) >= 0)
1578 return -EEXIST;
1580 hw_breakpoint[nb_hw_breakpoint].addr = addr;
1581 hw_breakpoint[nb_hw_breakpoint].len = len;
1582 hw_breakpoint[nb_hw_breakpoint].type = type;
1583 nb_hw_breakpoint++;
1585 return 0;
1588 int kvm_arch_remove_hw_breakpoint(target_ulong addr,
1589 target_ulong len, int type)
1591 int n;
1593 n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
1594 if (n < 0)
1595 return -ENOENT;
1597 nb_hw_breakpoint--;
1598 hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
1600 return 0;
1603 void kvm_arch_remove_all_hw_breakpoints(void)
1605 nb_hw_breakpoint = 0;
1608 static CPUWatchpoint hw_watchpoint;
1610 int kvm_arch_debug(struct kvm_debug_exit_arch *arch_info)
1612 int handle = 0;
1613 int n;
1615 if (arch_info->exception == 1) {
1616 if (arch_info->dr6 & (1 << 14)) {
1617 if (cpu_single_env->singlestep_enabled)
1618 handle = 1;
1619 } else {
1620 for (n = 0; n < 4; n++)
1621 if (arch_info->dr6 & (1 << n))
1622 switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
1623 case 0x0:
1624 handle = 1;
1625 break;
1626 case 0x1:
1627 handle = 1;
1628 cpu_single_env->watchpoint_hit = &hw_watchpoint;
1629 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1630 hw_watchpoint.flags = BP_MEM_WRITE;
1631 break;
1632 case 0x3:
1633 handle = 1;
1634 cpu_single_env->watchpoint_hit = &hw_watchpoint;
1635 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1636 hw_watchpoint.flags = BP_MEM_ACCESS;
1637 break;
1640 } else if (kvm_find_sw_breakpoint(cpu_single_env, arch_info->pc))
1641 handle = 1;
1643 if (!handle) {
1644 cpu_synchronize_state(cpu_single_env);
1645 assert(cpu_single_env->exception_injected == -1);
1647 cpu_single_env->exception_injected = arch_info->exception;
1648 cpu_single_env->has_error_code = 0;
1651 return handle;
1654 void kvm_arch_update_guest_debug(CPUState *env, struct kvm_guest_debug *dbg)
1656 const uint8_t type_code[] = {
1657 [GDB_BREAKPOINT_HW] = 0x0,
1658 [GDB_WATCHPOINT_WRITE] = 0x1,
1659 [GDB_WATCHPOINT_ACCESS] = 0x3
1661 const uint8_t len_code[] = {
1662 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
1664 int n;
1666 if (kvm_sw_breakpoints_active(env))
1667 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
1669 if (nb_hw_breakpoint > 0) {
1670 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
1671 dbg->arch.debugreg[7] = 0x0600;
1672 for (n = 0; n < nb_hw_breakpoint; n++) {
1673 dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
1674 dbg->arch.debugreg[7] |= (2 << (n * 2)) |
1675 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
1676 (len_code[hw_breakpoint[n].len] << (18 + n*4));
1679 /* Legal xcr0 for loading */
1680 env->xcr0 = 1;
1682 #endif /* KVM_CAP_SET_GUEST_DEBUG */
1684 bool kvm_arch_stop_on_emulation_error(CPUState *env)
1686 return !(env->cr[0] & CR0_PE_MASK) ||
1687 ((env->segs[R_CS].selector & 3) != 3);
1690 static void hardware_memory_error(void)
1692 fprintf(stderr, "Hardware memory error!\n");
1693 exit(1);
1696 #ifdef KVM_CAP_MCE
1697 static void kvm_mce_broadcast_rest(CPUState *env)
1699 CPUState *cenv;
1700 int family, model, cpuver = env->cpuid_version;
1702 family = (cpuver >> 8) & 0xf;
1703 model = ((cpuver >> 12) & 0xf0) + ((cpuver >> 4) & 0xf);
1705 /* Broadcast MCA signal for processor version 06H_EH and above */
1706 if ((family == 6 && model >= 14) || family > 6) {
1707 for (cenv = first_cpu; cenv != NULL; cenv = cenv->next_cpu) {
1708 if (cenv == env) {
1709 continue;
1711 kvm_inject_x86_mce(cenv, 1, MCI_STATUS_VAL | MCI_STATUS_UC,
1712 MCG_STATUS_MCIP | MCG_STATUS_RIPV, 0, 0, 1);
1716 #endif
1718 int kvm_on_sigbus_vcpu(CPUState *env, int code, void *addr)
1720 #if defined(KVM_CAP_MCE)
1721 struct kvm_x86_mce mce = {
1722 .bank = 9,
1724 void *vaddr;
1725 ram_addr_t ram_addr;
1726 target_phys_addr_t paddr;
1727 int r;
1729 if ((env->mcg_cap & MCG_SER_P) && addr
1730 && (code == BUS_MCEERR_AR
1731 || code == BUS_MCEERR_AO)) {
1732 if (code == BUS_MCEERR_AR) {
1733 /* Fake an Intel architectural Data Load SRAR UCR */
1734 mce.status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN
1735 | MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S
1736 | MCI_STATUS_AR | 0x134;
1737 mce.misc = (MCM_ADDR_PHYS << 6) | 0xc;
1738 mce.mcg_status = MCG_STATUS_MCIP | MCG_STATUS_EIPV;
1739 } else {
1741 * If there is an MCE excpetion being processed, ignore
1742 * this SRAO MCE
1744 r = kvm_mce_in_exception(env);
1745 if (r == -1) {
1746 fprintf(stderr, "Failed to get MCE status\n");
1747 } else if (r) {
1748 return 0;
1750 /* Fake an Intel architectural Memory scrubbing UCR */
1751 mce.status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN
1752 | MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S
1753 | 0xc0;
1754 mce.misc = (MCM_ADDR_PHYS << 6) | 0xc;
1755 mce.mcg_status = MCG_STATUS_MCIP | MCG_STATUS_RIPV;
1757 vaddr = (void *)addr;
1758 if (qemu_ram_addr_from_host(vaddr, &ram_addr) ||
1759 !kvm_physical_memory_addr_from_ram(env->kvm_state, ram_addr, &paddr)) {
1760 fprintf(stderr, "Hardware memory error for memory used by "
1761 "QEMU itself instead of guest system!\n");
1762 /* Hope we are lucky for AO MCE */
1763 if (code == BUS_MCEERR_AO) {
1764 return 0;
1765 } else {
1766 hardware_memory_error();
1769 mce.addr = paddr;
1770 r = kvm_set_mce(env, &mce);
1771 if (r < 0) {
1772 fprintf(stderr, "kvm_set_mce: %s\n", strerror(errno));
1773 abort();
1775 kvm_mce_broadcast_rest(env);
1776 } else
1777 #endif
1779 if (code == BUS_MCEERR_AO) {
1780 return 0;
1781 } else if (code == BUS_MCEERR_AR) {
1782 hardware_memory_error();
1783 } else {
1784 return 1;
1787 return 0;
1790 int kvm_on_sigbus(int code, void *addr)
1792 #if defined(KVM_CAP_MCE)
1793 if ((first_cpu->mcg_cap & MCG_SER_P) && addr && code == BUS_MCEERR_AO) {
1794 uint64_t status;
1795 void *vaddr;
1796 ram_addr_t ram_addr;
1797 target_phys_addr_t paddr;
1799 /* Hope we are lucky for AO MCE */
1800 vaddr = addr;
1801 if (qemu_ram_addr_from_host(vaddr, &ram_addr) ||
1802 !kvm_physical_memory_addr_from_ram(first_cpu->kvm_state, ram_addr, &paddr)) {
1803 fprintf(stderr, "Hardware memory error for memory used by "
1804 "QEMU itself instead of guest system!: %p\n", addr);
1805 return 0;
1807 status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN
1808 | MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S
1809 | 0xc0;
1810 kvm_inject_x86_mce(first_cpu, 9, status,
1811 MCG_STATUS_MCIP | MCG_STATUS_RIPV, paddr,
1812 (MCM_ADDR_PHYS << 6) | 0xc, 1);
1813 kvm_mce_broadcast_rest(first_cpu);
1814 } else
1815 #endif
1817 if (code == BUS_MCEERR_AO) {
1818 return 0;
1819 } else if (code == BUS_MCEERR_AR) {
1820 hardware_memory_error();
1821 } else {
1822 return 1;
1825 return 0;