2 * Generic vector operation expansion
4 * Copyright (c) 2018 Linaro
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
22 #include "tcg/tcg-op.h"
23 #include "tcg/tcg-op-gvec.h"
24 #include "qemu/main-loop.h"
25 #include "tcg/tcg-gvec-desc.h"
29 #ifdef CONFIG_DEBUG_TCG
30 static const TCGOpcode vecop_list_empty
[1] = { 0 };
32 #define vecop_list_empty NULL
36 /* Verify vector size and alignment rules. OFS should be the OR of all
37 of the operand offsets so that we can check them all at once. */
38 static void check_size_align(uint32_t oprsz
, uint32_t maxsz
, uint32_t ofs
)
46 tcg_debug_assert(oprsz
<= maxsz
);
49 tcg_debug_assert(oprsz
== maxsz
);
52 tcg_debug_assert(maxsz
<= (8 << SIMD_MAXSZ_BITS
));
54 max_align
= maxsz
>= 16 ? 15 : 7;
55 tcg_debug_assert((maxsz
& max_align
) == 0);
56 tcg_debug_assert((ofs
& max_align
) == 0);
59 /* Verify vector overlap rules for two operands. */
60 static void check_overlap_2(uint32_t d
, uint32_t a
, uint32_t s
)
62 tcg_debug_assert(d
== a
|| d
+ s
<= a
|| a
+ s
<= d
);
65 /* Verify vector overlap rules for three operands. */
66 static void check_overlap_3(uint32_t d
, uint32_t a
, uint32_t b
, uint32_t s
)
68 check_overlap_2(d
, a
, s
);
69 check_overlap_2(d
, b
, s
);
70 check_overlap_2(a
, b
, s
);
73 /* Verify vector overlap rules for four operands. */
74 static void check_overlap_4(uint32_t d
, uint32_t a
, uint32_t b
,
75 uint32_t c
, uint32_t s
)
77 check_overlap_2(d
, a
, s
);
78 check_overlap_2(d
, b
, s
);
79 check_overlap_2(d
, c
, s
);
80 check_overlap_2(a
, b
, s
);
81 check_overlap_2(a
, c
, s
);
82 check_overlap_2(b
, c
, s
);
85 /* Create a descriptor from components. */
86 uint32_t simd_desc(uint32_t oprsz
, uint32_t maxsz
, int32_t data
)
90 check_size_align(oprsz
, maxsz
, 0);
91 tcg_debug_assert(data
== sextract32(data
, 0, SIMD_DATA_BITS
));
93 oprsz
= (oprsz
/ 8) - 1;
94 maxsz
= (maxsz
/ 8) - 1;
97 * We have just asserted in check_size_align that either
98 * oprsz is {8,16,32} or matches maxsz. Encode the final
99 * case with '2', as that would otherwise map to 24.
101 if (oprsz
== maxsz
) {
105 desc
= deposit32(desc
, SIMD_OPRSZ_SHIFT
, SIMD_OPRSZ_BITS
, oprsz
);
106 desc
= deposit32(desc
, SIMD_MAXSZ_SHIFT
, SIMD_MAXSZ_BITS
, maxsz
);
107 desc
= deposit32(desc
, SIMD_DATA_SHIFT
, SIMD_DATA_BITS
, data
);
112 /* Generate a call to a gvec-style helper with two vector operands. */
113 void tcg_gen_gvec_2_ool(uint32_t dofs
, uint32_t aofs
,
114 uint32_t oprsz
, uint32_t maxsz
, int32_t data
,
115 gen_helper_gvec_2
*fn
)
118 TCGv_i32 desc
= tcg_constant_i32(simd_desc(oprsz
, maxsz
, data
));
120 a0
= tcg_temp_new_ptr();
121 a1
= tcg_temp_new_ptr();
123 tcg_gen_addi_ptr(a0
, cpu_env
, dofs
);
124 tcg_gen_addi_ptr(a1
, cpu_env
, aofs
);
128 tcg_temp_free_ptr(a0
);
129 tcg_temp_free_ptr(a1
);
132 /* Generate a call to a gvec-style helper with two vector operands
133 and one scalar operand. */
134 void tcg_gen_gvec_2i_ool(uint32_t dofs
, uint32_t aofs
, TCGv_i64 c
,
135 uint32_t oprsz
, uint32_t maxsz
, int32_t data
,
136 gen_helper_gvec_2i
*fn
)
139 TCGv_i32 desc
= tcg_constant_i32(simd_desc(oprsz
, maxsz
, data
));
141 a0
= tcg_temp_new_ptr();
142 a1
= tcg_temp_new_ptr();
144 tcg_gen_addi_ptr(a0
, cpu_env
, dofs
);
145 tcg_gen_addi_ptr(a1
, cpu_env
, aofs
);
149 tcg_temp_free_ptr(a0
);
150 tcg_temp_free_ptr(a1
);
153 /* Generate a call to a gvec-style helper with three vector operands. */
154 void tcg_gen_gvec_3_ool(uint32_t dofs
, uint32_t aofs
, uint32_t bofs
,
155 uint32_t oprsz
, uint32_t maxsz
, int32_t data
,
156 gen_helper_gvec_3
*fn
)
159 TCGv_i32 desc
= tcg_constant_i32(simd_desc(oprsz
, maxsz
, data
));
161 a0
= tcg_temp_new_ptr();
162 a1
= tcg_temp_new_ptr();
163 a2
= tcg_temp_new_ptr();
165 tcg_gen_addi_ptr(a0
, cpu_env
, dofs
);
166 tcg_gen_addi_ptr(a1
, cpu_env
, aofs
);
167 tcg_gen_addi_ptr(a2
, cpu_env
, bofs
);
169 fn(a0
, a1
, a2
, desc
);
171 tcg_temp_free_ptr(a0
);
172 tcg_temp_free_ptr(a1
);
173 tcg_temp_free_ptr(a2
);
176 /* Generate a call to a gvec-style helper with four vector operands. */
177 void tcg_gen_gvec_4_ool(uint32_t dofs
, uint32_t aofs
, uint32_t bofs
,
178 uint32_t cofs
, uint32_t oprsz
, uint32_t maxsz
,
179 int32_t data
, gen_helper_gvec_4
*fn
)
181 TCGv_ptr a0
, a1
, a2
, a3
;
182 TCGv_i32 desc
= tcg_constant_i32(simd_desc(oprsz
, maxsz
, data
));
184 a0
= tcg_temp_new_ptr();
185 a1
= tcg_temp_new_ptr();
186 a2
= tcg_temp_new_ptr();
187 a3
= tcg_temp_new_ptr();
189 tcg_gen_addi_ptr(a0
, cpu_env
, dofs
);
190 tcg_gen_addi_ptr(a1
, cpu_env
, aofs
);
191 tcg_gen_addi_ptr(a2
, cpu_env
, bofs
);
192 tcg_gen_addi_ptr(a3
, cpu_env
, cofs
);
194 fn(a0
, a1
, a2
, a3
, desc
);
196 tcg_temp_free_ptr(a0
);
197 tcg_temp_free_ptr(a1
);
198 tcg_temp_free_ptr(a2
);
199 tcg_temp_free_ptr(a3
);
202 /* Generate a call to a gvec-style helper with five vector operands. */
203 void tcg_gen_gvec_5_ool(uint32_t dofs
, uint32_t aofs
, uint32_t bofs
,
204 uint32_t cofs
, uint32_t xofs
, uint32_t oprsz
,
205 uint32_t maxsz
, int32_t data
, gen_helper_gvec_5
*fn
)
207 TCGv_ptr a0
, a1
, a2
, a3
, a4
;
208 TCGv_i32 desc
= tcg_constant_i32(simd_desc(oprsz
, maxsz
, data
));
210 a0
= tcg_temp_new_ptr();
211 a1
= tcg_temp_new_ptr();
212 a2
= tcg_temp_new_ptr();
213 a3
= tcg_temp_new_ptr();
214 a4
= tcg_temp_new_ptr();
216 tcg_gen_addi_ptr(a0
, cpu_env
, dofs
);
217 tcg_gen_addi_ptr(a1
, cpu_env
, aofs
);
218 tcg_gen_addi_ptr(a2
, cpu_env
, bofs
);
219 tcg_gen_addi_ptr(a3
, cpu_env
, cofs
);
220 tcg_gen_addi_ptr(a4
, cpu_env
, xofs
);
222 fn(a0
, a1
, a2
, a3
, a4
, desc
);
224 tcg_temp_free_ptr(a0
);
225 tcg_temp_free_ptr(a1
);
226 tcg_temp_free_ptr(a2
);
227 tcg_temp_free_ptr(a3
);
228 tcg_temp_free_ptr(a4
);
231 /* Generate a call to a gvec-style helper with three vector operands
232 and an extra pointer operand. */
233 void tcg_gen_gvec_2_ptr(uint32_t dofs
, uint32_t aofs
,
234 TCGv_ptr ptr
, uint32_t oprsz
, uint32_t maxsz
,
235 int32_t data
, gen_helper_gvec_2_ptr
*fn
)
238 TCGv_i32 desc
= tcg_constant_i32(simd_desc(oprsz
, maxsz
, data
));
240 a0
= tcg_temp_new_ptr();
241 a1
= tcg_temp_new_ptr();
243 tcg_gen_addi_ptr(a0
, cpu_env
, dofs
);
244 tcg_gen_addi_ptr(a1
, cpu_env
, aofs
);
246 fn(a0
, a1
, ptr
, desc
);
248 tcg_temp_free_ptr(a0
);
249 tcg_temp_free_ptr(a1
);
252 /* Generate a call to a gvec-style helper with three vector operands
253 and an extra pointer operand. */
254 void tcg_gen_gvec_3_ptr(uint32_t dofs
, uint32_t aofs
, uint32_t bofs
,
255 TCGv_ptr ptr
, uint32_t oprsz
, uint32_t maxsz
,
256 int32_t data
, gen_helper_gvec_3_ptr
*fn
)
259 TCGv_i32 desc
= tcg_constant_i32(simd_desc(oprsz
, maxsz
, data
));
261 a0
= tcg_temp_new_ptr();
262 a1
= tcg_temp_new_ptr();
263 a2
= tcg_temp_new_ptr();
265 tcg_gen_addi_ptr(a0
, cpu_env
, dofs
);
266 tcg_gen_addi_ptr(a1
, cpu_env
, aofs
);
267 tcg_gen_addi_ptr(a2
, cpu_env
, bofs
);
269 fn(a0
, a1
, a2
, ptr
, desc
);
271 tcg_temp_free_ptr(a0
);
272 tcg_temp_free_ptr(a1
);
273 tcg_temp_free_ptr(a2
);
276 /* Generate a call to a gvec-style helper with four vector operands
277 and an extra pointer operand. */
278 void tcg_gen_gvec_4_ptr(uint32_t dofs
, uint32_t aofs
, uint32_t bofs
,
279 uint32_t cofs
, TCGv_ptr ptr
, uint32_t oprsz
,
280 uint32_t maxsz
, int32_t data
,
281 gen_helper_gvec_4_ptr
*fn
)
283 TCGv_ptr a0
, a1
, a2
, a3
;
284 TCGv_i32 desc
= tcg_constant_i32(simd_desc(oprsz
, maxsz
, data
));
286 a0
= tcg_temp_new_ptr();
287 a1
= tcg_temp_new_ptr();
288 a2
= tcg_temp_new_ptr();
289 a3
= tcg_temp_new_ptr();
291 tcg_gen_addi_ptr(a0
, cpu_env
, dofs
);
292 tcg_gen_addi_ptr(a1
, cpu_env
, aofs
);
293 tcg_gen_addi_ptr(a2
, cpu_env
, bofs
);
294 tcg_gen_addi_ptr(a3
, cpu_env
, cofs
);
296 fn(a0
, a1
, a2
, a3
, ptr
, desc
);
298 tcg_temp_free_ptr(a0
);
299 tcg_temp_free_ptr(a1
);
300 tcg_temp_free_ptr(a2
);
301 tcg_temp_free_ptr(a3
);
304 /* Generate a call to a gvec-style helper with five vector operands
305 and an extra pointer operand. */
306 void tcg_gen_gvec_5_ptr(uint32_t dofs
, uint32_t aofs
, uint32_t bofs
,
307 uint32_t cofs
, uint32_t eofs
, TCGv_ptr ptr
,
308 uint32_t oprsz
, uint32_t maxsz
, int32_t data
,
309 gen_helper_gvec_5_ptr
*fn
)
311 TCGv_ptr a0
, a1
, a2
, a3
, a4
;
312 TCGv_i32 desc
= tcg_constant_i32(simd_desc(oprsz
, maxsz
, data
));
314 a0
= tcg_temp_new_ptr();
315 a1
= tcg_temp_new_ptr();
316 a2
= tcg_temp_new_ptr();
317 a3
= tcg_temp_new_ptr();
318 a4
= tcg_temp_new_ptr();
320 tcg_gen_addi_ptr(a0
, cpu_env
, dofs
);
321 tcg_gen_addi_ptr(a1
, cpu_env
, aofs
);
322 tcg_gen_addi_ptr(a2
, cpu_env
, bofs
);
323 tcg_gen_addi_ptr(a3
, cpu_env
, cofs
);
324 tcg_gen_addi_ptr(a4
, cpu_env
, eofs
);
326 fn(a0
, a1
, a2
, a3
, a4
, ptr
, desc
);
328 tcg_temp_free_ptr(a0
);
329 tcg_temp_free_ptr(a1
);
330 tcg_temp_free_ptr(a2
);
331 tcg_temp_free_ptr(a3
);
332 tcg_temp_free_ptr(a4
);
335 /* Return true if we want to implement something of OPRSZ bytes
336 in units of LNSZ. This limits the expansion of inline code. */
337 static inline bool check_size_impl(uint32_t oprsz
, uint32_t lnsz
)
347 tcg_debug_assert((r
& 7) == 0);
350 /* For sizes below 16, accept no remainder. */
356 * Recall that ARM SVE allows vector sizes that are not a
357 * power of 2, but always a multiple of 16. The intent is
358 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
359 * In addition, expand_clr needs to handle a multiple of 8.
360 * Thus we can handle the tail with one more operation per
361 * diminishing power of 2.
366 return q
<= MAX_UNROLL
;
369 static void expand_clr(uint32_t dofs
, uint32_t maxsz
);
371 /* Duplicate C as per VECE. */
372 uint64_t (dup_const
)(unsigned vece
, uint64_t c
)
376 return 0x0101010101010101ull
* (uint8_t)c
;
378 return 0x0001000100010001ull
* (uint16_t)c
;
380 return 0x0000000100000001ull
* (uint32_t)c
;
384 g_assert_not_reached();
388 /* Duplicate IN into OUT as per VECE. */
389 void tcg_gen_dup_i32(unsigned vece
, TCGv_i32 out
, TCGv_i32 in
)
393 tcg_gen_ext8u_i32(out
, in
);
394 tcg_gen_muli_i32(out
, out
, 0x01010101);
397 tcg_gen_deposit_i32(out
, in
, in
, 16, 16);
400 tcg_gen_mov_i32(out
, in
);
403 g_assert_not_reached();
407 void tcg_gen_dup_i64(unsigned vece
, TCGv_i64 out
, TCGv_i64 in
)
411 tcg_gen_ext8u_i64(out
, in
);
412 tcg_gen_muli_i64(out
, out
, 0x0101010101010101ull
);
415 tcg_gen_ext16u_i64(out
, in
);
416 tcg_gen_muli_i64(out
, out
, 0x0001000100010001ull
);
419 tcg_gen_deposit_i64(out
, in
, in
, 32, 32);
422 tcg_gen_mov_i64(out
, in
);
425 g_assert_not_reached();
429 /* Select a supported vector type for implementing an operation on SIZE
430 * bytes. If OP is 0, assume that the real operation to be performed is
431 * required by all backends. Otherwise, make sure than OP can be performed
432 * on elements of size VECE in the selected type. Do not select V64 if
433 * PREFER_I64 is true. Return 0 if no vector type is selected.
435 static TCGType
choose_vector_type(const TCGOpcode
*list
, unsigned vece
,
436 uint32_t size
, bool prefer_i64
)
439 * Recall that ARM SVE allows vector sizes that are not a
440 * power of 2, but always a multiple of 16. The intent is
441 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
442 * It is hard to imagine a case in which v256 is supported
443 * but v128 is not, but check anyway.
444 * In addition, expand_clr needs to handle a multiple of 8.
446 if (TCG_TARGET_HAS_v256
&&
447 check_size_impl(size
, 32) &&
448 tcg_can_emit_vecop_list(list
, TCG_TYPE_V256
, vece
) &&
450 (TCG_TARGET_HAS_v128
&&
451 tcg_can_emit_vecop_list(list
, TCG_TYPE_V128
, vece
))) &&
453 (TCG_TARGET_HAS_v64
&&
454 tcg_can_emit_vecop_list(list
, TCG_TYPE_V64
, vece
)))) {
455 return TCG_TYPE_V256
;
457 if (TCG_TARGET_HAS_v128
&&
458 check_size_impl(size
, 16) &&
459 tcg_can_emit_vecop_list(list
, TCG_TYPE_V128
, vece
) &&
461 (TCG_TARGET_HAS_v64
&&
462 tcg_can_emit_vecop_list(list
, TCG_TYPE_V64
, vece
)))) {
463 return TCG_TYPE_V128
;
465 if (TCG_TARGET_HAS_v64
&& !prefer_i64
&& check_size_impl(size
, 8)
466 && tcg_can_emit_vecop_list(list
, TCG_TYPE_V64
, vece
)) {
472 static void do_dup_store(TCGType type
, uint32_t dofs
, uint32_t oprsz
,
473 uint32_t maxsz
, TCGv_vec t_vec
)
477 tcg_debug_assert(oprsz
>= 8);
480 * This may be expand_clr for the tail of an operation, e.g.
481 * oprsz == 8 && maxsz == 64. The first 8 bytes of this store
482 * are misaligned wrt the maximum vector size, so do that first.
485 tcg_gen_stl_vec(t_vec
, cpu_env
, dofs
+ i
, TCG_TYPE_V64
);
492 * Recall that ARM SVE allows vector sizes that are not a
493 * power of 2, but always a multiple of 16. The intent is
494 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
496 for (; i
+ 32 <= oprsz
; i
+= 32) {
497 tcg_gen_stl_vec(t_vec
, cpu_env
, dofs
+ i
, TCG_TYPE_V256
);
501 for (; i
+ 16 <= oprsz
; i
+= 16) {
502 tcg_gen_stl_vec(t_vec
, cpu_env
, dofs
+ i
, TCG_TYPE_V128
);
506 for (; i
< oprsz
; i
+= 8) {
507 tcg_gen_stl_vec(t_vec
, cpu_env
, dofs
+ i
, TCG_TYPE_V64
);
511 g_assert_not_reached();
515 expand_clr(dofs
+ oprsz
, maxsz
- oprsz
);
519 /* Set OPRSZ bytes at DOFS to replications of IN_32, IN_64 or IN_C.
520 * Only one of IN_32 or IN_64 may be set;
521 * IN_C is used if IN_32 and IN_64 are unset.
523 static void do_dup(unsigned vece
, uint32_t dofs
, uint32_t oprsz
,
524 uint32_t maxsz
, TCGv_i32 in_32
, TCGv_i64 in_64
,
529 TCGv_i32 t_32
, t_desc
;
533 assert(vece
<= (in_32
? MO_32
: MO_64
));
534 assert(in_32
== NULL
|| in_64
== NULL
);
536 /* If we're storing 0, expand oprsz to maxsz. */
537 if (in_32
== NULL
&& in_64
== NULL
) {
538 in_c
= dup_const(vece
, in_c
);
542 } else if (in_c
== dup_const(MO_8
, in_c
)) {
547 /* Implement inline with a vector type, if possible.
548 * Prefer integer when 64-bit host and no variable dup.
550 type
= choose_vector_type(NULL
, vece
, oprsz
,
551 (TCG_TARGET_REG_BITS
== 64 && in_32
== NULL
552 && (in_64
== NULL
|| vece
== MO_64
)));
554 TCGv_vec t_vec
= tcg_temp_new_vec(type
);
557 tcg_gen_dup_i32_vec(vece
, t_vec
, in_32
);
559 tcg_gen_dup_i64_vec(vece
, t_vec
, in_64
);
561 tcg_gen_dupi_vec(vece
, t_vec
, in_c
);
563 do_dup_store(type
, dofs
, oprsz
, maxsz
, t_vec
);
564 tcg_temp_free_vec(t_vec
);
568 /* Otherwise, inline with an integer type, unless "large". */
569 if (check_size_impl(oprsz
, TCG_TARGET_REG_BITS
/ 8)) {
574 /* We are given a 32-bit variable input. For a 64-bit host,
575 use a 64-bit operation unless the 32-bit operation would
577 if (TCG_TARGET_REG_BITS
== 64
578 && (vece
!= MO_32
|| !check_size_impl(oprsz
, 4))) {
579 t_64
= tcg_temp_new_i64();
580 tcg_gen_extu_i32_i64(t_64
, in_32
);
581 tcg_gen_dup_i64(vece
, t_64
, t_64
);
583 t_32
= tcg_temp_new_i32();
584 tcg_gen_dup_i32(vece
, t_32
, in_32
);
587 /* We are given a 64-bit variable input. */
588 t_64
= tcg_temp_new_i64();
589 tcg_gen_dup_i64(vece
, t_64
, in_64
);
591 /* We are given a constant input. */
592 /* For 64-bit hosts, use 64-bit constants for "simple" constants
593 or when we'd need too many 32-bit stores, or when a 64-bit
594 constant is really required. */
596 || (TCG_TARGET_REG_BITS
== 64
597 && (in_c
== 0 || in_c
== -1
598 || !check_size_impl(oprsz
, 4)))) {
599 t_64
= tcg_constant_i64(in_c
);
601 t_32
= tcg_constant_i32(in_c
);
605 /* Implement inline if we picked an implementation size above. */
607 for (i
= 0; i
< oprsz
; i
+= 4) {
608 tcg_gen_st_i32(t_32
, cpu_env
, dofs
+ i
);
610 tcg_temp_free_i32(t_32
);
614 for (i
= 0; i
< oprsz
; i
+= 8) {
615 tcg_gen_st_i64(t_64
, cpu_env
, dofs
+ i
);
617 tcg_temp_free_i64(t_64
);
622 /* Otherwise implement out of line. */
623 t_ptr
= tcg_temp_new_ptr();
624 tcg_gen_addi_ptr(t_ptr
, cpu_env
, dofs
);
627 * This may be expand_clr for the tail of an operation, e.g.
628 * oprsz == 8 && maxsz == 64. The size of the clear is misaligned
629 * wrt simd_desc and will assert. Simply pass all replicated byte
630 * stores through to memset.
632 if (oprsz
== maxsz
&& vece
== MO_8
) {
633 TCGv_ptr t_size
= tcg_const_ptr(oprsz
);
639 t_val
= tcg_temp_new_i32();
640 tcg_gen_extrl_i64_i32(t_val
, in_64
);
642 t_val
= tcg_constant_i32(in_c
);
644 gen_helper_memset(t_ptr
, t_ptr
, t_val
, t_size
);
647 tcg_temp_free_i32(t_val
);
649 tcg_temp_free_ptr(t_size
);
650 tcg_temp_free_ptr(t_ptr
);
654 t_desc
= tcg_constant_i32(simd_desc(oprsz
, maxsz
, 0));
658 gen_helper_gvec_dup64(t_ptr
, t_desc
, in_64
);
660 t_64
= tcg_constant_i64(in_c
);
661 gen_helper_gvec_dup64(t_ptr
, t_desc
, t_64
);
664 typedef void dup_fn(TCGv_ptr
, TCGv_i32
, TCGv_i32
);
665 static dup_fn
* const fns
[3] = {
666 gen_helper_gvec_dup8
,
667 gen_helper_gvec_dup16
,
668 gen_helper_gvec_dup32
672 fns
[vece
](t_ptr
, t_desc
, in_32
);
674 t_32
= tcg_temp_new_i32();
675 tcg_gen_extrl_i64_i32(t_32
, in_64
);
676 fns
[vece
](t_ptr
, t_desc
, t_32
);
677 tcg_temp_free_i32(t_32
);
681 } else if (vece
== MO_16
) {
684 t_32
= tcg_constant_i32(in_c
);
685 fns
[vece
](t_ptr
, t_desc
, t_32
);
689 tcg_temp_free_ptr(t_ptr
);
694 expand_clr(dofs
+ oprsz
, maxsz
- oprsz
);
698 /* Likewise, but with zero. */
699 static void expand_clr(uint32_t dofs
, uint32_t maxsz
)
701 do_dup(MO_8
, dofs
, maxsz
, maxsz
, NULL
, NULL
, 0);
704 /* Expand OPSZ bytes worth of two-operand operations using i32 elements. */
705 static void expand_2_i32(uint32_t dofs
, uint32_t aofs
, uint32_t oprsz
,
706 bool load_dest
, void (*fni
)(TCGv_i32
, TCGv_i32
))
708 TCGv_i32 t0
= tcg_temp_new_i32();
709 TCGv_i32 t1
= tcg_temp_new_i32();
712 for (i
= 0; i
< oprsz
; i
+= 4) {
713 tcg_gen_ld_i32(t0
, cpu_env
, aofs
+ i
);
715 tcg_gen_ld_i32(t1
, cpu_env
, dofs
+ i
);
718 tcg_gen_st_i32(t1
, cpu_env
, dofs
+ i
);
720 tcg_temp_free_i32(t0
);
721 tcg_temp_free_i32(t1
);
724 static void expand_2i_i32(uint32_t dofs
, uint32_t aofs
, uint32_t oprsz
,
725 int32_t c
, bool load_dest
,
726 void (*fni
)(TCGv_i32
, TCGv_i32
, int32_t))
728 TCGv_i32 t0
= tcg_temp_new_i32();
729 TCGv_i32 t1
= tcg_temp_new_i32();
732 for (i
= 0; i
< oprsz
; i
+= 4) {
733 tcg_gen_ld_i32(t0
, cpu_env
, aofs
+ i
);
735 tcg_gen_ld_i32(t1
, cpu_env
, dofs
+ i
);
738 tcg_gen_st_i32(t1
, cpu_env
, dofs
+ i
);
740 tcg_temp_free_i32(t0
);
741 tcg_temp_free_i32(t1
);
744 static void expand_2s_i32(uint32_t dofs
, uint32_t aofs
, uint32_t oprsz
,
745 TCGv_i32 c
, bool scalar_first
,
746 void (*fni
)(TCGv_i32
, TCGv_i32
, TCGv_i32
))
748 TCGv_i32 t0
= tcg_temp_new_i32();
749 TCGv_i32 t1
= tcg_temp_new_i32();
752 for (i
= 0; i
< oprsz
; i
+= 4) {
753 tcg_gen_ld_i32(t0
, cpu_env
, aofs
+ i
);
759 tcg_gen_st_i32(t1
, cpu_env
, dofs
+ i
);
761 tcg_temp_free_i32(t0
);
762 tcg_temp_free_i32(t1
);
765 /* Expand OPSZ bytes worth of three-operand operations using i32 elements. */
766 static void expand_3_i32(uint32_t dofs
, uint32_t aofs
,
767 uint32_t bofs
, uint32_t oprsz
, bool load_dest
,
768 void (*fni
)(TCGv_i32
, TCGv_i32
, TCGv_i32
))
770 TCGv_i32 t0
= tcg_temp_new_i32();
771 TCGv_i32 t1
= tcg_temp_new_i32();
772 TCGv_i32 t2
= tcg_temp_new_i32();
775 for (i
= 0; i
< oprsz
; i
+= 4) {
776 tcg_gen_ld_i32(t0
, cpu_env
, aofs
+ i
);
777 tcg_gen_ld_i32(t1
, cpu_env
, bofs
+ i
);
779 tcg_gen_ld_i32(t2
, cpu_env
, dofs
+ i
);
782 tcg_gen_st_i32(t2
, cpu_env
, dofs
+ i
);
784 tcg_temp_free_i32(t2
);
785 tcg_temp_free_i32(t1
);
786 tcg_temp_free_i32(t0
);
789 static void expand_3i_i32(uint32_t dofs
, uint32_t aofs
, uint32_t bofs
,
790 uint32_t oprsz
, int32_t c
, bool load_dest
,
791 void (*fni
)(TCGv_i32
, TCGv_i32
, TCGv_i32
, int32_t))
793 TCGv_i32 t0
= tcg_temp_new_i32();
794 TCGv_i32 t1
= tcg_temp_new_i32();
795 TCGv_i32 t2
= tcg_temp_new_i32();
798 for (i
= 0; i
< oprsz
; i
+= 4) {
799 tcg_gen_ld_i32(t0
, cpu_env
, aofs
+ i
);
800 tcg_gen_ld_i32(t1
, cpu_env
, bofs
+ i
);
802 tcg_gen_ld_i32(t2
, cpu_env
, dofs
+ i
);
805 tcg_gen_st_i32(t2
, cpu_env
, dofs
+ i
);
807 tcg_temp_free_i32(t0
);
808 tcg_temp_free_i32(t1
);
809 tcg_temp_free_i32(t2
);
812 /* Expand OPSZ bytes worth of three-operand operations using i32 elements. */
813 static void expand_4_i32(uint32_t dofs
, uint32_t aofs
, uint32_t bofs
,
814 uint32_t cofs
, uint32_t oprsz
, bool write_aofs
,
815 void (*fni
)(TCGv_i32
, TCGv_i32
, TCGv_i32
, TCGv_i32
))
817 TCGv_i32 t0
= tcg_temp_new_i32();
818 TCGv_i32 t1
= tcg_temp_new_i32();
819 TCGv_i32 t2
= tcg_temp_new_i32();
820 TCGv_i32 t3
= tcg_temp_new_i32();
823 for (i
= 0; i
< oprsz
; i
+= 4) {
824 tcg_gen_ld_i32(t1
, cpu_env
, aofs
+ i
);
825 tcg_gen_ld_i32(t2
, cpu_env
, bofs
+ i
);
826 tcg_gen_ld_i32(t3
, cpu_env
, cofs
+ i
);
828 tcg_gen_st_i32(t0
, cpu_env
, dofs
+ i
);
830 tcg_gen_st_i32(t1
, cpu_env
, aofs
+ i
);
833 tcg_temp_free_i32(t3
);
834 tcg_temp_free_i32(t2
);
835 tcg_temp_free_i32(t1
);
836 tcg_temp_free_i32(t0
);
839 static void expand_4i_i32(uint32_t dofs
, uint32_t aofs
, uint32_t bofs
,
840 uint32_t cofs
, uint32_t oprsz
, int32_t c
,
841 void (*fni
)(TCGv_i32
, TCGv_i32
, TCGv_i32
, TCGv_i32
,
844 TCGv_i32 t0
= tcg_temp_new_i32();
845 TCGv_i32 t1
= tcg_temp_new_i32();
846 TCGv_i32 t2
= tcg_temp_new_i32();
847 TCGv_i32 t3
= tcg_temp_new_i32();
850 for (i
= 0; i
< oprsz
; i
+= 4) {
851 tcg_gen_ld_i32(t1
, cpu_env
, aofs
+ i
);
852 tcg_gen_ld_i32(t2
, cpu_env
, bofs
+ i
);
853 tcg_gen_ld_i32(t3
, cpu_env
, cofs
+ i
);
854 fni(t0
, t1
, t2
, t3
, c
);
855 tcg_gen_st_i32(t0
, cpu_env
, dofs
+ i
);
857 tcg_temp_free_i32(t3
);
858 tcg_temp_free_i32(t2
);
859 tcg_temp_free_i32(t1
);
860 tcg_temp_free_i32(t0
);
863 /* Expand OPSZ bytes worth of two-operand operations using i64 elements. */
864 static void expand_2_i64(uint32_t dofs
, uint32_t aofs
, uint32_t oprsz
,
865 bool load_dest
, void (*fni
)(TCGv_i64
, TCGv_i64
))
867 TCGv_i64 t0
= tcg_temp_new_i64();
868 TCGv_i64 t1
= tcg_temp_new_i64();
871 for (i
= 0; i
< oprsz
; i
+= 8) {
872 tcg_gen_ld_i64(t0
, cpu_env
, aofs
+ i
);
874 tcg_gen_ld_i64(t1
, cpu_env
, dofs
+ i
);
877 tcg_gen_st_i64(t1
, cpu_env
, dofs
+ i
);
879 tcg_temp_free_i64(t0
);
880 tcg_temp_free_i64(t1
);
883 static void expand_2i_i64(uint32_t dofs
, uint32_t aofs
, uint32_t oprsz
,
884 int64_t c
, bool load_dest
,
885 void (*fni
)(TCGv_i64
, TCGv_i64
, int64_t))
887 TCGv_i64 t0
= tcg_temp_new_i64();
888 TCGv_i64 t1
= tcg_temp_new_i64();
891 for (i
= 0; i
< oprsz
; i
+= 8) {
892 tcg_gen_ld_i64(t0
, cpu_env
, aofs
+ i
);
894 tcg_gen_ld_i64(t1
, cpu_env
, dofs
+ i
);
897 tcg_gen_st_i64(t1
, cpu_env
, dofs
+ i
);
899 tcg_temp_free_i64(t0
);
900 tcg_temp_free_i64(t1
);
903 static void expand_2s_i64(uint32_t dofs
, uint32_t aofs
, uint32_t oprsz
,
904 TCGv_i64 c
, bool scalar_first
,
905 void (*fni
)(TCGv_i64
, TCGv_i64
, TCGv_i64
))
907 TCGv_i64 t0
= tcg_temp_new_i64();
908 TCGv_i64 t1
= tcg_temp_new_i64();
911 for (i
= 0; i
< oprsz
; i
+= 8) {
912 tcg_gen_ld_i64(t0
, cpu_env
, aofs
+ i
);
918 tcg_gen_st_i64(t1
, cpu_env
, dofs
+ i
);
920 tcg_temp_free_i64(t0
);
921 tcg_temp_free_i64(t1
);
924 /* Expand OPSZ bytes worth of three-operand operations using i64 elements. */
925 static void expand_3_i64(uint32_t dofs
, uint32_t aofs
,
926 uint32_t bofs
, uint32_t oprsz
, bool load_dest
,
927 void (*fni
)(TCGv_i64
, TCGv_i64
, TCGv_i64
))
929 TCGv_i64 t0
= tcg_temp_new_i64();
930 TCGv_i64 t1
= tcg_temp_new_i64();
931 TCGv_i64 t2
= tcg_temp_new_i64();
934 for (i
= 0; i
< oprsz
; i
+= 8) {
935 tcg_gen_ld_i64(t0
, cpu_env
, aofs
+ i
);
936 tcg_gen_ld_i64(t1
, cpu_env
, bofs
+ i
);
938 tcg_gen_ld_i64(t2
, cpu_env
, dofs
+ i
);
941 tcg_gen_st_i64(t2
, cpu_env
, dofs
+ i
);
943 tcg_temp_free_i64(t2
);
944 tcg_temp_free_i64(t1
);
945 tcg_temp_free_i64(t0
);
948 static void expand_3i_i64(uint32_t dofs
, uint32_t aofs
, uint32_t bofs
,
949 uint32_t oprsz
, int64_t c
, bool load_dest
,
950 void (*fni
)(TCGv_i64
, TCGv_i64
, TCGv_i64
, int64_t))
952 TCGv_i64 t0
= tcg_temp_new_i64();
953 TCGv_i64 t1
= tcg_temp_new_i64();
954 TCGv_i64 t2
= tcg_temp_new_i64();
957 for (i
= 0; i
< oprsz
; i
+= 8) {
958 tcg_gen_ld_i64(t0
, cpu_env
, aofs
+ i
);
959 tcg_gen_ld_i64(t1
, cpu_env
, bofs
+ i
);
961 tcg_gen_ld_i64(t2
, cpu_env
, dofs
+ i
);
964 tcg_gen_st_i64(t2
, cpu_env
, dofs
+ i
);
966 tcg_temp_free_i64(t0
);
967 tcg_temp_free_i64(t1
);
968 tcg_temp_free_i64(t2
);
971 /* Expand OPSZ bytes worth of three-operand operations using i64 elements. */
972 static void expand_4_i64(uint32_t dofs
, uint32_t aofs
, uint32_t bofs
,
973 uint32_t cofs
, uint32_t oprsz
, bool write_aofs
,
974 void (*fni
)(TCGv_i64
, TCGv_i64
, TCGv_i64
, TCGv_i64
))
976 TCGv_i64 t0
= tcg_temp_new_i64();
977 TCGv_i64 t1
= tcg_temp_new_i64();
978 TCGv_i64 t2
= tcg_temp_new_i64();
979 TCGv_i64 t3
= tcg_temp_new_i64();
982 for (i
= 0; i
< oprsz
; i
+= 8) {
983 tcg_gen_ld_i64(t1
, cpu_env
, aofs
+ i
);
984 tcg_gen_ld_i64(t2
, cpu_env
, bofs
+ i
);
985 tcg_gen_ld_i64(t3
, cpu_env
, cofs
+ i
);
987 tcg_gen_st_i64(t0
, cpu_env
, dofs
+ i
);
989 tcg_gen_st_i64(t1
, cpu_env
, aofs
+ i
);
992 tcg_temp_free_i64(t3
);
993 tcg_temp_free_i64(t2
);
994 tcg_temp_free_i64(t1
);
995 tcg_temp_free_i64(t0
);
998 static void expand_4i_i64(uint32_t dofs
, uint32_t aofs
, uint32_t bofs
,
999 uint32_t cofs
, uint32_t oprsz
, int64_t c
,
1000 void (*fni
)(TCGv_i64
, TCGv_i64
, TCGv_i64
, TCGv_i64
,
1003 TCGv_i64 t0
= tcg_temp_new_i64();
1004 TCGv_i64 t1
= tcg_temp_new_i64();
1005 TCGv_i64 t2
= tcg_temp_new_i64();
1006 TCGv_i64 t3
= tcg_temp_new_i64();
1009 for (i
= 0; i
< oprsz
; i
+= 8) {
1010 tcg_gen_ld_i64(t1
, cpu_env
, aofs
+ i
);
1011 tcg_gen_ld_i64(t2
, cpu_env
, bofs
+ i
);
1012 tcg_gen_ld_i64(t3
, cpu_env
, cofs
+ i
);
1013 fni(t0
, t1
, t2
, t3
, c
);
1014 tcg_gen_st_i64(t0
, cpu_env
, dofs
+ i
);
1016 tcg_temp_free_i64(t3
);
1017 tcg_temp_free_i64(t2
);
1018 tcg_temp_free_i64(t1
);
1019 tcg_temp_free_i64(t0
);
1022 /* Expand OPSZ bytes worth of two-operand operations using host vectors. */
1023 static void expand_2_vec(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
1024 uint32_t oprsz
, uint32_t tysz
, TCGType type
,
1026 void (*fni
)(unsigned, TCGv_vec
, TCGv_vec
))
1028 TCGv_vec t0
= tcg_temp_new_vec(type
);
1029 TCGv_vec t1
= tcg_temp_new_vec(type
);
1032 for (i
= 0; i
< oprsz
; i
+= tysz
) {
1033 tcg_gen_ld_vec(t0
, cpu_env
, aofs
+ i
);
1035 tcg_gen_ld_vec(t1
, cpu_env
, dofs
+ i
);
1038 tcg_gen_st_vec(t1
, cpu_env
, dofs
+ i
);
1040 tcg_temp_free_vec(t0
);
1041 tcg_temp_free_vec(t1
);
1044 /* Expand OPSZ bytes worth of two-vector operands and an immediate operand
1045 using host vectors. */
1046 static void expand_2i_vec(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
1047 uint32_t oprsz
, uint32_t tysz
, TCGType type
,
1048 int64_t c
, bool load_dest
,
1049 void (*fni
)(unsigned, TCGv_vec
, TCGv_vec
, int64_t))
1051 TCGv_vec t0
= tcg_temp_new_vec(type
);
1052 TCGv_vec t1
= tcg_temp_new_vec(type
);
1055 for (i
= 0; i
< oprsz
; i
+= tysz
) {
1056 tcg_gen_ld_vec(t0
, cpu_env
, aofs
+ i
);
1058 tcg_gen_ld_vec(t1
, cpu_env
, dofs
+ i
);
1060 fni(vece
, t1
, t0
, c
);
1061 tcg_gen_st_vec(t1
, cpu_env
, dofs
+ i
);
1063 tcg_temp_free_vec(t0
);
1064 tcg_temp_free_vec(t1
);
1067 static void expand_2s_vec(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
1068 uint32_t oprsz
, uint32_t tysz
, TCGType type
,
1069 TCGv_vec c
, bool scalar_first
,
1070 void (*fni
)(unsigned, TCGv_vec
, TCGv_vec
, TCGv_vec
))
1072 TCGv_vec t0
= tcg_temp_new_vec(type
);
1073 TCGv_vec t1
= tcg_temp_new_vec(type
);
1076 for (i
= 0; i
< oprsz
; i
+= tysz
) {
1077 tcg_gen_ld_vec(t0
, cpu_env
, aofs
+ i
);
1079 fni(vece
, t1
, c
, t0
);
1081 fni(vece
, t1
, t0
, c
);
1083 tcg_gen_st_vec(t1
, cpu_env
, dofs
+ i
);
1085 tcg_temp_free_vec(t0
);
1086 tcg_temp_free_vec(t1
);
1089 /* Expand OPSZ bytes worth of three-operand operations using host vectors. */
1090 static void expand_3_vec(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
1091 uint32_t bofs
, uint32_t oprsz
,
1092 uint32_t tysz
, TCGType type
, bool load_dest
,
1093 void (*fni
)(unsigned, TCGv_vec
, TCGv_vec
, TCGv_vec
))
1095 TCGv_vec t0
= tcg_temp_new_vec(type
);
1096 TCGv_vec t1
= tcg_temp_new_vec(type
);
1097 TCGv_vec t2
= tcg_temp_new_vec(type
);
1100 for (i
= 0; i
< oprsz
; i
+= tysz
) {
1101 tcg_gen_ld_vec(t0
, cpu_env
, aofs
+ i
);
1102 tcg_gen_ld_vec(t1
, cpu_env
, bofs
+ i
);
1104 tcg_gen_ld_vec(t2
, cpu_env
, dofs
+ i
);
1106 fni(vece
, t2
, t0
, t1
);
1107 tcg_gen_st_vec(t2
, cpu_env
, dofs
+ i
);
1109 tcg_temp_free_vec(t2
);
1110 tcg_temp_free_vec(t1
);
1111 tcg_temp_free_vec(t0
);
1115 * Expand OPSZ bytes worth of three-vector operands and an immediate operand
1116 * using host vectors.
1118 static void expand_3i_vec(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
1119 uint32_t bofs
, uint32_t oprsz
, uint32_t tysz
,
1120 TCGType type
, int64_t c
, bool load_dest
,
1121 void (*fni
)(unsigned, TCGv_vec
, TCGv_vec
, TCGv_vec
,
1124 TCGv_vec t0
= tcg_temp_new_vec(type
);
1125 TCGv_vec t1
= tcg_temp_new_vec(type
);
1126 TCGv_vec t2
= tcg_temp_new_vec(type
);
1129 for (i
= 0; i
< oprsz
; i
+= tysz
) {
1130 tcg_gen_ld_vec(t0
, cpu_env
, aofs
+ i
);
1131 tcg_gen_ld_vec(t1
, cpu_env
, bofs
+ i
);
1133 tcg_gen_ld_vec(t2
, cpu_env
, dofs
+ i
);
1135 fni(vece
, t2
, t0
, t1
, c
);
1136 tcg_gen_st_vec(t2
, cpu_env
, dofs
+ i
);
1138 tcg_temp_free_vec(t0
);
1139 tcg_temp_free_vec(t1
);
1140 tcg_temp_free_vec(t2
);
1143 /* Expand OPSZ bytes worth of four-operand operations using host vectors. */
1144 static void expand_4_vec(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
1145 uint32_t bofs
, uint32_t cofs
, uint32_t oprsz
,
1146 uint32_t tysz
, TCGType type
, bool write_aofs
,
1147 void (*fni
)(unsigned, TCGv_vec
, TCGv_vec
,
1148 TCGv_vec
, TCGv_vec
))
1150 TCGv_vec t0
= tcg_temp_new_vec(type
);
1151 TCGv_vec t1
= tcg_temp_new_vec(type
);
1152 TCGv_vec t2
= tcg_temp_new_vec(type
);
1153 TCGv_vec t3
= tcg_temp_new_vec(type
);
1156 for (i
= 0; i
< oprsz
; i
+= tysz
) {
1157 tcg_gen_ld_vec(t1
, cpu_env
, aofs
+ i
);
1158 tcg_gen_ld_vec(t2
, cpu_env
, bofs
+ i
);
1159 tcg_gen_ld_vec(t3
, cpu_env
, cofs
+ i
);
1160 fni(vece
, t0
, t1
, t2
, t3
);
1161 tcg_gen_st_vec(t0
, cpu_env
, dofs
+ i
);
1163 tcg_gen_st_vec(t1
, cpu_env
, aofs
+ i
);
1166 tcg_temp_free_vec(t3
);
1167 tcg_temp_free_vec(t2
);
1168 tcg_temp_free_vec(t1
);
1169 tcg_temp_free_vec(t0
);
1173 * Expand OPSZ bytes worth of four-vector operands and an immediate operand
1174 * using host vectors.
1176 static void expand_4i_vec(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
1177 uint32_t bofs
, uint32_t cofs
, uint32_t oprsz
,
1178 uint32_t tysz
, TCGType type
, int64_t c
,
1179 void (*fni
)(unsigned, TCGv_vec
, TCGv_vec
,
1180 TCGv_vec
, TCGv_vec
, int64_t))
1182 TCGv_vec t0
= tcg_temp_new_vec(type
);
1183 TCGv_vec t1
= tcg_temp_new_vec(type
);
1184 TCGv_vec t2
= tcg_temp_new_vec(type
);
1185 TCGv_vec t3
= tcg_temp_new_vec(type
);
1188 for (i
= 0; i
< oprsz
; i
+= tysz
) {
1189 tcg_gen_ld_vec(t1
, cpu_env
, aofs
+ i
);
1190 tcg_gen_ld_vec(t2
, cpu_env
, bofs
+ i
);
1191 tcg_gen_ld_vec(t3
, cpu_env
, cofs
+ i
);
1192 fni(vece
, t0
, t1
, t2
, t3
, c
);
1193 tcg_gen_st_vec(t0
, cpu_env
, dofs
+ i
);
1195 tcg_temp_free_vec(t3
);
1196 tcg_temp_free_vec(t2
);
1197 tcg_temp_free_vec(t1
);
1198 tcg_temp_free_vec(t0
);
1201 /* Expand a vector two-operand operation. */
1202 void tcg_gen_gvec_2(uint32_t dofs
, uint32_t aofs
,
1203 uint32_t oprsz
, uint32_t maxsz
, const GVecGen2
*g
)
1205 const TCGOpcode
*this_list
= g
->opt_opc
? : vecop_list_empty
;
1206 const TCGOpcode
*hold_list
= tcg_swap_vecop_list(this_list
);
1210 check_size_align(oprsz
, maxsz
, dofs
| aofs
);
1211 check_overlap_2(dofs
, aofs
, maxsz
);
1215 type
= choose_vector_type(g
->opt_opc
, g
->vece
, oprsz
, g
->prefer_i64
);
1219 /* Recall that ARM SVE allows vector sizes that are not a
1220 * power of 2, but always a multiple of 16. The intent is
1221 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
1223 some
= QEMU_ALIGN_DOWN(oprsz
, 32);
1224 expand_2_vec(g
->vece
, dofs
, aofs
, some
, 32, TCG_TYPE_V256
,
1225 g
->load_dest
, g
->fniv
);
1226 if (some
== oprsz
) {
1235 expand_2_vec(g
->vece
, dofs
, aofs
, oprsz
, 16, TCG_TYPE_V128
,
1236 g
->load_dest
, g
->fniv
);
1239 expand_2_vec(g
->vece
, dofs
, aofs
, oprsz
, 8, TCG_TYPE_V64
,
1240 g
->load_dest
, g
->fniv
);
1244 if (g
->fni8
&& check_size_impl(oprsz
, 8)) {
1245 expand_2_i64(dofs
, aofs
, oprsz
, g
->load_dest
, g
->fni8
);
1246 } else if (g
->fni4
&& check_size_impl(oprsz
, 4)) {
1247 expand_2_i32(dofs
, aofs
, oprsz
, g
->load_dest
, g
->fni4
);
1249 assert(g
->fno
!= NULL
);
1250 tcg_gen_gvec_2_ool(dofs
, aofs
, oprsz
, maxsz
, g
->data
, g
->fno
);
1256 g_assert_not_reached();
1258 tcg_swap_vecop_list(hold_list
);
1260 if (oprsz
< maxsz
) {
1261 expand_clr(dofs
+ oprsz
, maxsz
- oprsz
);
1265 /* Expand a vector operation with two vectors and an immediate. */
1266 void tcg_gen_gvec_2i(uint32_t dofs
, uint32_t aofs
, uint32_t oprsz
,
1267 uint32_t maxsz
, int64_t c
, const GVecGen2i
*g
)
1269 const TCGOpcode
*this_list
= g
->opt_opc
? : vecop_list_empty
;
1270 const TCGOpcode
*hold_list
= tcg_swap_vecop_list(this_list
);
1274 check_size_align(oprsz
, maxsz
, dofs
| aofs
);
1275 check_overlap_2(dofs
, aofs
, maxsz
);
1279 type
= choose_vector_type(g
->opt_opc
, g
->vece
, oprsz
, g
->prefer_i64
);
1283 /* Recall that ARM SVE allows vector sizes that are not a
1284 * power of 2, but always a multiple of 16. The intent is
1285 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
1287 some
= QEMU_ALIGN_DOWN(oprsz
, 32);
1288 expand_2i_vec(g
->vece
, dofs
, aofs
, some
, 32, TCG_TYPE_V256
,
1289 c
, g
->load_dest
, g
->fniv
);
1290 if (some
== oprsz
) {
1299 expand_2i_vec(g
->vece
, dofs
, aofs
, oprsz
, 16, TCG_TYPE_V128
,
1300 c
, g
->load_dest
, g
->fniv
);
1303 expand_2i_vec(g
->vece
, dofs
, aofs
, oprsz
, 8, TCG_TYPE_V64
,
1304 c
, g
->load_dest
, g
->fniv
);
1308 if (g
->fni8
&& check_size_impl(oprsz
, 8)) {
1309 expand_2i_i64(dofs
, aofs
, oprsz
, c
, g
->load_dest
, g
->fni8
);
1310 } else if (g
->fni4
&& check_size_impl(oprsz
, 4)) {
1311 expand_2i_i32(dofs
, aofs
, oprsz
, c
, g
->load_dest
, g
->fni4
);
1314 tcg_gen_gvec_2_ool(dofs
, aofs
, oprsz
, maxsz
, c
, g
->fno
);
1316 TCGv_i64 tcg_c
= tcg_constant_i64(c
);
1317 tcg_gen_gvec_2i_ool(dofs
, aofs
, tcg_c
, oprsz
,
1325 g_assert_not_reached();
1327 tcg_swap_vecop_list(hold_list
);
1329 if (oprsz
< maxsz
) {
1330 expand_clr(dofs
+ oprsz
, maxsz
- oprsz
);
1334 /* Expand a vector operation with two vectors and a scalar. */
1335 void tcg_gen_gvec_2s(uint32_t dofs
, uint32_t aofs
, uint32_t oprsz
,
1336 uint32_t maxsz
, TCGv_i64 c
, const GVecGen2s
*g
)
1340 check_size_align(oprsz
, maxsz
, dofs
| aofs
);
1341 check_overlap_2(dofs
, aofs
, maxsz
);
1345 type
= choose_vector_type(g
->opt_opc
, g
->vece
, oprsz
, g
->prefer_i64
);
1348 const TCGOpcode
*this_list
= g
->opt_opc
? : vecop_list_empty
;
1349 const TCGOpcode
*hold_list
= tcg_swap_vecop_list(this_list
);
1350 TCGv_vec t_vec
= tcg_temp_new_vec(type
);
1353 tcg_gen_dup_i64_vec(g
->vece
, t_vec
, c
);
1357 /* Recall that ARM SVE allows vector sizes that are not a
1358 * power of 2, but always a multiple of 16. The intent is
1359 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
1361 some
= QEMU_ALIGN_DOWN(oprsz
, 32);
1362 expand_2s_vec(g
->vece
, dofs
, aofs
, some
, 32, TCG_TYPE_V256
,
1363 t_vec
, g
->scalar_first
, g
->fniv
);
1364 if (some
== oprsz
) {
1374 expand_2s_vec(g
->vece
, dofs
, aofs
, oprsz
, 16, TCG_TYPE_V128
,
1375 t_vec
, g
->scalar_first
, g
->fniv
);
1379 expand_2s_vec(g
->vece
, dofs
, aofs
, oprsz
, 8, TCG_TYPE_V64
,
1380 t_vec
, g
->scalar_first
, g
->fniv
);
1384 g_assert_not_reached();
1386 tcg_temp_free_vec(t_vec
);
1387 tcg_swap_vecop_list(hold_list
);
1388 } else if (g
->fni8
&& check_size_impl(oprsz
, 8)) {
1389 TCGv_i64 t64
= tcg_temp_new_i64();
1391 tcg_gen_dup_i64(g
->vece
, t64
, c
);
1392 expand_2s_i64(dofs
, aofs
, oprsz
, t64
, g
->scalar_first
, g
->fni8
);
1393 tcg_temp_free_i64(t64
);
1394 } else if (g
->fni4
&& check_size_impl(oprsz
, 4)) {
1395 TCGv_i32 t32
= tcg_temp_new_i32();
1397 tcg_gen_extrl_i64_i32(t32
, c
);
1398 tcg_gen_dup_i32(g
->vece
, t32
, t32
);
1399 expand_2s_i32(dofs
, aofs
, oprsz
, t32
, g
->scalar_first
, g
->fni4
);
1400 tcg_temp_free_i32(t32
);
1402 tcg_gen_gvec_2i_ool(dofs
, aofs
, c
, oprsz
, maxsz
, 0, g
->fno
);
1406 if (oprsz
< maxsz
) {
1407 expand_clr(dofs
+ oprsz
, maxsz
- oprsz
);
1411 /* Expand a vector three-operand operation. */
1412 void tcg_gen_gvec_3(uint32_t dofs
, uint32_t aofs
, uint32_t bofs
,
1413 uint32_t oprsz
, uint32_t maxsz
, const GVecGen3
*g
)
1415 const TCGOpcode
*this_list
= g
->opt_opc
? : vecop_list_empty
;
1416 const TCGOpcode
*hold_list
= tcg_swap_vecop_list(this_list
);
1420 check_size_align(oprsz
, maxsz
, dofs
| aofs
| bofs
);
1421 check_overlap_3(dofs
, aofs
, bofs
, maxsz
);
1425 type
= choose_vector_type(g
->opt_opc
, g
->vece
, oprsz
, g
->prefer_i64
);
1429 /* Recall that ARM SVE allows vector sizes that are not a
1430 * power of 2, but always a multiple of 16. The intent is
1431 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
1433 some
= QEMU_ALIGN_DOWN(oprsz
, 32);
1434 expand_3_vec(g
->vece
, dofs
, aofs
, bofs
, some
, 32, TCG_TYPE_V256
,
1435 g
->load_dest
, g
->fniv
);
1436 if (some
== oprsz
) {
1446 expand_3_vec(g
->vece
, dofs
, aofs
, bofs
, oprsz
, 16, TCG_TYPE_V128
,
1447 g
->load_dest
, g
->fniv
);
1450 expand_3_vec(g
->vece
, dofs
, aofs
, bofs
, oprsz
, 8, TCG_TYPE_V64
,
1451 g
->load_dest
, g
->fniv
);
1455 if (g
->fni8
&& check_size_impl(oprsz
, 8)) {
1456 expand_3_i64(dofs
, aofs
, bofs
, oprsz
, g
->load_dest
, g
->fni8
);
1457 } else if (g
->fni4
&& check_size_impl(oprsz
, 4)) {
1458 expand_3_i32(dofs
, aofs
, bofs
, oprsz
, g
->load_dest
, g
->fni4
);
1460 assert(g
->fno
!= NULL
);
1461 tcg_gen_gvec_3_ool(dofs
, aofs
, bofs
, oprsz
,
1462 maxsz
, g
->data
, g
->fno
);
1468 g_assert_not_reached();
1470 tcg_swap_vecop_list(hold_list
);
1472 if (oprsz
< maxsz
) {
1473 expand_clr(dofs
+ oprsz
, maxsz
- oprsz
);
1477 /* Expand a vector operation with three vectors and an immediate. */
1478 void tcg_gen_gvec_3i(uint32_t dofs
, uint32_t aofs
, uint32_t bofs
,
1479 uint32_t oprsz
, uint32_t maxsz
, int64_t c
,
1482 const TCGOpcode
*this_list
= g
->opt_opc
? : vecop_list_empty
;
1483 const TCGOpcode
*hold_list
= tcg_swap_vecop_list(this_list
);
1487 check_size_align(oprsz
, maxsz
, dofs
| aofs
| bofs
);
1488 check_overlap_3(dofs
, aofs
, bofs
, maxsz
);
1492 type
= choose_vector_type(g
->opt_opc
, g
->vece
, oprsz
, g
->prefer_i64
);
1497 * Recall that ARM SVE allows vector sizes that are not a
1498 * power of 2, but always a multiple of 16. The intent is
1499 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
1501 some
= QEMU_ALIGN_DOWN(oprsz
, 32);
1502 expand_3i_vec(g
->vece
, dofs
, aofs
, bofs
, some
, 32, TCG_TYPE_V256
,
1503 c
, g
->load_dest
, g
->fniv
);
1504 if (some
== oprsz
) {
1514 expand_3i_vec(g
->vece
, dofs
, aofs
, bofs
, oprsz
, 16, TCG_TYPE_V128
,
1515 c
, g
->load_dest
, g
->fniv
);
1518 expand_3i_vec(g
->vece
, dofs
, aofs
, bofs
, oprsz
, 8, TCG_TYPE_V64
,
1519 c
, g
->load_dest
, g
->fniv
);
1523 if (g
->fni8
&& check_size_impl(oprsz
, 8)) {
1524 expand_3i_i64(dofs
, aofs
, bofs
, oprsz
, c
, g
->load_dest
, g
->fni8
);
1525 } else if (g
->fni4
&& check_size_impl(oprsz
, 4)) {
1526 expand_3i_i32(dofs
, aofs
, bofs
, oprsz
, c
, g
->load_dest
, g
->fni4
);
1528 assert(g
->fno
!= NULL
);
1529 tcg_gen_gvec_3_ool(dofs
, aofs
, bofs
, oprsz
, maxsz
, c
, g
->fno
);
1535 g_assert_not_reached();
1537 tcg_swap_vecop_list(hold_list
);
1539 if (oprsz
< maxsz
) {
1540 expand_clr(dofs
+ oprsz
, maxsz
- oprsz
);
1544 /* Expand a vector four-operand operation. */
1545 void tcg_gen_gvec_4(uint32_t dofs
, uint32_t aofs
, uint32_t bofs
, uint32_t cofs
,
1546 uint32_t oprsz
, uint32_t maxsz
, const GVecGen4
*g
)
1548 const TCGOpcode
*this_list
= g
->opt_opc
? : vecop_list_empty
;
1549 const TCGOpcode
*hold_list
= tcg_swap_vecop_list(this_list
);
1553 check_size_align(oprsz
, maxsz
, dofs
| aofs
| bofs
| cofs
);
1554 check_overlap_4(dofs
, aofs
, bofs
, cofs
, maxsz
);
1558 type
= choose_vector_type(g
->opt_opc
, g
->vece
, oprsz
, g
->prefer_i64
);
1562 /* Recall that ARM SVE allows vector sizes that are not a
1563 * power of 2, but always a multiple of 16. The intent is
1564 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
1566 some
= QEMU_ALIGN_DOWN(oprsz
, 32);
1567 expand_4_vec(g
->vece
, dofs
, aofs
, bofs
, cofs
, some
,
1568 32, TCG_TYPE_V256
, g
->write_aofs
, g
->fniv
);
1569 if (some
== oprsz
) {
1580 expand_4_vec(g
->vece
, dofs
, aofs
, bofs
, cofs
, oprsz
,
1581 16, TCG_TYPE_V128
, g
->write_aofs
, g
->fniv
);
1584 expand_4_vec(g
->vece
, dofs
, aofs
, bofs
, cofs
, oprsz
,
1585 8, TCG_TYPE_V64
, g
->write_aofs
, g
->fniv
);
1589 if (g
->fni8
&& check_size_impl(oprsz
, 8)) {
1590 expand_4_i64(dofs
, aofs
, bofs
, cofs
, oprsz
,
1591 g
->write_aofs
, g
->fni8
);
1592 } else if (g
->fni4
&& check_size_impl(oprsz
, 4)) {
1593 expand_4_i32(dofs
, aofs
, bofs
, cofs
, oprsz
,
1594 g
->write_aofs
, g
->fni4
);
1596 assert(g
->fno
!= NULL
);
1597 tcg_gen_gvec_4_ool(dofs
, aofs
, bofs
, cofs
,
1598 oprsz
, maxsz
, g
->data
, g
->fno
);
1604 g_assert_not_reached();
1606 tcg_swap_vecop_list(hold_list
);
1608 if (oprsz
< maxsz
) {
1609 expand_clr(dofs
+ oprsz
, maxsz
- oprsz
);
1613 /* Expand a vector four-operand operation. */
1614 void tcg_gen_gvec_4i(uint32_t dofs
, uint32_t aofs
, uint32_t bofs
, uint32_t cofs
,
1615 uint32_t oprsz
, uint32_t maxsz
, int64_t c
,
1618 const TCGOpcode
*this_list
= g
->opt_opc
? : vecop_list_empty
;
1619 const TCGOpcode
*hold_list
= tcg_swap_vecop_list(this_list
);
1623 check_size_align(oprsz
, maxsz
, dofs
| aofs
| bofs
| cofs
);
1624 check_overlap_4(dofs
, aofs
, bofs
, cofs
, maxsz
);
1628 type
= choose_vector_type(g
->opt_opc
, g
->vece
, oprsz
, g
->prefer_i64
);
1633 * Recall that ARM SVE allows vector sizes that are not a
1634 * power of 2, but always a multiple of 16. The intent is
1635 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
1637 some
= QEMU_ALIGN_DOWN(oprsz
, 32);
1638 expand_4i_vec(g
->vece
, dofs
, aofs
, bofs
, cofs
, some
,
1639 32, TCG_TYPE_V256
, c
, g
->fniv
);
1640 if (some
== oprsz
) {
1651 expand_4i_vec(g
->vece
, dofs
, aofs
, bofs
, cofs
, oprsz
,
1652 16, TCG_TYPE_V128
, c
, g
->fniv
);
1655 expand_4i_vec(g
->vece
, dofs
, aofs
, bofs
, cofs
, oprsz
,
1656 8, TCG_TYPE_V64
, c
, g
->fniv
);
1660 if (g
->fni8
&& check_size_impl(oprsz
, 8)) {
1661 expand_4i_i64(dofs
, aofs
, bofs
, cofs
, oprsz
, c
, g
->fni8
);
1662 } else if (g
->fni4
&& check_size_impl(oprsz
, 4)) {
1663 expand_4i_i32(dofs
, aofs
, bofs
, cofs
, oprsz
, c
, g
->fni4
);
1665 assert(g
->fno
!= NULL
);
1666 tcg_gen_gvec_4_ool(dofs
, aofs
, bofs
, cofs
,
1667 oprsz
, maxsz
, c
, g
->fno
);
1673 g_assert_not_reached();
1675 tcg_swap_vecop_list(hold_list
);
1677 if (oprsz
< maxsz
) {
1678 expand_clr(dofs
+ oprsz
, maxsz
- oprsz
);
1683 * Expand specific vector operations.
1686 static void vec_mov2(unsigned vece
, TCGv_vec a
, TCGv_vec b
)
1688 tcg_gen_mov_vec(a
, b
);
1691 void tcg_gen_gvec_mov(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
1692 uint32_t oprsz
, uint32_t maxsz
)
1694 static const GVecGen2 g
= {
1695 .fni8
= tcg_gen_mov_i64
,
1697 .fno
= gen_helper_gvec_mov
,
1698 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
1701 tcg_gen_gvec_2(dofs
, aofs
, oprsz
, maxsz
, &g
);
1703 check_size_align(oprsz
, maxsz
, dofs
);
1704 if (oprsz
< maxsz
) {
1705 expand_clr(dofs
+ oprsz
, maxsz
- oprsz
);
1710 void tcg_gen_gvec_dup_i32(unsigned vece
, uint32_t dofs
, uint32_t oprsz
,
1711 uint32_t maxsz
, TCGv_i32 in
)
1713 check_size_align(oprsz
, maxsz
, dofs
);
1714 tcg_debug_assert(vece
<= MO_32
);
1715 do_dup(vece
, dofs
, oprsz
, maxsz
, in
, NULL
, 0);
1718 void tcg_gen_gvec_dup_i64(unsigned vece
, uint32_t dofs
, uint32_t oprsz
,
1719 uint32_t maxsz
, TCGv_i64 in
)
1721 check_size_align(oprsz
, maxsz
, dofs
);
1722 tcg_debug_assert(vece
<= MO_64
);
1723 do_dup(vece
, dofs
, oprsz
, maxsz
, NULL
, in
, 0);
1726 void tcg_gen_gvec_dup_mem(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
1727 uint32_t oprsz
, uint32_t maxsz
)
1729 check_size_align(oprsz
, maxsz
, dofs
);
1730 if (vece
<= MO_64
) {
1731 TCGType type
= choose_vector_type(NULL
, vece
, oprsz
, 0);
1733 TCGv_vec t_vec
= tcg_temp_new_vec(type
);
1734 tcg_gen_dup_mem_vec(vece
, t_vec
, cpu_env
, aofs
);
1735 do_dup_store(type
, dofs
, oprsz
, maxsz
, t_vec
);
1736 tcg_temp_free_vec(t_vec
);
1737 } else if (vece
<= MO_32
) {
1738 TCGv_i32 in
= tcg_temp_new_i32();
1741 tcg_gen_ld8u_i32(in
, cpu_env
, aofs
);
1744 tcg_gen_ld16u_i32(in
, cpu_env
, aofs
);
1747 tcg_gen_ld_i32(in
, cpu_env
, aofs
);
1750 do_dup(vece
, dofs
, oprsz
, maxsz
, in
, NULL
, 0);
1751 tcg_temp_free_i32(in
);
1753 TCGv_i64 in
= tcg_temp_new_i64();
1754 tcg_gen_ld_i64(in
, cpu_env
, aofs
);
1755 do_dup(vece
, dofs
, oprsz
, maxsz
, NULL
, in
, 0);
1756 tcg_temp_free_i64(in
);
1758 } else if (vece
== 4) {
1759 /* 128-bit duplicate. */
1762 tcg_debug_assert(oprsz
>= 16);
1763 if (TCG_TARGET_HAS_v128
) {
1764 TCGv_vec in
= tcg_temp_new_vec(TCG_TYPE_V128
);
1766 tcg_gen_ld_vec(in
, cpu_env
, aofs
);
1767 for (i
= (aofs
== dofs
) * 16; i
< oprsz
; i
+= 16) {
1768 tcg_gen_st_vec(in
, cpu_env
, dofs
+ i
);
1770 tcg_temp_free_vec(in
);
1772 TCGv_i64 in0
= tcg_temp_new_i64();
1773 TCGv_i64 in1
= tcg_temp_new_i64();
1775 tcg_gen_ld_i64(in0
, cpu_env
, aofs
);
1776 tcg_gen_ld_i64(in1
, cpu_env
, aofs
+ 8);
1777 for (i
= (aofs
== dofs
) * 16; i
< oprsz
; i
+= 16) {
1778 tcg_gen_st_i64(in0
, cpu_env
, dofs
+ i
);
1779 tcg_gen_st_i64(in1
, cpu_env
, dofs
+ i
+ 8);
1781 tcg_temp_free_i64(in0
);
1782 tcg_temp_free_i64(in1
);
1784 if (oprsz
< maxsz
) {
1785 expand_clr(dofs
+ oprsz
, maxsz
- oprsz
);
1787 } else if (vece
== 5) {
1788 /* 256-bit duplicate. */
1791 tcg_debug_assert(oprsz
>= 32);
1792 tcg_debug_assert(oprsz
% 32 == 0);
1793 if (TCG_TARGET_HAS_v256
) {
1794 TCGv_vec in
= tcg_temp_new_vec(TCG_TYPE_V256
);
1796 tcg_gen_ld_vec(in
, cpu_env
, aofs
);
1797 for (i
= (aofs
== dofs
) * 32; i
< oprsz
; i
+= 32) {
1798 tcg_gen_st_vec(in
, cpu_env
, dofs
+ i
);
1800 tcg_temp_free_vec(in
);
1801 } else if (TCG_TARGET_HAS_v128
) {
1802 TCGv_vec in0
= tcg_temp_new_vec(TCG_TYPE_V128
);
1803 TCGv_vec in1
= tcg_temp_new_vec(TCG_TYPE_V128
);
1805 tcg_gen_ld_vec(in0
, cpu_env
, aofs
);
1806 tcg_gen_ld_vec(in1
, cpu_env
, aofs
+ 16);
1807 for (i
= (aofs
== dofs
) * 32; i
< oprsz
; i
+= 32) {
1808 tcg_gen_st_vec(in0
, cpu_env
, dofs
+ i
);
1809 tcg_gen_st_vec(in1
, cpu_env
, dofs
+ i
+ 16);
1811 tcg_temp_free_vec(in0
);
1812 tcg_temp_free_vec(in1
);
1817 for (j
= 0; j
< 4; ++j
) {
1818 in
[j
] = tcg_temp_new_i64();
1819 tcg_gen_ld_i64(in
[j
], cpu_env
, aofs
+ j
* 8);
1821 for (i
= (aofs
== dofs
) * 32; i
< oprsz
; i
+= 32) {
1822 for (j
= 0; j
< 4; ++j
) {
1823 tcg_gen_st_i64(in
[j
], cpu_env
, dofs
+ i
+ j
* 8);
1826 for (j
= 0; j
< 4; ++j
) {
1827 tcg_temp_free_i64(in
[j
]);
1830 if (oprsz
< maxsz
) {
1831 expand_clr(dofs
+ oprsz
, maxsz
- oprsz
);
1834 g_assert_not_reached();
1838 void tcg_gen_gvec_dup_imm(unsigned vece
, uint32_t dofs
, uint32_t oprsz
,
1839 uint32_t maxsz
, uint64_t x
)
1841 check_size_align(oprsz
, maxsz
, dofs
);
1842 do_dup(vece
, dofs
, oprsz
, maxsz
, NULL
, NULL
, x
);
1845 void tcg_gen_gvec_not(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
1846 uint32_t oprsz
, uint32_t maxsz
)
1848 static const GVecGen2 g
= {
1849 .fni8
= tcg_gen_not_i64
,
1850 .fniv
= tcg_gen_not_vec
,
1851 .fno
= gen_helper_gvec_not
,
1852 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
1854 tcg_gen_gvec_2(dofs
, aofs
, oprsz
, maxsz
, &g
);
1857 /* Perform a vector addition using normal addition and a mask. The mask
1858 should be the sign bit of each lane. This 6-operation form is more
1859 efficient than separate additions when there are 4 or more lanes in
1860 the 64-bit operation. */
1861 static void gen_addv_mask(TCGv_i64 d
, TCGv_i64 a
, TCGv_i64 b
, TCGv_i64 m
)
1863 TCGv_i64 t1
= tcg_temp_new_i64();
1864 TCGv_i64 t2
= tcg_temp_new_i64();
1865 TCGv_i64 t3
= tcg_temp_new_i64();
1867 tcg_gen_andc_i64(t1
, a
, m
);
1868 tcg_gen_andc_i64(t2
, b
, m
);
1869 tcg_gen_xor_i64(t3
, a
, b
);
1870 tcg_gen_add_i64(d
, t1
, t2
);
1871 tcg_gen_and_i64(t3
, t3
, m
);
1872 tcg_gen_xor_i64(d
, d
, t3
);
1874 tcg_temp_free_i64(t1
);
1875 tcg_temp_free_i64(t2
);
1876 tcg_temp_free_i64(t3
);
1879 void tcg_gen_vec_add8_i64(TCGv_i64 d
, TCGv_i64 a
, TCGv_i64 b
)
1881 TCGv_i64 m
= tcg_constant_i64(dup_const(MO_8
, 0x80));
1882 gen_addv_mask(d
, a
, b
, m
);
1885 void tcg_gen_vec_add8_i32(TCGv_i32 d
, TCGv_i32 a
, TCGv_i32 b
)
1887 TCGv_i32 m
= tcg_constant_i32((int32_t)dup_const(MO_8
, 0x80));
1888 TCGv_i32 t1
= tcg_temp_new_i32();
1889 TCGv_i32 t2
= tcg_temp_new_i32();
1890 TCGv_i32 t3
= tcg_temp_new_i32();
1892 tcg_gen_andc_i32(t1
, a
, m
);
1893 tcg_gen_andc_i32(t2
, b
, m
);
1894 tcg_gen_xor_i32(t3
, a
, b
);
1895 tcg_gen_add_i32(d
, t1
, t2
);
1896 tcg_gen_and_i32(t3
, t3
, m
);
1897 tcg_gen_xor_i32(d
, d
, t3
);
1899 tcg_temp_free_i32(t1
);
1900 tcg_temp_free_i32(t2
);
1901 tcg_temp_free_i32(t3
);
1904 void tcg_gen_vec_add16_i64(TCGv_i64 d
, TCGv_i64 a
, TCGv_i64 b
)
1906 TCGv_i64 m
= tcg_constant_i64(dup_const(MO_16
, 0x8000));
1907 gen_addv_mask(d
, a
, b
, m
);
1910 void tcg_gen_vec_add16_i32(TCGv_i32 d
, TCGv_i32 a
, TCGv_i32 b
)
1912 TCGv_i32 t1
= tcg_temp_new_i32();
1913 TCGv_i32 t2
= tcg_temp_new_i32();
1915 tcg_gen_andi_i32(t1
, a
, ~0xffff);
1916 tcg_gen_add_i32(t2
, a
, b
);
1917 tcg_gen_add_i32(t1
, t1
, b
);
1918 tcg_gen_deposit_i32(d
, t1
, t2
, 0, 16);
1920 tcg_temp_free_i32(t1
);
1921 tcg_temp_free_i32(t2
);
1924 void tcg_gen_vec_add32_i64(TCGv_i64 d
, TCGv_i64 a
, TCGv_i64 b
)
1926 TCGv_i64 t1
= tcg_temp_new_i64();
1927 TCGv_i64 t2
= tcg_temp_new_i64();
1929 tcg_gen_andi_i64(t1
, a
, ~0xffffffffull
);
1930 tcg_gen_add_i64(t2
, a
, b
);
1931 tcg_gen_add_i64(t1
, t1
, b
);
1932 tcg_gen_deposit_i64(d
, t1
, t2
, 0, 32);
1934 tcg_temp_free_i64(t1
);
1935 tcg_temp_free_i64(t2
);
1938 static const TCGOpcode vecop_list_add
[] = { INDEX_op_add_vec
, 0 };
1940 void tcg_gen_gvec_add(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
1941 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
1943 static const GVecGen3 g
[4] = {
1944 { .fni8
= tcg_gen_vec_add8_i64
,
1945 .fniv
= tcg_gen_add_vec
,
1946 .fno
= gen_helper_gvec_add8
,
1947 .opt_opc
= vecop_list_add
,
1949 { .fni8
= tcg_gen_vec_add16_i64
,
1950 .fniv
= tcg_gen_add_vec
,
1951 .fno
= gen_helper_gvec_add16
,
1952 .opt_opc
= vecop_list_add
,
1954 { .fni4
= tcg_gen_add_i32
,
1955 .fniv
= tcg_gen_add_vec
,
1956 .fno
= gen_helper_gvec_add32
,
1957 .opt_opc
= vecop_list_add
,
1959 { .fni8
= tcg_gen_add_i64
,
1960 .fniv
= tcg_gen_add_vec
,
1961 .fno
= gen_helper_gvec_add64
,
1962 .opt_opc
= vecop_list_add
,
1963 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
1967 tcg_debug_assert(vece
<= MO_64
);
1968 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
[vece
]);
1971 void tcg_gen_gvec_adds(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
1972 TCGv_i64 c
, uint32_t oprsz
, uint32_t maxsz
)
1974 static const GVecGen2s g
[4] = {
1975 { .fni8
= tcg_gen_vec_add8_i64
,
1976 .fniv
= tcg_gen_add_vec
,
1977 .fno
= gen_helper_gvec_adds8
,
1978 .opt_opc
= vecop_list_add
,
1980 { .fni8
= tcg_gen_vec_add16_i64
,
1981 .fniv
= tcg_gen_add_vec
,
1982 .fno
= gen_helper_gvec_adds16
,
1983 .opt_opc
= vecop_list_add
,
1985 { .fni4
= tcg_gen_add_i32
,
1986 .fniv
= tcg_gen_add_vec
,
1987 .fno
= gen_helper_gvec_adds32
,
1988 .opt_opc
= vecop_list_add
,
1990 { .fni8
= tcg_gen_add_i64
,
1991 .fniv
= tcg_gen_add_vec
,
1992 .fno
= gen_helper_gvec_adds64
,
1993 .opt_opc
= vecop_list_add
,
1994 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
1998 tcg_debug_assert(vece
<= MO_64
);
1999 tcg_gen_gvec_2s(dofs
, aofs
, oprsz
, maxsz
, c
, &g
[vece
]);
2002 void tcg_gen_gvec_addi(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2003 int64_t c
, uint32_t oprsz
, uint32_t maxsz
)
2005 TCGv_i64 tmp
= tcg_constant_i64(c
);
2006 tcg_gen_gvec_adds(vece
, dofs
, aofs
, tmp
, oprsz
, maxsz
);
2009 static const TCGOpcode vecop_list_sub
[] = { INDEX_op_sub_vec
, 0 };
2011 void tcg_gen_gvec_subs(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2012 TCGv_i64 c
, uint32_t oprsz
, uint32_t maxsz
)
2014 static const GVecGen2s g
[4] = {
2015 { .fni8
= tcg_gen_vec_sub8_i64
,
2016 .fniv
= tcg_gen_sub_vec
,
2017 .fno
= gen_helper_gvec_subs8
,
2018 .opt_opc
= vecop_list_sub
,
2020 { .fni8
= tcg_gen_vec_sub16_i64
,
2021 .fniv
= tcg_gen_sub_vec
,
2022 .fno
= gen_helper_gvec_subs16
,
2023 .opt_opc
= vecop_list_sub
,
2025 { .fni4
= tcg_gen_sub_i32
,
2026 .fniv
= tcg_gen_sub_vec
,
2027 .fno
= gen_helper_gvec_subs32
,
2028 .opt_opc
= vecop_list_sub
,
2030 { .fni8
= tcg_gen_sub_i64
,
2031 .fniv
= tcg_gen_sub_vec
,
2032 .fno
= gen_helper_gvec_subs64
,
2033 .opt_opc
= vecop_list_sub
,
2034 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
2038 tcg_debug_assert(vece
<= MO_64
);
2039 tcg_gen_gvec_2s(dofs
, aofs
, oprsz
, maxsz
, c
, &g
[vece
]);
2042 /* Perform a vector subtraction using normal subtraction and a mask.
2043 Compare gen_addv_mask above. */
2044 static void gen_subv_mask(TCGv_i64 d
, TCGv_i64 a
, TCGv_i64 b
, TCGv_i64 m
)
2046 TCGv_i64 t1
= tcg_temp_new_i64();
2047 TCGv_i64 t2
= tcg_temp_new_i64();
2048 TCGv_i64 t3
= tcg_temp_new_i64();
2050 tcg_gen_or_i64(t1
, a
, m
);
2051 tcg_gen_andc_i64(t2
, b
, m
);
2052 tcg_gen_eqv_i64(t3
, a
, b
);
2053 tcg_gen_sub_i64(d
, t1
, t2
);
2054 tcg_gen_and_i64(t3
, t3
, m
);
2055 tcg_gen_xor_i64(d
, d
, t3
);
2057 tcg_temp_free_i64(t1
);
2058 tcg_temp_free_i64(t2
);
2059 tcg_temp_free_i64(t3
);
2062 void tcg_gen_vec_sub8_i64(TCGv_i64 d
, TCGv_i64 a
, TCGv_i64 b
)
2064 TCGv_i64 m
= tcg_constant_i64(dup_const(MO_8
, 0x80));
2065 gen_subv_mask(d
, a
, b
, m
);
2068 void tcg_gen_vec_sub8_i32(TCGv_i32 d
, TCGv_i32 a
, TCGv_i32 b
)
2070 TCGv_i32 m
= tcg_constant_i32((int32_t)dup_const(MO_8
, 0x80));
2071 TCGv_i32 t1
= tcg_temp_new_i32();
2072 TCGv_i32 t2
= tcg_temp_new_i32();
2073 TCGv_i32 t3
= tcg_temp_new_i32();
2075 tcg_gen_or_i32(t1
, a
, m
);
2076 tcg_gen_andc_i32(t2
, b
, m
);
2077 tcg_gen_eqv_i32(t3
, a
, b
);
2078 tcg_gen_sub_i32(d
, t1
, t2
);
2079 tcg_gen_and_i32(t3
, t3
, m
);
2080 tcg_gen_xor_i32(d
, d
, t3
);
2082 tcg_temp_free_i32(t1
);
2083 tcg_temp_free_i32(t2
);
2084 tcg_temp_free_i32(t3
);
2087 void tcg_gen_vec_sub16_i64(TCGv_i64 d
, TCGv_i64 a
, TCGv_i64 b
)
2089 TCGv_i64 m
= tcg_constant_i64(dup_const(MO_16
, 0x8000));
2090 gen_subv_mask(d
, a
, b
, m
);
2093 void tcg_gen_vec_sub16_i32(TCGv_i32 d
, TCGv_i32 a
, TCGv_i32 b
)
2095 TCGv_i32 t1
= tcg_temp_new_i32();
2096 TCGv_i32 t2
= tcg_temp_new_i32();
2098 tcg_gen_andi_i32(t1
, b
, ~0xffff);
2099 tcg_gen_sub_i32(t2
, a
, b
);
2100 tcg_gen_sub_i32(t1
, a
, t1
);
2101 tcg_gen_deposit_i32(d
, t1
, t2
, 0, 16);
2103 tcg_temp_free_i32(t1
);
2104 tcg_temp_free_i32(t2
);
2107 void tcg_gen_vec_sub32_i64(TCGv_i64 d
, TCGv_i64 a
, TCGv_i64 b
)
2109 TCGv_i64 t1
= tcg_temp_new_i64();
2110 TCGv_i64 t2
= tcg_temp_new_i64();
2112 tcg_gen_andi_i64(t1
, b
, ~0xffffffffull
);
2113 tcg_gen_sub_i64(t2
, a
, b
);
2114 tcg_gen_sub_i64(t1
, a
, t1
);
2115 tcg_gen_deposit_i64(d
, t1
, t2
, 0, 32);
2117 tcg_temp_free_i64(t1
);
2118 tcg_temp_free_i64(t2
);
2121 void tcg_gen_gvec_sub(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2122 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
2124 static const GVecGen3 g
[4] = {
2125 { .fni8
= tcg_gen_vec_sub8_i64
,
2126 .fniv
= tcg_gen_sub_vec
,
2127 .fno
= gen_helper_gvec_sub8
,
2128 .opt_opc
= vecop_list_sub
,
2130 { .fni8
= tcg_gen_vec_sub16_i64
,
2131 .fniv
= tcg_gen_sub_vec
,
2132 .fno
= gen_helper_gvec_sub16
,
2133 .opt_opc
= vecop_list_sub
,
2135 { .fni4
= tcg_gen_sub_i32
,
2136 .fniv
= tcg_gen_sub_vec
,
2137 .fno
= gen_helper_gvec_sub32
,
2138 .opt_opc
= vecop_list_sub
,
2140 { .fni8
= tcg_gen_sub_i64
,
2141 .fniv
= tcg_gen_sub_vec
,
2142 .fno
= gen_helper_gvec_sub64
,
2143 .opt_opc
= vecop_list_sub
,
2144 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
2148 tcg_debug_assert(vece
<= MO_64
);
2149 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
[vece
]);
2152 static const TCGOpcode vecop_list_mul
[] = { INDEX_op_mul_vec
, 0 };
2154 void tcg_gen_gvec_mul(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2155 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
2157 static const GVecGen3 g
[4] = {
2158 { .fniv
= tcg_gen_mul_vec
,
2159 .fno
= gen_helper_gvec_mul8
,
2160 .opt_opc
= vecop_list_mul
,
2162 { .fniv
= tcg_gen_mul_vec
,
2163 .fno
= gen_helper_gvec_mul16
,
2164 .opt_opc
= vecop_list_mul
,
2166 { .fni4
= tcg_gen_mul_i32
,
2167 .fniv
= tcg_gen_mul_vec
,
2168 .fno
= gen_helper_gvec_mul32
,
2169 .opt_opc
= vecop_list_mul
,
2171 { .fni8
= tcg_gen_mul_i64
,
2172 .fniv
= tcg_gen_mul_vec
,
2173 .fno
= gen_helper_gvec_mul64
,
2174 .opt_opc
= vecop_list_mul
,
2175 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
2179 tcg_debug_assert(vece
<= MO_64
);
2180 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
[vece
]);
2183 void tcg_gen_gvec_muls(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2184 TCGv_i64 c
, uint32_t oprsz
, uint32_t maxsz
)
2186 static const GVecGen2s g
[4] = {
2187 { .fniv
= tcg_gen_mul_vec
,
2188 .fno
= gen_helper_gvec_muls8
,
2189 .opt_opc
= vecop_list_mul
,
2191 { .fniv
= tcg_gen_mul_vec
,
2192 .fno
= gen_helper_gvec_muls16
,
2193 .opt_opc
= vecop_list_mul
,
2195 { .fni4
= tcg_gen_mul_i32
,
2196 .fniv
= tcg_gen_mul_vec
,
2197 .fno
= gen_helper_gvec_muls32
,
2198 .opt_opc
= vecop_list_mul
,
2200 { .fni8
= tcg_gen_mul_i64
,
2201 .fniv
= tcg_gen_mul_vec
,
2202 .fno
= gen_helper_gvec_muls64
,
2203 .opt_opc
= vecop_list_mul
,
2204 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
2208 tcg_debug_assert(vece
<= MO_64
);
2209 tcg_gen_gvec_2s(dofs
, aofs
, oprsz
, maxsz
, c
, &g
[vece
]);
2212 void tcg_gen_gvec_muli(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2213 int64_t c
, uint32_t oprsz
, uint32_t maxsz
)
2215 TCGv_i64 tmp
= tcg_constant_i64(c
);
2216 tcg_gen_gvec_muls(vece
, dofs
, aofs
, tmp
, oprsz
, maxsz
);
2219 void tcg_gen_gvec_ssadd(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2220 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
2222 static const TCGOpcode vecop_list
[] = { INDEX_op_ssadd_vec
, 0 };
2223 static const GVecGen3 g
[4] = {
2224 { .fniv
= tcg_gen_ssadd_vec
,
2225 .fno
= gen_helper_gvec_ssadd8
,
2226 .opt_opc
= vecop_list
,
2228 { .fniv
= tcg_gen_ssadd_vec
,
2229 .fno
= gen_helper_gvec_ssadd16
,
2230 .opt_opc
= vecop_list
,
2232 { .fniv
= tcg_gen_ssadd_vec
,
2233 .fno
= gen_helper_gvec_ssadd32
,
2234 .opt_opc
= vecop_list
,
2236 { .fniv
= tcg_gen_ssadd_vec
,
2237 .fno
= gen_helper_gvec_ssadd64
,
2238 .opt_opc
= vecop_list
,
2241 tcg_debug_assert(vece
<= MO_64
);
2242 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
[vece
]);
2245 void tcg_gen_gvec_sssub(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2246 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
2248 static const TCGOpcode vecop_list
[] = { INDEX_op_sssub_vec
, 0 };
2249 static const GVecGen3 g
[4] = {
2250 { .fniv
= tcg_gen_sssub_vec
,
2251 .fno
= gen_helper_gvec_sssub8
,
2252 .opt_opc
= vecop_list
,
2254 { .fniv
= tcg_gen_sssub_vec
,
2255 .fno
= gen_helper_gvec_sssub16
,
2256 .opt_opc
= vecop_list
,
2258 { .fniv
= tcg_gen_sssub_vec
,
2259 .fno
= gen_helper_gvec_sssub32
,
2260 .opt_opc
= vecop_list
,
2262 { .fniv
= tcg_gen_sssub_vec
,
2263 .fno
= gen_helper_gvec_sssub64
,
2264 .opt_opc
= vecop_list
,
2267 tcg_debug_assert(vece
<= MO_64
);
2268 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
[vece
]);
2271 static void tcg_gen_usadd_i32(TCGv_i32 d
, TCGv_i32 a
, TCGv_i32 b
)
2273 TCGv_i32 max
= tcg_constant_i32(-1);
2274 tcg_gen_add_i32(d
, a
, b
);
2275 tcg_gen_movcond_i32(TCG_COND_LTU
, d
, d
, a
, max
, d
);
2278 static void tcg_gen_usadd_i64(TCGv_i64 d
, TCGv_i64 a
, TCGv_i64 b
)
2280 TCGv_i64 max
= tcg_constant_i64(-1);
2281 tcg_gen_add_i64(d
, a
, b
);
2282 tcg_gen_movcond_i64(TCG_COND_LTU
, d
, d
, a
, max
, d
);
2285 void tcg_gen_gvec_usadd(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2286 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
2288 static const TCGOpcode vecop_list
[] = { INDEX_op_usadd_vec
, 0 };
2289 static const GVecGen3 g
[4] = {
2290 { .fniv
= tcg_gen_usadd_vec
,
2291 .fno
= gen_helper_gvec_usadd8
,
2292 .opt_opc
= vecop_list
,
2294 { .fniv
= tcg_gen_usadd_vec
,
2295 .fno
= gen_helper_gvec_usadd16
,
2296 .opt_opc
= vecop_list
,
2298 { .fni4
= tcg_gen_usadd_i32
,
2299 .fniv
= tcg_gen_usadd_vec
,
2300 .fno
= gen_helper_gvec_usadd32
,
2301 .opt_opc
= vecop_list
,
2303 { .fni8
= tcg_gen_usadd_i64
,
2304 .fniv
= tcg_gen_usadd_vec
,
2305 .fno
= gen_helper_gvec_usadd64
,
2306 .opt_opc
= vecop_list
,
2309 tcg_debug_assert(vece
<= MO_64
);
2310 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
[vece
]);
2313 static void tcg_gen_ussub_i32(TCGv_i32 d
, TCGv_i32 a
, TCGv_i32 b
)
2315 TCGv_i32 min
= tcg_constant_i32(0);
2316 tcg_gen_sub_i32(d
, a
, b
);
2317 tcg_gen_movcond_i32(TCG_COND_LTU
, d
, a
, b
, min
, d
);
2320 static void tcg_gen_ussub_i64(TCGv_i64 d
, TCGv_i64 a
, TCGv_i64 b
)
2322 TCGv_i64 min
= tcg_constant_i64(0);
2323 tcg_gen_sub_i64(d
, a
, b
);
2324 tcg_gen_movcond_i64(TCG_COND_LTU
, d
, a
, b
, min
, d
);
2327 void tcg_gen_gvec_ussub(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2328 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
2330 static const TCGOpcode vecop_list
[] = { INDEX_op_ussub_vec
, 0 };
2331 static const GVecGen3 g
[4] = {
2332 { .fniv
= tcg_gen_ussub_vec
,
2333 .fno
= gen_helper_gvec_ussub8
,
2334 .opt_opc
= vecop_list
,
2336 { .fniv
= tcg_gen_ussub_vec
,
2337 .fno
= gen_helper_gvec_ussub16
,
2338 .opt_opc
= vecop_list
,
2340 { .fni4
= tcg_gen_ussub_i32
,
2341 .fniv
= tcg_gen_ussub_vec
,
2342 .fno
= gen_helper_gvec_ussub32
,
2343 .opt_opc
= vecop_list
,
2345 { .fni8
= tcg_gen_ussub_i64
,
2346 .fniv
= tcg_gen_ussub_vec
,
2347 .fno
= gen_helper_gvec_ussub64
,
2348 .opt_opc
= vecop_list
,
2351 tcg_debug_assert(vece
<= MO_64
);
2352 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
[vece
]);
2355 void tcg_gen_gvec_smin(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2356 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
2358 static const TCGOpcode vecop_list
[] = { INDEX_op_smin_vec
, 0 };
2359 static const GVecGen3 g
[4] = {
2360 { .fniv
= tcg_gen_smin_vec
,
2361 .fno
= gen_helper_gvec_smin8
,
2362 .opt_opc
= vecop_list
,
2364 { .fniv
= tcg_gen_smin_vec
,
2365 .fno
= gen_helper_gvec_smin16
,
2366 .opt_opc
= vecop_list
,
2368 { .fni4
= tcg_gen_smin_i32
,
2369 .fniv
= tcg_gen_smin_vec
,
2370 .fno
= gen_helper_gvec_smin32
,
2371 .opt_opc
= vecop_list
,
2373 { .fni8
= tcg_gen_smin_i64
,
2374 .fniv
= tcg_gen_smin_vec
,
2375 .fno
= gen_helper_gvec_smin64
,
2376 .opt_opc
= vecop_list
,
2379 tcg_debug_assert(vece
<= MO_64
);
2380 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
[vece
]);
2383 void tcg_gen_gvec_umin(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2384 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
2386 static const TCGOpcode vecop_list
[] = { INDEX_op_umin_vec
, 0 };
2387 static const GVecGen3 g
[4] = {
2388 { .fniv
= tcg_gen_umin_vec
,
2389 .fno
= gen_helper_gvec_umin8
,
2390 .opt_opc
= vecop_list
,
2392 { .fniv
= tcg_gen_umin_vec
,
2393 .fno
= gen_helper_gvec_umin16
,
2394 .opt_opc
= vecop_list
,
2396 { .fni4
= tcg_gen_umin_i32
,
2397 .fniv
= tcg_gen_umin_vec
,
2398 .fno
= gen_helper_gvec_umin32
,
2399 .opt_opc
= vecop_list
,
2401 { .fni8
= tcg_gen_umin_i64
,
2402 .fniv
= tcg_gen_umin_vec
,
2403 .fno
= gen_helper_gvec_umin64
,
2404 .opt_opc
= vecop_list
,
2407 tcg_debug_assert(vece
<= MO_64
);
2408 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
[vece
]);
2411 void tcg_gen_gvec_smax(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2412 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
2414 static const TCGOpcode vecop_list
[] = { INDEX_op_smax_vec
, 0 };
2415 static const GVecGen3 g
[4] = {
2416 { .fniv
= tcg_gen_smax_vec
,
2417 .fno
= gen_helper_gvec_smax8
,
2418 .opt_opc
= vecop_list
,
2420 { .fniv
= tcg_gen_smax_vec
,
2421 .fno
= gen_helper_gvec_smax16
,
2422 .opt_opc
= vecop_list
,
2424 { .fni4
= tcg_gen_smax_i32
,
2425 .fniv
= tcg_gen_smax_vec
,
2426 .fno
= gen_helper_gvec_smax32
,
2427 .opt_opc
= vecop_list
,
2429 { .fni8
= tcg_gen_smax_i64
,
2430 .fniv
= tcg_gen_smax_vec
,
2431 .fno
= gen_helper_gvec_smax64
,
2432 .opt_opc
= vecop_list
,
2435 tcg_debug_assert(vece
<= MO_64
);
2436 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
[vece
]);
2439 void tcg_gen_gvec_umax(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2440 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
2442 static const TCGOpcode vecop_list
[] = { INDEX_op_umax_vec
, 0 };
2443 static const GVecGen3 g
[4] = {
2444 { .fniv
= tcg_gen_umax_vec
,
2445 .fno
= gen_helper_gvec_umax8
,
2446 .opt_opc
= vecop_list
,
2448 { .fniv
= tcg_gen_umax_vec
,
2449 .fno
= gen_helper_gvec_umax16
,
2450 .opt_opc
= vecop_list
,
2452 { .fni4
= tcg_gen_umax_i32
,
2453 .fniv
= tcg_gen_umax_vec
,
2454 .fno
= gen_helper_gvec_umax32
,
2455 .opt_opc
= vecop_list
,
2457 { .fni8
= tcg_gen_umax_i64
,
2458 .fniv
= tcg_gen_umax_vec
,
2459 .fno
= gen_helper_gvec_umax64
,
2460 .opt_opc
= vecop_list
,
2463 tcg_debug_assert(vece
<= MO_64
);
2464 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
[vece
]);
2467 /* Perform a vector negation using normal negation and a mask.
2468 Compare gen_subv_mask above. */
2469 static void gen_negv_mask(TCGv_i64 d
, TCGv_i64 b
, TCGv_i64 m
)
2471 TCGv_i64 t2
= tcg_temp_new_i64();
2472 TCGv_i64 t3
= tcg_temp_new_i64();
2474 tcg_gen_andc_i64(t3
, m
, b
);
2475 tcg_gen_andc_i64(t2
, b
, m
);
2476 tcg_gen_sub_i64(d
, m
, t2
);
2477 tcg_gen_xor_i64(d
, d
, t3
);
2479 tcg_temp_free_i64(t2
);
2480 tcg_temp_free_i64(t3
);
2483 void tcg_gen_vec_neg8_i64(TCGv_i64 d
, TCGv_i64 b
)
2485 TCGv_i64 m
= tcg_constant_i64(dup_const(MO_8
, 0x80));
2486 gen_negv_mask(d
, b
, m
);
2489 void tcg_gen_vec_neg16_i64(TCGv_i64 d
, TCGv_i64 b
)
2491 TCGv_i64 m
= tcg_constant_i64(dup_const(MO_16
, 0x8000));
2492 gen_negv_mask(d
, b
, m
);
2495 void tcg_gen_vec_neg32_i64(TCGv_i64 d
, TCGv_i64 b
)
2497 TCGv_i64 t1
= tcg_temp_new_i64();
2498 TCGv_i64 t2
= tcg_temp_new_i64();
2500 tcg_gen_andi_i64(t1
, b
, ~0xffffffffull
);
2501 tcg_gen_neg_i64(t2
, b
);
2502 tcg_gen_neg_i64(t1
, t1
);
2503 tcg_gen_deposit_i64(d
, t1
, t2
, 0, 32);
2505 tcg_temp_free_i64(t1
);
2506 tcg_temp_free_i64(t2
);
2509 void tcg_gen_gvec_neg(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2510 uint32_t oprsz
, uint32_t maxsz
)
2512 static const TCGOpcode vecop_list
[] = { INDEX_op_neg_vec
, 0 };
2513 static const GVecGen2 g
[4] = {
2514 { .fni8
= tcg_gen_vec_neg8_i64
,
2515 .fniv
= tcg_gen_neg_vec
,
2516 .fno
= gen_helper_gvec_neg8
,
2517 .opt_opc
= vecop_list
,
2519 { .fni8
= tcg_gen_vec_neg16_i64
,
2520 .fniv
= tcg_gen_neg_vec
,
2521 .fno
= gen_helper_gvec_neg16
,
2522 .opt_opc
= vecop_list
,
2524 { .fni4
= tcg_gen_neg_i32
,
2525 .fniv
= tcg_gen_neg_vec
,
2526 .fno
= gen_helper_gvec_neg32
,
2527 .opt_opc
= vecop_list
,
2529 { .fni8
= tcg_gen_neg_i64
,
2530 .fniv
= tcg_gen_neg_vec
,
2531 .fno
= gen_helper_gvec_neg64
,
2532 .opt_opc
= vecop_list
,
2533 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
2537 tcg_debug_assert(vece
<= MO_64
);
2538 tcg_gen_gvec_2(dofs
, aofs
, oprsz
, maxsz
, &g
[vece
]);
2541 static void gen_absv_mask(TCGv_i64 d
, TCGv_i64 b
, unsigned vece
)
2543 TCGv_i64 t
= tcg_temp_new_i64();
2544 int nbit
= 8 << vece
;
2546 /* Create -1 for each negative element. */
2547 tcg_gen_shri_i64(t
, b
, nbit
- 1);
2548 tcg_gen_andi_i64(t
, t
, dup_const(vece
, 1));
2549 tcg_gen_muli_i64(t
, t
, (1 << nbit
) - 1);
2552 * Invert (via xor -1) and add one.
2553 * Because of the ordering the msb is cleared,
2554 * so we never have carry into the next element.
2556 tcg_gen_xor_i64(d
, b
, t
);
2557 tcg_gen_andi_i64(t
, t
, dup_const(vece
, 1));
2558 tcg_gen_add_i64(d
, d
, t
);
2560 tcg_temp_free_i64(t
);
2563 static void tcg_gen_vec_abs8_i64(TCGv_i64 d
, TCGv_i64 b
)
2565 gen_absv_mask(d
, b
, MO_8
);
2568 static void tcg_gen_vec_abs16_i64(TCGv_i64 d
, TCGv_i64 b
)
2570 gen_absv_mask(d
, b
, MO_16
);
2573 void tcg_gen_gvec_abs(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2574 uint32_t oprsz
, uint32_t maxsz
)
2576 static const TCGOpcode vecop_list
[] = { INDEX_op_abs_vec
, 0 };
2577 static const GVecGen2 g
[4] = {
2578 { .fni8
= tcg_gen_vec_abs8_i64
,
2579 .fniv
= tcg_gen_abs_vec
,
2580 .fno
= gen_helper_gvec_abs8
,
2581 .opt_opc
= vecop_list
,
2583 { .fni8
= tcg_gen_vec_abs16_i64
,
2584 .fniv
= tcg_gen_abs_vec
,
2585 .fno
= gen_helper_gvec_abs16
,
2586 .opt_opc
= vecop_list
,
2588 { .fni4
= tcg_gen_abs_i32
,
2589 .fniv
= tcg_gen_abs_vec
,
2590 .fno
= gen_helper_gvec_abs32
,
2591 .opt_opc
= vecop_list
,
2593 { .fni8
= tcg_gen_abs_i64
,
2594 .fniv
= tcg_gen_abs_vec
,
2595 .fno
= gen_helper_gvec_abs64
,
2596 .opt_opc
= vecop_list
,
2597 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
2601 tcg_debug_assert(vece
<= MO_64
);
2602 tcg_gen_gvec_2(dofs
, aofs
, oprsz
, maxsz
, &g
[vece
]);
2605 void tcg_gen_gvec_and(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2606 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
2608 static const GVecGen3 g
= {
2609 .fni8
= tcg_gen_and_i64
,
2610 .fniv
= tcg_gen_and_vec
,
2611 .fno
= gen_helper_gvec_and
,
2612 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
2616 tcg_gen_gvec_mov(vece
, dofs
, aofs
, oprsz
, maxsz
);
2618 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
);
2622 void tcg_gen_gvec_or(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2623 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
2625 static const GVecGen3 g
= {
2626 .fni8
= tcg_gen_or_i64
,
2627 .fniv
= tcg_gen_or_vec
,
2628 .fno
= gen_helper_gvec_or
,
2629 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
2633 tcg_gen_gvec_mov(vece
, dofs
, aofs
, oprsz
, maxsz
);
2635 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
);
2639 void tcg_gen_gvec_xor(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2640 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
2642 static const GVecGen3 g
= {
2643 .fni8
= tcg_gen_xor_i64
,
2644 .fniv
= tcg_gen_xor_vec
,
2645 .fno
= gen_helper_gvec_xor
,
2646 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
2650 tcg_gen_gvec_dup_imm(MO_64
, dofs
, oprsz
, maxsz
, 0);
2652 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
);
2656 void tcg_gen_gvec_andc(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2657 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
2659 static const GVecGen3 g
= {
2660 .fni8
= tcg_gen_andc_i64
,
2661 .fniv
= tcg_gen_andc_vec
,
2662 .fno
= gen_helper_gvec_andc
,
2663 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
2667 tcg_gen_gvec_dup_imm(MO_64
, dofs
, oprsz
, maxsz
, 0);
2669 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
);
2673 void tcg_gen_gvec_orc(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2674 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
2676 static const GVecGen3 g
= {
2677 .fni8
= tcg_gen_orc_i64
,
2678 .fniv
= tcg_gen_orc_vec
,
2679 .fno
= gen_helper_gvec_orc
,
2680 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
2684 tcg_gen_gvec_dup_imm(MO_64
, dofs
, oprsz
, maxsz
, -1);
2686 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
);
2690 void tcg_gen_gvec_nand(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2691 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
2693 static const GVecGen3 g
= {
2694 .fni8
= tcg_gen_nand_i64
,
2695 .fniv
= tcg_gen_nand_vec
,
2696 .fno
= gen_helper_gvec_nand
,
2697 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
2701 tcg_gen_gvec_not(vece
, dofs
, aofs
, oprsz
, maxsz
);
2703 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
);
2707 void tcg_gen_gvec_nor(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2708 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
2710 static const GVecGen3 g
= {
2711 .fni8
= tcg_gen_nor_i64
,
2712 .fniv
= tcg_gen_nor_vec
,
2713 .fno
= gen_helper_gvec_nor
,
2714 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
2718 tcg_gen_gvec_not(vece
, dofs
, aofs
, oprsz
, maxsz
);
2720 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
);
2724 void tcg_gen_gvec_eqv(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2725 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
2727 static const GVecGen3 g
= {
2728 .fni8
= tcg_gen_eqv_i64
,
2729 .fniv
= tcg_gen_eqv_vec
,
2730 .fno
= gen_helper_gvec_eqv
,
2731 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
2735 tcg_gen_gvec_dup_imm(MO_64
, dofs
, oprsz
, maxsz
, -1);
2737 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
);
2741 static const GVecGen2s gop_ands
= {
2742 .fni8
= tcg_gen_and_i64
,
2743 .fniv
= tcg_gen_and_vec
,
2744 .fno
= gen_helper_gvec_ands
,
2745 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
2749 void tcg_gen_gvec_ands(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2750 TCGv_i64 c
, uint32_t oprsz
, uint32_t maxsz
)
2752 TCGv_i64 tmp
= tcg_temp_new_i64();
2753 tcg_gen_dup_i64(vece
, tmp
, c
);
2754 tcg_gen_gvec_2s(dofs
, aofs
, oprsz
, maxsz
, tmp
, &gop_ands
);
2755 tcg_temp_free_i64(tmp
);
2758 void tcg_gen_gvec_andi(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2759 int64_t c
, uint32_t oprsz
, uint32_t maxsz
)
2761 TCGv_i64 tmp
= tcg_constant_i64(dup_const(vece
, c
));
2762 tcg_gen_gvec_2s(dofs
, aofs
, oprsz
, maxsz
, tmp
, &gop_ands
);
2765 static const GVecGen2s gop_xors
= {
2766 .fni8
= tcg_gen_xor_i64
,
2767 .fniv
= tcg_gen_xor_vec
,
2768 .fno
= gen_helper_gvec_xors
,
2769 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
2773 void tcg_gen_gvec_xors(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2774 TCGv_i64 c
, uint32_t oprsz
, uint32_t maxsz
)
2776 TCGv_i64 tmp
= tcg_temp_new_i64();
2777 tcg_gen_dup_i64(vece
, tmp
, c
);
2778 tcg_gen_gvec_2s(dofs
, aofs
, oprsz
, maxsz
, tmp
, &gop_xors
);
2779 tcg_temp_free_i64(tmp
);
2782 void tcg_gen_gvec_xori(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2783 int64_t c
, uint32_t oprsz
, uint32_t maxsz
)
2785 TCGv_i64 tmp
= tcg_constant_i64(dup_const(vece
, c
));
2786 tcg_gen_gvec_2s(dofs
, aofs
, oprsz
, maxsz
, tmp
, &gop_xors
);
2789 static const GVecGen2s gop_ors
= {
2790 .fni8
= tcg_gen_or_i64
,
2791 .fniv
= tcg_gen_or_vec
,
2792 .fno
= gen_helper_gvec_ors
,
2793 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
2797 void tcg_gen_gvec_ors(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2798 TCGv_i64 c
, uint32_t oprsz
, uint32_t maxsz
)
2800 TCGv_i64 tmp
= tcg_temp_new_i64();
2801 tcg_gen_dup_i64(vece
, tmp
, c
);
2802 tcg_gen_gvec_2s(dofs
, aofs
, oprsz
, maxsz
, tmp
, &gop_ors
);
2803 tcg_temp_free_i64(tmp
);
2806 void tcg_gen_gvec_ori(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2807 int64_t c
, uint32_t oprsz
, uint32_t maxsz
)
2809 TCGv_i64 tmp
= tcg_constant_i64(dup_const(vece
, c
));
2810 tcg_gen_gvec_2s(dofs
, aofs
, oprsz
, maxsz
, tmp
, &gop_ors
);
2813 void tcg_gen_vec_shl8i_i64(TCGv_i64 d
, TCGv_i64 a
, int64_t c
)
2815 uint64_t mask
= dup_const(MO_8
, 0xff << c
);
2816 tcg_gen_shli_i64(d
, a
, c
);
2817 tcg_gen_andi_i64(d
, d
, mask
);
2820 void tcg_gen_vec_shl16i_i64(TCGv_i64 d
, TCGv_i64 a
, int64_t c
)
2822 uint64_t mask
= dup_const(MO_16
, 0xffff << c
);
2823 tcg_gen_shli_i64(d
, a
, c
);
2824 tcg_gen_andi_i64(d
, d
, mask
);
2827 void tcg_gen_vec_shl8i_i32(TCGv_i32 d
, TCGv_i32 a
, int32_t c
)
2829 uint32_t mask
= dup_const(MO_8
, 0xff << c
);
2830 tcg_gen_shli_i32(d
, a
, c
);
2831 tcg_gen_andi_i32(d
, d
, mask
);
2834 void tcg_gen_vec_shl16i_i32(TCGv_i32 d
, TCGv_i32 a
, int32_t c
)
2836 uint32_t mask
= dup_const(MO_16
, 0xffff << c
);
2837 tcg_gen_shli_i32(d
, a
, c
);
2838 tcg_gen_andi_i32(d
, d
, mask
);
2841 void tcg_gen_gvec_shli(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2842 int64_t shift
, uint32_t oprsz
, uint32_t maxsz
)
2844 static const TCGOpcode vecop_list
[] = { INDEX_op_shli_vec
, 0 };
2845 static const GVecGen2i g
[4] = {
2846 { .fni8
= tcg_gen_vec_shl8i_i64
,
2847 .fniv
= tcg_gen_shli_vec
,
2848 .fno
= gen_helper_gvec_shl8i
,
2849 .opt_opc
= vecop_list
,
2851 { .fni8
= tcg_gen_vec_shl16i_i64
,
2852 .fniv
= tcg_gen_shli_vec
,
2853 .fno
= gen_helper_gvec_shl16i
,
2854 .opt_opc
= vecop_list
,
2856 { .fni4
= tcg_gen_shli_i32
,
2857 .fniv
= tcg_gen_shli_vec
,
2858 .fno
= gen_helper_gvec_shl32i
,
2859 .opt_opc
= vecop_list
,
2861 { .fni8
= tcg_gen_shli_i64
,
2862 .fniv
= tcg_gen_shli_vec
,
2863 .fno
= gen_helper_gvec_shl64i
,
2864 .opt_opc
= vecop_list
,
2865 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
2869 tcg_debug_assert(vece
<= MO_64
);
2870 tcg_debug_assert(shift
>= 0 && shift
< (8 << vece
));
2872 tcg_gen_gvec_mov(vece
, dofs
, aofs
, oprsz
, maxsz
);
2874 tcg_gen_gvec_2i(dofs
, aofs
, oprsz
, maxsz
, shift
, &g
[vece
]);
2878 void tcg_gen_vec_shr8i_i64(TCGv_i64 d
, TCGv_i64 a
, int64_t c
)
2880 uint64_t mask
= dup_const(MO_8
, 0xff >> c
);
2881 tcg_gen_shri_i64(d
, a
, c
);
2882 tcg_gen_andi_i64(d
, d
, mask
);
2885 void tcg_gen_vec_shr16i_i64(TCGv_i64 d
, TCGv_i64 a
, int64_t c
)
2887 uint64_t mask
= dup_const(MO_16
, 0xffff >> c
);
2888 tcg_gen_shri_i64(d
, a
, c
);
2889 tcg_gen_andi_i64(d
, d
, mask
);
2892 void tcg_gen_vec_shr8i_i32(TCGv_i32 d
, TCGv_i32 a
, int32_t c
)
2894 uint32_t mask
= dup_const(MO_8
, 0xff >> c
);
2895 tcg_gen_shri_i32(d
, a
, c
);
2896 tcg_gen_andi_i32(d
, d
, mask
);
2899 void tcg_gen_vec_shr16i_i32(TCGv_i32 d
, TCGv_i32 a
, int32_t c
)
2901 uint32_t mask
= dup_const(MO_16
, 0xffff >> c
);
2902 tcg_gen_shri_i32(d
, a
, c
);
2903 tcg_gen_andi_i32(d
, d
, mask
);
2906 void tcg_gen_gvec_shri(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2907 int64_t shift
, uint32_t oprsz
, uint32_t maxsz
)
2909 static const TCGOpcode vecop_list
[] = { INDEX_op_shri_vec
, 0 };
2910 static const GVecGen2i g
[4] = {
2911 { .fni8
= tcg_gen_vec_shr8i_i64
,
2912 .fniv
= tcg_gen_shri_vec
,
2913 .fno
= gen_helper_gvec_shr8i
,
2914 .opt_opc
= vecop_list
,
2916 { .fni8
= tcg_gen_vec_shr16i_i64
,
2917 .fniv
= tcg_gen_shri_vec
,
2918 .fno
= gen_helper_gvec_shr16i
,
2919 .opt_opc
= vecop_list
,
2921 { .fni4
= tcg_gen_shri_i32
,
2922 .fniv
= tcg_gen_shri_vec
,
2923 .fno
= gen_helper_gvec_shr32i
,
2924 .opt_opc
= vecop_list
,
2926 { .fni8
= tcg_gen_shri_i64
,
2927 .fniv
= tcg_gen_shri_vec
,
2928 .fno
= gen_helper_gvec_shr64i
,
2929 .opt_opc
= vecop_list
,
2930 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
2934 tcg_debug_assert(vece
<= MO_64
);
2935 tcg_debug_assert(shift
>= 0 && shift
< (8 << vece
));
2937 tcg_gen_gvec_mov(vece
, dofs
, aofs
, oprsz
, maxsz
);
2939 tcg_gen_gvec_2i(dofs
, aofs
, oprsz
, maxsz
, shift
, &g
[vece
]);
2943 void tcg_gen_vec_sar8i_i64(TCGv_i64 d
, TCGv_i64 a
, int64_t c
)
2945 uint64_t s_mask
= dup_const(MO_8
, 0x80 >> c
);
2946 uint64_t c_mask
= dup_const(MO_8
, 0xff >> c
);
2947 TCGv_i64 s
= tcg_temp_new_i64();
2949 tcg_gen_shri_i64(d
, a
, c
);
2950 tcg_gen_andi_i64(s
, d
, s_mask
); /* isolate (shifted) sign bit */
2951 tcg_gen_muli_i64(s
, s
, (2 << c
) - 2); /* replicate isolated signs */
2952 tcg_gen_andi_i64(d
, d
, c_mask
); /* clear out bits above sign */
2953 tcg_gen_or_i64(d
, d
, s
); /* include sign extension */
2954 tcg_temp_free_i64(s
);
2957 void tcg_gen_vec_sar16i_i64(TCGv_i64 d
, TCGv_i64 a
, int64_t c
)
2959 uint64_t s_mask
= dup_const(MO_16
, 0x8000 >> c
);
2960 uint64_t c_mask
= dup_const(MO_16
, 0xffff >> c
);
2961 TCGv_i64 s
= tcg_temp_new_i64();
2963 tcg_gen_shri_i64(d
, a
, c
);
2964 tcg_gen_andi_i64(s
, d
, s_mask
); /* isolate (shifted) sign bit */
2965 tcg_gen_andi_i64(d
, d
, c_mask
); /* clear out bits above sign */
2966 tcg_gen_muli_i64(s
, s
, (2 << c
) - 2); /* replicate isolated signs */
2967 tcg_gen_or_i64(d
, d
, s
); /* include sign extension */
2968 tcg_temp_free_i64(s
);
2971 void tcg_gen_vec_sar8i_i32(TCGv_i32 d
, TCGv_i32 a
, int32_t c
)
2973 uint32_t s_mask
= dup_const(MO_8
, 0x80 >> c
);
2974 uint32_t c_mask
= dup_const(MO_8
, 0xff >> c
);
2975 TCGv_i32 s
= tcg_temp_new_i32();
2977 tcg_gen_shri_i32(d
, a
, c
);
2978 tcg_gen_andi_i32(s
, d
, s_mask
); /* isolate (shifted) sign bit */
2979 tcg_gen_muli_i32(s
, s
, (2 << c
) - 2); /* replicate isolated signs */
2980 tcg_gen_andi_i32(d
, d
, c_mask
); /* clear out bits above sign */
2981 tcg_gen_or_i32(d
, d
, s
); /* include sign extension */
2982 tcg_temp_free_i32(s
);
2985 void tcg_gen_vec_sar16i_i32(TCGv_i32 d
, TCGv_i32 a
, int32_t c
)
2987 uint32_t s_mask
= dup_const(MO_16
, 0x8000 >> c
);
2988 uint32_t c_mask
= dup_const(MO_16
, 0xffff >> c
);
2989 TCGv_i32 s
= tcg_temp_new_i32();
2991 tcg_gen_shri_i32(d
, a
, c
);
2992 tcg_gen_andi_i32(s
, d
, s_mask
); /* isolate (shifted) sign bit */
2993 tcg_gen_andi_i32(d
, d
, c_mask
); /* clear out bits above sign */
2994 tcg_gen_muli_i32(s
, s
, (2 << c
) - 2); /* replicate isolated signs */
2995 tcg_gen_or_i32(d
, d
, s
); /* include sign extension */
2996 tcg_temp_free_i32(s
);
2999 void tcg_gen_gvec_sari(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
3000 int64_t shift
, uint32_t oprsz
, uint32_t maxsz
)
3002 static const TCGOpcode vecop_list
[] = { INDEX_op_sari_vec
, 0 };
3003 static const GVecGen2i g
[4] = {
3004 { .fni8
= tcg_gen_vec_sar8i_i64
,
3005 .fniv
= tcg_gen_sari_vec
,
3006 .fno
= gen_helper_gvec_sar8i
,
3007 .opt_opc
= vecop_list
,
3009 { .fni8
= tcg_gen_vec_sar16i_i64
,
3010 .fniv
= tcg_gen_sari_vec
,
3011 .fno
= gen_helper_gvec_sar16i
,
3012 .opt_opc
= vecop_list
,
3014 { .fni4
= tcg_gen_sari_i32
,
3015 .fniv
= tcg_gen_sari_vec
,
3016 .fno
= gen_helper_gvec_sar32i
,
3017 .opt_opc
= vecop_list
,
3019 { .fni8
= tcg_gen_sari_i64
,
3020 .fniv
= tcg_gen_sari_vec
,
3021 .fno
= gen_helper_gvec_sar64i
,
3022 .opt_opc
= vecop_list
,
3023 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
3027 tcg_debug_assert(vece
<= MO_64
);
3028 tcg_debug_assert(shift
>= 0 && shift
< (8 << vece
));
3030 tcg_gen_gvec_mov(vece
, dofs
, aofs
, oprsz
, maxsz
);
3032 tcg_gen_gvec_2i(dofs
, aofs
, oprsz
, maxsz
, shift
, &g
[vece
]);
3036 void tcg_gen_vec_rotl8i_i64(TCGv_i64 d
, TCGv_i64 a
, int64_t c
)
3038 uint64_t mask
= dup_const(MO_8
, 0xff << c
);
3040 tcg_gen_shli_i64(d
, a
, c
);
3041 tcg_gen_shri_i64(a
, a
, 8 - c
);
3042 tcg_gen_andi_i64(d
, d
, mask
);
3043 tcg_gen_andi_i64(a
, a
, ~mask
);
3044 tcg_gen_or_i64(d
, d
, a
);
3047 void tcg_gen_vec_rotl16i_i64(TCGv_i64 d
, TCGv_i64 a
, int64_t c
)
3049 uint64_t mask
= dup_const(MO_16
, 0xffff << c
);
3051 tcg_gen_shli_i64(d
, a
, c
);
3052 tcg_gen_shri_i64(a
, a
, 16 - c
);
3053 tcg_gen_andi_i64(d
, d
, mask
);
3054 tcg_gen_andi_i64(a
, a
, ~mask
);
3055 tcg_gen_or_i64(d
, d
, a
);
3058 void tcg_gen_gvec_rotli(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
3059 int64_t shift
, uint32_t oprsz
, uint32_t maxsz
)
3061 static const TCGOpcode vecop_list
[] = { INDEX_op_rotli_vec
, 0 };
3062 static const GVecGen2i g
[4] = {
3063 { .fni8
= tcg_gen_vec_rotl8i_i64
,
3064 .fniv
= tcg_gen_rotli_vec
,
3065 .fno
= gen_helper_gvec_rotl8i
,
3066 .opt_opc
= vecop_list
,
3068 { .fni8
= tcg_gen_vec_rotl16i_i64
,
3069 .fniv
= tcg_gen_rotli_vec
,
3070 .fno
= gen_helper_gvec_rotl16i
,
3071 .opt_opc
= vecop_list
,
3073 { .fni4
= tcg_gen_rotli_i32
,
3074 .fniv
= tcg_gen_rotli_vec
,
3075 .fno
= gen_helper_gvec_rotl32i
,
3076 .opt_opc
= vecop_list
,
3078 { .fni8
= tcg_gen_rotli_i64
,
3079 .fniv
= tcg_gen_rotli_vec
,
3080 .fno
= gen_helper_gvec_rotl64i
,
3081 .opt_opc
= vecop_list
,
3082 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
3086 tcg_debug_assert(vece
<= MO_64
);
3087 tcg_debug_assert(shift
>= 0 && shift
< (8 << vece
));
3089 tcg_gen_gvec_mov(vece
, dofs
, aofs
, oprsz
, maxsz
);
3091 tcg_gen_gvec_2i(dofs
, aofs
, oprsz
, maxsz
, shift
, &g
[vece
]);
3095 void tcg_gen_gvec_rotri(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
3096 int64_t shift
, uint32_t oprsz
, uint32_t maxsz
)
3098 tcg_debug_assert(vece
<= MO_64
);
3099 tcg_debug_assert(shift
>= 0 && shift
< (8 << vece
));
3100 tcg_gen_gvec_rotli(vece
, dofs
, aofs
, -shift
& ((8 << vece
) - 1),
3105 * Specialized generation vector shifts by a non-constant scalar.
3109 void (*fni4
)(TCGv_i32
, TCGv_i32
, TCGv_i32
);
3110 void (*fni8
)(TCGv_i64
, TCGv_i64
, TCGv_i64
);
3111 void (*fniv_s
)(unsigned, TCGv_vec
, TCGv_vec
, TCGv_i32
);
3112 void (*fniv_v
)(unsigned, TCGv_vec
, TCGv_vec
, TCGv_vec
);
3113 gen_helper_gvec_2
*fno
[4];
3114 TCGOpcode s_list
[2];
3115 TCGOpcode v_list
[2];
3118 static void expand_2sh_vec(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
3119 uint32_t oprsz
, uint32_t tysz
, TCGType type
,
3121 void (*fni
)(unsigned, TCGv_vec
, TCGv_vec
, TCGv_i32
))
3123 TCGv_vec t0
= tcg_temp_new_vec(type
);
3126 for (i
= 0; i
< oprsz
; i
+= tysz
) {
3127 tcg_gen_ld_vec(t0
, cpu_env
, aofs
+ i
);
3128 fni(vece
, t0
, t0
, shift
);
3129 tcg_gen_st_vec(t0
, cpu_env
, dofs
+ i
);
3131 tcg_temp_free_vec(t0
);
3135 do_gvec_shifts(unsigned vece
, uint32_t dofs
, uint32_t aofs
, TCGv_i32 shift
,
3136 uint32_t oprsz
, uint32_t maxsz
, const GVecGen2sh
*g
)
3141 check_size_align(oprsz
, maxsz
, dofs
| aofs
);
3142 check_overlap_2(dofs
, aofs
, maxsz
);
3144 /* If the backend has a scalar expansion, great. */
3145 type
= choose_vector_type(g
->s_list
, vece
, oprsz
, vece
== MO_64
);
3147 const TCGOpcode
*hold_list
= tcg_swap_vecop_list(NULL
);
3150 some
= QEMU_ALIGN_DOWN(oprsz
, 32);
3151 expand_2sh_vec(vece
, dofs
, aofs
, some
, 32,
3152 TCG_TYPE_V256
, shift
, g
->fniv_s
);
3153 if (some
== oprsz
) {
3162 expand_2sh_vec(vece
, dofs
, aofs
, oprsz
, 16,
3163 TCG_TYPE_V128
, shift
, g
->fniv_s
);
3166 expand_2sh_vec(vece
, dofs
, aofs
, oprsz
, 8,
3167 TCG_TYPE_V64
, shift
, g
->fniv_s
);
3170 g_assert_not_reached();
3172 tcg_swap_vecop_list(hold_list
);
3176 /* If the backend supports variable vector shifts, also cool. */
3177 type
= choose_vector_type(g
->v_list
, vece
, oprsz
, vece
== MO_64
);
3179 const TCGOpcode
*hold_list
= tcg_swap_vecop_list(NULL
);
3180 TCGv_vec v_shift
= tcg_temp_new_vec(type
);
3182 if (vece
== MO_64
) {
3183 TCGv_i64 sh64
= tcg_temp_new_i64();
3184 tcg_gen_extu_i32_i64(sh64
, shift
);
3185 tcg_gen_dup_i64_vec(MO_64
, v_shift
, sh64
);
3186 tcg_temp_free_i64(sh64
);
3188 tcg_gen_dup_i32_vec(vece
, v_shift
, shift
);
3193 some
= QEMU_ALIGN_DOWN(oprsz
, 32);
3194 expand_2s_vec(vece
, dofs
, aofs
, some
, 32, TCG_TYPE_V256
,
3195 v_shift
, false, g
->fniv_v
);
3196 if (some
== oprsz
) {
3205 expand_2s_vec(vece
, dofs
, aofs
, oprsz
, 16, TCG_TYPE_V128
,
3206 v_shift
, false, g
->fniv_v
);
3209 expand_2s_vec(vece
, dofs
, aofs
, oprsz
, 8, TCG_TYPE_V64
,
3210 v_shift
, false, g
->fniv_v
);
3213 g_assert_not_reached();
3215 tcg_temp_free_vec(v_shift
);
3216 tcg_swap_vecop_list(hold_list
);
3220 /* Otherwise fall back to integral... */
3221 if (vece
== MO_32
&& check_size_impl(oprsz
, 4)) {
3222 expand_2s_i32(dofs
, aofs
, oprsz
, shift
, false, g
->fni4
);
3223 } else if (vece
== MO_64
&& check_size_impl(oprsz
, 8)) {
3224 TCGv_i64 sh64
= tcg_temp_new_i64();
3225 tcg_gen_extu_i32_i64(sh64
, shift
);
3226 expand_2s_i64(dofs
, aofs
, oprsz
, sh64
, false, g
->fni8
);
3227 tcg_temp_free_i64(sh64
);
3229 TCGv_ptr a0
= tcg_temp_new_ptr();
3230 TCGv_ptr a1
= tcg_temp_new_ptr();
3231 TCGv_i32 desc
= tcg_temp_new_i32();
3233 tcg_gen_shli_i32(desc
, shift
, SIMD_DATA_SHIFT
);
3234 tcg_gen_ori_i32(desc
, desc
, simd_desc(oprsz
, maxsz
, 0));
3235 tcg_gen_addi_ptr(a0
, cpu_env
, dofs
);
3236 tcg_gen_addi_ptr(a1
, cpu_env
, aofs
);
3238 g
->fno
[vece
](a0
, a1
, desc
);
3240 tcg_temp_free_ptr(a0
);
3241 tcg_temp_free_ptr(a1
);
3242 tcg_temp_free_i32(desc
);
3247 if (oprsz
< maxsz
) {
3248 expand_clr(dofs
+ oprsz
, maxsz
- oprsz
);
3252 void tcg_gen_gvec_shls(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
3253 TCGv_i32 shift
, uint32_t oprsz
, uint32_t maxsz
)
3255 static const GVecGen2sh g
= {
3256 .fni4
= tcg_gen_shl_i32
,
3257 .fni8
= tcg_gen_shl_i64
,
3258 .fniv_s
= tcg_gen_shls_vec
,
3259 .fniv_v
= tcg_gen_shlv_vec
,
3261 gen_helper_gvec_shl8i
,
3262 gen_helper_gvec_shl16i
,
3263 gen_helper_gvec_shl32i
,
3264 gen_helper_gvec_shl64i
,
3266 .s_list
= { INDEX_op_shls_vec
, 0 },
3267 .v_list
= { INDEX_op_shlv_vec
, 0 },
3270 tcg_debug_assert(vece
<= MO_64
);
3271 do_gvec_shifts(vece
, dofs
, aofs
, shift
, oprsz
, maxsz
, &g
);
3274 void tcg_gen_gvec_shrs(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
3275 TCGv_i32 shift
, uint32_t oprsz
, uint32_t maxsz
)
3277 static const GVecGen2sh g
= {
3278 .fni4
= tcg_gen_shr_i32
,
3279 .fni8
= tcg_gen_shr_i64
,
3280 .fniv_s
= tcg_gen_shrs_vec
,
3281 .fniv_v
= tcg_gen_shrv_vec
,
3283 gen_helper_gvec_shr8i
,
3284 gen_helper_gvec_shr16i
,
3285 gen_helper_gvec_shr32i
,
3286 gen_helper_gvec_shr64i
,
3288 .s_list
= { INDEX_op_shrs_vec
, 0 },
3289 .v_list
= { INDEX_op_shrv_vec
, 0 },
3292 tcg_debug_assert(vece
<= MO_64
);
3293 do_gvec_shifts(vece
, dofs
, aofs
, shift
, oprsz
, maxsz
, &g
);
3296 void tcg_gen_gvec_sars(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
3297 TCGv_i32 shift
, uint32_t oprsz
, uint32_t maxsz
)
3299 static const GVecGen2sh g
= {
3300 .fni4
= tcg_gen_sar_i32
,
3301 .fni8
= tcg_gen_sar_i64
,
3302 .fniv_s
= tcg_gen_sars_vec
,
3303 .fniv_v
= tcg_gen_sarv_vec
,
3305 gen_helper_gvec_sar8i
,
3306 gen_helper_gvec_sar16i
,
3307 gen_helper_gvec_sar32i
,
3308 gen_helper_gvec_sar64i
,
3310 .s_list
= { INDEX_op_sars_vec
, 0 },
3311 .v_list
= { INDEX_op_sarv_vec
, 0 },
3314 tcg_debug_assert(vece
<= MO_64
);
3315 do_gvec_shifts(vece
, dofs
, aofs
, shift
, oprsz
, maxsz
, &g
);
3318 void tcg_gen_gvec_rotls(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
3319 TCGv_i32 shift
, uint32_t oprsz
, uint32_t maxsz
)
3321 static const GVecGen2sh g
= {
3322 .fni4
= tcg_gen_rotl_i32
,
3323 .fni8
= tcg_gen_rotl_i64
,
3324 .fniv_s
= tcg_gen_rotls_vec
,
3325 .fniv_v
= tcg_gen_rotlv_vec
,
3327 gen_helper_gvec_rotl8i
,
3328 gen_helper_gvec_rotl16i
,
3329 gen_helper_gvec_rotl32i
,
3330 gen_helper_gvec_rotl64i
,
3332 .s_list
= { INDEX_op_rotls_vec
, 0 },
3333 .v_list
= { INDEX_op_rotlv_vec
, 0 },
3336 tcg_debug_assert(vece
<= MO_64
);
3337 do_gvec_shifts(vece
, dofs
, aofs
, shift
, oprsz
, maxsz
, &g
);
3341 * Expand D = A << (B % element bits)
3343 * Unlike scalar shifts, where it is easy for the target front end
3344 * to include the modulo as part of the expansion. If the target
3345 * naturally includes the modulo as part of the operation, great!
3346 * If the target has some other behaviour from out-of-range shifts,
3347 * then it could not use this function anyway, and would need to
3348 * do it's own expansion with custom functions.
3350 static void tcg_gen_shlv_mod_vec(unsigned vece
, TCGv_vec d
,
3351 TCGv_vec a
, TCGv_vec b
)
3353 TCGv_vec t
= tcg_temp_new_vec_matching(d
);
3354 TCGv_vec m
= tcg_constant_vec_matching(d
, vece
, (8 << vece
) - 1);
3356 tcg_gen_and_vec(vece
, t
, b
, m
);
3357 tcg_gen_shlv_vec(vece
, d
, a
, t
);
3358 tcg_temp_free_vec(t
);
3361 static void tcg_gen_shl_mod_i32(TCGv_i32 d
, TCGv_i32 a
, TCGv_i32 b
)
3363 TCGv_i32 t
= tcg_temp_new_i32();
3365 tcg_gen_andi_i32(t
, b
, 31);
3366 tcg_gen_shl_i32(d
, a
, t
);
3367 tcg_temp_free_i32(t
);
3370 static void tcg_gen_shl_mod_i64(TCGv_i64 d
, TCGv_i64 a
, TCGv_i64 b
)
3372 TCGv_i64 t
= tcg_temp_new_i64();
3374 tcg_gen_andi_i64(t
, b
, 63);
3375 tcg_gen_shl_i64(d
, a
, t
);
3376 tcg_temp_free_i64(t
);
3379 void tcg_gen_gvec_shlv(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
3380 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
3382 static const TCGOpcode vecop_list
[] = { INDEX_op_shlv_vec
, 0 };
3383 static const GVecGen3 g
[4] = {
3384 { .fniv
= tcg_gen_shlv_mod_vec
,
3385 .fno
= gen_helper_gvec_shl8v
,
3386 .opt_opc
= vecop_list
,
3388 { .fniv
= tcg_gen_shlv_mod_vec
,
3389 .fno
= gen_helper_gvec_shl16v
,
3390 .opt_opc
= vecop_list
,
3392 { .fni4
= tcg_gen_shl_mod_i32
,
3393 .fniv
= tcg_gen_shlv_mod_vec
,
3394 .fno
= gen_helper_gvec_shl32v
,
3395 .opt_opc
= vecop_list
,
3397 { .fni8
= tcg_gen_shl_mod_i64
,
3398 .fniv
= tcg_gen_shlv_mod_vec
,
3399 .fno
= gen_helper_gvec_shl64v
,
3400 .opt_opc
= vecop_list
,
3401 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
3405 tcg_debug_assert(vece
<= MO_64
);
3406 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
[vece
]);
3410 * Similarly for logical right shifts.
3413 static void tcg_gen_shrv_mod_vec(unsigned vece
, TCGv_vec d
,
3414 TCGv_vec a
, TCGv_vec b
)
3416 TCGv_vec t
= tcg_temp_new_vec_matching(d
);
3417 TCGv_vec m
= tcg_constant_vec_matching(d
, vece
, (8 << vece
) - 1);
3419 tcg_gen_and_vec(vece
, t
, b
, m
);
3420 tcg_gen_shrv_vec(vece
, d
, a
, t
);
3421 tcg_temp_free_vec(t
);
3424 static void tcg_gen_shr_mod_i32(TCGv_i32 d
, TCGv_i32 a
, TCGv_i32 b
)
3426 TCGv_i32 t
= tcg_temp_new_i32();
3428 tcg_gen_andi_i32(t
, b
, 31);
3429 tcg_gen_shr_i32(d
, a
, t
);
3430 tcg_temp_free_i32(t
);
3433 static void tcg_gen_shr_mod_i64(TCGv_i64 d
, TCGv_i64 a
, TCGv_i64 b
)
3435 TCGv_i64 t
= tcg_temp_new_i64();
3437 tcg_gen_andi_i64(t
, b
, 63);
3438 tcg_gen_shr_i64(d
, a
, t
);
3439 tcg_temp_free_i64(t
);
3442 void tcg_gen_gvec_shrv(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
3443 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
3445 static const TCGOpcode vecop_list
[] = { INDEX_op_shrv_vec
, 0 };
3446 static const GVecGen3 g
[4] = {
3447 { .fniv
= tcg_gen_shrv_mod_vec
,
3448 .fno
= gen_helper_gvec_shr8v
,
3449 .opt_opc
= vecop_list
,
3451 { .fniv
= tcg_gen_shrv_mod_vec
,
3452 .fno
= gen_helper_gvec_shr16v
,
3453 .opt_opc
= vecop_list
,
3455 { .fni4
= tcg_gen_shr_mod_i32
,
3456 .fniv
= tcg_gen_shrv_mod_vec
,
3457 .fno
= gen_helper_gvec_shr32v
,
3458 .opt_opc
= vecop_list
,
3460 { .fni8
= tcg_gen_shr_mod_i64
,
3461 .fniv
= tcg_gen_shrv_mod_vec
,
3462 .fno
= gen_helper_gvec_shr64v
,
3463 .opt_opc
= vecop_list
,
3464 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
3468 tcg_debug_assert(vece
<= MO_64
);
3469 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
[vece
]);
3473 * Similarly for arithmetic right shifts.
3476 static void tcg_gen_sarv_mod_vec(unsigned vece
, TCGv_vec d
,
3477 TCGv_vec a
, TCGv_vec b
)
3479 TCGv_vec t
= tcg_temp_new_vec_matching(d
);
3480 TCGv_vec m
= tcg_constant_vec_matching(d
, vece
, (8 << vece
) - 1);
3482 tcg_gen_and_vec(vece
, t
, b
, m
);
3483 tcg_gen_sarv_vec(vece
, d
, a
, t
);
3484 tcg_temp_free_vec(t
);
3487 static void tcg_gen_sar_mod_i32(TCGv_i32 d
, TCGv_i32 a
, TCGv_i32 b
)
3489 TCGv_i32 t
= tcg_temp_new_i32();
3491 tcg_gen_andi_i32(t
, b
, 31);
3492 tcg_gen_sar_i32(d
, a
, t
);
3493 tcg_temp_free_i32(t
);
3496 static void tcg_gen_sar_mod_i64(TCGv_i64 d
, TCGv_i64 a
, TCGv_i64 b
)
3498 TCGv_i64 t
= tcg_temp_new_i64();
3500 tcg_gen_andi_i64(t
, b
, 63);
3501 tcg_gen_sar_i64(d
, a
, t
);
3502 tcg_temp_free_i64(t
);
3505 void tcg_gen_gvec_sarv(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
3506 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
3508 static const TCGOpcode vecop_list
[] = { INDEX_op_sarv_vec
, 0 };
3509 static const GVecGen3 g
[4] = {
3510 { .fniv
= tcg_gen_sarv_mod_vec
,
3511 .fno
= gen_helper_gvec_sar8v
,
3512 .opt_opc
= vecop_list
,
3514 { .fniv
= tcg_gen_sarv_mod_vec
,
3515 .fno
= gen_helper_gvec_sar16v
,
3516 .opt_opc
= vecop_list
,
3518 { .fni4
= tcg_gen_sar_mod_i32
,
3519 .fniv
= tcg_gen_sarv_mod_vec
,
3520 .fno
= gen_helper_gvec_sar32v
,
3521 .opt_opc
= vecop_list
,
3523 { .fni8
= tcg_gen_sar_mod_i64
,
3524 .fniv
= tcg_gen_sarv_mod_vec
,
3525 .fno
= gen_helper_gvec_sar64v
,
3526 .opt_opc
= vecop_list
,
3527 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
3531 tcg_debug_assert(vece
<= MO_64
);
3532 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
[vece
]);
3536 * Similarly for rotates.
3539 static void tcg_gen_rotlv_mod_vec(unsigned vece
, TCGv_vec d
,
3540 TCGv_vec a
, TCGv_vec b
)
3542 TCGv_vec t
= tcg_temp_new_vec_matching(d
);
3543 TCGv_vec m
= tcg_constant_vec_matching(d
, vece
, (8 << vece
) - 1);
3545 tcg_gen_and_vec(vece
, t
, b
, m
);
3546 tcg_gen_rotlv_vec(vece
, d
, a
, t
);
3547 tcg_temp_free_vec(t
);
3550 static void tcg_gen_rotl_mod_i32(TCGv_i32 d
, TCGv_i32 a
, TCGv_i32 b
)
3552 TCGv_i32 t
= tcg_temp_new_i32();
3554 tcg_gen_andi_i32(t
, b
, 31);
3555 tcg_gen_rotl_i32(d
, a
, t
);
3556 tcg_temp_free_i32(t
);
3559 static void tcg_gen_rotl_mod_i64(TCGv_i64 d
, TCGv_i64 a
, TCGv_i64 b
)
3561 TCGv_i64 t
= tcg_temp_new_i64();
3563 tcg_gen_andi_i64(t
, b
, 63);
3564 tcg_gen_rotl_i64(d
, a
, t
);
3565 tcg_temp_free_i64(t
);
3568 void tcg_gen_gvec_rotlv(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
3569 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
3571 static const TCGOpcode vecop_list
[] = { INDEX_op_rotlv_vec
, 0 };
3572 static const GVecGen3 g
[4] = {
3573 { .fniv
= tcg_gen_rotlv_mod_vec
,
3574 .fno
= gen_helper_gvec_rotl8v
,
3575 .opt_opc
= vecop_list
,
3577 { .fniv
= tcg_gen_rotlv_mod_vec
,
3578 .fno
= gen_helper_gvec_rotl16v
,
3579 .opt_opc
= vecop_list
,
3581 { .fni4
= tcg_gen_rotl_mod_i32
,
3582 .fniv
= tcg_gen_rotlv_mod_vec
,
3583 .fno
= gen_helper_gvec_rotl32v
,
3584 .opt_opc
= vecop_list
,
3586 { .fni8
= tcg_gen_rotl_mod_i64
,
3587 .fniv
= tcg_gen_rotlv_mod_vec
,
3588 .fno
= gen_helper_gvec_rotl64v
,
3589 .opt_opc
= vecop_list
,
3590 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
3594 tcg_debug_assert(vece
<= MO_64
);
3595 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
[vece
]);
3598 static void tcg_gen_rotrv_mod_vec(unsigned vece
, TCGv_vec d
,
3599 TCGv_vec a
, TCGv_vec b
)
3601 TCGv_vec t
= tcg_temp_new_vec_matching(d
);
3602 TCGv_vec m
= tcg_constant_vec_matching(d
, vece
, (8 << vece
) - 1);
3604 tcg_gen_and_vec(vece
, t
, b
, m
);
3605 tcg_gen_rotrv_vec(vece
, d
, a
, t
);
3606 tcg_temp_free_vec(t
);
3609 static void tcg_gen_rotr_mod_i32(TCGv_i32 d
, TCGv_i32 a
, TCGv_i32 b
)
3611 TCGv_i32 t
= tcg_temp_new_i32();
3613 tcg_gen_andi_i32(t
, b
, 31);
3614 tcg_gen_rotr_i32(d
, a
, t
);
3615 tcg_temp_free_i32(t
);
3618 static void tcg_gen_rotr_mod_i64(TCGv_i64 d
, TCGv_i64 a
, TCGv_i64 b
)
3620 TCGv_i64 t
= tcg_temp_new_i64();
3622 tcg_gen_andi_i64(t
, b
, 63);
3623 tcg_gen_rotr_i64(d
, a
, t
);
3624 tcg_temp_free_i64(t
);
3627 void tcg_gen_gvec_rotrv(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
3628 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
3630 static const TCGOpcode vecop_list
[] = { INDEX_op_rotrv_vec
, 0 };
3631 static const GVecGen3 g
[4] = {
3632 { .fniv
= tcg_gen_rotrv_mod_vec
,
3633 .fno
= gen_helper_gvec_rotr8v
,
3634 .opt_opc
= vecop_list
,
3636 { .fniv
= tcg_gen_rotrv_mod_vec
,
3637 .fno
= gen_helper_gvec_rotr16v
,
3638 .opt_opc
= vecop_list
,
3640 { .fni4
= tcg_gen_rotr_mod_i32
,
3641 .fniv
= tcg_gen_rotrv_mod_vec
,
3642 .fno
= gen_helper_gvec_rotr32v
,
3643 .opt_opc
= vecop_list
,
3645 { .fni8
= tcg_gen_rotr_mod_i64
,
3646 .fniv
= tcg_gen_rotrv_mod_vec
,
3647 .fno
= gen_helper_gvec_rotr64v
,
3648 .opt_opc
= vecop_list
,
3649 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
3653 tcg_debug_assert(vece
<= MO_64
);
3654 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
[vece
]);
3657 /* Expand OPSZ bytes worth of three-operand operations using i32 elements. */
3658 static void expand_cmp_i32(uint32_t dofs
, uint32_t aofs
, uint32_t bofs
,
3659 uint32_t oprsz
, TCGCond cond
)
3661 TCGv_i32 t0
= tcg_temp_new_i32();
3662 TCGv_i32 t1
= tcg_temp_new_i32();
3665 for (i
= 0; i
< oprsz
; i
+= 4) {
3666 tcg_gen_ld_i32(t0
, cpu_env
, aofs
+ i
);
3667 tcg_gen_ld_i32(t1
, cpu_env
, bofs
+ i
);
3668 tcg_gen_setcond_i32(cond
, t0
, t0
, t1
);
3669 tcg_gen_neg_i32(t0
, t0
);
3670 tcg_gen_st_i32(t0
, cpu_env
, dofs
+ i
);
3672 tcg_temp_free_i32(t1
);
3673 tcg_temp_free_i32(t0
);
3676 static void expand_cmp_i64(uint32_t dofs
, uint32_t aofs
, uint32_t bofs
,
3677 uint32_t oprsz
, TCGCond cond
)
3679 TCGv_i64 t0
= tcg_temp_new_i64();
3680 TCGv_i64 t1
= tcg_temp_new_i64();
3683 for (i
= 0; i
< oprsz
; i
+= 8) {
3684 tcg_gen_ld_i64(t0
, cpu_env
, aofs
+ i
);
3685 tcg_gen_ld_i64(t1
, cpu_env
, bofs
+ i
);
3686 tcg_gen_setcond_i64(cond
, t0
, t0
, t1
);
3687 tcg_gen_neg_i64(t0
, t0
);
3688 tcg_gen_st_i64(t0
, cpu_env
, dofs
+ i
);
3690 tcg_temp_free_i64(t1
);
3691 tcg_temp_free_i64(t0
);
3694 static void expand_cmp_vec(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
3695 uint32_t bofs
, uint32_t oprsz
, uint32_t tysz
,
3696 TCGType type
, TCGCond cond
)
3698 TCGv_vec t0
= tcg_temp_new_vec(type
);
3699 TCGv_vec t1
= tcg_temp_new_vec(type
);
3702 for (i
= 0; i
< oprsz
; i
+= tysz
) {
3703 tcg_gen_ld_vec(t0
, cpu_env
, aofs
+ i
);
3704 tcg_gen_ld_vec(t1
, cpu_env
, bofs
+ i
);
3705 tcg_gen_cmp_vec(cond
, vece
, t0
, t0
, t1
);
3706 tcg_gen_st_vec(t0
, cpu_env
, dofs
+ i
);
3708 tcg_temp_free_vec(t1
);
3709 tcg_temp_free_vec(t0
);
3712 void tcg_gen_gvec_cmp(TCGCond cond
, unsigned vece
, uint32_t dofs
,
3713 uint32_t aofs
, uint32_t bofs
,
3714 uint32_t oprsz
, uint32_t maxsz
)
3716 static const TCGOpcode cmp_list
[] = { INDEX_op_cmp_vec
, 0 };
3717 static gen_helper_gvec_3
* const eq_fn
[4] = {
3718 gen_helper_gvec_eq8
, gen_helper_gvec_eq16
,
3719 gen_helper_gvec_eq32
, gen_helper_gvec_eq64
3721 static gen_helper_gvec_3
* const ne_fn
[4] = {
3722 gen_helper_gvec_ne8
, gen_helper_gvec_ne16
,
3723 gen_helper_gvec_ne32
, gen_helper_gvec_ne64
3725 static gen_helper_gvec_3
* const lt_fn
[4] = {
3726 gen_helper_gvec_lt8
, gen_helper_gvec_lt16
,
3727 gen_helper_gvec_lt32
, gen_helper_gvec_lt64
3729 static gen_helper_gvec_3
* const le_fn
[4] = {
3730 gen_helper_gvec_le8
, gen_helper_gvec_le16
,
3731 gen_helper_gvec_le32
, gen_helper_gvec_le64
3733 static gen_helper_gvec_3
* const ltu_fn
[4] = {
3734 gen_helper_gvec_ltu8
, gen_helper_gvec_ltu16
,
3735 gen_helper_gvec_ltu32
, gen_helper_gvec_ltu64
3737 static gen_helper_gvec_3
* const leu_fn
[4] = {
3738 gen_helper_gvec_leu8
, gen_helper_gvec_leu16
,
3739 gen_helper_gvec_leu32
, gen_helper_gvec_leu64
3741 static gen_helper_gvec_3
* const * const fns
[16] = {
3742 [TCG_COND_EQ
] = eq_fn
,
3743 [TCG_COND_NE
] = ne_fn
,
3744 [TCG_COND_LT
] = lt_fn
,
3745 [TCG_COND_LE
] = le_fn
,
3746 [TCG_COND_LTU
] = ltu_fn
,
3747 [TCG_COND_LEU
] = leu_fn
,
3750 const TCGOpcode
*hold_list
;
3754 check_size_align(oprsz
, maxsz
, dofs
| aofs
| bofs
);
3755 check_overlap_3(dofs
, aofs
, bofs
, maxsz
);
3757 if (cond
== TCG_COND_NEVER
|| cond
== TCG_COND_ALWAYS
) {
3758 do_dup(MO_8
, dofs
, oprsz
, maxsz
,
3759 NULL
, NULL
, -(cond
== TCG_COND_ALWAYS
));
3764 * Implement inline with a vector type, if possible.
3765 * Prefer integer when 64-bit host and 64-bit comparison.
3767 hold_list
= tcg_swap_vecop_list(cmp_list
);
3768 type
= choose_vector_type(cmp_list
, vece
, oprsz
,
3769 TCG_TARGET_REG_BITS
== 64 && vece
== MO_64
);
3772 /* Recall that ARM SVE allows vector sizes that are not a
3773 * power of 2, but always a multiple of 16. The intent is
3774 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
3776 some
= QEMU_ALIGN_DOWN(oprsz
, 32);
3777 expand_cmp_vec(vece
, dofs
, aofs
, bofs
, some
, 32, TCG_TYPE_V256
, cond
);
3778 if (some
== oprsz
) {
3788 expand_cmp_vec(vece
, dofs
, aofs
, bofs
, oprsz
, 16, TCG_TYPE_V128
, cond
);
3791 expand_cmp_vec(vece
, dofs
, aofs
, bofs
, oprsz
, 8, TCG_TYPE_V64
, cond
);
3795 if (vece
== MO_64
&& check_size_impl(oprsz
, 8)) {
3796 expand_cmp_i64(dofs
, aofs
, bofs
, oprsz
, cond
);
3797 } else if (vece
== MO_32
&& check_size_impl(oprsz
, 4)) {
3798 expand_cmp_i32(dofs
, aofs
, bofs
, oprsz
, cond
);
3800 gen_helper_gvec_3
* const *fn
= fns
[cond
];
3804 tmp
= aofs
, aofs
= bofs
, bofs
= tmp
;
3805 cond
= tcg_swap_cond(cond
);
3809 tcg_gen_gvec_3_ool(dofs
, aofs
, bofs
, oprsz
, maxsz
, 0, fn
[vece
]);
3815 g_assert_not_reached();
3817 tcg_swap_vecop_list(hold_list
);
3819 if (oprsz
< maxsz
) {
3820 expand_clr(dofs
+ oprsz
, maxsz
- oprsz
);
3824 static void tcg_gen_bitsel_i64(TCGv_i64 d
, TCGv_i64 a
, TCGv_i64 b
, TCGv_i64 c
)
3826 TCGv_i64 t
= tcg_temp_new_i64();
3828 tcg_gen_and_i64(t
, b
, a
);
3829 tcg_gen_andc_i64(d
, c
, a
);
3830 tcg_gen_or_i64(d
, d
, t
);
3831 tcg_temp_free_i64(t
);
3834 void tcg_gen_gvec_bitsel(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
3835 uint32_t bofs
, uint32_t cofs
,
3836 uint32_t oprsz
, uint32_t maxsz
)
3838 static const GVecGen4 g
= {
3839 .fni8
= tcg_gen_bitsel_i64
,
3840 .fniv
= tcg_gen_bitsel_vec
,
3841 .fno
= gen_helper_gvec_bitsel
,
3844 tcg_gen_gvec_4(dofs
, aofs
, bofs
, cofs
, oprsz
, maxsz
, &g
);