spapr: Ensure CPU cores are added contiguously and removed in LIFO order
[qemu.git] / hw / net / allwinner_emac.c
blobd57502300c26e75fa95a5db9108544b58d8481a7
1 /*
2 * Emulation of Allwinner EMAC Fast Ethernet controller and
3 * Realtek RTL8201CP PHY
5 * Copyright (C) 2014 Beniamino Galvani <b.galvani@gmail.com>
7 * This model is based on reverse-engineering of Linux kernel driver.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
19 #include "qemu/osdep.h"
20 #include "hw/sysbus.h"
21 #include "net/net.h"
22 #include "qemu/fifo8.h"
23 #include "hw/net/allwinner_emac.h"
24 #include "qemu/log.h"
25 #include <zlib.h>
27 static uint8_t padding[60];
29 static void mii_set_link(RTL8201CPState *mii, bool link_ok)
31 if (link_ok) {
32 mii->bmsr |= MII_BMSR_LINK_ST | MII_BMSR_AN_COMP;
33 mii->anlpar |= MII_ANAR_TXFD | MII_ANAR_10FD | MII_ANAR_10 |
34 MII_ANAR_CSMACD;
35 } else {
36 mii->bmsr &= ~(MII_BMSR_LINK_ST | MII_BMSR_AN_COMP);
37 mii->anlpar = MII_ANAR_TX;
41 static void mii_reset(RTL8201CPState *mii, bool link_ok)
43 mii->bmcr = MII_BMCR_FD | MII_BMCR_AUTOEN | MII_BMCR_SPEED;
44 mii->bmsr = MII_BMSR_100TX_FD | MII_BMSR_100TX_HD | MII_BMSR_10T_FD |
45 MII_BMSR_10T_HD | MII_BMSR_MFPS | MII_BMSR_AUTONEG;
46 mii->anar = MII_ANAR_TXFD | MII_ANAR_TX | MII_ANAR_10FD | MII_ANAR_10 |
47 MII_ANAR_CSMACD;
48 mii->anlpar = MII_ANAR_TX;
50 mii_set_link(mii, link_ok);
53 static uint16_t RTL8201CP_mdio_read(AwEmacState *s, uint8_t addr, uint8_t reg)
55 RTL8201CPState *mii = &s->mii;
56 uint16_t ret = 0xffff;
58 if (addr == s->phy_addr) {
59 switch (reg) {
60 case MII_BMCR:
61 return mii->bmcr;
62 case MII_BMSR:
63 return mii->bmsr;
64 case MII_PHYID1:
65 return RTL8201CP_PHYID1;
66 case MII_PHYID2:
67 return RTL8201CP_PHYID2;
68 case MII_ANAR:
69 return mii->anar;
70 case MII_ANLPAR:
71 return mii->anlpar;
72 case MII_ANER:
73 case MII_NSR:
74 case MII_LBREMR:
75 case MII_REC:
76 case MII_SNRDR:
77 case MII_TEST:
78 qemu_log_mask(LOG_UNIMP,
79 "allwinner_emac: read from unimpl. mii reg 0x%x\n",
80 reg);
81 return 0;
82 default:
83 qemu_log_mask(LOG_GUEST_ERROR,
84 "allwinner_emac: read from invalid mii reg 0x%x\n",
85 reg);
86 return 0;
89 return ret;
92 static void RTL8201CP_mdio_write(AwEmacState *s, uint8_t addr, uint8_t reg,
93 uint16_t value)
95 RTL8201CPState *mii = &s->mii;
96 NetClientState *nc;
98 if (addr == s->phy_addr) {
99 switch (reg) {
100 case MII_BMCR:
101 if (value & MII_BMCR_RESET) {
102 nc = qemu_get_queue(s->nic);
103 mii_reset(mii, !nc->link_down);
104 } else {
105 mii->bmcr = value;
107 break;
108 case MII_ANAR:
109 mii->anar = value;
110 break;
111 case MII_BMSR:
112 case MII_PHYID1:
113 case MII_PHYID2:
114 case MII_ANLPAR:
115 case MII_ANER:
116 qemu_log_mask(LOG_GUEST_ERROR,
117 "allwinner_emac: write to read-only mii reg 0x%x\n",
118 reg);
119 break;
120 case MII_NSR:
121 case MII_LBREMR:
122 case MII_REC:
123 case MII_SNRDR:
124 case MII_TEST:
125 qemu_log_mask(LOG_UNIMP,
126 "allwinner_emac: write to unimpl. mii reg 0x%x\n",
127 reg);
128 break;
129 default:
130 qemu_log_mask(LOG_GUEST_ERROR,
131 "allwinner_emac: write to invalid mii reg 0x%x\n",
132 reg);
137 static void aw_emac_update_irq(AwEmacState *s)
139 qemu_set_irq(s->irq, (s->int_sta & s->int_ctl) != 0);
142 static void aw_emac_tx_reset(AwEmacState *s, int chan)
144 fifo8_reset(&s->tx_fifo[chan]);
145 s->tx_length[chan] = 0;
148 static void aw_emac_rx_reset(AwEmacState *s)
150 fifo8_reset(&s->rx_fifo);
151 s->rx_num_packets = 0;
152 s->rx_packet_size = 0;
153 s->rx_packet_pos = 0;
156 static void fifo8_push_word(Fifo8 *fifo, uint32_t val)
158 fifo8_push(fifo, val);
159 fifo8_push(fifo, val >> 8);
160 fifo8_push(fifo, val >> 16);
161 fifo8_push(fifo, val >> 24);
164 static uint32_t fifo8_pop_word(Fifo8 *fifo)
166 uint32_t ret;
168 ret = fifo8_pop(fifo);
169 ret |= fifo8_pop(fifo) << 8;
170 ret |= fifo8_pop(fifo) << 16;
171 ret |= fifo8_pop(fifo) << 24;
173 return ret;
176 static int aw_emac_can_receive(NetClientState *nc)
178 AwEmacState *s = qemu_get_nic_opaque(nc);
181 * To avoid packet drops, allow reception only when there is space
182 * for a full frame: 1522 + 8 (rx headers) + 2 (padding).
184 return (s->ctl & EMAC_CTL_RX_EN) && (fifo8_num_free(&s->rx_fifo) >= 1532);
187 static ssize_t aw_emac_receive(NetClientState *nc, const uint8_t *buf,
188 size_t size)
190 AwEmacState *s = qemu_get_nic_opaque(nc);
191 Fifo8 *fifo = &s->rx_fifo;
192 size_t padded_size, total_size;
193 uint32_t crc;
195 padded_size = size > 60 ? size : 60;
196 total_size = QEMU_ALIGN_UP(RX_HDR_SIZE + padded_size + CRC_SIZE, 4);
198 if (!(s->ctl & EMAC_CTL_RX_EN) || (fifo8_num_free(fifo) < total_size)) {
199 return -1;
202 fifo8_push_word(fifo, EMAC_UNDOCUMENTED_MAGIC);
203 fifo8_push_word(fifo, EMAC_RX_HEADER(padded_size + CRC_SIZE,
204 EMAC_RX_IO_DATA_STATUS_OK));
205 fifo8_push_all(fifo, buf, size);
206 crc = crc32(~0, buf, size);
208 if (padded_size != size) {
209 fifo8_push_all(fifo, padding, padded_size - size);
210 crc = crc32(crc, padding, padded_size - size);
213 fifo8_push_word(fifo, crc);
214 fifo8_push_all(fifo, padding, QEMU_ALIGN_UP(padded_size, 4) - padded_size);
215 s->rx_num_packets++;
217 s->int_sta |= EMAC_INT_RX;
218 aw_emac_update_irq(s);
220 return size;
223 static void aw_emac_reset(DeviceState *dev)
225 AwEmacState *s = AW_EMAC(dev);
226 NetClientState *nc = qemu_get_queue(s->nic);
228 s->ctl = 0;
229 s->tx_mode = 0;
230 s->int_ctl = 0;
231 s->int_sta = 0;
232 s->tx_channel = 0;
233 s->phy_target = 0;
235 aw_emac_tx_reset(s, 0);
236 aw_emac_tx_reset(s, 1);
237 aw_emac_rx_reset(s);
239 mii_reset(&s->mii, !nc->link_down);
242 static uint64_t aw_emac_read(void *opaque, hwaddr offset, unsigned size)
244 AwEmacState *s = opaque;
245 Fifo8 *fifo = &s->rx_fifo;
246 NetClientState *nc;
247 uint64_t ret;
249 switch (offset) {
250 case EMAC_CTL_REG:
251 return s->ctl;
252 case EMAC_TX_MODE_REG:
253 return s->tx_mode;
254 case EMAC_TX_INS_REG:
255 return s->tx_channel;
256 case EMAC_RX_CTL_REG:
257 return s->rx_ctl;
258 case EMAC_RX_IO_DATA_REG:
259 if (!s->rx_num_packets) {
260 qemu_log_mask(LOG_GUEST_ERROR,
261 "Read IO data register when no packet available");
262 return 0;
265 ret = fifo8_pop_word(fifo);
267 switch (s->rx_packet_pos) {
268 case 0: /* Word is magic header */
269 s->rx_packet_pos += 4;
270 break;
271 case 4: /* Word is rx info header */
272 s->rx_packet_pos += 4;
273 s->rx_packet_size = QEMU_ALIGN_UP(extract32(ret, 0, 16), 4);
274 break;
275 default: /* Word is packet data */
276 s->rx_packet_pos += 4;
277 s->rx_packet_size -= 4;
279 if (!s->rx_packet_size) {
280 s->rx_packet_pos = 0;
281 s->rx_num_packets--;
282 nc = qemu_get_queue(s->nic);
283 if (aw_emac_can_receive(nc)) {
284 qemu_flush_queued_packets(nc);
288 return ret;
289 case EMAC_RX_FBC_REG:
290 return s->rx_num_packets;
291 case EMAC_INT_CTL_REG:
292 return s->int_ctl;
293 case EMAC_INT_STA_REG:
294 return s->int_sta;
295 case EMAC_MAC_MRDD_REG:
296 return RTL8201CP_mdio_read(s,
297 extract32(s->phy_target, PHY_ADDR_SHIFT, 8),
298 extract32(s->phy_target, PHY_REG_SHIFT, 8));
299 default:
300 qemu_log_mask(LOG_UNIMP,
301 "allwinner_emac: read access to unknown register 0x"
302 TARGET_FMT_plx "\n", offset);
303 ret = 0;
306 return ret;
309 static void aw_emac_write(void *opaque, hwaddr offset, uint64_t value,
310 unsigned size)
312 AwEmacState *s = opaque;
313 Fifo8 *fifo;
314 NetClientState *nc = qemu_get_queue(s->nic);
315 int chan;
317 switch (offset) {
318 case EMAC_CTL_REG:
319 if (value & EMAC_CTL_RESET) {
320 aw_emac_reset(DEVICE(s));
321 value &= ~EMAC_CTL_RESET;
323 s->ctl = value;
324 if (aw_emac_can_receive(nc)) {
325 qemu_flush_queued_packets(nc);
327 break;
328 case EMAC_TX_MODE_REG:
329 s->tx_mode = value;
330 break;
331 case EMAC_TX_CTL0_REG:
332 case EMAC_TX_CTL1_REG:
333 chan = (offset == EMAC_TX_CTL0_REG ? 0 : 1);
334 if ((value & 1) && (s->ctl & EMAC_CTL_TX_EN)) {
335 uint32_t len, ret;
336 const uint8_t *data;
338 fifo = &s->tx_fifo[chan];
339 len = s->tx_length[chan];
341 if (len > fifo8_num_used(fifo)) {
342 len = fifo8_num_used(fifo);
343 qemu_log_mask(LOG_GUEST_ERROR,
344 "allwinner_emac: TX length > fifo data length\n");
346 if (len > 0) {
347 data = fifo8_pop_buf(fifo, len, &ret);
348 qemu_send_packet(nc, data, ret);
349 aw_emac_tx_reset(s, chan);
350 /* Raise TX interrupt */
351 s->int_sta |= EMAC_INT_TX_CHAN(chan);
352 aw_emac_update_irq(s);
355 break;
356 case EMAC_TX_INS_REG:
357 s->tx_channel = value < NUM_TX_FIFOS ? value : 0;
358 break;
359 case EMAC_TX_PL0_REG:
360 case EMAC_TX_PL1_REG:
361 chan = (offset == EMAC_TX_PL0_REG ? 0 : 1);
362 if (value > TX_FIFO_SIZE) {
363 qemu_log_mask(LOG_GUEST_ERROR,
364 "allwinner_emac: invalid TX frame length %d\n",
365 (int)value);
366 value = TX_FIFO_SIZE;
368 s->tx_length[chan] = value;
369 break;
370 case EMAC_TX_IO_DATA_REG:
371 fifo = &s->tx_fifo[s->tx_channel];
372 if (fifo8_num_free(fifo) < 4) {
373 qemu_log_mask(LOG_GUEST_ERROR,
374 "allwinner_emac: TX data overruns fifo\n");
375 break;
377 fifo8_push_word(fifo, value);
378 break;
379 case EMAC_RX_CTL_REG:
380 s->rx_ctl = value;
381 break;
382 case EMAC_RX_FBC_REG:
383 if (value == 0) {
384 aw_emac_rx_reset(s);
386 break;
387 case EMAC_INT_CTL_REG:
388 s->int_ctl = value;
389 aw_emac_update_irq(s);
390 break;
391 case EMAC_INT_STA_REG:
392 s->int_sta &= ~value;
393 aw_emac_update_irq(s);
394 break;
395 case EMAC_MAC_MADR_REG:
396 s->phy_target = value;
397 break;
398 case EMAC_MAC_MWTD_REG:
399 RTL8201CP_mdio_write(s, extract32(s->phy_target, PHY_ADDR_SHIFT, 8),
400 extract32(s->phy_target, PHY_REG_SHIFT, 8), value);
401 break;
402 default:
403 qemu_log_mask(LOG_UNIMP,
404 "allwinner_emac: write access to unknown register 0x"
405 TARGET_FMT_plx "\n", offset);
409 static void aw_emac_set_link(NetClientState *nc)
411 AwEmacState *s = qemu_get_nic_opaque(nc);
413 mii_set_link(&s->mii, !nc->link_down);
416 static const MemoryRegionOps aw_emac_mem_ops = {
417 .read = aw_emac_read,
418 .write = aw_emac_write,
419 .endianness = DEVICE_NATIVE_ENDIAN,
420 .valid = {
421 .min_access_size = 4,
422 .max_access_size = 4,
426 static NetClientInfo net_aw_emac_info = {
427 .type = NET_CLIENT_OPTIONS_KIND_NIC,
428 .size = sizeof(NICState),
429 .can_receive = aw_emac_can_receive,
430 .receive = aw_emac_receive,
431 .link_status_changed = aw_emac_set_link,
434 static void aw_emac_init(Object *obj)
436 SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
437 AwEmacState *s = AW_EMAC(obj);
439 memory_region_init_io(&s->iomem, OBJECT(s), &aw_emac_mem_ops, s,
440 "aw_emac", 0x1000);
441 sysbus_init_mmio(sbd, &s->iomem);
442 sysbus_init_irq(sbd, &s->irq);
445 static void aw_emac_realize(DeviceState *dev, Error **errp)
447 AwEmacState *s = AW_EMAC(dev);
449 qemu_macaddr_default_if_unset(&s->conf.macaddr);
450 s->nic = qemu_new_nic(&net_aw_emac_info, &s->conf,
451 object_get_typename(OBJECT(dev)), dev->id, s);
452 qemu_format_nic_info_str(qemu_get_queue(s->nic), s->conf.macaddr.a);
454 fifo8_create(&s->rx_fifo, RX_FIFO_SIZE);
455 fifo8_create(&s->tx_fifo[0], TX_FIFO_SIZE);
456 fifo8_create(&s->tx_fifo[1], TX_FIFO_SIZE);
459 static Property aw_emac_properties[] = {
460 DEFINE_NIC_PROPERTIES(AwEmacState, conf),
461 DEFINE_PROP_UINT8("phy-addr", AwEmacState, phy_addr, 0),
462 DEFINE_PROP_END_OF_LIST(),
465 static const VMStateDescription vmstate_mii = {
466 .name = "rtl8201cp",
467 .version_id = 1,
468 .minimum_version_id = 1,
469 .fields = (VMStateField[]) {
470 VMSTATE_UINT16(bmcr, RTL8201CPState),
471 VMSTATE_UINT16(bmsr, RTL8201CPState),
472 VMSTATE_UINT16(anar, RTL8201CPState),
473 VMSTATE_UINT16(anlpar, RTL8201CPState),
474 VMSTATE_END_OF_LIST()
478 static int aw_emac_post_load(void *opaque, int version_id)
480 AwEmacState *s = opaque;
482 aw_emac_set_link(qemu_get_queue(s->nic));
484 return 0;
487 static const VMStateDescription vmstate_aw_emac = {
488 .name = "allwinner_emac",
489 .version_id = 1,
490 .minimum_version_id = 1,
491 .post_load = aw_emac_post_load,
492 .fields = (VMStateField[]) {
493 VMSTATE_STRUCT(mii, AwEmacState, 1, vmstate_mii, RTL8201CPState),
494 VMSTATE_UINT32(ctl, AwEmacState),
495 VMSTATE_UINT32(tx_mode, AwEmacState),
496 VMSTATE_UINT32(rx_ctl, AwEmacState),
497 VMSTATE_UINT32(int_ctl, AwEmacState),
498 VMSTATE_UINT32(int_sta, AwEmacState),
499 VMSTATE_UINT32(phy_target, AwEmacState),
500 VMSTATE_FIFO8(rx_fifo, AwEmacState),
501 VMSTATE_UINT32(rx_num_packets, AwEmacState),
502 VMSTATE_UINT32(rx_packet_size, AwEmacState),
503 VMSTATE_UINT32(rx_packet_pos, AwEmacState),
504 VMSTATE_STRUCT_ARRAY(tx_fifo, AwEmacState, NUM_TX_FIFOS, 1,
505 vmstate_fifo8, Fifo8),
506 VMSTATE_UINT32_ARRAY(tx_length, AwEmacState, NUM_TX_FIFOS),
507 VMSTATE_UINT32(tx_channel, AwEmacState),
508 VMSTATE_END_OF_LIST()
512 static void aw_emac_class_init(ObjectClass *klass, void *data)
514 DeviceClass *dc = DEVICE_CLASS(klass);
516 dc->realize = aw_emac_realize;
517 dc->props = aw_emac_properties;
518 dc->reset = aw_emac_reset;
519 dc->vmsd = &vmstate_aw_emac;
522 static const TypeInfo aw_emac_info = {
523 .name = TYPE_AW_EMAC,
524 .parent = TYPE_SYS_BUS_DEVICE,
525 .instance_size = sizeof(AwEmacState),
526 .instance_init = aw_emac_init,
527 .class_init = aw_emac_class_init,
530 static void aw_emac_register_types(void)
532 type_register_static(&aw_emac_info);
535 type_init(aw_emac_register_types)