2 * i.MX Fast Ethernet Controller emulation.
4 * Copyright (c) 2013 Jean-Christophe Dubois. <jcd@tribudubois.net>
6 * Based on Coldfire Fast Ethernet Controller emulation.
8 * Copyright (c) 2007 CodeSourcery.
10 * This program is free software; you can redistribute it and/or modify it
11 * under the terms of the GNU General Public License as published by the
12 * Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
15 * This program is distributed in the hope that it will be useful, but WITHOUT
16 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
20 * You should have received a copy of the GNU General Public License along
21 * with this program; if not, see <http://www.gnu.org/licenses/>.
24 #include "qemu/osdep.h"
25 #include "hw/net/imx_fec.h"
26 #include "sysemu/dma.h"
28 #include "net/checksum.h"
35 #define DEBUG_IMX_FEC 0
38 #define FEC_PRINTF(fmt, args...) \
40 if (DEBUG_IMX_FEC) { \
41 fprintf(stderr, "[%s]%s: " fmt , TYPE_IMX_FEC, \
47 #define DEBUG_IMX_PHY 0
50 #define PHY_PRINTF(fmt, args...) \
52 if (DEBUG_IMX_PHY) { \
53 fprintf(stderr, "[%s.phy]%s: " fmt , TYPE_IMX_FEC, \
58 static const char *imx_default_reg_name(IMXFECState
*s
, uint32_t index
)
61 sprintf(tmp
, "index %d", index
);
65 static const char *imx_fec_reg_name(IMXFECState
*s
, uint32_t index
)
72 case ENET_MIIGSK_CFGR
:
77 return imx_default_reg_name(s
, index
);
81 static const char *imx_enet_reg_name(IMXFECState
*s
, uint32_t index
)
139 return imx_default_reg_name(s
, index
);
143 static const char *imx_eth_reg_name(IMXFECState
*s
, uint32_t index
)
190 return imx_fec_reg_name(s
, index
);
192 return imx_enet_reg_name(s
, index
);
197 static const VMStateDescription vmstate_imx_eth
= {
198 .name
= TYPE_IMX_FEC
,
200 .minimum_version_id
= 2,
201 .fields
= (VMStateField
[]) {
202 VMSTATE_UINT32_ARRAY(regs
, IMXFECState
, ENET_MAX
),
203 VMSTATE_UINT32(rx_descriptor
, IMXFECState
),
204 VMSTATE_UINT32(tx_descriptor
, IMXFECState
),
206 VMSTATE_UINT32(phy_status
, IMXFECState
),
207 VMSTATE_UINT32(phy_control
, IMXFECState
),
208 VMSTATE_UINT32(phy_advertise
, IMXFECState
),
209 VMSTATE_UINT32(phy_int
, IMXFECState
),
210 VMSTATE_UINT32(phy_int_mask
, IMXFECState
),
211 VMSTATE_END_OF_LIST()
215 #define PHY_INT_ENERGYON (1 << 7)
216 #define PHY_INT_AUTONEG_COMPLETE (1 << 6)
217 #define PHY_INT_FAULT (1 << 5)
218 #define PHY_INT_DOWN (1 << 4)
219 #define PHY_INT_AUTONEG_LP (1 << 3)
220 #define PHY_INT_PARFAULT (1 << 2)
221 #define PHY_INT_AUTONEG_PAGE (1 << 1)
223 static void imx_eth_update(IMXFECState
*s
);
226 * The MII phy could raise a GPIO to the processor which in turn
227 * could be handled as an interrpt by the OS.
228 * For now we don't handle any GPIO/interrupt line, so the OS will
229 * have to poll for the PHY status.
231 static void phy_update_irq(IMXFECState
*s
)
236 static void phy_update_link(IMXFECState
*s
)
238 /* Autonegotiation status mirrors link status. */
239 if (qemu_get_queue(s
->nic
)->link_down
) {
240 PHY_PRINTF("link is down\n");
241 s
->phy_status
&= ~0x0024;
242 s
->phy_int
|= PHY_INT_DOWN
;
244 PHY_PRINTF("link is up\n");
245 s
->phy_status
|= 0x0024;
246 s
->phy_int
|= PHY_INT_ENERGYON
;
247 s
->phy_int
|= PHY_INT_AUTONEG_COMPLETE
;
252 static void imx_eth_set_link(NetClientState
*nc
)
254 phy_update_link(IMX_FEC(qemu_get_nic_opaque(nc
)));
257 static void phy_reset(IMXFECState
*s
)
259 s
->phy_status
= 0x7809;
260 s
->phy_control
= 0x3000;
261 s
->phy_advertise
= 0x01e1;
267 static uint32_t do_phy_read(IMXFECState
*s
, int reg
)
272 /* we only advertise one phy */
277 case 0: /* Basic Control */
278 val
= s
->phy_control
;
280 case 1: /* Basic Status */
289 case 4: /* Auto-neg advertisement */
290 val
= s
->phy_advertise
;
292 case 5: /* Auto-neg Link Partner Ability */
295 case 6: /* Auto-neg Expansion */
298 case 29: /* Interrupt source. */
303 case 30: /* Interrupt mask */
304 val
= s
->phy_int_mask
;
310 qemu_log_mask(LOG_UNIMP
, "[%s.phy]%s: reg %d not implemented\n",
311 TYPE_IMX_FEC
, __func__
, reg
);
315 qemu_log_mask(LOG_GUEST_ERROR
, "[%s.phy]%s: Bad address at offset %d\n",
316 TYPE_IMX_FEC
, __func__
, reg
);
321 PHY_PRINTF("read 0x%04x @ %d\n", val
, reg
);
326 static void do_phy_write(IMXFECState
*s
, int reg
, uint32_t val
)
328 PHY_PRINTF("write 0x%04x @ %d\n", val
, reg
);
331 /* we only advertise one phy */
336 case 0: /* Basic Control */
340 s
->phy_control
= val
& 0x7980;
341 /* Complete autonegotiation immediately. */
343 s
->phy_status
|= 0x0020;
347 case 4: /* Auto-neg advertisement */
348 s
->phy_advertise
= (val
& 0x2d7f) | 0x80;
350 case 30: /* Interrupt mask */
351 s
->phy_int_mask
= val
& 0xff;
358 qemu_log_mask(LOG_UNIMP
, "[%s.phy)%s: reg %d not implemented\n",
359 TYPE_IMX_FEC
, __func__
, reg
);
362 qemu_log_mask(LOG_GUEST_ERROR
, "[%s.phy]%s: Bad address at offset %d\n",
363 TYPE_IMX_FEC
, __func__
, reg
);
368 static void imx_fec_read_bd(IMXFECBufDesc
*bd
, dma_addr_t addr
)
370 dma_memory_read(&address_space_memory
, addr
, bd
, sizeof(*bd
));
373 static void imx_fec_write_bd(IMXFECBufDesc
*bd
, dma_addr_t addr
)
375 dma_memory_write(&address_space_memory
, addr
, bd
, sizeof(*bd
));
378 static void imx_enet_read_bd(IMXENETBufDesc
*bd
, dma_addr_t addr
)
380 dma_memory_read(&address_space_memory
, addr
, bd
, sizeof(*bd
));
383 static void imx_enet_write_bd(IMXENETBufDesc
*bd
, dma_addr_t addr
)
385 dma_memory_write(&address_space_memory
, addr
, bd
, sizeof(*bd
));
388 static void imx_eth_update(IMXFECState
*s
)
390 if (s
->regs
[ENET_EIR
] & s
->regs
[ENET_EIMR
] & ENET_INT_TS_TIMER
) {
391 qemu_set_irq(s
->irq
[1], 1);
393 qemu_set_irq(s
->irq
[1], 0);
396 if (s
->regs
[ENET_EIR
] & s
->regs
[ENET_EIMR
] & ENET_INT_MAC
) {
397 qemu_set_irq(s
->irq
[0], 1);
399 qemu_set_irq(s
->irq
[0], 0);
403 static void imx_fec_do_tx(IMXFECState
*s
)
406 uint8_t frame
[ENET_MAX_FRAME_SIZE
];
407 uint8_t *ptr
= frame
;
408 uint32_t addr
= s
->tx_descriptor
;
414 imx_fec_read_bd(&bd
, addr
);
415 FEC_PRINTF("tx_bd %x flags %04x len %d data %08x\n",
416 addr
, bd
.flags
, bd
.length
, bd
.data
);
417 if ((bd
.flags
& ENET_BD_R
) == 0) {
418 /* Run out of descriptors to transmit. */
419 FEC_PRINTF("tx_bd ran out of descriptors to transmit\n");
423 if (frame_size
+ len
> ENET_MAX_FRAME_SIZE
) {
424 len
= ENET_MAX_FRAME_SIZE
- frame_size
;
425 s
->regs
[ENET_EIR
] |= ENET_INT_BABT
;
427 dma_memory_read(&address_space_memory
, bd
.data
, ptr
, len
);
430 if (bd
.flags
& ENET_BD_L
) {
431 /* Last buffer in frame. */
432 qemu_send_packet(qemu_get_queue(s
->nic
), frame
, len
);
435 s
->regs
[ENET_EIR
] |= ENET_INT_TXF
;
437 s
->regs
[ENET_EIR
] |= ENET_INT_TXB
;
438 bd
.flags
&= ~ENET_BD_R
;
439 /* Write back the modified descriptor. */
440 imx_fec_write_bd(&bd
, addr
);
441 /* Advance to the next descriptor. */
442 if ((bd
.flags
& ENET_BD_W
) != 0) {
443 addr
= s
->regs
[ENET_TDSR
];
449 s
->tx_descriptor
= addr
;
454 static void imx_enet_do_tx(IMXFECState
*s
)
457 uint8_t frame
[ENET_MAX_FRAME_SIZE
];
458 uint8_t *ptr
= frame
;
459 uint32_t addr
= s
->tx_descriptor
;
465 imx_enet_read_bd(&bd
, addr
);
466 FEC_PRINTF("tx_bd %x flags %04x len %d data %08x option %04x "
467 "status %04x\n", addr
, bd
.flags
, bd
.length
, bd
.data
,
468 bd
.option
, bd
.status
);
469 if ((bd
.flags
& ENET_BD_R
) == 0) {
470 /* Run out of descriptors to transmit. */
474 if (frame_size
+ len
> ENET_MAX_FRAME_SIZE
) {
475 len
= ENET_MAX_FRAME_SIZE
- frame_size
;
476 s
->regs
[ENET_EIR
] |= ENET_INT_BABT
;
478 dma_memory_read(&address_space_memory
, bd
.data
, ptr
, len
);
481 if (bd
.flags
& ENET_BD_L
) {
482 if (bd
.option
& ENET_BD_PINS
) {
483 struct ip_header
*ip_hd
= PKT_GET_IP_HDR(frame
);
484 if (IP_HEADER_VERSION(ip_hd
) == 4) {
485 net_checksum_calculate(frame
, frame_size
);
488 if (bd
.option
& ENET_BD_IINS
) {
489 struct ip_header
*ip_hd
= PKT_GET_IP_HDR(frame
);
490 /* We compute checksum only for IPv4 frames */
491 if (IP_HEADER_VERSION(ip_hd
) == 4) {
494 csum
= net_raw_checksum((uint8_t *)ip_hd
, sizeof(*ip_hd
));
495 ip_hd
->ip_sum
= cpu_to_be16(csum
);
498 /* Last buffer in frame. */
499 qemu_send_packet(qemu_get_queue(s
->nic
), frame
, len
);
502 if (bd
.option
& ENET_BD_TX_INT
) {
503 s
->regs
[ENET_EIR
] |= ENET_INT_TXF
;
506 if (bd
.option
& ENET_BD_TX_INT
) {
507 s
->regs
[ENET_EIR
] |= ENET_INT_TXB
;
509 bd
.flags
&= ~ENET_BD_R
;
510 /* Write back the modified descriptor. */
511 imx_enet_write_bd(&bd
, addr
);
512 /* Advance to the next descriptor. */
513 if ((bd
.flags
& ENET_BD_W
) != 0) {
514 addr
= s
->regs
[ENET_TDSR
];
520 s
->tx_descriptor
= addr
;
525 static void imx_eth_do_tx(IMXFECState
*s
)
527 if (!s
->is_fec
&& (s
->regs
[ENET_ECR
] & ENET_ECR_EN1588
)) {
534 static void imx_eth_enable_rx(IMXFECState
*s
)
539 imx_fec_read_bd(&bd
, s
->rx_descriptor
);
541 tmp
= ((bd
.flags
& ENET_BD_E
) != 0);
544 FEC_PRINTF("RX buffer full\n");
545 } else if (!s
->regs
[ENET_RDAR
]) {
546 qemu_flush_queued_packets(qemu_get_queue(s
->nic
));
549 s
->regs
[ENET_RDAR
] = tmp
? ENET_RDAR_RDAR
: 0;
552 static void imx_eth_reset(DeviceState
*d
)
554 IMXFECState
*s
= IMX_FEC(d
);
556 /* Reset the Device */
557 memset(s
->regs
, 0, sizeof(s
->regs
));
558 s
->regs
[ENET_ECR
] = 0xf0000000;
559 s
->regs
[ENET_MIBC
] = 0xc0000000;
560 s
->regs
[ENET_RCR
] = 0x05ee0001;
561 s
->regs
[ENET_OPD
] = 0x00010000;
563 s
->regs
[ENET_PALR
] = (s
->conf
.macaddr
.a
[0] << 24)
564 | (s
->conf
.macaddr
.a
[1] << 16)
565 | (s
->conf
.macaddr
.a
[2] << 8)
566 | s
->conf
.macaddr
.a
[3];
567 s
->regs
[ENET_PAUR
] = (s
->conf
.macaddr
.a
[4] << 24)
568 | (s
->conf
.macaddr
.a
[5] << 16)
572 s
->regs
[ENET_FRBR
] = 0x00000600;
573 s
->regs
[ENET_FRSR
] = 0x00000500;
574 s
->regs
[ENET_MIIGSK_ENR
] = 0x00000006;
576 s
->regs
[ENET_RAEM
] = 0x00000004;
577 s
->regs
[ENET_RAFL
] = 0x00000004;
578 s
->regs
[ENET_TAEM
] = 0x00000004;
579 s
->regs
[ENET_TAFL
] = 0x00000008;
580 s
->regs
[ENET_TIPG
] = 0x0000000c;
581 s
->regs
[ENET_FTRL
] = 0x000007ff;
582 s
->regs
[ENET_ATPER
] = 0x3b9aca00;
585 s
->rx_descriptor
= 0;
586 s
->tx_descriptor
= 0;
588 /* We also reset the PHY */
592 static uint32_t imx_default_read(IMXFECState
*s
, uint32_t index
)
594 qemu_log_mask(LOG_GUEST_ERROR
, "[%s]%s: Bad register at offset 0x%"
595 PRIx32
"\n", TYPE_IMX_FEC
, __func__
, index
* 4);
599 static uint32_t imx_fec_read(IMXFECState
*s
, uint32_t index
)
604 case ENET_MIIGSK_CFGR
:
605 case ENET_MIIGSK_ENR
:
606 return s
->regs
[index
];
608 return imx_default_read(s
, index
);
612 static uint32_t imx_enet_read(IMXFECState
*s
, uint32_t index
)
642 return s
->regs
[index
];
644 return imx_default_read(s
, index
);
648 static uint64_t imx_eth_read(void *opaque
, hwaddr offset
, unsigned size
)
651 IMXFECState
*s
= IMX_FEC(opaque
);
652 uint32_t index
= offset
>> 2;
676 value
= s
->regs
[index
];
680 value
= imx_fec_read(s
, index
);
682 value
= imx_enet_read(s
, index
);
687 FEC_PRINTF("reg[%s] => 0x%" PRIx32
"\n", imx_eth_reg_name(s
, index
),
693 static void imx_default_write(IMXFECState
*s
, uint32_t index
, uint32_t value
)
695 qemu_log_mask(LOG_GUEST_ERROR
, "[%s]%s: Bad address at offset 0x%"
696 PRIx32
"\n", TYPE_IMX_FEC
, __func__
, index
* 4);
700 static void imx_fec_write(IMXFECState
*s
, uint32_t index
, uint32_t value
)
704 /* FRBR is read only */
705 qemu_log_mask(LOG_GUEST_ERROR
, "[%s]%s: Register FRBR is read only\n",
706 TYPE_IMX_FEC
, __func__
);
709 s
->regs
[index
] = (value
& 0x000003fc) | 0x00000400;
711 case ENET_MIIGSK_CFGR
:
712 s
->regs
[index
] = value
& 0x00000053;
714 case ENET_MIIGSK_ENR
:
715 s
->regs
[index
] = (value
& 0x00000002) ? 0x00000006 : 0;
718 imx_default_write(s
, index
, value
);
723 static void imx_enet_write(IMXFECState
*s
, uint32_t index
, uint32_t value
)
733 s
->regs
[index
] = value
& 0x000001ff;
736 s
->regs
[index
] = value
& 0x0000001f;
739 s
->regs
[index
] = value
& 0x00003fff;
742 s
->regs
[index
] = value
& 0x00000019;
745 s
->regs
[index
] = value
& 0x000000C7;
748 s
->regs
[index
] = value
& 0x00002a9d;
753 s
->regs
[index
] = value
;
756 /* ATSTMP is read only */
757 qemu_log_mask(LOG_GUEST_ERROR
, "[%s]%s: Register ATSTMP is read only\n",
758 TYPE_IMX_FEC
, __func__
);
761 s
->regs
[index
] = value
& 0x7fffffff;
764 s
->regs
[index
] = value
& 0x00007f7f;
767 /* implement clear timer flag */
768 value
= value
& 0x0000000f;
774 value
= value
& 0x000000fd;
780 s
->regs
[index
] = value
;
783 imx_default_write(s
, index
, value
);
788 static void imx_eth_write(void *opaque
, hwaddr offset
, uint64_t value
,
791 IMXFECState
*s
= IMX_FEC(opaque
);
792 uint32_t index
= offset
>> 2;
794 FEC_PRINTF("reg[%s] <= 0x%" PRIx32
"\n", imx_eth_reg_name(s
, index
),
799 s
->regs
[index
] &= ~value
;
802 s
->regs
[index
] = value
;
805 if (s
->regs
[ENET_ECR
] & ENET_ECR_ETHEREN
) {
806 if (!s
->regs
[index
]) {
807 s
->regs
[index
] = ENET_RDAR_RDAR
;
808 imx_eth_enable_rx(s
);
815 if (s
->regs
[ENET_ECR
] & ENET_ECR_ETHEREN
) {
816 s
->regs
[index
] = ENET_TDAR_TDAR
;
822 if (value
& ENET_ECR_RESET
) {
823 return imx_eth_reset(DEVICE(s
));
825 s
->regs
[index
] = value
;
826 if ((s
->regs
[index
] & ENET_ECR_ETHEREN
) == 0) {
827 s
->regs
[ENET_RDAR
] = 0;
828 s
->rx_descriptor
= s
->regs
[ENET_RDSR
];
829 s
->regs
[ENET_TDAR
] = 0;
830 s
->tx_descriptor
= s
->regs
[ENET_TDSR
];
834 s
->regs
[index
] = value
;
835 if (extract32(value
, 29, 1)) {
836 /* This is a read operation */
837 s
->regs
[ENET_MMFR
] = deposit32(s
->regs
[ENET_MMFR
], 0, 16,
842 /* This a write operation */
843 do_phy_write(s
, extract32(value
, 18, 10), extract32(value
, 0, 16));
845 /* raise the interrupt as the PHY operation is done */
846 s
->regs
[ENET_EIR
] |= ENET_INT_MII
;
849 s
->regs
[index
] = value
& 0xfe;
852 /* TODO: Implement MIB. */
853 s
->regs
[index
] = (value
& 0x80000000) ? 0xc0000000 : 0;
856 s
->regs
[index
] = value
& 0x07ff003f;
857 /* TODO: Implement LOOP mode. */
860 /* We transmit immediately, so raise GRA immediately. */
861 s
->regs
[index
] = value
;
863 s
->regs
[ENET_EIR
] |= ENET_INT_GRA
;
867 s
->regs
[index
] = value
;
868 s
->conf
.macaddr
.a
[0] = value
>> 24;
869 s
->conf
.macaddr
.a
[1] = value
>> 16;
870 s
->conf
.macaddr
.a
[2] = value
>> 8;
871 s
->conf
.macaddr
.a
[3] = value
;
874 s
->regs
[index
] = (value
| 0x0000ffff) & 0xffff8808;
875 s
->conf
.macaddr
.a
[4] = value
>> 24;
876 s
->conf
.macaddr
.a
[5] = value
>> 16;
879 s
->regs
[index
] = (value
& 0x0000ffff) | 0x00010000;
885 /* TODO: implement MAC hash filtering. */
889 s
->regs
[index
] = value
& 0x3;
891 s
->regs
[index
] = value
& 0x13f;
896 s
->regs
[index
] = value
& ~3;
898 s
->regs
[index
] = value
& ~7;
900 s
->rx_descriptor
= s
->regs
[index
];
904 s
->regs
[index
] = value
& ~3;
906 s
->regs
[index
] = value
& ~7;
908 s
->tx_descriptor
= s
->regs
[index
];
911 s
->regs
[index
] = value
& 0x00003ff0;
915 imx_fec_write(s
, index
, value
);
917 imx_enet_write(s
, index
, value
);
925 static int imx_eth_can_receive(NetClientState
*nc
)
927 IMXFECState
*s
= IMX_FEC(qemu_get_nic_opaque(nc
));
931 return s
->regs
[ENET_RDAR
] ? 1 : 0;
934 static ssize_t
imx_fec_receive(NetClientState
*nc
, const uint8_t *buf
,
937 IMXFECState
*s
= IMX_FEC(qemu_get_nic_opaque(nc
));
944 unsigned int buf_len
;
947 FEC_PRINTF("len %d\n", (int)size
);
949 if (!s
->regs
[ENET_RDAR
]) {
950 qemu_log_mask(LOG_GUEST_ERROR
, "[%s]%s: Unexpected packet\n",
951 TYPE_IMX_FEC
, __func__
);
955 /* 4 bytes for the CRC. */
957 crc
= cpu_to_be32(crc32(~0, buf
, size
));
958 crc_ptr
= (uint8_t *) &crc
;
960 /* Huge frames are truncated. */
961 if (size
> ENET_MAX_FRAME_SIZE
) {
962 size
= ENET_MAX_FRAME_SIZE
;
963 flags
|= ENET_BD_TR
| ENET_BD_LG
;
966 /* Frames larger than the user limit just set error flags. */
967 if (size
> (s
->regs
[ENET_RCR
] >> 16)) {
971 addr
= s
->rx_descriptor
;
973 imx_fec_read_bd(&bd
, addr
);
974 if ((bd
.flags
& ENET_BD_E
) == 0) {
975 /* No descriptors available. Bail out. */
977 * FIXME: This is wrong. We should probably either
978 * save the remainder for when more RX buffers are
979 * available, or flag an error.
981 qemu_log_mask(LOG_GUEST_ERROR
, "[%s]%s: Lost end of frame\n",
982 TYPE_IMX_FEC
, __func__
);
985 buf_len
= (size
<= s
->regs
[ENET_MRBR
]) ? size
: s
->regs
[ENET_MRBR
];
989 FEC_PRINTF("rx_bd 0x%x length %d\n", addr
, bd
.length
);
991 /* The last 4 bytes are the CRC. */
996 dma_memory_write(&address_space_memory
, buf_addr
, buf
, buf_len
);
999 dma_memory_write(&address_space_memory
, buf_addr
+ buf_len
,
1001 crc_ptr
+= 4 - size
;
1003 bd
.flags
&= ~ENET_BD_E
;
1005 /* Last buffer in frame. */
1006 bd
.flags
|= flags
| ENET_BD_L
;
1007 FEC_PRINTF("rx frame flags %04x\n", bd
.flags
);
1008 s
->regs
[ENET_EIR
] |= ENET_INT_RXF
;
1010 s
->regs
[ENET_EIR
] |= ENET_INT_RXB
;
1012 imx_fec_write_bd(&bd
, addr
);
1013 /* Advance to the next descriptor. */
1014 if ((bd
.flags
& ENET_BD_W
) != 0) {
1015 addr
= s
->regs
[ENET_RDSR
];
1020 s
->rx_descriptor
= addr
;
1021 imx_eth_enable_rx(s
);
1026 static ssize_t
imx_enet_receive(NetClientState
*nc
, const uint8_t *buf
,
1029 IMXFECState
*s
= IMX_FEC(qemu_get_nic_opaque(nc
));
1036 unsigned int buf_len
;
1039 FEC_PRINTF("len %d\n", (int)size
);
1041 if (!s
->regs
[ENET_RDAR
]) {
1042 qemu_log_mask(LOG_GUEST_ERROR
, "[%s]%s: Unexpected packet\n",
1043 TYPE_IMX_FEC
, __func__
);
1047 /* 4 bytes for the CRC. */
1049 crc
= cpu_to_be32(crc32(~0, buf
, size
));
1050 crc_ptr
= (uint8_t *) &crc
;
1052 /* Huge frames are truncted. */
1053 if (size
> ENET_MAX_FRAME_SIZE
) {
1054 size
= ENET_MAX_FRAME_SIZE
;
1055 flags
|= ENET_BD_TR
| ENET_BD_LG
;
1058 /* Frames larger than the user limit just set error flags. */
1059 if (size
> (s
->regs
[ENET_RCR
] >> 16)) {
1060 flags
|= ENET_BD_LG
;
1063 addr
= s
->rx_descriptor
;
1065 imx_enet_read_bd(&bd
, addr
);
1066 if ((bd
.flags
& ENET_BD_E
) == 0) {
1067 /* No descriptors available. Bail out. */
1069 * FIXME: This is wrong. We should probably either
1070 * save the remainder for when more RX buffers are
1071 * available, or flag an error.
1073 qemu_log_mask(LOG_GUEST_ERROR
, "[%s]%s: Lost end of frame\n",
1074 TYPE_IMX_FEC
, __func__
);
1077 buf_len
= (size
<= s
->regs
[ENET_MRBR
]) ? size
: s
->regs
[ENET_MRBR
];
1078 bd
.length
= buf_len
;
1081 FEC_PRINTF("rx_bd 0x%x length %d\n", addr
, bd
.length
);
1083 /* The last 4 bytes are the CRC. */
1085 buf_len
+= size
- 4;
1088 dma_memory_write(&address_space_memory
, buf_addr
, buf
, buf_len
);
1091 dma_memory_write(&address_space_memory
, buf_addr
+ buf_len
,
1093 crc_ptr
+= 4 - size
;
1095 bd
.flags
&= ~ENET_BD_E
;
1097 /* Last buffer in frame. */
1098 bd
.flags
|= flags
| ENET_BD_L
;
1099 FEC_PRINTF("rx frame flags %04x\n", bd
.flags
);
1100 if (bd
.option
& ENET_BD_RX_INT
) {
1101 s
->regs
[ENET_EIR
] |= ENET_INT_RXF
;
1104 if (bd
.option
& ENET_BD_RX_INT
) {
1105 s
->regs
[ENET_EIR
] |= ENET_INT_RXB
;
1108 imx_enet_write_bd(&bd
, addr
);
1109 /* Advance to the next descriptor. */
1110 if ((bd
.flags
& ENET_BD_W
) != 0) {
1111 addr
= s
->regs
[ENET_RDSR
];
1116 s
->rx_descriptor
= addr
;
1117 imx_eth_enable_rx(s
);
1122 static ssize_t
imx_eth_receive(NetClientState
*nc
, const uint8_t *buf
,
1125 IMXFECState
*s
= IMX_FEC(qemu_get_nic_opaque(nc
));
1127 if (!s
->is_fec
&& (s
->regs
[ENET_ECR
] & ENET_ECR_EN1588
)) {
1128 return imx_enet_receive(nc
, buf
, len
);
1130 return imx_fec_receive(nc
, buf
, len
);
1134 static const MemoryRegionOps imx_eth_ops
= {
1135 .read
= imx_eth_read
,
1136 .write
= imx_eth_write
,
1137 .valid
.min_access_size
= 4,
1138 .valid
.max_access_size
= 4,
1139 .endianness
= DEVICE_NATIVE_ENDIAN
,
1142 static void imx_eth_cleanup(NetClientState
*nc
)
1144 IMXFECState
*s
= IMX_FEC(qemu_get_nic_opaque(nc
));
1149 static NetClientInfo imx_eth_net_info
= {
1150 .type
= NET_CLIENT_OPTIONS_KIND_NIC
,
1151 .size
= sizeof(NICState
),
1152 .can_receive
= imx_eth_can_receive
,
1153 .receive
= imx_eth_receive
,
1154 .cleanup
= imx_eth_cleanup
,
1155 .link_status_changed
= imx_eth_set_link
,
1159 static void imx_eth_realize(DeviceState
*dev
, Error
**errp
)
1161 IMXFECState
*s
= IMX_FEC(dev
);
1162 SysBusDevice
*sbd
= SYS_BUS_DEVICE(dev
);
1164 memory_region_init_io(&s
->iomem
, OBJECT(dev
), &imx_eth_ops
, s
,
1165 TYPE_IMX_FEC
, 0x400);
1166 sysbus_init_mmio(sbd
, &s
->iomem
);
1167 sysbus_init_irq(sbd
, &s
->irq
[0]);
1168 sysbus_init_irq(sbd
, &s
->irq
[1]);
1170 qemu_macaddr_default_if_unset(&s
->conf
.macaddr
);
1172 s
->conf
.peers
.ncs
[0] = nd_table
[0].netdev
;
1174 s
->nic
= qemu_new_nic(&imx_eth_net_info
, &s
->conf
,
1175 object_get_typename(OBJECT(dev
)),
1176 DEVICE(dev
)->id
, s
);
1178 qemu_format_nic_info_str(qemu_get_queue(s
->nic
), s
->conf
.macaddr
.a
);
1181 static Property imx_eth_properties
[] = {
1182 DEFINE_NIC_PROPERTIES(IMXFECState
, conf
),
1183 DEFINE_PROP_END_OF_LIST(),
1186 static void imx_eth_class_init(ObjectClass
*klass
, void *data
)
1188 DeviceClass
*dc
= DEVICE_CLASS(klass
);
1190 dc
->vmsd
= &vmstate_imx_eth
;
1191 dc
->reset
= imx_eth_reset
;
1192 dc
->props
= imx_eth_properties
;
1193 dc
->realize
= imx_eth_realize
;
1194 dc
->desc
= "i.MX FEC/ENET Ethernet Controller";
1197 static void imx_fec_init(Object
*obj
)
1199 IMXFECState
*s
= IMX_FEC(obj
);
1204 static void imx_enet_init(Object
*obj
)
1206 IMXFECState
*s
= IMX_FEC(obj
);
1211 static const TypeInfo imx_fec_info
= {
1212 .name
= TYPE_IMX_FEC
,
1213 .parent
= TYPE_SYS_BUS_DEVICE
,
1214 .instance_size
= sizeof(IMXFECState
),
1215 .instance_init
= imx_fec_init
,
1216 .class_init
= imx_eth_class_init
,
1219 static const TypeInfo imx_enet_info
= {
1220 .name
= TYPE_IMX_ENET
,
1221 .parent
= TYPE_IMX_FEC
,
1222 .instance_init
= imx_enet_init
,
1225 static void imx_eth_register_types(void)
1227 type_register_static(&imx_fec_info
);
1228 type_register_static(&imx_enet_info
);
1231 type_init(imx_eth_register_types
)