2 * Optimizations for Tiny Code Generator for QEMU
4 * Copyright (c) 2010 Samsung Electronics.
5 * Contributed by Kirill Batuzov <batuzovk@ispras.ru>
7 * Permission is hereby granted, free of charge, to any person obtaining a copy
8 * of this software and associated documentation files (the "Software"), to deal
9 * in the Software without restriction, including without limitation the rights
10 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11 * copies of the Software, and to permit persons to whom the Software is
12 * furnished to do so, subject to the following conditions:
14 * The above copyright notice and this permission notice shall be included in
15 * all copies or substantial portions of the Software.
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
26 #include "qemu/osdep.h"
27 #include "qemu/int128.h"
28 #include "tcg/tcg-op.h"
29 #include "tcg-internal.h"
31 #define CASE_OP_32_64(x) \
32 glue(glue(case INDEX_op_, x), _i32): \
33 glue(glue(case INDEX_op_, x), _i64)
35 #define CASE_OP_32_64_VEC(x) \
36 glue(glue(case INDEX_op_, x), _i32): \
37 glue(glue(case INDEX_op_, x), _i64): \
38 glue(glue(case INDEX_op_, x), _vec)
40 typedef struct TempOptInfo
{
45 uint64_t z_mask
; /* mask bit is 0 if and only if value bit is 0 */
46 uint64_t s_mask
; /* a left-aligned mask of clrsb(value) bits. */
49 typedef struct OptContext
{
52 TCGTempSet temps_used
;
54 /* In flight values from optimization. */
55 uint64_t a_mask
; /* mask bit is 0 iff value identical to first input */
56 uint64_t z_mask
; /* mask bit is 0 iff value bit is 0 */
57 uint64_t s_mask
; /* mask of clrsb(value) bits */
61 /* Calculate the smask for a specific value. */
62 static uint64_t smask_from_value(uint64_t value
)
64 int rep
= clrsb64(value
);
65 return ~(~0ull >> rep
);
69 * Calculate the smask for a given set of known-zeros.
70 * If there are lots of zeros on the left, we can consider the remainder
71 * an unsigned field, and thus the corresponding signed field is one bit
74 static uint64_t smask_from_zmask(uint64_t zmask
)
77 * Only the 0 bits are significant for zmask, thus the msb itself
78 * must be zero, else we have no sign information.
80 int rep
= clz64(zmask
);
85 return ~(~0ull >> rep
);
89 * Recreate a properly left-aligned smask after manipulation.
90 * Some bit-shuffling, particularly shifts and rotates, may
91 * retain sign bits on the left, but may scatter disconnected
92 * sign bits on the right. Retain only what remains to the left.
94 static uint64_t smask_from_smask(int64_t smask
)
96 /* Only the 1 bits are significant for smask */
97 return smask_from_zmask(~smask
);
100 static inline TempOptInfo
*ts_info(TCGTemp
*ts
)
102 return ts
->state_ptr
;
105 static inline TempOptInfo
*arg_info(TCGArg arg
)
107 return ts_info(arg_temp(arg
));
110 static inline bool ts_is_const(TCGTemp
*ts
)
112 return ts_info(ts
)->is_const
;
115 static inline bool arg_is_const(TCGArg arg
)
117 return ts_is_const(arg_temp(arg
));
120 static inline bool ts_is_copy(TCGTemp
*ts
)
122 return ts_info(ts
)->next_copy
!= ts
;
125 /* Reset TEMP's state, possibly removing the temp for the list of copies. */
126 static void reset_ts(TCGTemp
*ts
)
128 TempOptInfo
*ti
= ts_info(ts
);
129 TempOptInfo
*pi
= ts_info(ti
->prev_copy
);
130 TempOptInfo
*ni
= ts_info(ti
->next_copy
);
132 ni
->prev_copy
= ti
->prev_copy
;
133 pi
->next_copy
= ti
->next_copy
;
136 ti
->is_const
= false;
141 static void reset_temp(TCGArg arg
)
143 reset_ts(arg_temp(arg
));
146 /* Initialize and activate a temporary. */
147 static void init_ts_info(OptContext
*ctx
, TCGTemp
*ts
)
149 size_t idx
= temp_idx(ts
);
152 if (test_bit(idx
, ctx
->temps_used
.l
)) {
155 set_bit(idx
, ctx
->temps_used
.l
);
159 ti
= tcg_malloc(sizeof(TempOptInfo
));
165 if (ts
->kind
== TEMP_CONST
) {
168 ti
->z_mask
= ts
->val
;
169 ti
->s_mask
= smask_from_value(ts
->val
);
171 ti
->is_const
= false;
177 static TCGTemp
*find_better_copy(TCGContext
*s
, TCGTemp
*ts
)
181 /* If this is already readonly, we can't do better. */
182 if (temp_readonly(ts
)) {
187 for (i
= ts_info(ts
)->next_copy
; i
!= ts
; i
= ts_info(i
)->next_copy
) {
188 if (temp_readonly(i
)) {
190 } else if (i
->kind
> ts
->kind
) {
191 if (i
->kind
== TEMP_GLOBAL
) {
193 } else if (i
->kind
== TEMP_LOCAL
) {
199 /* If we didn't find a better representation, return the same temp. */
200 return g
? g
: l
? l
: ts
;
203 static bool ts_are_copies(TCGTemp
*ts1
, TCGTemp
*ts2
)
211 if (!ts_is_copy(ts1
) || !ts_is_copy(ts2
)) {
215 for (i
= ts_info(ts1
)->next_copy
; i
!= ts1
; i
= ts_info(i
)->next_copy
) {
224 static bool args_are_copies(TCGArg arg1
, TCGArg arg2
)
226 return ts_are_copies(arg_temp(arg1
), arg_temp(arg2
));
229 static bool tcg_opt_gen_mov(OptContext
*ctx
, TCGOp
*op
, TCGArg dst
, TCGArg src
)
231 TCGTemp
*dst_ts
= arg_temp(dst
);
232 TCGTemp
*src_ts
= arg_temp(src
);
237 if (ts_are_copies(dst_ts
, src_ts
)) {
238 tcg_op_remove(ctx
->tcg
, op
);
243 di
= ts_info(dst_ts
);
244 si
= ts_info(src_ts
);
248 new_op
= INDEX_op_mov_i32
;
251 new_op
= INDEX_op_mov_i64
;
256 /* TCGOP_VECL and TCGOP_VECE remain unchanged. */
257 new_op
= INDEX_op_mov_vec
;
260 g_assert_not_reached();
266 di
->z_mask
= si
->z_mask
;
267 di
->s_mask
= si
->s_mask
;
269 if (src_ts
->type
== dst_ts
->type
) {
270 TempOptInfo
*ni
= ts_info(si
->next_copy
);
272 di
->next_copy
= si
->next_copy
;
273 di
->prev_copy
= src_ts
;
274 ni
->prev_copy
= dst_ts
;
275 si
->next_copy
= dst_ts
;
276 di
->is_const
= si
->is_const
;
282 static bool tcg_opt_gen_movi(OptContext
*ctx
, TCGOp
*op
,
283 TCGArg dst
, uint64_t val
)
287 if (ctx
->type
== TCG_TYPE_I32
) {
291 /* Convert movi to mov with constant temp. */
292 tv
= tcg_constant_internal(ctx
->type
, val
);
293 init_ts_info(ctx
, tv
);
294 return tcg_opt_gen_mov(ctx
, op
, dst
, temp_arg(tv
));
297 static uint64_t do_constant_folding_2(TCGOpcode op
, uint64_t x
, uint64_t y
)
311 CASE_OP_32_64_VEC(and):
314 CASE_OP_32_64_VEC(or):
317 CASE_OP_32_64_VEC(xor):
320 case INDEX_op_shl_i32
:
321 return (uint32_t)x
<< (y
& 31);
323 case INDEX_op_shl_i64
:
324 return (uint64_t)x
<< (y
& 63);
326 case INDEX_op_shr_i32
:
327 return (uint32_t)x
>> (y
& 31);
329 case INDEX_op_shr_i64
:
330 return (uint64_t)x
>> (y
& 63);
332 case INDEX_op_sar_i32
:
333 return (int32_t)x
>> (y
& 31);
335 case INDEX_op_sar_i64
:
336 return (int64_t)x
>> (y
& 63);
338 case INDEX_op_rotr_i32
:
339 return ror32(x
, y
& 31);
341 case INDEX_op_rotr_i64
:
342 return ror64(x
, y
& 63);
344 case INDEX_op_rotl_i32
:
345 return rol32(x
, y
& 31);
347 case INDEX_op_rotl_i64
:
348 return rol64(x
, y
& 63);
350 CASE_OP_32_64_VEC(not):
356 CASE_OP_32_64_VEC(andc
):
359 CASE_OP_32_64_VEC(orc
):
362 CASE_OP_32_64_VEC(eqv
):
365 CASE_OP_32_64_VEC(nand
):
368 CASE_OP_32_64_VEC(nor
):
371 case INDEX_op_clz_i32
:
372 return (uint32_t)x
? clz32(x
) : y
;
374 case INDEX_op_clz_i64
:
375 return x
? clz64(x
) : y
;
377 case INDEX_op_ctz_i32
:
378 return (uint32_t)x
? ctz32(x
) : y
;
380 case INDEX_op_ctz_i64
:
381 return x
? ctz64(x
) : y
;
383 case INDEX_op_ctpop_i32
:
386 case INDEX_op_ctpop_i64
:
389 CASE_OP_32_64(ext8s
):
392 CASE_OP_32_64(ext16s
):
395 CASE_OP_32_64(ext8u
):
398 CASE_OP_32_64(ext16u
):
401 CASE_OP_32_64(bswap16
):
403 return y
& TCG_BSWAP_OS
? (int16_t)x
: x
;
405 CASE_OP_32_64(bswap32
):
407 return y
& TCG_BSWAP_OS
? (int32_t)x
: x
;
409 case INDEX_op_bswap64_i64
:
412 case INDEX_op_ext_i32_i64
:
413 case INDEX_op_ext32s_i64
:
416 case INDEX_op_extu_i32_i64
:
417 case INDEX_op_extrl_i64_i32
:
418 case INDEX_op_ext32u_i64
:
421 case INDEX_op_extrh_i64_i32
:
422 return (uint64_t)x
>> 32;
424 case INDEX_op_muluh_i32
:
425 return ((uint64_t)(uint32_t)x
* (uint32_t)y
) >> 32;
426 case INDEX_op_mulsh_i32
:
427 return ((int64_t)(int32_t)x
* (int32_t)y
) >> 32;
429 case INDEX_op_muluh_i64
:
430 mulu64(&l64
, &h64
, x
, y
);
432 case INDEX_op_mulsh_i64
:
433 muls64(&l64
, &h64
, x
, y
);
436 case INDEX_op_div_i32
:
437 /* Avoid crashing on divide by zero, otherwise undefined. */
438 return (int32_t)x
/ ((int32_t)y
? : 1);
439 case INDEX_op_divu_i32
:
440 return (uint32_t)x
/ ((uint32_t)y
? : 1);
441 case INDEX_op_div_i64
:
442 return (int64_t)x
/ ((int64_t)y
? : 1);
443 case INDEX_op_divu_i64
:
444 return (uint64_t)x
/ ((uint64_t)y
? : 1);
446 case INDEX_op_rem_i32
:
447 return (int32_t)x
% ((int32_t)y
? : 1);
448 case INDEX_op_remu_i32
:
449 return (uint32_t)x
% ((uint32_t)y
? : 1);
450 case INDEX_op_rem_i64
:
451 return (int64_t)x
% ((int64_t)y
? : 1);
452 case INDEX_op_remu_i64
:
453 return (uint64_t)x
% ((uint64_t)y
? : 1);
457 "Unrecognized operation %d in do_constant_folding.\n", op
);
462 static uint64_t do_constant_folding(TCGOpcode op
, TCGType type
,
463 uint64_t x
, uint64_t y
)
465 uint64_t res
= do_constant_folding_2(op
, x
, y
);
466 if (type
== TCG_TYPE_I32
) {
472 static bool do_constant_folding_cond_32(uint32_t x
, uint32_t y
, TCGCond c
)
480 return (int32_t)x
< (int32_t)y
;
482 return (int32_t)x
>= (int32_t)y
;
484 return (int32_t)x
<= (int32_t)y
;
486 return (int32_t)x
> (int32_t)y
;
500 static bool do_constant_folding_cond_64(uint64_t x
, uint64_t y
, TCGCond c
)
508 return (int64_t)x
< (int64_t)y
;
510 return (int64_t)x
>= (int64_t)y
;
512 return (int64_t)x
<= (int64_t)y
;
514 return (int64_t)x
> (int64_t)y
;
528 static bool do_constant_folding_cond_eq(TCGCond c
)
549 * Return -1 if the condition can't be simplified,
550 * and the result of the condition (0 or 1) if it can.
552 static int do_constant_folding_cond(TCGType type
, TCGArg x
,
555 if (arg_is_const(x
) && arg_is_const(y
)) {
556 uint64_t xv
= arg_info(x
)->val
;
557 uint64_t yv
= arg_info(y
)->val
;
561 return do_constant_folding_cond_32(xv
, yv
, c
);
563 return do_constant_folding_cond_64(xv
, yv
, c
);
565 /* Only scalar comparisons are optimizable */
568 } else if (args_are_copies(x
, y
)) {
569 return do_constant_folding_cond_eq(c
);
570 } else if (arg_is_const(y
) && arg_info(y
)->val
== 0) {
584 * Return -1 if the condition can't be simplified,
585 * and the result of the condition (0 or 1) if it can.
587 static int do_constant_folding_cond2(TCGArg
*p1
, TCGArg
*p2
, TCGCond c
)
589 TCGArg al
= p1
[0], ah
= p1
[1];
590 TCGArg bl
= p2
[0], bh
= p2
[1];
592 if (arg_is_const(bl
) && arg_is_const(bh
)) {
593 tcg_target_ulong blv
= arg_info(bl
)->val
;
594 tcg_target_ulong bhv
= arg_info(bh
)->val
;
595 uint64_t b
= deposit64(blv
, 32, 32, bhv
);
597 if (arg_is_const(al
) && arg_is_const(ah
)) {
598 tcg_target_ulong alv
= arg_info(al
)->val
;
599 tcg_target_ulong ahv
= arg_info(ah
)->val
;
600 uint64_t a
= deposit64(alv
, 32, 32, ahv
);
601 return do_constant_folding_cond_64(a
, b
, c
);
614 if (args_are_copies(al
, bl
) && args_are_copies(ah
, bh
)) {
615 return do_constant_folding_cond_eq(c
);
622 * @dest: TCGArg of the destination argument, or NO_DEST.
623 * @p1: first paired argument
624 * @p2: second paired argument
626 * If *@p1 is a constant and *@p2 is not, swap.
627 * If *@p2 matches @dest, swap.
628 * Return true if a swap was performed.
631 #define NO_DEST temp_arg(NULL)
633 static bool swap_commutative(TCGArg dest
, TCGArg
*p1
, TCGArg
*p2
)
635 TCGArg a1
= *p1
, a2
= *p2
;
637 sum
+= arg_is_const(a1
);
638 sum
-= arg_is_const(a2
);
640 /* Prefer the constant in second argument, and then the form
641 op a, a, b, which is better handled on non-RISC hosts. */
642 if (sum
> 0 || (sum
== 0 && dest
== a2
)) {
650 static bool swap_commutative2(TCGArg
*p1
, TCGArg
*p2
)
653 sum
+= arg_is_const(p1
[0]);
654 sum
+= arg_is_const(p1
[1]);
655 sum
-= arg_is_const(p2
[0]);
656 sum
-= arg_is_const(p2
[1]);
659 t
= p1
[0], p1
[0] = p2
[0], p2
[0] = t
;
660 t
= p1
[1], p1
[1] = p2
[1], p2
[1] = t
;
666 static void init_arguments(OptContext
*ctx
, TCGOp
*op
, int nb_args
)
668 for (int i
= 0; i
< nb_args
; i
++) {
669 TCGTemp
*ts
= arg_temp(op
->args
[i
]);
671 init_ts_info(ctx
, ts
);
676 static void copy_propagate(OptContext
*ctx
, TCGOp
*op
,
677 int nb_oargs
, int nb_iargs
)
679 TCGContext
*s
= ctx
->tcg
;
681 for (int i
= nb_oargs
; i
< nb_oargs
+ nb_iargs
; i
++) {
682 TCGTemp
*ts
= arg_temp(op
->args
[i
]);
683 if (ts
&& ts_is_copy(ts
)) {
684 op
->args
[i
] = temp_arg(find_better_copy(s
, ts
));
689 static void finish_folding(OptContext
*ctx
, TCGOp
*op
)
691 const TCGOpDef
*def
= &tcg_op_defs
[op
->opc
];
695 * For an opcode that ends a BB, reset all temp data.
696 * We do no cross-BB optimization.
698 if (def
->flags
& TCG_OPF_BB_END
) {
699 memset(&ctx
->temps_used
, 0, sizeof(ctx
->temps_used
));
704 nb_oargs
= def
->nb_oargs
;
705 for (i
= 0; i
< nb_oargs
; i
++) {
706 TCGTemp
*ts
= arg_temp(op
->args
[i
]);
709 * Save the corresponding known-zero/sign bits mask for the
710 * first output argument (only one supported so far).
713 ts_info(ts
)->z_mask
= ctx
->z_mask
;
714 ts_info(ts
)->s_mask
= ctx
->s_mask
;
720 * The fold_* functions return true when processing is complete,
721 * usually by folding the operation to a constant or to a copy,
722 * and calling tcg_opt_gen_{mov,movi}. They may do other things,
723 * like collect information about the value produced, for use in
724 * optimizing a subsequent operation.
726 * These first fold_* functions are all helpers, used by other
727 * folders for more specific operations.
730 static bool fold_const1(OptContext
*ctx
, TCGOp
*op
)
732 if (arg_is_const(op
->args
[1])) {
735 t
= arg_info(op
->args
[1])->val
;
736 t
= do_constant_folding(op
->opc
, ctx
->type
, t
, 0);
737 return tcg_opt_gen_movi(ctx
, op
, op
->args
[0], t
);
742 static bool fold_const2(OptContext
*ctx
, TCGOp
*op
)
744 if (arg_is_const(op
->args
[1]) && arg_is_const(op
->args
[2])) {
745 uint64_t t1
= arg_info(op
->args
[1])->val
;
746 uint64_t t2
= arg_info(op
->args
[2])->val
;
748 t1
= do_constant_folding(op
->opc
, ctx
->type
, t1
, t2
);
749 return tcg_opt_gen_movi(ctx
, op
, op
->args
[0], t1
);
754 static bool fold_commutative(OptContext
*ctx
, TCGOp
*op
)
756 swap_commutative(op
->args
[0], &op
->args
[1], &op
->args
[2]);
760 static bool fold_const2_commutative(OptContext
*ctx
, TCGOp
*op
)
762 swap_commutative(op
->args
[0], &op
->args
[1], &op
->args
[2]);
763 return fold_const2(ctx
, op
);
766 static bool fold_masks(OptContext
*ctx
, TCGOp
*op
)
768 uint64_t a_mask
= ctx
->a_mask
;
769 uint64_t z_mask
= ctx
->z_mask
;
770 uint64_t s_mask
= ctx
->s_mask
;
773 * 32-bit ops generate 32-bit results, which for the purpose of
774 * simplifying tcg are sign-extended. Certainly that's how we
775 * represent our constants elsewhere. Note that the bits will
776 * be reset properly for a 64-bit value when encountering the
777 * type changing opcodes.
779 if (ctx
->type
== TCG_TYPE_I32
) {
780 a_mask
= (int32_t)a_mask
;
781 z_mask
= (int32_t)z_mask
;
782 s_mask
|= MAKE_64BIT_MASK(32, 32);
783 ctx
->z_mask
= z_mask
;
784 ctx
->s_mask
= s_mask
;
788 return tcg_opt_gen_movi(ctx
, op
, op
->args
[0], 0);
791 return tcg_opt_gen_mov(ctx
, op
, op
->args
[0], op
->args
[1]);
797 * Convert @op to NOT, if NOT is supported by the host.
798 * Return true f the conversion is successful, which will still
799 * indicate that the processing is complete.
801 static bool fold_not(OptContext
*ctx
, TCGOp
*op
);
802 static bool fold_to_not(OptContext
*ctx
, TCGOp
*op
, int idx
)
809 not_op
= INDEX_op_not_i32
;
810 have_not
= TCG_TARGET_HAS_not_i32
;
813 not_op
= INDEX_op_not_i64
;
814 have_not
= TCG_TARGET_HAS_not_i64
;
819 not_op
= INDEX_op_not_vec
;
820 have_not
= TCG_TARGET_HAS_not_vec
;
823 g_assert_not_reached();
827 op
->args
[1] = op
->args
[idx
];
828 return fold_not(ctx
, op
);
833 /* If the binary operation has first argument @i, fold to @i. */
834 static bool fold_ix_to_i(OptContext
*ctx
, TCGOp
*op
, uint64_t i
)
836 if (arg_is_const(op
->args
[1]) && arg_info(op
->args
[1])->val
== i
) {
837 return tcg_opt_gen_movi(ctx
, op
, op
->args
[0], i
);
842 /* If the binary operation has first argument @i, fold to NOT. */
843 static bool fold_ix_to_not(OptContext
*ctx
, TCGOp
*op
, uint64_t i
)
845 if (arg_is_const(op
->args
[1]) && arg_info(op
->args
[1])->val
== i
) {
846 return fold_to_not(ctx
, op
, 2);
851 /* If the binary operation has second argument @i, fold to @i. */
852 static bool fold_xi_to_i(OptContext
*ctx
, TCGOp
*op
, uint64_t i
)
854 if (arg_is_const(op
->args
[2]) && arg_info(op
->args
[2])->val
== i
) {
855 return tcg_opt_gen_movi(ctx
, op
, op
->args
[0], i
);
860 /* If the binary operation has second argument @i, fold to identity. */
861 static bool fold_xi_to_x(OptContext
*ctx
, TCGOp
*op
, uint64_t i
)
863 if (arg_is_const(op
->args
[2]) && arg_info(op
->args
[2])->val
== i
) {
864 return tcg_opt_gen_mov(ctx
, op
, op
->args
[0], op
->args
[1]);
869 /* If the binary operation has second argument @i, fold to NOT. */
870 static bool fold_xi_to_not(OptContext
*ctx
, TCGOp
*op
, uint64_t i
)
872 if (arg_is_const(op
->args
[2]) && arg_info(op
->args
[2])->val
== i
) {
873 return fold_to_not(ctx
, op
, 1);
878 /* If the binary operation has both arguments equal, fold to @i. */
879 static bool fold_xx_to_i(OptContext
*ctx
, TCGOp
*op
, uint64_t i
)
881 if (args_are_copies(op
->args
[1], op
->args
[2])) {
882 return tcg_opt_gen_movi(ctx
, op
, op
->args
[0], i
);
887 /* If the binary operation has both arguments equal, fold to identity. */
888 static bool fold_xx_to_x(OptContext
*ctx
, TCGOp
*op
)
890 if (args_are_copies(op
->args
[1], op
->args
[2])) {
891 return tcg_opt_gen_mov(ctx
, op
, op
->args
[0], op
->args
[1]);
897 * These outermost fold_<op> functions are sorted alphabetically.
899 * The ordering of the transformations should be:
900 * 1) those that produce a constant
901 * 2) those that produce a copy
902 * 3) those that produce information about the result value.
905 static bool fold_add(OptContext
*ctx
, TCGOp
*op
)
907 if (fold_const2_commutative(ctx
, op
) ||
908 fold_xi_to_x(ctx
, op
, 0)) {
914 /* We cannot as yet do_constant_folding with vectors. */
915 static bool fold_add_vec(OptContext
*ctx
, TCGOp
*op
)
917 if (fold_commutative(ctx
, op
) ||
918 fold_xi_to_x(ctx
, op
, 0)) {
924 static bool fold_addsub2(OptContext
*ctx
, TCGOp
*op
, bool add
)
926 if (arg_is_const(op
->args
[2]) && arg_is_const(op
->args
[3]) &&
927 arg_is_const(op
->args
[4]) && arg_is_const(op
->args
[5])) {
928 uint64_t al
= arg_info(op
->args
[2])->val
;
929 uint64_t ah
= arg_info(op
->args
[3])->val
;
930 uint64_t bl
= arg_info(op
->args
[4])->val
;
931 uint64_t bh
= arg_info(op
->args
[5])->val
;
935 if (ctx
->type
== TCG_TYPE_I32
) {
936 uint64_t a
= deposit64(al
, 32, 32, ah
);
937 uint64_t b
= deposit64(bl
, 32, 32, bh
);
945 al
= sextract64(a
, 0, 32);
946 ah
= sextract64(a
, 32, 32);
948 Int128 a
= int128_make128(al
, ah
);
949 Int128 b
= int128_make128(bl
, bh
);
952 a
= int128_add(a
, b
);
954 a
= int128_sub(a
, b
);
957 al
= int128_getlo(a
);
958 ah
= int128_gethi(a
);
964 /* The proper opcode is supplied by tcg_opt_gen_mov. */
965 op2
= tcg_op_insert_before(ctx
->tcg
, op
, 0);
967 tcg_opt_gen_movi(ctx
, op
, rl
, al
);
968 tcg_opt_gen_movi(ctx
, op2
, rh
, ah
);
974 static bool fold_add2(OptContext
*ctx
, TCGOp
*op
)
976 /* Note that the high and low parts may be independently swapped. */
977 swap_commutative(op
->args
[0], &op
->args
[2], &op
->args
[4]);
978 swap_commutative(op
->args
[1], &op
->args
[3], &op
->args
[5]);
980 return fold_addsub2(ctx
, op
, true);
983 static bool fold_and(OptContext
*ctx
, TCGOp
*op
)
987 if (fold_const2_commutative(ctx
, op
) ||
988 fold_xi_to_i(ctx
, op
, 0) ||
989 fold_xi_to_x(ctx
, op
, -1) ||
990 fold_xx_to_x(ctx
, op
)) {
994 z1
= arg_info(op
->args
[1])->z_mask
;
995 z2
= arg_info(op
->args
[2])->z_mask
;
996 ctx
->z_mask
= z1
& z2
;
999 * Sign repetitions are perforce all identical, whether they are 1 or 0.
1000 * Bitwise operations preserve the relative quantity of the repetitions.
1002 ctx
->s_mask
= arg_info(op
->args
[1])->s_mask
1003 & arg_info(op
->args
[2])->s_mask
;
1006 * Known-zeros does not imply known-ones. Therefore unless
1007 * arg2 is constant, we can't infer affected bits from it.
1009 if (arg_is_const(op
->args
[2])) {
1010 ctx
->a_mask
= z1
& ~z2
;
1013 return fold_masks(ctx
, op
);
1016 static bool fold_andc(OptContext
*ctx
, TCGOp
*op
)
1020 if (fold_const2(ctx
, op
) ||
1021 fold_xx_to_i(ctx
, op
, 0) ||
1022 fold_xi_to_x(ctx
, op
, 0) ||
1023 fold_ix_to_not(ctx
, op
, -1)) {
1027 z1
= arg_info(op
->args
[1])->z_mask
;
1030 * Known-zeros does not imply known-ones. Therefore unless
1031 * arg2 is constant, we can't infer anything from it.
1033 if (arg_is_const(op
->args
[2])) {
1034 uint64_t z2
= ~arg_info(op
->args
[2])->z_mask
;
1035 ctx
->a_mask
= z1
& ~z2
;
1040 ctx
->s_mask
= arg_info(op
->args
[1])->s_mask
1041 & arg_info(op
->args
[2])->s_mask
;
1042 return fold_masks(ctx
, op
);
1045 static bool fold_brcond(OptContext
*ctx
, TCGOp
*op
)
1047 TCGCond cond
= op
->args
[2];
1050 if (swap_commutative(NO_DEST
, &op
->args
[0], &op
->args
[1])) {
1051 op
->args
[2] = cond
= tcg_swap_cond(cond
);
1054 i
= do_constant_folding_cond(ctx
->type
, op
->args
[0], op
->args
[1], cond
);
1056 tcg_op_remove(ctx
->tcg
, op
);
1060 op
->opc
= INDEX_op_br
;
1061 op
->args
[0] = op
->args
[3];
1066 static bool fold_brcond2(OptContext
*ctx
, TCGOp
*op
)
1068 TCGCond cond
= op
->args
[4];
1069 TCGArg label
= op
->args
[5];
1072 if (swap_commutative2(&op
->args
[0], &op
->args
[2])) {
1073 op
->args
[4] = cond
= tcg_swap_cond(cond
);
1076 i
= do_constant_folding_cond2(&op
->args
[0], &op
->args
[2], cond
);
1078 goto do_brcond_const
;
1085 * Simplify LT/GE comparisons vs zero to a single compare
1086 * vs the high word of the input.
1088 if (arg_is_const(op
->args
[2]) && arg_info(op
->args
[2])->val
== 0 &&
1089 arg_is_const(op
->args
[3]) && arg_info(op
->args
[3])->val
== 0) {
1090 goto do_brcond_high
;
1099 * Simplify EQ/NE comparisons where one of the pairs
1100 * can be simplified.
1102 i
= do_constant_folding_cond(TCG_TYPE_I32
, op
->args
[0],
1106 goto do_brcond_const
;
1108 goto do_brcond_high
;
1111 i
= do_constant_folding_cond(TCG_TYPE_I32
, op
->args
[1],
1115 goto do_brcond_const
;
1117 op
->opc
= INDEX_op_brcond_i32
;
1118 op
->args
[1] = op
->args
[2];
1120 op
->args
[3] = label
;
1129 op
->opc
= INDEX_op_brcond_i32
;
1130 op
->args
[0] = op
->args
[1];
1131 op
->args
[1] = op
->args
[3];
1133 op
->args
[3] = label
;
1138 tcg_op_remove(ctx
->tcg
, op
);
1141 op
->opc
= INDEX_op_br
;
1142 op
->args
[0] = label
;
1148 static bool fold_bswap(OptContext
*ctx
, TCGOp
*op
)
1150 uint64_t z_mask
, s_mask
, sign
;
1152 if (arg_is_const(op
->args
[1])) {
1153 uint64_t t
= arg_info(op
->args
[1])->val
;
1155 t
= do_constant_folding(op
->opc
, ctx
->type
, t
, op
->args
[2]);
1156 return tcg_opt_gen_movi(ctx
, op
, op
->args
[0], t
);
1159 z_mask
= arg_info(op
->args
[1])->z_mask
;
1162 case INDEX_op_bswap16_i32
:
1163 case INDEX_op_bswap16_i64
:
1164 z_mask
= bswap16(z_mask
);
1167 case INDEX_op_bswap32_i32
:
1168 case INDEX_op_bswap32_i64
:
1169 z_mask
= bswap32(z_mask
);
1172 case INDEX_op_bswap64_i64
:
1173 z_mask
= bswap64(z_mask
);
1177 g_assert_not_reached();
1179 s_mask
= smask_from_zmask(z_mask
);
1181 switch (op
->args
[2] & (TCG_BSWAP_OZ
| TCG_BSWAP_OS
)) {
1185 /* If the sign bit may be 1, force all the bits above to 1. */
1186 if (z_mask
& sign
) {
1192 /* The high bits are undefined: force all bits above the sign to 1. */
1193 z_mask
|= sign
<< 1;
1197 ctx
->z_mask
= z_mask
;
1198 ctx
->s_mask
= s_mask
;
1200 return fold_masks(ctx
, op
);
1203 static bool fold_call(OptContext
*ctx
, TCGOp
*op
)
1205 TCGContext
*s
= ctx
->tcg
;
1206 int nb_oargs
= TCGOP_CALLO(op
);
1207 int nb_iargs
= TCGOP_CALLI(op
);
1210 init_arguments(ctx
, op
, nb_oargs
+ nb_iargs
);
1211 copy_propagate(ctx
, op
, nb_oargs
, nb_iargs
);
1213 /* If the function reads or writes globals, reset temp data. */
1214 flags
= tcg_call_flags(op
);
1215 if (!(flags
& (TCG_CALL_NO_READ_GLOBALS
| TCG_CALL_NO_WRITE_GLOBALS
))) {
1216 int nb_globals
= s
->nb_globals
;
1218 for (i
= 0; i
< nb_globals
; i
++) {
1219 if (test_bit(i
, ctx
->temps_used
.l
)) {
1220 reset_ts(&ctx
->tcg
->temps
[i
]);
1225 /* Reset temp data for outputs. */
1226 for (i
= 0; i
< nb_oargs
; i
++) {
1227 reset_temp(op
->args
[i
]);
1230 /* Stop optimizing MB across calls. */
1231 ctx
->prev_mb
= NULL
;
1235 static bool fold_count_zeros(OptContext
*ctx
, TCGOp
*op
)
1239 if (arg_is_const(op
->args
[1])) {
1240 uint64_t t
= arg_info(op
->args
[1])->val
;
1243 t
= do_constant_folding(op
->opc
, ctx
->type
, t
, 0);
1244 return tcg_opt_gen_movi(ctx
, op
, op
->args
[0], t
);
1246 return tcg_opt_gen_mov(ctx
, op
, op
->args
[0], op
->args
[2]);
1249 switch (ctx
->type
) {
1257 g_assert_not_reached();
1259 ctx
->z_mask
= arg_info(op
->args
[2])->z_mask
| z_mask
;
1260 ctx
->s_mask
= smask_from_zmask(ctx
->z_mask
);
1264 static bool fold_ctpop(OptContext
*ctx
, TCGOp
*op
)
1266 if (fold_const1(ctx
, op
)) {
1270 switch (ctx
->type
) {
1272 ctx
->z_mask
= 32 | 31;
1275 ctx
->z_mask
= 64 | 63;
1278 g_assert_not_reached();
1280 ctx
->s_mask
= smask_from_zmask(ctx
->z_mask
);
1284 static bool fold_deposit(OptContext
*ctx
, TCGOp
*op
)
1286 if (arg_is_const(op
->args
[1]) && arg_is_const(op
->args
[2])) {
1287 uint64_t t1
= arg_info(op
->args
[1])->val
;
1288 uint64_t t2
= arg_info(op
->args
[2])->val
;
1290 t1
= deposit64(t1
, op
->args
[3], op
->args
[4], t2
);
1291 return tcg_opt_gen_movi(ctx
, op
, op
->args
[0], t1
);
1294 ctx
->z_mask
= deposit64(arg_info(op
->args
[1])->z_mask
,
1295 op
->args
[3], op
->args
[4],
1296 arg_info(op
->args
[2])->z_mask
);
1300 static bool fold_divide(OptContext
*ctx
, TCGOp
*op
)
1302 if (fold_const2(ctx
, op
) ||
1303 fold_xi_to_x(ctx
, op
, 1)) {
1309 static bool fold_dup(OptContext
*ctx
, TCGOp
*op
)
1311 if (arg_is_const(op
->args
[1])) {
1312 uint64_t t
= arg_info(op
->args
[1])->val
;
1313 t
= dup_const(TCGOP_VECE(op
), t
);
1314 return tcg_opt_gen_movi(ctx
, op
, op
->args
[0], t
);
1319 static bool fold_dup2(OptContext
*ctx
, TCGOp
*op
)
1321 if (arg_is_const(op
->args
[1]) && arg_is_const(op
->args
[2])) {
1322 uint64_t t
= deposit64(arg_info(op
->args
[1])->val
, 32, 32,
1323 arg_info(op
->args
[2])->val
);
1324 return tcg_opt_gen_movi(ctx
, op
, op
->args
[0], t
);
1327 if (args_are_copies(op
->args
[1], op
->args
[2])) {
1328 op
->opc
= INDEX_op_dup_vec
;
1329 TCGOP_VECE(op
) = MO_32
;
1334 static bool fold_eqv(OptContext
*ctx
, TCGOp
*op
)
1336 if (fold_const2_commutative(ctx
, op
) ||
1337 fold_xi_to_x(ctx
, op
, -1) ||
1338 fold_xi_to_not(ctx
, op
, 0)) {
1342 ctx
->s_mask
= arg_info(op
->args
[1])->s_mask
1343 & arg_info(op
->args
[2])->s_mask
;
1347 static bool fold_extract(OptContext
*ctx
, TCGOp
*op
)
1349 uint64_t z_mask_old
, z_mask
;
1350 int pos
= op
->args
[2];
1351 int len
= op
->args
[3];
1353 if (arg_is_const(op
->args
[1])) {
1356 t
= arg_info(op
->args
[1])->val
;
1357 t
= extract64(t
, pos
, len
);
1358 return tcg_opt_gen_movi(ctx
, op
, op
->args
[0], t
);
1361 z_mask_old
= arg_info(op
->args
[1])->z_mask
;
1362 z_mask
= extract64(z_mask_old
, pos
, len
);
1364 ctx
->a_mask
= z_mask_old
^ z_mask
;
1366 ctx
->z_mask
= z_mask
;
1367 ctx
->s_mask
= smask_from_zmask(z_mask
);
1369 return fold_masks(ctx
, op
);
1372 static bool fold_extract2(OptContext
*ctx
, TCGOp
*op
)
1374 if (arg_is_const(op
->args
[1]) && arg_is_const(op
->args
[2])) {
1375 uint64_t v1
= arg_info(op
->args
[1])->val
;
1376 uint64_t v2
= arg_info(op
->args
[2])->val
;
1377 int shr
= op
->args
[3];
1379 if (op
->opc
== INDEX_op_extract2_i64
) {
1383 v1
= (uint32_t)v1
>> shr
;
1384 v2
= (uint64_t)((int32_t)v2
<< (32 - shr
));
1386 return tcg_opt_gen_movi(ctx
, op
, op
->args
[0], v1
| v2
);
1391 static bool fold_exts(OptContext
*ctx
, TCGOp
*op
)
1393 uint64_t s_mask_old
, s_mask
, z_mask
, sign
;
1394 bool type_change
= false;
1396 if (fold_const1(ctx
, op
)) {
1400 z_mask
= arg_info(op
->args
[1])->z_mask
;
1401 s_mask
= arg_info(op
->args
[1])->s_mask
;
1402 s_mask_old
= s_mask
;
1405 CASE_OP_32_64(ext8s
):
1407 z_mask
= (uint8_t)z_mask
;
1409 CASE_OP_32_64(ext16s
):
1411 z_mask
= (uint16_t)z_mask
;
1413 case INDEX_op_ext_i32_i64
:
1416 case INDEX_op_ext32s_i64
:
1418 z_mask
= (uint32_t)z_mask
;
1421 g_assert_not_reached();
1424 if (z_mask
& sign
) {
1427 s_mask
|= sign
<< 1;
1429 ctx
->z_mask
= z_mask
;
1430 ctx
->s_mask
= s_mask
;
1432 ctx
->a_mask
= s_mask
& ~s_mask_old
;
1435 return fold_masks(ctx
, op
);
1438 static bool fold_extu(OptContext
*ctx
, TCGOp
*op
)
1440 uint64_t z_mask_old
, z_mask
;
1441 bool type_change
= false;
1443 if (fold_const1(ctx
, op
)) {
1447 z_mask_old
= z_mask
= arg_info(op
->args
[1])->z_mask
;
1450 CASE_OP_32_64(ext8u
):
1451 z_mask
= (uint8_t)z_mask
;
1453 CASE_OP_32_64(ext16u
):
1454 z_mask
= (uint16_t)z_mask
;
1456 case INDEX_op_extrl_i64_i32
:
1457 case INDEX_op_extu_i32_i64
:
1460 case INDEX_op_ext32u_i64
:
1461 z_mask
= (uint32_t)z_mask
;
1463 case INDEX_op_extrh_i64_i32
:
1468 g_assert_not_reached();
1471 ctx
->z_mask
= z_mask
;
1472 ctx
->s_mask
= smask_from_zmask(z_mask
);
1474 ctx
->a_mask
= z_mask_old
^ z_mask
;
1476 return fold_masks(ctx
, op
);
1479 static bool fold_mb(OptContext
*ctx
, TCGOp
*op
)
1481 /* Eliminate duplicate and redundant fence instructions. */
1484 * Merge two barriers of the same type into one,
1485 * or a weaker barrier into a stronger one,
1486 * or two weaker barriers into a stronger one.
1487 * mb X; mb Y => mb X|Y
1488 * mb; strl => mb; st
1489 * ldaq; mb => ld; mb
1490 * ldaq; strl => ld; mb; st
1491 * Other combinations are also merged into a strong
1492 * barrier. This is stricter than specified but for
1493 * the purposes of TCG is better than not optimizing.
1495 ctx
->prev_mb
->args
[0] |= op
->args
[0];
1496 tcg_op_remove(ctx
->tcg
, op
);
1503 static bool fold_mov(OptContext
*ctx
, TCGOp
*op
)
1505 return tcg_opt_gen_mov(ctx
, op
, op
->args
[0], op
->args
[1]);
1508 static bool fold_movcond(OptContext
*ctx
, TCGOp
*op
)
1510 TCGCond cond
= op
->args
[5];
1513 if (swap_commutative(NO_DEST
, &op
->args
[1], &op
->args
[2])) {
1514 op
->args
[5] = cond
= tcg_swap_cond(cond
);
1517 * Canonicalize the "false" input reg to match the destination reg so
1518 * that the tcg backend can implement a "move if true" operation.
1520 if (swap_commutative(op
->args
[0], &op
->args
[4], &op
->args
[3])) {
1521 op
->args
[5] = cond
= tcg_invert_cond(cond
);
1524 i
= do_constant_folding_cond(ctx
->type
, op
->args
[1], op
->args
[2], cond
);
1526 return tcg_opt_gen_mov(ctx
, op
, op
->args
[0], op
->args
[4 - i
]);
1529 ctx
->z_mask
= arg_info(op
->args
[3])->z_mask
1530 | arg_info(op
->args
[4])->z_mask
;
1531 ctx
->s_mask
= arg_info(op
->args
[3])->s_mask
1532 & arg_info(op
->args
[4])->s_mask
;
1534 if (arg_is_const(op
->args
[3]) && arg_is_const(op
->args
[4])) {
1535 uint64_t tv
= arg_info(op
->args
[3])->val
;
1536 uint64_t fv
= arg_info(op
->args
[4])->val
;
1539 switch (ctx
->type
) {
1541 opc
= INDEX_op_setcond_i32
;
1544 opc
= INDEX_op_setcond_i64
;
1547 g_assert_not_reached();
1550 if (tv
== 1 && fv
== 0) {
1553 } else if (fv
== 1 && tv
== 0) {
1555 op
->args
[3] = tcg_invert_cond(cond
);
1561 static bool fold_mul(OptContext
*ctx
, TCGOp
*op
)
1563 if (fold_const2(ctx
, op
) ||
1564 fold_xi_to_i(ctx
, op
, 0) ||
1565 fold_xi_to_x(ctx
, op
, 1)) {
1571 static bool fold_mul_highpart(OptContext
*ctx
, TCGOp
*op
)
1573 if (fold_const2_commutative(ctx
, op
) ||
1574 fold_xi_to_i(ctx
, op
, 0)) {
1580 static bool fold_multiply2(OptContext
*ctx
, TCGOp
*op
)
1582 swap_commutative(op
->args
[0], &op
->args
[2], &op
->args
[3]);
1584 if (arg_is_const(op
->args
[2]) && arg_is_const(op
->args
[3])) {
1585 uint64_t a
= arg_info(op
->args
[2])->val
;
1586 uint64_t b
= arg_info(op
->args
[3])->val
;
1592 case INDEX_op_mulu2_i32
:
1593 l
= (uint64_t)(uint32_t)a
* (uint32_t)b
;
1594 h
= (int32_t)(l
>> 32);
1597 case INDEX_op_muls2_i32
:
1598 l
= (int64_t)(int32_t)a
* (int32_t)b
;
1602 case INDEX_op_mulu2_i64
:
1603 mulu64(&l
, &h
, a
, b
);
1605 case INDEX_op_muls2_i64
:
1606 muls64(&l
, &h
, a
, b
);
1609 g_assert_not_reached();
1615 /* The proper opcode is supplied by tcg_opt_gen_mov. */
1616 op2
= tcg_op_insert_before(ctx
->tcg
, op
, 0);
1618 tcg_opt_gen_movi(ctx
, op
, rl
, l
);
1619 tcg_opt_gen_movi(ctx
, op2
, rh
, h
);
1625 static bool fold_nand(OptContext
*ctx
, TCGOp
*op
)
1627 if (fold_const2_commutative(ctx
, op
) ||
1628 fold_xi_to_not(ctx
, op
, -1)) {
1632 ctx
->s_mask
= arg_info(op
->args
[1])->s_mask
1633 & arg_info(op
->args
[2])->s_mask
;
1637 static bool fold_neg(OptContext
*ctx
, TCGOp
*op
)
1641 if (fold_const1(ctx
, op
)) {
1645 /* Set to 1 all bits to the left of the rightmost. */
1646 z_mask
= arg_info(op
->args
[1])->z_mask
;
1647 ctx
->z_mask
= -(z_mask
& -z_mask
);
1650 * Because of fold_sub_to_neg, we want to always return true,
1651 * via finish_folding.
1653 finish_folding(ctx
, op
);
1657 static bool fold_nor(OptContext
*ctx
, TCGOp
*op
)
1659 if (fold_const2_commutative(ctx
, op
) ||
1660 fold_xi_to_not(ctx
, op
, 0)) {
1664 ctx
->s_mask
= arg_info(op
->args
[1])->s_mask
1665 & arg_info(op
->args
[2])->s_mask
;
1669 static bool fold_not(OptContext
*ctx
, TCGOp
*op
)
1671 if (fold_const1(ctx
, op
)) {
1675 ctx
->s_mask
= arg_info(op
->args
[1])->s_mask
;
1677 /* Because of fold_to_not, we want to always return true, via finish. */
1678 finish_folding(ctx
, op
);
1682 static bool fold_or(OptContext
*ctx
, TCGOp
*op
)
1684 if (fold_const2_commutative(ctx
, op
) ||
1685 fold_xi_to_x(ctx
, op
, 0) ||
1686 fold_xx_to_x(ctx
, op
)) {
1690 ctx
->z_mask
= arg_info(op
->args
[1])->z_mask
1691 | arg_info(op
->args
[2])->z_mask
;
1692 ctx
->s_mask
= arg_info(op
->args
[1])->s_mask
1693 & arg_info(op
->args
[2])->s_mask
;
1694 return fold_masks(ctx
, op
);
1697 static bool fold_orc(OptContext
*ctx
, TCGOp
*op
)
1699 if (fold_const2(ctx
, op
) ||
1700 fold_xx_to_i(ctx
, op
, -1) ||
1701 fold_xi_to_x(ctx
, op
, -1) ||
1702 fold_ix_to_not(ctx
, op
, 0)) {
1706 ctx
->s_mask
= arg_info(op
->args
[1])->s_mask
1707 & arg_info(op
->args
[2])->s_mask
;
1711 static bool fold_qemu_ld(OptContext
*ctx
, TCGOp
*op
)
1713 const TCGOpDef
*def
= &tcg_op_defs
[op
->opc
];
1714 MemOpIdx oi
= op
->args
[def
->nb_oargs
+ def
->nb_iargs
];
1715 MemOp mop
= get_memop(oi
);
1716 int width
= 8 * memop_size(mop
);
1719 ctx
->s_mask
= MAKE_64BIT_MASK(width
, 64 - width
);
1720 if (!(mop
& MO_SIGN
)) {
1721 ctx
->z_mask
= MAKE_64BIT_MASK(0, width
);
1726 /* Opcodes that touch guest memory stop the mb optimization. */
1727 ctx
->prev_mb
= NULL
;
1731 static bool fold_qemu_st(OptContext
*ctx
, TCGOp
*op
)
1733 /* Opcodes that touch guest memory stop the mb optimization. */
1734 ctx
->prev_mb
= NULL
;
1738 static bool fold_remainder(OptContext
*ctx
, TCGOp
*op
)
1740 if (fold_const2(ctx
, op
) ||
1741 fold_xx_to_i(ctx
, op
, 0)) {
1747 static bool fold_setcond(OptContext
*ctx
, TCGOp
*op
)
1749 TCGCond cond
= op
->args
[3];
1752 if (swap_commutative(op
->args
[0], &op
->args
[1], &op
->args
[2])) {
1753 op
->args
[3] = cond
= tcg_swap_cond(cond
);
1756 i
= do_constant_folding_cond(ctx
->type
, op
->args
[1], op
->args
[2], cond
);
1758 return tcg_opt_gen_movi(ctx
, op
, op
->args
[0], i
);
1762 ctx
->s_mask
= smask_from_zmask(1);
1766 static bool fold_setcond2(OptContext
*ctx
, TCGOp
*op
)
1768 TCGCond cond
= op
->args
[5];
1771 if (swap_commutative2(&op
->args
[1], &op
->args
[3])) {
1772 op
->args
[5] = cond
= tcg_swap_cond(cond
);
1775 i
= do_constant_folding_cond2(&op
->args
[1], &op
->args
[3], cond
);
1777 goto do_setcond_const
;
1784 * Simplify LT/GE comparisons vs zero to a single compare
1785 * vs the high word of the input.
1787 if (arg_is_const(op
->args
[3]) && arg_info(op
->args
[3])->val
== 0 &&
1788 arg_is_const(op
->args
[4]) && arg_info(op
->args
[4])->val
== 0) {
1789 goto do_setcond_high
;
1798 * Simplify EQ/NE comparisons where one of the pairs
1799 * can be simplified.
1801 i
= do_constant_folding_cond(TCG_TYPE_I32
, op
->args
[1],
1805 goto do_setcond_const
;
1807 goto do_setcond_high
;
1810 i
= do_constant_folding_cond(TCG_TYPE_I32
, op
->args
[2],
1814 goto do_setcond_const
;
1816 op
->args
[2] = op
->args
[3];
1818 op
->opc
= INDEX_op_setcond_i32
;
1827 op
->args
[1] = op
->args
[2];
1828 op
->args
[2] = op
->args
[4];
1830 op
->opc
= INDEX_op_setcond_i32
;
1835 ctx
->s_mask
= smask_from_zmask(1);
1839 return tcg_opt_gen_movi(ctx
, op
, op
->args
[0], i
);
1842 static bool fold_sextract(OptContext
*ctx
, TCGOp
*op
)
1844 uint64_t z_mask
, s_mask
, s_mask_old
;
1845 int pos
= op
->args
[2];
1846 int len
= op
->args
[3];
1848 if (arg_is_const(op
->args
[1])) {
1851 t
= arg_info(op
->args
[1])->val
;
1852 t
= sextract64(t
, pos
, len
);
1853 return tcg_opt_gen_movi(ctx
, op
, op
->args
[0], t
);
1856 z_mask
= arg_info(op
->args
[1])->z_mask
;
1857 z_mask
= sextract64(z_mask
, pos
, len
);
1858 ctx
->z_mask
= z_mask
;
1860 s_mask_old
= arg_info(op
->args
[1])->s_mask
;
1861 s_mask
= sextract64(s_mask_old
, pos
, len
);
1862 s_mask
|= MAKE_64BIT_MASK(len
, 64 - len
);
1863 ctx
->s_mask
= s_mask
;
1866 ctx
->a_mask
= s_mask
& ~s_mask_old
;
1869 return fold_masks(ctx
, op
);
1872 static bool fold_shift(OptContext
*ctx
, TCGOp
*op
)
1874 uint64_t s_mask
, z_mask
, sign
;
1876 if (fold_const2(ctx
, op
) ||
1877 fold_ix_to_i(ctx
, op
, 0) ||
1878 fold_xi_to_x(ctx
, op
, 0)) {
1882 s_mask
= arg_info(op
->args
[1])->s_mask
;
1883 z_mask
= arg_info(op
->args
[1])->z_mask
;
1885 if (arg_is_const(op
->args
[2])) {
1886 int sh
= arg_info(op
->args
[2])->val
;
1888 ctx
->z_mask
= do_constant_folding(op
->opc
, ctx
->type
, z_mask
, sh
);
1890 s_mask
= do_constant_folding(op
->opc
, ctx
->type
, s_mask
, sh
);
1891 ctx
->s_mask
= smask_from_smask(s_mask
);
1893 return fold_masks(ctx
, op
);
1899 * Arithmetic right shift will not reduce the number of
1900 * input sign repetitions.
1902 ctx
->s_mask
= s_mask
;
1906 * If the sign bit is known zero, then logical right shift
1907 * will not reduced the number of input sign repetitions.
1909 sign
= (s_mask
& -s_mask
) >> 1;
1910 if (!(z_mask
& sign
)) {
1911 ctx
->s_mask
= s_mask
;
1921 static bool fold_sub_to_neg(OptContext
*ctx
, TCGOp
*op
)
1926 if (!arg_is_const(op
->args
[1]) || arg_info(op
->args
[1])->val
!= 0) {
1930 switch (ctx
->type
) {
1932 neg_op
= INDEX_op_neg_i32
;
1933 have_neg
= TCG_TARGET_HAS_neg_i32
;
1936 neg_op
= INDEX_op_neg_i64
;
1937 have_neg
= TCG_TARGET_HAS_neg_i64
;
1942 neg_op
= INDEX_op_neg_vec
;
1943 have_neg
= (TCG_TARGET_HAS_neg_vec
&&
1944 tcg_can_emit_vec_op(neg_op
, ctx
->type
, TCGOP_VECE(op
)) > 0);
1947 g_assert_not_reached();
1951 op
->args
[1] = op
->args
[2];
1952 return fold_neg(ctx
, op
);
1957 /* We cannot as yet do_constant_folding with vectors. */
1958 static bool fold_sub_vec(OptContext
*ctx
, TCGOp
*op
)
1960 if (fold_xx_to_i(ctx
, op
, 0) ||
1961 fold_xi_to_x(ctx
, op
, 0) ||
1962 fold_sub_to_neg(ctx
, op
)) {
1968 static bool fold_sub(OptContext
*ctx
, TCGOp
*op
)
1970 return fold_const2(ctx
, op
) || fold_sub_vec(ctx
, op
);
1973 static bool fold_sub2(OptContext
*ctx
, TCGOp
*op
)
1975 return fold_addsub2(ctx
, op
, false);
1978 static bool fold_tcg_ld(OptContext
*ctx
, TCGOp
*op
)
1980 /* We can't do any folding with a load, but we can record bits. */
1982 CASE_OP_32_64(ld8s
):
1983 ctx
->s_mask
= MAKE_64BIT_MASK(8, 56);
1985 CASE_OP_32_64(ld8u
):
1986 ctx
->z_mask
= MAKE_64BIT_MASK(0, 8);
1987 ctx
->s_mask
= MAKE_64BIT_MASK(9, 55);
1989 CASE_OP_32_64(ld16s
):
1990 ctx
->s_mask
= MAKE_64BIT_MASK(16, 48);
1992 CASE_OP_32_64(ld16u
):
1993 ctx
->z_mask
= MAKE_64BIT_MASK(0, 16);
1994 ctx
->s_mask
= MAKE_64BIT_MASK(17, 47);
1996 case INDEX_op_ld32s_i64
:
1997 ctx
->s_mask
= MAKE_64BIT_MASK(32, 32);
1999 case INDEX_op_ld32u_i64
:
2000 ctx
->z_mask
= MAKE_64BIT_MASK(0, 32);
2001 ctx
->s_mask
= MAKE_64BIT_MASK(33, 31);
2004 g_assert_not_reached();
2009 static bool fold_xor(OptContext
*ctx
, TCGOp
*op
)
2011 if (fold_const2_commutative(ctx
, op
) ||
2012 fold_xx_to_i(ctx
, op
, 0) ||
2013 fold_xi_to_x(ctx
, op
, 0) ||
2014 fold_xi_to_not(ctx
, op
, -1)) {
2018 ctx
->z_mask
= arg_info(op
->args
[1])->z_mask
2019 | arg_info(op
->args
[2])->z_mask
;
2020 ctx
->s_mask
= arg_info(op
->args
[1])->s_mask
2021 & arg_info(op
->args
[2])->s_mask
;
2022 return fold_masks(ctx
, op
);
2025 /* Propagate constants and copies, fold constant expressions. */
2026 void tcg_optimize(TCGContext
*s
)
2029 TCGOp
*op
, *op_next
;
2030 OptContext ctx
= { .tcg
= s
};
2032 /* Array VALS has an element for each temp.
2033 If this temp holds a constant then its value is kept in VALS' element.
2034 If this temp is a copy of other ones then the other copies are
2035 available through the doubly linked circular list. */
2037 nb_temps
= s
->nb_temps
;
2038 for (i
= 0; i
< nb_temps
; ++i
) {
2039 s
->temps
[i
].state_ptr
= NULL
;
2042 QTAILQ_FOREACH_SAFE(op
, &s
->ops
, link
, op_next
) {
2043 TCGOpcode opc
= op
->opc
;
2044 const TCGOpDef
*def
;
2047 /* Calls are special. */
2048 if (opc
== INDEX_op_call
) {
2049 fold_call(&ctx
, op
);
2053 def
= &tcg_op_defs
[opc
];
2054 init_arguments(&ctx
, op
, def
->nb_oargs
+ def
->nb_iargs
);
2055 copy_propagate(&ctx
, op
, def
->nb_oargs
, def
->nb_iargs
);
2057 /* Pre-compute the type of the operation. */
2058 if (def
->flags
& TCG_OPF_VECTOR
) {
2059 ctx
.type
= TCG_TYPE_V64
+ TCGOP_VECL(op
);
2060 } else if (def
->flags
& TCG_OPF_64BIT
) {
2061 ctx
.type
= TCG_TYPE_I64
;
2063 ctx
.type
= TCG_TYPE_I32
;
2066 /* Assume all bits affected, no bits known zero, no sign reps. */
2072 * Process each opcode.
2073 * Sorted alphabetically by opcode as much as possible.
2077 done
= fold_add(&ctx
, op
);
2079 case INDEX_op_add_vec
:
2080 done
= fold_add_vec(&ctx
, op
);
2082 CASE_OP_32_64(add2
):
2083 done
= fold_add2(&ctx
, op
);
2085 CASE_OP_32_64_VEC(and):
2086 done
= fold_and(&ctx
, op
);
2088 CASE_OP_32_64_VEC(andc
):
2089 done
= fold_andc(&ctx
, op
);
2091 CASE_OP_32_64(brcond
):
2092 done
= fold_brcond(&ctx
, op
);
2094 case INDEX_op_brcond2_i32
:
2095 done
= fold_brcond2(&ctx
, op
);
2097 CASE_OP_32_64(bswap16
):
2098 CASE_OP_32_64(bswap32
):
2099 case INDEX_op_bswap64_i64
:
2100 done
= fold_bswap(&ctx
, op
);
2104 done
= fold_count_zeros(&ctx
, op
);
2106 CASE_OP_32_64(ctpop
):
2107 done
= fold_ctpop(&ctx
, op
);
2109 CASE_OP_32_64(deposit
):
2110 done
= fold_deposit(&ctx
, op
);
2113 CASE_OP_32_64(divu
):
2114 done
= fold_divide(&ctx
, op
);
2116 case INDEX_op_dup_vec
:
2117 done
= fold_dup(&ctx
, op
);
2119 case INDEX_op_dup2_vec
:
2120 done
= fold_dup2(&ctx
, op
);
2122 CASE_OP_32_64_VEC(eqv
):
2123 done
= fold_eqv(&ctx
, op
);
2125 CASE_OP_32_64(extract
):
2126 done
= fold_extract(&ctx
, op
);
2128 CASE_OP_32_64(extract2
):
2129 done
= fold_extract2(&ctx
, op
);
2131 CASE_OP_32_64(ext8s
):
2132 CASE_OP_32_64(ext16s
):
2133 case INDEX_op_ext32s_i64
:
2134 case INDEX_op_ext_i32_i64
:
2135 done
= fold_exts(&ctx
, op
);
2137 CASE_OP_32_64(ext8u
):
2138 CASE_OP_32_64(ext16u
):
2139 case INDEX_op_ext32u_i64
:
2140 case INDEX_op_extu_i32_i64
:
2141 case INDEX_op_extrl_i64_i32
:
2142 case INDEX_op_extrh_i64_i32
:
2143 done
= fold_extu(&ctx
, op
);
2145 CASE_OP_32_64(ld8s
):
2146 CASE_OP_32_64(ld8u
):
2147 CASE_OP_32_64(ld16s
):
2148 CASE_OP_32_64(ld16u
):
2149 case INDEX_op_ld32s_i64
:
2150 case INDEX_op_ld32u_i64
:
2151 done
= fold_tcg_ld(&ctx
, op
);
2154 done
= fold_mb(&ctx
, op
);
2156 CASE_OP_32_64_VEC(mov
):
2157 done
= fold_mov(&ctx
, op
);
2159 CASE_OP_32_64(movcond
):
2160 done
= fold_movcond(&ctx
, op
);
2163 done
= fold_mul(&ctx
, op
);
2165 CASE_OP_32_64(mulsh
):
2166 CASE_OP_32_64(muluh
):
2167 done
= fold_mul_highpart(&ctx
, op
);
2169 CASE_OP_32_64(muls2
):
2170 CASE_OP_32_64(mulu2
):
2171 done
= fold_multiply2(&ctx
, op
);
2173 CASE_OP_32_64_VEC(nand
):
2174 done
= fold_nand(&ctx
, op
);
2177 done
= fold_neg(&ctx
, op
);
2179 CASE_OP_32_64_VEC(nor
):
2180 done
= fold_nor(&ctx
, op
);
2182 CASE_OP_32_64_VEC(not):
2183 done
= fold_not(&ctx
, op
);
2185 CASE_OP_32_64_VEC(or):
2186 done
= fold_or(&ctx
, op
);
2188 CASE_OP_32_64_VEC(orc
):
2189 done
= fold_orc(&ctx
, op
);
2191 case INDEX_op_qemu_ld_i32
:
2192 case INDEX_op_qemu_ld_i64
:
2193 done
= fold_qemu_ld(&ctx
, op
);
2195 case INDEX_op_qemu_st_i32
:
2196 case INDEX_op_qemu_st8_i32
:
2197 case INDEX_op_qemu_st_i64
:
2198 done
= fold_qemu_st(&ctx
, op
);
2201 CASE_OP_32_64(remu
):
2202 done
= fold_remainder(&ctx
, op
);
2204 CASE_OP_32_64(rotl
):
2205 CASE_OP_32_64(rotr
):
2209 done
= fold_shift(&ctx
, op
);
2211 CASE_OP_32_64(setcond
):
2212 done
= fold_setcond(&ctx
, op
);
2214 case INDEX_op_setcond2_i32
:
2215 done
= fold_setcond2(&ctx
, op
);
2217 CASE_OP_32_64(sextract
):
2218 done
= fold_sextract(&ctx
, op
);
2221 done
= fold_sub(&ctx
, op
);
2223 case INDEX_op_sub_vec
:
2224 done
= fold_sub_vec(&ctx
, op
);
2226 CASE_OP_32_64(sub2
):
2227 done
= fold_sub2(&ctx
, op
);
2229 CASE_OP_32_64_VEC(xor):
2230 done
= fold_xor(&ctx
, op
);
2237 finish_folding(&ctx
, op
);