2 * Emulation of BSD signals
4 * Copyright (c) 2003 - 2008 Fabrice Bellard
5 * Copyright (c) 2013 Stacey Son
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, see <http://www.gnu.org/licenses/>.
21 #include "qemu/osdep.h"
24 #include "signal-common.h"
26 #include "hw/core/tcg-cpu-ops.h"
27 #include "host-signal.h"
29 static struct target_sigaction sigact_table
[TARGET_NSIG
];
30 static void host_signal_handler(int host_sig
, siginfo_t
*info
, void *puc
);
31 static void target_to_host_sigset_internal(sigset_t
*d
,
32 const target_sigset_t
*s
);
34 static inline int on_sig_stack(TaskState
*ts
, unsigned long sp
)
36 return sp
- ts
->sigaltstack_used
.ss_sp
< ts
->sigaltstack_used
.ss_size
;
39 static inline int sas_ss_flags(TaskState
*ts
, unsigned long sp
)
41 return ts
->sigaltstack_used
.ss_size
== 0 ? SS_DISABLE
:
42 on_sig_stack(ts
, sp
) ? SS_ONSTACK
: 0;
46 * The BSD ABIs use the same singal numbers across all the CPU architectures, so
47 * (unlike Linux) these functions are just the identity mapping. This might not
48 * be true for XyzBSD running on AbcBSD, which doesn't currently work.
50 int host_to_target_signal(int sig
)
55 int target_to_host_signal(int sig
)
60 static inline void target_sigemptyset(target_sigset_t
*set
)
62 memset(set
, 0, sizeof(*set
));
65 static inline void target_sigaddset(target_sigset_t
*set
, int signum
)
68 uint32_t mask
= (uint32_t)1 << (signum
% TARGET_NSIG_BPW
);
69 set
->__bits
[signum
/ TARGET_NSIG_BPW
] |= mask
;
72 static inline int target_sigismember(const target_sigset_t
*set
, int signum
)
75 abi_ulong mask
= (abi_ulong
)1 << (signum
% TARGET_NSIG_BPW
);
76 return (set
->__bits
[signum
/ TARGET_NSIG_BPW
] & mask
) != 0;
79 /* Adjust the signal context to rewind out of safe-syscall if we're in it */
80 static inline void rewind_if_in_safe_syscall(void *puc
)
82 ucontext_t
*uc
= (ucontext_t
*)puc
;
83 uintptr_t pcreg
= host_signal_pc(uc
);
85 if (pcreg
> (uintptr_t)safe_syscall_start
86 && pcreg
< (uintptr_t)safe_syscall_end
) {
87 host_signal_set_pc(uc
, (uintptr_t)safe_syscall_start
);
92 * Note: The following take advantage of the BSD signal property that all
93 * signals are available on all architectures.
95 static void host_to_target_sigset_internal(target_sigset_t
*d
,
100 target_sigemptyset(d
);
101 for (i
= 1; i
<= NSIG
; i
++) {
102 if (sigismember(s
, i
)) {
103 target_sigaddset(d
, host_to_target_signal(i
));
108 void host_to_target_sigset(target_sigset_t
*d
, const sigset_t
*s
)
113 host_to_target_sigset_internal(&d1
, s
);
114 for (i
= 0; i
< _SIG_WORDS
; i
++) {
115 d
->__bits
[i
] = tswap32(d1
.__bits
[i
]);
119 static void target_to_host_sigset_internal(sigset_t
*d
,
120 const target_sigset_t
*s
)
125 for (i
= 1; i
<= TARGET_NSIG
; i
++) {
126 if (target_sigismember(s
, i
)) {
127 sigaddset(d
, target_to_host_signal(i
));
132 void target_to_host_sigset(sigset_t
*d
, const target_sigset_t
*s
)
137 for (i
= 0; i
< TARGET_NSIG_WORDS
; i
++) {
138 s1
.__bits
[i
] = tswap32(s
->__bits
[i
]);
140 target_to_host_sigset_internal(d
, &s1
);
143 static bool has_trapno(int tsig
)
145 return tsig
== TARGET_SIGILL
||
146 tsig
== TARGET_SIGFPE
||
147 tsig
== TARGET_SIGSEGV
||
148 tsig
== TARGET_SIGBUS
||
149 tsig
== TARGET_SIGTRAP
;
152 /* Siginfo conversion. */
155 * Populate tinfo w/o swapping based on guessing which fields are valid.
157 static inline void host_to_target_siginfo_noswap(target_siginfo_t
*tinfo
,
158 const siginfo_t
*info
)
160 int sig
= host_to_target_signal(info
->si_signo
);
161 int si_code
= info
->si_code
;
165 * Make sure we that the variable portion of the target siginfo is zeroed
166 * out so we don't leak anything into that.
168 memset(&tinfo
->_reason
, 0, sizeof(tinfo
->_reason
));
171 * This is awkward, because we have to use a combination of the si_code and
172 * si_signo to figure out which of the union's members are valid.o We
173 * therefore make our best guess.
175 * Once we have made our guess, we record it in the top 16 bits of
176 * the si_code, so that tswap_siginfo() later can use it.
177 * tswap_siginfo() will strip these top bits out before writing
178 * si_code to the guest (sign-extending the lower bits).
180 tinfo
->si_signo
= sig
;
181 tinfo
->si_errno
= info
->si_errno
;
182 tinfo
->si_code
= info
->si_code
;
183 tinfo
->si_pid
= info
->si_pid
;
184 tinfo
->si_uid
= info
->si_uid
;
185 tinfo
->si_status
= info
->si_status
;
186 tinfo
->si_addr
= (abi_ulong
)(unsigned long)info
->si_addr
;
188 * si_value is opaque to kernel. On all FreeBSD platforms,
189 * sizeof(sival_ptr) >= sizeof(sival_int) so the following
190 * always will copy the larger element.
192 tinfo
->si_value
.sival_ptr
=
193 (abi_ulong
)(unsigned long)info
->si_value
.sival_ptr
;
197 * All the SI_xxx codes that are defined here are global to
198 * all the signals (they have values that none of the other,
199 * more specific signal info will set).
207 * Only the fixed parts are valid (though FreeBSD doesn't always
208 * set all the fields to non-zero values.
210 si_type
= QEMU_SI_NOINFO
;
213 tinfo
->_reason
._timer
._timerid
= info
->_reason
._timer
._timerid
;
214 tinfo
->_reason
._timer
._overrun
= info
->_reason
._timer
._overrun
;
215 si_type
= QEMU_SI_TIMER
;
218 tinfo
->_reason
._mesgq
._mqd
= info
->_reason
._mesgq
._mqd
;
219 si_type
= QEMU_SI_MESGQ
;
223 * We have to go based on the signal number now to figure out
226 si_type
= QEMU_SI_NOINFO
;
227 if (has_trapno(sig
)) {
228 tinfo
->_reason
._fault
._trapno
= info
->_reason
._fault
._trapno
;
229 si_type
= QEMU_SI_FAULT
;
231 #ifdef TARGET_SIGPOLL
233 * FreeBSD never had SIGPOLL, but emulates it for Linux so there's
234 * a chance it may popup in the future.
236 if (sig
== TARGET_SIGPOLL
) {
237 tinfo
->_reason
._poll
._band
= info
->_reason
._poll
._band
;
238 si_type
= QEMU_SI_POLL
;
242 * Unsure that this can actually be generated, and our support for
243 * capsicum is somewhere between weak and non-existant, but if we get
244 * one, then we know what to save.
246 #ifdef QEMU_SI_CAPSICUM
247 if (sig
== TARGET_SIGTRAP
) {
248 tinfo
->_reason
._capsicum
._syscall
=
249 info
->_reason
._capsicum
._syscall
;
250 si_type
= QEMU_SI_CAPSICUM
;
255 tinfo
->si_code
= deposit32(si_code
, 24, 8, si_type
);
258 static void tswap_siginfo(target_siginfo_t
*tinfo
, const target_siginfo_t
*info
)
260 int si_type
= extract32(info
->si_code
, 24, 8);
261 int si_code
= sextract32(info
->si_code
, 0, 24);
263 __put_user(info
->si_signo
, &tinfo
->si_signo
);
264 __put_user(info
->si_errno
, &tinfo
->si_errno
);
265 __put_user(si_code
, &tinfo
->si_code
); /* Zero out si_type, it's internal */
266 __put_user(info
->si_pid
, &tinfo
->si_pid
);
267 __put_user(info
->si_uid
, &tinfo
->si_uid
);
268 __put_user(info
->si_status
, &tinfo
->si_status
);
269 __put_user(info
->si_addr
, &tinfo
->si_addr
);
271 * Unswapped, because we passed it through mostly untouched. si_value is
272 * opaque to the kernel, so we didn't bother with potentially wasting cycles
273 * to swap it into host byte order.
275 tinfo
->si_value
.sival_ptr
= info
->si_value
.sival_ptr
;
278 * We can use our internal marker of which fields in the structure
279 * are valid, rather than duplicating the guesswork of
280 * host_to_target_siginfo_noswap() here.
283 case QEMU_SI_NOINFO
: /* No additional info */
286 __put_user(info
->_reason
._fault
._trapno
,
287 &tinfo
->_reason
._fault
._trapno
);
290 __put_user(info
->_reason
._timer
._timerid
,
291 &tinfo
->_reason
._timer
._timerid
);
292 __put_user(info
->_reason
._timer
._overrun
,
293 &tinfo
->_reason
._timer
._overrun
);
296 __put_user(info
->_reason
._mesgq
._mqd
, &tinfo
->_reason
._mesgq
._mqd
);
299 /* Note: Not generated on FreeBSD */
300 __put_user(info
->_reason
._poll
._band
, &tinfo
->_reason
._poll
._band
);
302 #ifdef QEMU_SI_CAPSICUM
303 case QEMU_SI_CAPSICUM
:
304 __put_user(info
->_reason
._capsicum
._syscall
,
305 &tinfo
->_reason
._capsicum
._syscall
);
309 g_assert_not_reached();
313 int block_signals(void)
315 TaskState
*ts
= (TaskState
*)thread_cpu
->opaque
;
319 * It's OK to block everything including SIGSEGV, because we won't run any
320 * further guest code before unblocking signals in
321 * process_pending_signals(). We depend on the FreeBSD behaivor here where
322 * this will only affect this thread's signal mask. We don't use
323 * pthread_sigmask which might seem more correct because that routine also
324 * does odd things with SIGCANCEL to implement pthread_cancel().
327 sigprocmask(SIG_SETMASK
, &set
, 0);
329 return qatomic_xchg(&ts
->signal_pending
, 1);
332 /* Returns 1 if given signal should dump core if not handled. */
333 static int core_dump_signal(int sig
)
349 /* Abort execution with signal. */
351 void dump_core_and_abort(int target_sig
)
353 CPUArchState
*env
= thread_cpu
->env_ptr
;
354 CPUState
*cpu
= env_cpu(env
);
355 TaskState
*ts
= cpu
->opaque
;
358 struct sigaction act
;
360 host_sig
= target_to_host_signal(target_sig
);
361 gdb_signalled(env
, target_sig
);
363 /* Dump core if supported by target binary format */
364 if (core_dump_signal(target_sig
) && (ts
->bprm
->core_dump
!= NULL
)) {
367 ((*ts
->bprm
->core_dump
)(target_sig
, env
) == 0);
370 struct rlimit nodump
;
373 * We already dumped the core of target process, we don't want
374 * a coredump of qemu itself.
376 getrlimit(RLIMIT_CORE
, &nodump
);
378 setrlimit(RLIMIT_CORE
, &nodump
);
379 (void) fprintf(stderr
, "qemu: uncaught target signal %d (%s) "
380 "- %s\n", target_sig
, strsignal(host_sig
), "core dumped");
384 * The proper exit code for dying from an uncaught signal is
385 * -<signal>. The kernel doesn't allow exit() or _exit() to pass
386 * a negative value. To get the proper exit code we need to
387 * actually die from an uncaught signal. Here the default signal
388 * handler is installed, we send ourself a signal and we wait for
391 memset(&act
, 0, sizeof(act
));
392 sigfillset(&act
.sa_mask
);
393 act
.sa_handler
= SIG_DFL
;
394 sigaction(host_sig
, &act
, NULL
);
396 kill(getpid(), host_sig
);
399 * Make sure the signal isn't masked (just reuse the mask inside
402 sigdelset(&act
.sa_mask
, host_sig
);
403 sigsuspend(&act
.sa_mask
);
410 * Queue a signal so that it will be send to the virtual CPU as soon as
413 void queue_signal(CPUArchState
*env
, int sig
, int si_type
,
414 target_siginfo_t
*info
)
416 CPUState
*cpu
= env_cpu(env
);
417 TaskState
*ts
= cpu
->opaque
;
419 trace_user_queue_signal(env
, sig
);
421 info
->si_code
= deposit32(info
->si_code
, 24, 8, si_type
);
423 ts
->sync_signal
.info
= *info
;
424 ts
->sync_signal
.pending
= sig
;
425 /* Signal that a new signal is pending. */
426 qatomic_set(&ts
->signal_pending
, 1);
430 static int fatal_signal(int sig
)
436 case TARGET_SIGWINCH
:
438 /* Ignored by default. */
445 /* Job control signals. */
453 * Force a synchronously taken QEMU_SI_FAULT signal. For QEMU the
454 * 'force' part is handled in process_pending_signals().
456 void force_sig_fault(int sig
, int code
, abi_ulong addr
)
458 CPUState
*cpu
= thread_cpu
;
459 CPUArchState
*env
= cpu
->env_ptr
;
460 target_siginfo_t info
= {};
466 queue_signal(env
, sig
, QEMU_SI_FAULT
, &info
);
469 static void host_signal_handler(int host_sig
, siginfo_t
*info
, void *puc
)
471 CPUArchState
*env
= thread_cpu
->env_ptr
;
472 CPUState
*cpu
= env_cpu(env
);
473 TaskState
*ts
= cpu
->opaque
;
474 target_siginfo_t tinfo
;
475 ucontext_t
*uc
= puc
;
476 struct emulated_sigtable
*k
;
479 bool sync_sig
= false;
482 * Non-spoofed SIGSEGV and SIGBUS are synchronous, and need special
483 * handling wrt signal blocking and unwinding.
485 if ((host_sig
== SIGSEGV
|| host_sig
== SIGBUS
) && info
->si_code
> 0) {
486 MMUAccessType access_type
;
491 host_addr
= (uintptr_t)info
->si_addr
;
494 * Convert forcefully to guest address space: addresses outside
495 * reserved_va are still valid to report via SEGV_MAPERR.
497 guest_addr
= h2g_nocheck(host_addr
);
499 pc
= host_signal_pc(uc
);
500 is_write
= host_signal_write(info
, uc
);
501 access_type
= adjust_signal_pc(&pc
, is_write
);
503 if (host_sig
== SIGSEGV
) {
506 if (info
->si_code
== SEGV_ACCERR
&& h2g_valid(host_addr
)) {
507 /* If this was a write to a TB protected page, restart. */
509 handle_sigsegv_accerr_write(cpu
, &uc
->uc_sigmask
,
515 * With reserved_va, the whole address space is PROT_NONE,
516 * which means that we may get ACCERR when we want MAPERR.
518 if (page_get_flags(guest_addr
) & PAGE_VALID
) {
521 info
->si_code
= SEGV_MAPERR
;
525 sigprocmask(SIG_SETMASK
, &uc
->uc_sigmask
, NULL
);
526 cpu_loop_exit_sigsegv(cpu
, guest_addr
, access_type
, maperr
, pc
);
528 sigprocmask(SIG_SETMASK
, &uc
->uc_sigmask
, NULL
);
529 if (info
->si_code
== BUS_ADRALN
) {
530 cpu_loop_exit_sigbus(cpu
, guest_addr
, access_type
, pc
);
537 /* Get the target signal number. */
538 guest_sig
= host_to_target_signal(host_sig
);
539 if (guest_sig
< 1 || guest_sig
> TARGET_NSIG
) {
542 trace_user_host_signal(cpu
, host_sig
, guest_sig
);
544 host_to_target_siginfo_noswap(&tinfo
, info
);
546 k
= &ts
->sigtab
[guest_sig
- 1];
548 k
->pending
= guest_sig
;
549 ts
->signal_pending
= 1;
552 * For synchronous signals, unwind the cpu state to the faulting
553 * insn and then exit back to the main loop so that the signal
554 * is delivered immediately.
557 cpu
->exception_index
= EXCP_INTERRUPT
;
558 cpu_loop_exit_restore(cpu
, pc
);
561 rewind_if_in_safe_syscall(puc
);
564 * Block host signals until target signal handler entered. We
565 * can't block SIGSEGV or SIGBUS while we're executing guest
566 * code in case the guest code provokes one in the window between
567 * now and it getting out to the main loop. Signals will be
568 * unblocked again in process_pending_signals().
570 sigfillset(&uc
->uc_sigmask
);
571 sigdelset(&uc
->uc_sigmask
, SIGSEGV
);
572 sigdelset(&uc
->uc_sigmask
, SIGBUS
);
574 /* Interrupt the virtual CPU as soon as possible. */
575 cpu_exit(thread_cpu
);
578 /* do_sigaltstack() returns target values and errnos. */
579 /* compare to kern/kern_sig.c sys_sigaltstack() and kern_sigaltstack() */
580 abi_long
do_sigaltstack(abi_ulong uss_addr
, abi_ulong uoss_addr
, abi_ulong sp
)
582 TaskState
*ts
= (TaskState
*)thread_cpu
->opaque
;
587 /* Save current signal stack params */
588 oss
.ss_sp
= tswapl(ts
->sigaltstack_used
.ss_sp
);
589 oss
.ss_size
= tswapl(ts
->sigaltstack_used
.ss_size
);
590 oss
.ss_flags
= tswapl(sas_ss_flags(ts
, sp
));
596 size_t minstacksize
= TARGET_MINSIGSTKSZ
;
598 ret
= -TARGET_EFAULT
;
599 if (!lock_user_struct(VERIFY_READ
, uss
, uss_addr
, 1)) {
602 __get_user(ss
.ss_sp
, &uss
->ss_sp
);
603 __get_user(ss
.ss_size
, &uss
->ss_size
);
604 __get_user(ss
.ss_flags
, &uss
->ss_flags
);
605 unlock_user_struct(uss
, uss_addr
, 0);
608 if (on_sig_stack(ts
, sp
)) {
612 ret
= -TARGET_EINVAL
;
613 if (ss
.ss_flags
!= TARGET_SS_DISABLE
614 && ss
.ss_flags
!= TARGET_SS_ONSTACK
615 && ss
.ss_flags
!= 0) {
619 if (ss
.ss_flags
== TARGET_SS_DISABLE
) {
623 ret
= -TARGET_ENOMEM
;
624 if (ss
.ss_size
< minstacksize
) {
629 ts
->sigaltstack_used
.ss_sp
= ss
.ss_sp
;
630 ts
->sigaltstack_used
.ss_size
= ss
.ss_size
;
634 ret
= -TARGET_EFAULT
;
635 if (copy_to_user(uoss_addr
, &oss
, sizeof(oss
))) {
645 /* do_sigaction() return host values and errnos */
646 int do_sigaction(int sig
, const struct target_sigaction
*act
,
647 struct target_sigaction
*oact
)
649 struct target_sigaction
*k
;
650 struct sigaction act1
;
654 if (sig
< 1 || sig
> TARGET_NSIG
) {
655 return -TARGET_EINVAL
;
658 if ((sig
== TARGET_SIGKILL
|| sig
== TARGET_SIGSTOP
) &&
659 act
!= NULL
&& act
->_sa_handler
!= TARGET_SIG_DFL
) {
660 return -TARGET_EINVAL
;
663 if (block_signals()) {
664 return -TARGET_ERESTART
;
667 k
= &sigact_table
[sig
- 1];
669 oact
->_sa_handler
= tswapal(k
->_sa_handler
);
670 oact
->sa_flags
= tswap32(k
->sa_flags
);
671 oact
->sa_mask
= k
->sa_mask
;
674 k
->_sa_handler
= tswapal(act
->_sa_handler
);
675 k
->sa_flags
= tswap32(act
->sa_flags
);
676 k
->sa_mask
= act
->sa_mask
;
678 /* Update the host signal state. */
679 host_sig
= target_to_host_signal(sig
);
680 if (host_sig
!= SIGSEGV
&& host_sig
!= SIGBUS
) {
681 memset(&act1
, 0, sizeof(struct sigaction
));
682 sigfillset(&act1
.sa_mask
);
683 act1
.sa_flags
= SA_SIGINFO
;
684 if (k
->sa_flags
& TARGET_SA_RESTART
) {
685 act1
.sa_flags
|= SA_RESTART
;
688 * Note: It is important to update the host kernel signal mask to
689 * avoid getting unexpected interrupted system calls.
691 if (k
->_sa_handler
== TARGET_SIG_IGN
) {
692 act1
.sa_sigaction
= (void *)SIG_IGN
;
693 } else if (k
->_sa_handler
== TARGET_SIG_DFL
) {
694 if (fatal_signal(sig
)) {
695 act1
.sa_sigaction
= host_signal_handler
;
697 act1
.sa_sigaction
= (void *)SIG_DFL
;
700 act1
.sa_sigaction
= host_signal_handler
;
702 ret
= sigaction(host_sig
, &act1
, NULL
);
708 static inline abi_ulong
get_sigframe(struct target_sigaction
*ka
,
709 CPUArchState
*env
, size_t frame_size
)
711 TaskState
*ts
= (TaskState
*)thread_cpu
->opaque
;
714 /* Use default user stack */
715 sp
= get_sp_from_cpustate(env
);
717 if ((ka
->sa_flags
& TARGET_SA_ONSTACK
) && sas_ss_flags(ts
, sp
) == 0) {
718 sp
= ts
->sigaltstack_used
.ss_sp
+ ts
->sigaltstack_used
.ss_size
;
721 /* TODO: make this a target_arch function / define */
722 #if defined(TARGET_ARM)
723 return (sp
- frame_size
) & ~7;
724 #elif defined(TARGET_AARCH64)
725 return (sp
- frame_size
) & ~15;
727 return sp
- frame_size
;
731 /* compare to $M/$M/exec_machdep.c sendsig and sys/kern/kern_sig.c sigexit */
733 static void setup_frame(int sig
, int code
, struct target_sigaction
*ka
,
734 target_sigset_t
*set
, target_siginfo_t
*tinfo
, CPUArchState
*env
)
736 struct target_sigframe
*frame
;
737 abi_ulong frame_addr
;
740 frame_addr
= get_sigframe(ka
, env
, sizeof(*frame
));
741 trace_user_setup_frame(env
, frame_addr
);
742 if (!lock_user_struct(VERIFY_WRITE
, frame
, frame_addr
, 0)) {
743 unlock_user_struct(frame
, frame_addr
, 1);
744 dump_core_and_abort(TARGET_SIGILL
);
748 memset(frame
, 0, sizeof(*frame
));
749 setup_sigframe_arch(env
, frame_addr
, frame
, 0);
751 for (i
= 0; i
< TARGET_NSIG_WORDS
; i
++) {
752 __put_user(set
->__bits
[i
], &frame
->sf_uc
.uc_sigmask
.__bits
[i
]);
756 frame
->sf_si
.si_signo
= tinfo
->si_signo
;
757 frame
->sf_si
.si_errno
= tinfo
->si_errno
;
758 frame
->sf_si
.si_code
= tinfo
->si_code
;
759 frame
->sf_si
.si_pid
= tinfo
->si_pid
;
760 frame
->sf_si
.si_uid
= tinfo
->si_uid
;
761 frame
->sf_si
.si_status
= tinfo
->si_status
;
762 frame
->sf_si
.si_addr
= tinfo
->si_addr
;
763 /* see host_to_target_siginfo_noswap() for more details */
764 frame
->sf_si
.si_value
.sival_ptr
= tinfo
->si_value
.sival_ptr
;
766 * At this point, whatever is in the _reason union is complete
767 * and in target order, so just copy the whole thing over, even
768 * if it's too large for this specific signal.
769 * host_to_target_siginfo_noswap() and tswap_siginfo() have ensured
772 memcpy(&frame
->sf_si
._reason
, &tinfo
->_reason
,
773 sizeof(tinfo
->_reason
));
776 set_sigtramp_args(env
, sig
, frame
, frame_addr
, ka
);
778 unlock_user_struct(frame
, frame_addr
, 1);
781 static int reset_signal_mask(target_ucontext_t
*ucontext
)
785 target_sigset_t target_set
;
786 TaskState
*ts
= (TaskState
*)thread_cpu
->opaque
;
788 for (i
= 0; i
< TARGET_NSIG_WORDS
; i
++) {
789 if (__get_user(target_set
.__bits
[i
],
790 &ucontext
->uc_sigmask
.__bits
[i
])) {
791 return -TARGET_EFAULT
;
794 target_to_host_sigset_internal(&blocked
, &target_set
);
795 ts
->signal_mask
= blocked
;
800 /* See sys/$M/$M/exec_machdep.c sigreturn() */
801 long do_sigreturn(CPUArchState
*env
, abi_ulong addr
)
804 abi_ulong target_ucontext
;
805 target_ucontext_t
*ucontext
= NULL
;
807 /* Get the target ucontext address from the stack frame */
808 ret
= get_ucontext_sigreturn(env
, addr
, &target_ucontext
);
812 trace_user_do_sigreturn(env
, addr
);
813 if (!lock_user_struct(VERIFY_READ
, ucontext
, target_ucontext
, 0)) {
817 /* Set the register state back to before the signal. */
818 if (set_mcontext(env
, &ucontext
->uc_mcontext
, 1)) {
822 /* And reset the signal mask. */
823 if (reset_signal_mask(ucontext
)) {
827 unlock_user_struct(ucontext
, target_ucontext
, 0);
828 return -TARGET_EJUSTRETURN
;
831 if (ucontext
!= NULL
) {
832 unlock_user_struct(ucontext
, target_ucontext
, 0);
834 return -TARGET_EFAULT
;
837 void signal_init(void)
839 TaskState
*ts
= (TaskState
*)thread_cpu
->opaque
;
840 struct sigaction act
;
841 struct sigaction oact
;
845 /* Set the signal mask from the host mask. */
846 sigprocmask(0, 0, &ts
->signal_mask
);
848 sigfillset(&act
.sa_mask
);
849 act
.sa_sigaction
= host_signal_handler
;
850 act
.sa_flags
= SA_SIGINFO
;
852 for (i
= 1; i
<= TARGET_NSIG
; i
++) {
854 if (i
== TARGET_SIGPROF
) {
858 host_sig
= target_to_host_signal(i
);
859 sigaction(host_sig
, NULL
, &oact
);
860 if (oact
.sa_sigaction
== (void *)SIG_IGN
) {
861 sigact_table
[i
- 1]._sa_handler
= TARGET_SIG_IGN
;
862 } else if (oact
.sa_sigaction
== (void *)SIG_DFL
) {
863 sigact_table
[i
- 1]._sa_handler
= TARGET_SIG_DFL
;
866 * If there's already a handler installed then something has
867 * gone horribly wrong, so don't even try to handle that case.
868 * Install some handlers for our own use. We need at least
869 * SIGSEGV and SIGBUS, to detect exceptions. We can not just
870 * trap all signals because it affects syscall interrupt
871 * behavior. But do trap all default-fatal signals.
873 if (fatal_signal(i
)) {
874 sigaction(host_sig
, &act
, NULL
);
879 static void handle_pending_signal(CPUArchState
*env
, int sig
,
880 struct emulated_sigtable
*k
)
882 CPUState
*cpu
= env_cpu(env
);
883 TaskState
*ts
= cpu
->opaque
;
884 struct target_sigaction
*sa
;
888 target_siginfo_t tinfo
;
889 target_sigset_t target_old_set
;
891 trace_user_handle_signal(env
, sig
);
895 sig
= gdb_handlesig(cpu
, sig
);
898 handler
= TARGET_SIG_IGN
;
900 sa
= &sigact_table
[sig
- 1];
901 handler
= sa
->_sa_handler
;
905 print_taken_signal(sig
, &k
->info
);
908 if (handler
== TARGET_SIG_DFL
) {
910 * default handler : ignore some signal. The other are job
913 if (sig
== TARGET_SIGTSTP
|| sig
== TARGET_SIGTTIN
||
914 sig
== TARGET_SIGTTOU
) {
915 kill(getpid(), SIGSTOP
);
916 } else if (sig
!= TARGET_SIGCHLD
&& sig
!= TARGET_SIGURG
&&
917 sig
!= TARGET_SIGINFO
&& sig
!= TARGET_SIGWINCH
&&
918 sig
!= TARGET_SIGCONT
) {
919 dump_core_and_abort(sig
);
921 } else if (handler
== TARGET_SIG_IGN
) {
923 } else if (handler
== TARGET_SIG_ERR
) {
924 dump_core_and_abort(sig
);
926 /* compute the blocked signals during the handler execution */
927 sigset_t
*blocked_set
;
929 target_to_host_sigset(&set
, &sa
->sa_mask
);
931 * SA_NODEFER indicates that the current signal should not be
932 * blocked during the handler.
934 if (!(sa
->sa_flags
& TARGET_SA_NODEFER
)) {
935 sigaddset(&set
, target_to_host_signal(sig
));
939 * Save the previous blocked signal state to restore it at the
940 * end of the signal execution (see do_sigreturn).
942 host_to_target_sigset_internal(&target_old_set
, &ts
->signal_mask
);
944 blocked_set
= ts
->in_sigsuspend
?
945 &ts
->sigsuspend_mask
: &ts
->signal_mask
;
946 sigorset(&ts
->signal_mask
, blocked_set
, &set
);
947 ts
->in_sigsuspend
= false;
948 sigprocmask(SIG_SETMASK
, &ts
->signal_mask
, NULL
);
950 /* XXX VM86 on x86 ??? */
952 code
= k
->info
.si_code
; /* From host, so no si_type */
953 /* prepare the stack frame of the virtual CPU */
954 if (sa
->sa_flags
& TARGET_SA_SIGINFO
) {
955 tswap_siginfo(&tinfo
, &k
->info
);
956 setup_frame(sig
, code
, sa
, &target_old_set
, &tinfo
, env
);
958 setup_frame(sig
, code
, sa
, &target_old_set
, NULL
, env
);
960 if (sa
->sa_flags
& TARGET_SA_RESETHAND
) {
961 sa
->_sa_handler
= TARGET_SIG_DFL
;
966 void process_pending_signals(CPUArchState
*env
)
968 CPUState
*cpu
= env_cpu(env
);
970 sigset_t
*blocked_set
, set
;
971 struct emulated_sigtable
*k
;
972 TaskState
*ts
= cpu
->opaque
;
974 while (qatomic_read(&ts
->signal_pending
)) {
976 sigprocmask(SIG_SETMASK
, &set
, 0);
979 sig
= ts
->sync_signal
.pending
;
982 * Synchronous signals are forced by the emulated CPU in some way.
983 * If they are set to ignore, restore the default handler (see
984 * sys/kern_sig.c trapsignal() and execsigs() for this behavior)
985 * though maybe this is done only when forcing exit for non SIGCHLD.
987 if (sigismember(&ts
->signal_mask
, target_to_host_signal(sig
)) ||
988 sigact_table
[sig
- 1]._sa_handler
== TARGET_SIG_IGN
) {
989 sigdelset(&ts
->signal_mask
, target_to_host_signal(sig
));
990 sigact_table
[sig
- 1]._sa_handler
= TARGET_SIG_DFL
;
992 handle_pending_signal(env
, sig
, &ts
->sync_signal
);
996 for (sig
= 1; sig
<= TARGET_NSIG
; sig
++, k
++) {
997 blocked_set
= ts
->in_sigsuspend
?
998 &ts
->sigsuspend_mask
: &ts
->signal_mask
;
1000 !sigismember(blocked_set
, target_to_host_signal(sig
))) {
1001 handle_pending_signal(env
, sig
, k
);
1003 * Restart scan from the beginning, as handle_pending_signal
1004 * might have resulted in a new synchronous signal (eg SIGSEGV).
1011 * Unblock signals and check one more time. Unblocking signals may cause
1012 * us to take another host signal, which will set signal_pending again.
1014 qatomic_set(&ts
->signal_pending
, 0);
1015 ts
->in_sigsuspend
= false;
1016 set
= ts
->signal_mask
;
1017 sigdelset(&set
, SIGSEGV
);
1018 sigdelset(&set
, SIGBUS
);
1019 sigprocmask(SIG_SETMASK
, &set
, 0);
1021 ts
->in_sigsuspend
= false;
1024 void cpu_loop_exit_sigsegv(CPUState
*cpu
, target_ulong addr
,
1025 MMUAccessType access_type
, bool maperr
, uintptr_t ra
)
1027 const struct TCGCPUOps
*tcg_ops
= CPU_GET_CLASS(cpu
)->tcg_ops
;
1029 if (tcg_ops
->record_sigsegv
) {
1030 tcg_ops
->record_sigsegv(cpu
, addr
, access_type
, maperr
, ra
);
1033 force_sig_fault(TARGET_SIGSEGV
,
1034 maperr
? TARGET_SEGV_MAPERR
: TARGET_SEGV_ACCERR
,
1036 cpu
->exception_index
= EXCP_INTERRUPT
;
1037 cpu_loop_exit_restore(cpu
, ra
);
1040 void cpu_loop_exit_sigbus(CPUState
*cpu
, target_ulong addr
,
1041 MMUAccessType access_type
, uintptr_t ra
)
1043 const struct TCGCPUOps
*tcg_ops
= CPU_GET_CLASS(cpu
)->tcg_ops
;
1045 if (tcg_ops
->record_sigbus
) {
1046 tcg_ops
->record_sigbus(cpu
, addr
, access_type
, ra
);
1049 force_sig_fault(TARGET_SIGBUS
, TARGET_BUS_ADRALN
, addr
);
1050 cpu
->exception_index
= EXCP_INTERRUPT
;
1051 cpu_loop_exit_restore(cpu
, ra
);