target/arm: Don't switch to target stack early in v7M exception return
[qemu.git] / target / arm / helper.c
blob7548d4c6ec5abfbcc1a920211eb697133e41f206
1 #include "qemu/osdep.h"
2 #include "trace.h"
3 #include "cpu.h"
4 #include "internals.h"
5 #include "exec/gdbstub.h"
6 #include "exec/helper-proto.h"
7 #include "qemu/host-utils.h"
8 #include "sysemu/arch_init.h"
9 #include "sysemu/sysemu.h"
10 #include "qemu/bitops.h"
11 #include "qemu/crc32c.h"
12 #include "exec/exec-all.h"
13 #include "exec/cpu_ldst.h"
14 #include "arm_ldst.h"
15 #include <zlib.h> /* For crc32 */
16 #include "exec/semihost.h"
17 #include "sysemu/kvm.h"
19 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
21 #ifndef CONFIG_USER_ONLY
22 static bool get_phys_addr(CPUARMState *env, target_ulong address,
23 MMUAccessType access_type, ARMMMUIdx mmu_idx,
24 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
25 target_ulong *page_size, uint32_t *fsr,
26 ARMMMUFaultInfo *fi);
28 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
29 MMUAccessType access_type, ARMMMUIdx mmu_idx,
30 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
31 target_ulong *page_size_ptr, uint32_t *fsr,
32 ARMMMUFaultInfo *fi);
34 /* Definitions for the PMCCNTR and PMCR registers */
35 #define PMCRD 0x8
36 #define PMCRC 0x4
37 #define PMCRE 0x1
38 #endif
40 static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
42 int nregs;
44 /* VFP data registers are always little-endian. */
45 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
46 if (reg < nregs) {
47 stfq_le_p(buf, env->vfp.regs[reg]);
48 return 8;
50 if (arm_feature(env, ARM_FEATURE_NEON)) {
51 /* Aliases for Q regs. */
52 nregs += 16;
53 if (reg < nregs) {
54 stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]);
55 stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]);
56 return 16;
59 switch (reg - nregs) {
60 case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
61 case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4;
62 case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
64 return 0;
67 static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
69 int nregs;
71 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
72 if (reg < nregs) {
73 env->vfp.regs[reg] = ldfq_le_p(buf);
74 return 8;
76 if (arm_feature(env, ARM_FEATURE_NEON)) {
77 nregs += 16;
78 if (reg < nregs) {
79 env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf);
80 env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8);
81 return 16;
84 switch (reg - nregs) {
85 case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
86 case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4;
87 case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
89 return 0;
92 static int aarch64_fpu_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
94 switch (reg) {
95 case 0 ... 31:
96 /* 128 bit FP register */
97 stfq_le_p(buf, env->vfp.regs[reg * 2]);
98 stfq_le_p(buf + 8, env->vfp.regs[reg * 2 + 1]);
99 return 16;
100 case 32:
101 /* FPSR */
102 stl_p(buf, vfp_get_fpsr(env));
103 return 4;
104 case 33:
105 /* FPCR */
106 stl_p(buf, vfp_get_fpcr(env));
107 return 4;
108 default:
109 return 0;
113 static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
115 switch (reg) {
116 case 0 ... 31:
117 /* 128 bit FP register */
118 env->vfp.regs[reg * 2] = ldfq_le_p(buf);
119 env->vfp.regs[reg * 2 + 1] = ldfq_le_p(buf + 8);
120 return 16;
121 case 32:
122 /* FPSR */
123 vfp_set_fpsr(env, ldl_p(buf));
124 return 4;
125 case 33:
126 /* FPCR */
127 vfp_set_fpcr(env, ldl_p(buf));
128 return 4;
129 default:
130 return 0;
134 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
136 assert(ri->fieldoffset);
137 if (cpreg_field_is_64bit(ri)) {
138 return CPREG_FIELD64(env, ri);
139 } else {
140 return CPREG_FIELD32(env, ri);
144 static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
145 uint64_t value)
147 assert(ri->fieldoffset);
148 if (cpreg_field_is_64bit(ri)) {
149 CPREG_FIELD64(env, ri) = value;
150 } else {
151 CPREG_FIELD32(env, ri) = value;
155 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
157 return (char *)env + ri->fieldoffset;
160 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
162 /* Raw read of a coprocessor register (as needed for migration, etc). */
163 if (ri->type & ARM_CP_CONST) {
164 return ri->resetvalue;
165 } else if (ri->raw_readfn) {
166 return ri->raw_readfn(env, ri);
167 } else if (ri->readfn) {
168 return ri->readfn(env, ri);
169 } else {
170 return raw_read(env, ri);
174 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
175 uint64_t v)
177 /* Raw write of a coprocessor register (as needed for migration, etc).
178 * Note that constant registers are treated as write-ignored; the
179 * caller should check for success by whether a readback gives the
180 * value written.
182 if (ri->type & ARM_CP_CONST) {
183 return;
184 } else if (ri->raw_writefn) {
185 ri->raw_writefn(env, ri, v);
186 } else if (ri->writefn) {
187 ri->writefn(env, ri, v);
188 } else {
189 raw_write(env, ri, v);
193 static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
195 /* Return true if the regdef would cause an assertion if you called
196 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
197 * program bug for it not to have the NO_RAW flag).
198 * NB that returning false here doesn't necessarily mean that calling
199 * read/write_raw_cp_reg() is safe, because we can't distinguish "has
200 * read/write access functions which are safe for raw use" from "has
201 * read/write access functions which have side effects but has forgotten
202 * to provide raw access functions".
203 * The tests here line up with the conditions in read/write_raw_cp_reg()
204 * and assertions in raw_read()/raw_write().
206 if ((ri->type & ARM_CP_CONST) ||
207 ri->fieldoffset ||
208 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
209 return false;
211 return true;
214 bool write_cpustate_to_list(ARMCPU *cpu)
216 /* Write the coprocessor state from cpu->env to the (index,value) list. */
217 int i;
218 bool ok = true;
220 for (i = 0; i < cpu->cpreg_array_len; i++) {
221 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
222 const ARMCPRegInfo *ri;
224 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
225 if (!ri) {
226 ok = false;
227 continue;
229 if (ri->type & ARM_CP_NO_RAW) {
230 continue;
232 cpu->cpreg_values[i] = read_raw_cp_reg(&cpu->env, ri);
234 return ok;
237 bool write_list_to_cpustate(ARMCPU *cpu)
239 int i;
240 bool ok = true;
242 for (i = 0; i < cpu->cpreg_array_len; i++) {
243 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
244 uint64_t v = cpu->cpreg_values[i];
245 const ARMCPRegInfo *ri;
247 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
248 if (!ri) {
249 ok = false;
250 continue;
252 if (ri->type & ARM_CP_NO_RAW) {
253 continue;
255 /* Write value and confirm it reads back as written
256 * (to catch read-only registers and partially read-only
257 * registers where the incoming migration value doesn't match)
259 write_raw_cp_reg(&cpu->env, ri, v);
260 if (read_raw_cp_reg(&cpu->env, ri) != v) {
261 ok = false;
264 return ok;
267 static void add_cpreg_to_list(gpointer key, gpointer opaque)
269 ARMCPU *cpu = opaque;
270 uint64_t regidx;
271 const ARMCPRegInfo *ri;
273 regidx = *(uint32_t *)key;
274 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
276 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
277 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
278 /* The value array need not be initialized at this point */
279 cpu->cpreg_array_len++;
283 static void count_cpreg(gpointer key, gpointer opaque)
285 ARMCPU *cpu = opaque;
286 uint64_t regidx;
287 const ARMCPRegInfo *ri;
289 regidx = *(uint32_t *)key;
290 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
292 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
293 cpu->cpreg_array_len++;
297 static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
299 uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a);
300 uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b);
302 if (aidx > bidx) {
303 return 1;
305 if (aidx < bidx) {
306 return -1;
308 return 0;
311 void init_cpreg_list(ARMCPU *cpu)
313 /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
314 * Note that we require cpreg_tuples[] to be sorted by key ID.
316 GList *keys;
317 int arraylen;
319 keys = g_hash_table_get_keys(cpu->cp_regs);
320 keys = g_list_sort(keys, cpreg_key_compare);
322 cpu->cpreg_array_len = 0;
324 g_list_foreach(keys, count_cpreg, cpu);
326 arraylen = cpu->cpreg_array_len;
327 cpu->cpreg_indexes = g_new(uint64_t, arraylen);
328 cpu->cpreg_values = g_new(uint64_t, arraylen);
329 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
330 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
331 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
332 cpu->cpreg_array_len = 0;
334 g_list_foreach(keys, add_cpreg_to_list, cpu);
336 assert(cpu->cpreg_array_len == arraylen);
338 g_list_free(keys);
342 * Some registers are not accessible if EL3.NS=0 and EL3 is using AArch32 but
343 * they are accessible when EL3 is using AArch64 regardless of EL3.NS.
345 * access_el3_aa32ns: Used to check AArch32 register views.
346 * access_el3_aa32ns_aa64any: Used to check both AArch32/64 register views.
348 static CPAccessResult access_el3_aa32ns(CPUARMState *env,
349 const ARMCPRegInfo *ri,
350 bool isread)
352 bool secure = arm_is_secure_below_el3(env);
354 assert(!arm_el_is_aa64(env, 3));
355 if (secure) {
356 return CP_ACCESS_TRAP_UNCATEGORIZED;
358 return CP_ACCESS_OK;
361 static CPAccessResult access_el3_aa32ns_aa64any(CPUARMState *env,
362 const ARMCPRegInfo *ri,
363 bool isread)
365 if (!arm_el_is_aa64(env, 3)) {
366 return access_el3_aa32ns(env, ri, isread);
368 return CP_ACCESS_OK;
371 /* Some secure-only AArch32 registers trap to EL3 if used from
372 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts).
373 * Note that an access from Secure EL1 can only happen if EL3 is AArch64.
374 * We assume that the .access field is set to PL1_RW.
376 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env,
377 const ARMCPRegInfo *ri,
378 bool isread)
380 if (arm_current_el(env) == 3) {
381 return CP_ACCESS_OK;
383 if (arm_is_secure_below_el3(env)) {
384 return CP_ACCESS_TRAP_EL3;
386 /* This will be EL1 NS and EL2 NS, which just UNDEF */
387 return CP_ACCESS_TRAP_UNCATEGORIZED;
390 /* Check for traps to "powerdown debug" registers, which are controlled
391 * by MDCR.TDOSA
393 static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri,
394 bool isread)
396 int el = arm_current_el(env);
398 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDOSA)
399 && !arm_is_secure_below_el3(env)) {
400 return CP_ACCESS_TRAP_EL2;
402 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) {
403 return CP_ACCESS_TRAP_EL3;
405 return CP_ACCESS_OK;
408 /* Check for traps to "debug ROM" registers, which are controlled
409 * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3.
411 static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri,
412 bool isread)
414 int el = arm_current_el(env);
416 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDRA)
417 && !arm_is_secure_below_el3(env)) {
418 return CP_ACCESS_TRAP_EL2;
420 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
421 return CP_ACCESS_TRAP_EL3;
423 return CP_ACCESS_OK;
426 /* Check for traps to general debug registers, which are controlled
427 * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3.
429 static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri,
430 bool isread)
432 int el = arm_current_el(env);
434 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDA)
435 && !arm_is_secure_below_el3(env)) {
436 return CP_ACCESS_TRAP_EL2;
438 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
439 return CP_ACCESS_TRAP_EL3;
441 return CP_ACCESS_OK;
444 /* Check for traps to performance monitor registers, which are controlled
445 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3.
447 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri,
448 bool isread)
450 int el = arm_current_el(env);
452 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
453 && !arm_is_secure_below_el3(env)) {
454 return CP_ACCESS_TRAP_EL2;
456 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
457 return CP_ACCESS_TRAP_EL3;
459 return CP_ACCESS_OK;
462 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
464 ARMCPU *cpu = arm_env_get_cpu(env);
466 raw_write(env, ri, value);
467 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */
470 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
472 ARMCPU *cpu = arm_env_get_cpu(env);
474 if (raw_read(env, ri) != value) {
475 /* Unlike real hardware the qemu TLB uses virtual addresses,
476 * not modified virtual addresses, so this causes a TLB flush.
478 tlb_flush(CPU(cpu));
479 raw_write(env, ri, value);
483 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
484 uint64_t value)
486 ARMCPU *cpu = arm_env_get_cpu(env);
488 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA)
489 && !extended_addresses_enabled(env)) {
490 /* For VMSA (when not using the LPAE long descriptor page table
491 * format) this register includes the ASID, so do a TLB flush.
492 * For PMSA it is purely a process ID and no action is needed.
494 tlb_flush(CPU(cpu));
496 raw_write(env, ri, value);
499 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
500 uint64_t value)
502 /* Invalidate all (TLBIALL) */
503 ARMCPU *cpu = arm_env_get_cpu(env);
505 tlb_flush(CPU(cpu));
508 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
509 uint64_t value)
511 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
512 ARMCPU *cpu = arm_env_get_cpu(env);
514 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
517 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
518 uint64_t value)
520 /* Invalidate by ASID (TLBIASID) */
521 ARMCPU *cpu = arm_env_get_cpu(env);
523 tlb_flush(CPU(cpu));
526 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
527 uint64_t value)
529 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
530 ARMCPU *cpu = arm_env_get_cpu(env);
532 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
535 /* IS variants of TLB operations must affect all cores */
536 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
537 uint64_t value)
539 CPUState *cs = ENV_GET_CPU(env);
541 tlb_flush_all_cpus_synced(cs);
544 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
545 uint64_t value)
547 CPUState *cs = ENV_GET_CPU(env);
549 tlb_flush_all_cpus_synced(cs);
552 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
553 uint64_t value)
555 CPUState *cs = ENV_GET_CPU(env);
557 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
560 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
561 uint64_t value)
563 CPUState *cs = ENV_GET_CPU(env);
565 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
568 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri,
569 uint64_t value)
571 CPUState *cs = ENV_GET_CPU(env);
573 tlb_flush_by_mmuidx(cs,
574 ARMMMUIdxBit_S12NSE1 |
575 ARMMMUIdxBit_S12NSE0 |
576 ARMMMUIdxBit_S2NS);
579 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
580 uint64_t value)
582 CPUState *cs = ENV_GET_CPU(env);
584 tlb_flush_by_mmuidx_all_cpus_synced(cs,
585 ARMMMUIdxBit_S12NSE1 |
586 ARMMMUIdxBit_S12NSE0 |
587 ARMMMUIdxBit_S2NS);
590 static void tlbiipas2_write(CPUARMState *env, const ARMCPRegInfo *ri,
591 uint64_t value)
593 /* Invalidate by IPA. This has to invalidate any structures that
594 * contain only stage 2 translation information, but does not need
595 * to apply to structures that contain combined stage 1 and stage 2
596 * translation information.
597 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
599 CPUState *cs = ENV_GET_CPU(env);
600 uint64_t pageaddr;
602 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
603 return;
606 pageaddr = sextract64(value << 12, 0, 40);
608 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS);
611 static void tlbiipas2_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
612 uint64_t value)
614 CPUState *cs = ENV_GET_CPU(env);
615 uint64_t pageaddr;
617 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
618 return;
621 pageaddr = sextract64(value << 12, 0, 40);
623 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
624 ARMMMUIdxBit_S2NS);
627 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
628 uint64_t value)
630 CPUState *cs = ENV_GET_CPU(env);
632 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2);
635 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
636 uint64_t value)
638 CPUState *cs = ENV_GET_CPU(env);
640 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2);
643 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
644 uint64_t value)
646 CPUState *cs = ENV_GET_CPU(env);
647 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
649 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2);
652 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
653 uint64_t value)
655 CPUState *cs = ENV_GET_CPU(env);
656 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
658 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
659 ARMMMUIdxBit_S1E2);
662 static const ARMCPRegInfo cp_reginfo[] = {
663 /* Define the secure and non-secure FCSE identifier CP registers
664 * separately because there is no secure bank in V8 (no _EL3). This allows
665 * the secure register to be properly reset and migrated. There is also no
666 * v8 EL1 version of the register so the non-secure instance stands alone.
668 { .name = "FCSEIDR(NS)",
669 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
670 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
671 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
672 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
673 { .name = "FCSEIDR(S)",
674 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
675 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
676 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
677 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
678 /* Define the secure and non-secure context identifier CP registers
679 * separately because there is no secure bank in V8 (no _EL3). This allows
680 * the secure register to be properly reset and migrated. In the
681 * non-secure case, the 32-bit register will have reset and migration
682 * disabled during registration as it is handled by the 64-bit instance.
684 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
685 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
686 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
687 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
688 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
689 { .name = "CONTEXTIDR(S)", .state = ARM_CP_STATE_AA32,
690 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
691 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
692 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
693 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
694 REGINFO_SENTINEL
697 static const ARMCPRegInfo not_v8_cp_reginfo[] = {
698 /* NB: Some of these registers exist in v8 but with more precise
699 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
701 /* MMU Domain access control / MPU write buffer control */
702 { .name = "DACR",
703 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
704 .access = PL1_RW, .resetvalue = 0,
705 .writefn = dacr_write, .raw_writefn = raw_write,
706 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
707 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
708 /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
709 * For v6 and v5, these mappings are overly broad.
711 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
712 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
713 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
714 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
715 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
716 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
717 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
718 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
719 /* Cache maintenance ops; some of this space may be overridden later. */
720 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
721 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
722 .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
723 REGINFO_SENTINEL
726 static const ARMCPRegInfo not_v6_cp_reginfo[] = {
727 /* Not all pre-v6 cores implemented this WFI, so this is slightly
728 * over-broad.
730 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
731 .access = PL1_W, .type = ARM_CP_WFI },
732 REGINFO_SENTINEL
735 static const ARMCPRegInfo not_v7_cp_reginfo[] = {
736 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
737 * is UNPREDICTABLE; we choose to NOP as most implementations do).
739 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
740 .access = PL1_W, .type = ARM_CP_WFI },
741 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
742 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
743 * OMAPCP will override this space.
745 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
746 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
747 .resetvalue = 0 },
748 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
749 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
750 .resetvalue = 0 },
751 /* v6 doesn't have the cache ID registers but Linux reads them anyway */
752 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
753 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
754 .resetvalue = 0 },
755 /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
756 * implementing it as RAZ means the "debug architecture version" bits
757 * will read as a reserved value, which should cause Linux to not try
758 * to use the debug hardware.
760 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
761 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
762 /* MMU TLB control. Note that the wildcarding means we cover not just
763 * the unified TLB ops but also the dside/iside/inner-shareable variants.
765 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
766 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
767 .type = ARM_CP_NO_RAW },
768 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
769 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
770 .type = ARM_CP_NO_RAW },
771 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
772 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
773 .type = ARM_CP_NO_RAW },
774 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
775 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
776 .type = ARM_CP_NO_RAW },
777 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
778 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
779 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
780 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
781 REGINFO_SENTINEL
784 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
785 uint64_t value)
787 uint32_t mask = 0;
789 /* In ARMv8 most bits of CPACR_EL1 are RES0. */
790 if (!arm_feature(env, ARM_FEATURE_V8)) {
791 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
792 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
793 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
795 if (arm_feature(env, ARM_FEATURE_VFP)) {
796 /* VFP coprocessor: cp10 & cp11 [23:20] */
797 mask |= (1 << 31) | (1 << 30) | (0xf << 20);
799 if (!arm_feature(env, ARM_FEATURE_NEON)) {
800 /* ASEDIS [31] bit is RAO/WI */
801 value |= (1 << 31);
804 /* VFPv3 and upwards with NEON implement 32 double precision
805 * registers (D0-D31).
807 if (!arm_feature(env, ARM_FEATURE_NEON) ||
808 !arm_feature(env, ARM_FEATURE_VFP3)) {
809 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
810 value |= (1 << 30);
813 value &= mask;
815 env->cp15.cpacr_el1 = value;
818 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
819 bool isread)
821 if (arm_feature(env, ARM_FEATURE_V8)) {
822 /* Check if CPACR accesses are to be trapped to EL2 */
823 if (arm_current_el(env) == 1 &&
824 (env->cp15.cptr_el[2] & CPTR_TCPAC) && !arm_is_secure(env)) {
825 return CP_ACCESS_TRAP_EL2;
826 /* Check if CPACR accesses are to be trapped to EL3 */
827 } else if (arm_current_el(env) < 3 &&
828 (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
829 return CP_ACCESS_TRAP_EL3;
833 return CP_ACCESS_OK;
836 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri,
837 bool isread)
839 /* Check if CPTR accesses are set to trap to EL3 */
840 if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
841 return CP_ACCESS_TRAP_EL3;
844 return CP_ACCESS_OK;
847 static const ARMCPRegInfo v6_cp_reginfo[] = {
848 /* prefetch by MVA in v6, NOP in v7 */
849 { .name = "MVA_prefetch",
850 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
851 .access = PL1_W, .type = ARM_CP_NOP },
852 /* We need to break the TB after ISB to execute self-modifying code
853 * correctly and also to take any pending interrupts immediately.
854 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
856 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
857 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore },
858 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
859 .access = PL0_W, .type = ARM_CP_NOP },
860 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
861 .access = PL0_W, .type = ARM_CP_NOP },
862 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
863 .access = PL1_RW,
864 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
865 offsetof(CPUARMState, cp15.ifar_ns) },
866 .resetvalue = 0, },
867 /* Watchpoint Fault Address Register : should actually only be present
868 * for 1136, 1176, 11MPCore.
870 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
871 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
872 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
873 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
874 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
875 .resetvalue = 0, .writefn = cpacr_write },
876 REGINFO_SENTINEL
879 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri,
880 bool isread)
882 /* Performance monitor registers user accessibility is controlled
883 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable
884 * trapping to EL2 or EL3 for other accesses.
886 int el = arm_current_el(env);
888 if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) {
889 return CP_ACCESS_TRAP;
891 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
892 && !arm_is_secure_below_el3(env)) {
893 return CP_ACCESS_TRAP_EL2;
895 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
896 return CP_ACCESS_TRAP_EL3;
899 return CP_ACCESS_OK;
902 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env,
903 const ARMCPRegInfo *ri,
904 bool isread)
906 /* ER: event counter read trap control */
907 if (arm_feature(env, ARM_FEATURE_V8)
908 && arm_current_el(env) == 0
909 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0
910 && isread) {
911 return CP_ACCESS_OK;
914 return pmreg_access(env, ri, isread);
917 static CPAccessResult pmreg_access_swinc(CPUARMState *env,
918 const ARMCPRegInfo *ri,
919 bool isread)
921 /* SW: software increment write trap control */
922 if (arm_feature(env, ARM_FEATURE_V8)
923 && arm_current_el(env) == 0
924 && (env->cp15.c9_pmuserenr & (1 << 1)) != 0
925 && !isread) {
926 return CP_ACCESS_OK;
929 return pmreg_access(env, ri, isread);
932 #ifndef CONFIG_USER_ONLY
934 static CPAccessResult pmreg_access_selr(CPUARMState *env,
935 const ARMCPRegInfo *ri,
936 bool isread)
938 /* ER: event counter read trap control */
939 if (arm_feature(env, ARM_FEATURE_V8)
940 && arm_current_el(env) == 0
941 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) {
942 return CP_ACCESS_OK;
945 return pmreg_access(env, ri, isread);
948 static CPAccessResult pmreg_access_ccntr(CPUARMState *env,
949 const ARMCPRegInfo *ri,
950 bool isread)
952 /* CR: cycle counter read trap control */
953 if (arm_feature(env, ARM_FEATURE_V8)
954 && arm_current_el(env) == 0
955 && (env->cp15.c9_pmuserenr & (1 << 2)) != 0
956 && isread) {
957 return CP_ACCESS_OK;
960 return pmreg_access(env, ri, isread);
963 static inline bool arm_ccnt_enabled(CPUARMState *env)
965 /* This does not support checking PMCCFILTR_EL0 register */
967 if (!(env->cp15.c9_pmcr & PMCRE)) {
968 return false;
971 return true;
974 void pmccntr_sync(CPUARMState *env)
976 uint64_t temp_ticks;
978 temp_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
979 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
981 if (env->cp15.c9_pmcr & PMCRD) {
982 /* Increment once every 64 processor clock cycles */
983 temp_ticks /= 64;
986 if (arm_ccnt_enabled(env)) {
987 env->cp15.c15_ccnt = temp_ticks - env->cp15.c15_ccnt;
991 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
992 uint64_t value)
994 pmccntr_sync(env);
996 if (value & PMCRC) {
997 /* The counter has been reset */
998 env->cp15.c15_ccnt = 0;
1001 /* only the DP, X, D and E bits are writable */
1002 env->cp15.c9_pmcr &= ~0x39;
1003 env->cp15.c9_pmcr |= (value & 0x39);
1005 pmccntr_sync(env);
1008 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1010 uint64_t total_ticks;
1012 if (!arm_ccnt_enabled(env)) {
1013 /* Counter is disabled, do not change value */
1014 return env->cp15.c15_ccnt;
1017 total_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1018 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
1020 if (env->cp15.c9_pmcr & PMCRD) {
1021 /* Increment once every 64 processor clock cycles */
1022 total_ticks /= 64;
1024 return total_ticks - env->cp15.c15_ccnt;
1027 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1028 uint64_t value)
1030 /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and
1031 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the
1032 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are
1033 * accessed.
1035 env->cp15.c9_pmselr = value & 0x1f;
1038 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1039 uint64_t value)
1041 uint64_t total_ticks;
1043 if (!arm_ccnt_enabled(env)) {
1044 /* Counter is disabled, set the absolute value */
1045 env->cp15.c15_ccnt = value;
1046 return;
1049 total_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1050 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
1052 if (env->cp15.c9_pmcr & PMCRD) {
1053 /* Increment once every 64 processor clock cycles */
1054 total_ticks /= 64;
1056 env->cp15.c15_ccnt = total_ticks - value;
1059 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
1060 uint64_t value)
1062 uint64_t cur_val = pmccntr_read(env, NULL);
1064 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
1067 #else /* CONFIG_USER_ONLY */
1069 void pmccntr_sync(CPUARMState *env)
1073 #endif
1075 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1076 uint64_t value)
1078 pmccntr_sync(env);
1079 env->cp15.pmccfiltr_el0 = value & 0x7E000000;
1080 pmccntr_sync(env);
1083 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1084 uint64_t value)
1086 value &= (1 << 31);
1087 env->cp15.c9_pmcnten |= value;
1090 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1091 uint64_t value)
1093 value &= (1 << 31);
1094 env->cp15.c9_pmcnten &= ~value;
1097 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1098 uint64_t value)
1100 env->cp15.c9_pmovsr &= ~value;
1103 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1104 uint64_t value)
1106 /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when
1107 * PMSELR value is equal to or greater than the number of implemented
1108 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI.
1110 if (env->cp15.c9_pmselr == 0x1f) {
1111 pmccfiltr_write(env, ri, value);
1115 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri)
1117 /* We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER
1118 * are CONSTRAINED UNPREDICTABLE. See comments in pmxevtyper_write().
1120 if (env->cp15.c9_pmselr == 0x1f) {
1121 return env->cp15.pmccfiltr_el0;
1122 } else {
1123 return 0;
1127 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1128 uint64_t value)
1130 if (arm_feature(env, ARM_FEATURE_V8)) {
1131 env->cp15.c9_pmuserenr = value & 0xf;
1132 } else {
1133 env->cp15.c9_pmuserenr = value & 1;
1137 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1138 uint64_t value)
1140 /* We have no event counters so only the C bit can be changed */
1141 value &= (1 << 31);
1142 env->cp15.c9_pminten |= value;
1145 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1146 uint64_t value)
1148 value &= (1 << 31);
1149 env->cp15.c9_pminten &= ~value;
1152 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
1153 uint64_t value)
1155 /* Note that even though the AArch64 view of this register has bits
1156 * [10:0] all RES0 we can only mask the bottom 5, to comply with the
1157 * architectural requirements for bits which are RES0 only in some
1158 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
1159 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
1161 raw_write(env, ri, value & ~0x1FULL);
1164 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1166 /* We only mask off bits that are RES0 both for AArch64 and AArch32.
1167 * For bits that vary between AArch32/64, code needs to check the
1168 * current execution mode before directly using the feature bit.
1170 uint32_t valid_mask = SCR_AARCH64_MASK | SCR_AARCH32_MASK;
1172 if (!arm_feature(env, ARM_FEATURE_EL2)) {
1173 valid_mask &= ~SCR_HCE;
1175 /* On ARMv7, SMD (or SCD as it is called in v7) is only
1176 * supported if EL2 exists. The bit is UNK/SBZP when
1177 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
1178 * when EL2 is unavailable.
1179 * On ARMv8, this bit is always available.
1181 if (arm_feature(env, ARM_FEATURE_V7) &&
1182 !arm_feature(env, ARM_FEATURE_V8)) {
1183 valid_mask &= ~SCR_SMD;
1187 /* Clear all-context RES0 bits. */
1188 value &= valid_mask;
1189 raw_write(env, ri, value);
1192 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1194 ARMCPU *cpu = arm_env_get_cpu(env);
1196 /* Acquire the CSSELR index from the bank corresponding to the CCSIDR
1197 * bank
1199 uint32_t index = A32_BANKED_REG_GET(env, csselr,
1200 ri->secure & ARM_CP_SECSTATE_S);
1202 return cpu->ccsidr[index];
1205 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1206 uint64_t value)
1208 raw_write(env, ri, value & 0xf);
1211 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1213 CPUState *cs = ENV_GET_CPU(env);
1214 uint64_t ret = 0;
1216 if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
1217 ret |= CPSR_I;
1219 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
1220 ret |= CPSR_F;
1222 /* External aborts are not possible in QEMU so A bit is always clear */
1223 return ret;
1226 static const ARMCPRegInfo v7_cp_reginfo[] = {
1227 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
1228 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
1229 .access = PL1_W, .type = ARM_CP_NOP },
1230 /* Performance monitors are implementation defined in v7,
1231 * but with an ARM recommended set of registers, which we
1232 * follow (although we don't actually implement any counters)
1234 * Performance registers fall into three categories:
1235 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
1236 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
1237 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
1238 * For the cases controlled by PMUSERENR we must set .access to PL0_RW
1239 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
1241 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
1242 .access = PL0_RW, .type = ARM_CP_ALIAS,
1243 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
1244 .writefn = pmcntenset_write,
1245 .accessfn = pmreg_access,
1246 .raw_writefn = raw_write },
1247 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64,
1248 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
1249 .access = PL0_RW, .accessfn = pmreg_access,
1250 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
1251 .writefn = pmcntenset_write, .raw_writefn = raw_write },
1252 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
1253 .access = PL0_RW,
1254 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
1255 .accessfn = pmreg_access,
1256 .writefn = pmcntenclr_write,
1257 .type = ARM_CP_ALIAS },
1258 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
1259 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
1260 .access = PL0_RW, .accessfn = pmreg_access,
1261 .type = ARM_CP_ALIAS,
1262 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
1263 .writefn = pmcntenclr_write },
1264 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
1265 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
1266 .accessfn = pmreg_access,
1267 .writefn = pmovsr_write,
1268 .raw_writefn = raw_write },
1269 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64,
1270 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3,
1271 .access = PL0_RW, .accessfn = pmreg_access,
1272 .type = ARM_CP_ALIAS,
1273 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
1274 .writefn = pmovsr_write,
1275 .raw_writefn = raw_write },
1276 /* Unimplemented so WI. */
1277 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
1278 .access = PL0_W, .accessfn = pmreg_access_swinc, .type = ARM_CP_NOP },
1279 #ifndef CONFIG_USER_ONLY
1280 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
1281 .access = PL0_RW, .type = ARM_CP_ALIAS,
1282 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr),
1283 .accessfn = pmreg_access_selr, .writefn = pmselr_write,
1284 .raw_writefn = raw_write},
1285 { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64,
1286 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5,
1287 .access = PL0_RW, .accessfn = pmreg_access_selr,
1288 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr),
1289 .writefn = pmselr_write, .raw_writefn = raw_write, },
1290 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
1291 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_IO,
1292 .readfn = pmccntr_read, .writefn = pmccntr_write32,
1293 .accessfn = pmreg_access_ccntr },
1294 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
1295 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
1296 .access = PL0_RW, .accessfn = pmreg_access_ccntr,
1297 .type = ARM_CP_IO,
1298 .readfn = pmccntr_read, .writefn = pmccntr_write, },
1299 #endif
1300 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
1301 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
1302 .writefn = pmccfiltr_write,
1303 .access = PL0_RW, .accessfn = pmreg_access,
1304 .type = ARM_CP_IO,
1305 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
1306 .resetvalue = 0, },
1307 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
1308 .access = PL0_RW, .type = ARM_CP_NO_RAW, .accessfn = pmreg_access,
1309 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
1310 { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64,
1311 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1,
1312 .access = PL0_RW, .type = ARM_CP_NO_RAW, .accessfn = pmreg_access,
1313 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
1314 /* Unimplemented, RAZ/WI. */
1315 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
1316 .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0,
1317 .accessfn = pmreg_access_xevcntr },
1318 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
1319 .access = PL0_R | PL1_RW, .accessfn = access_tpm,
1320 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
1321 .resetvalue = 0,
1322 .writefn = pmuserenr_write, .raw_writefn = raw_write },
1323 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64,
1324 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0,
1325 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
1326 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
1327 .resetvalue = 0,
1328 .writefn = pmuserenr_write, .raw_writefn = raw_write },
1329 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
1330 .access = PL1_RW, .accessfn = access_tpm,
1331 .type = ARM_CP_ALIAS,
1332 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten),
1333 .resetvalue = 0,
1334 .writefn = pmintenset_write, .raw_writefn = raw_write },
1335 { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64,
1336 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1,
1337 .access = PL1_RW, .accessfn = access_tpm,
1338 .type = ARM_CP_IO,
1339 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
1340 .writefn = pmintenset_write, .raw_writefn = raw_write,
1341 .resetvalue = 0x0 },
1342 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
1343 .access = PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
1344 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
1345 .writefn = pmintenclr_write, },
1346 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64,
1347 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2,
1348 .access = PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
1349 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
1350 .writefn = pmintenclr_write },
1351 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
1352 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
1353 .access = PL1_R, .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
1354 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
1355 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
1356 .access = PL1_RW, .writefn = csselr_write, .resetvalue = 0,
1357 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
1358 offsetof(CPUARMState, cp15.csselr_ns) } },
1359 /* Auxiliary ID register: this actually has an IMPDEF value but for now
1360 * just RAZ for all cores:
1362 { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
1363 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
1364 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1365 /* Auxiliary fault status registers: these also are IMPDEF, and we
1366 * choose to RAZ/WI for all cores.
1368 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
1369 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
1370 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1371 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
1372 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
1373 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1374 /* MAIR can just read-as-written because we don't implement caches
1375 * and so don't need to care about memory attributes.
1377 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
1378 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
1379 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
1380 .resetvalue = 0 },
1381 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64,
1382 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0,
1383 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]),
1384 .resetvalue = 0 },
1385 /* For non-long-descriptor page tables these are PRRR and NMRR;
1386 * regardless they still act as reads-as-written for QEMU.
1388 /* MAIR0/1 are defined separately from their 64-bit counterpart which
1389 * allows them to assign the correct fieldoffset based on the endianness
1390 * handled in the field definitions.
1392 { .name = "MAIR0", .state = ARM_CP_STATE_AA32,
1393 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, .access = PL1_RW,
1394 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
1395 offsetof(CPUARMState, cp15.mair0_ns) },
1396 .resetfn = arm_cp_reset_ignore },
1397 { .name = "MAIR1", .state = ARM_CP_STATE_AA32,
1398 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, .access = PL1_RW,
1399 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
1400 offsetof(CPUARMState, cp15.mair1_ns) },
1401 .resetfn = arm_cp_reset_ignore },
1402 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
1403 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
1404 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
1405 /* 32 bit ITLB invalidates */
1406 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
1407 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
1408 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
1409 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
1410 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
1411 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
1412 /* 32 bit DTLB invalidates */
1413 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
1414 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
1415 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
1416 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
1417 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
1418 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
1419 /* 32 bit TLB invalidates */
1420 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
1421 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
1422 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
1423 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
1424 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
1425 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
1426 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
1427 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
1428 REGINFO_SENTINEL
1431 static const ARMCPRegInfo v7mp_cp_reginfo[] = {
1432 /* 32 bit TLB invalidates, Inner Shareable */
1433 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
1434 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_is_write },
1435 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
1436 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
1437 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
1438 .type = ARM_CP_NO_RAW, .access = PL1_W,
1439 .writefn = tlbiasid_is_write },
1440 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
1441 .type = ARM_CP_NO_RAW, .access = PL1_W,
1442 .writefn = tlbimvaa_is_write },
1443 REGINFO_SENTINEL
1446 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1447 uint64_t value)
1449 value &= 1;
1450 env->teecr = value;
1453 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri,
1454 bool isread)
1456 if (arm_current_el(env) == 0 && (env->teecr & 1)) {
1457 return CP_ACCESS_TRAP;
1459 return CP_ACCESS_OK;
1462 static const ARMCPRegInfo t2ee_cp_reginfo[] = {
1463 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
1464 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
1465 .resetvalue = 0,
1466 .writefn = teecr_write },
1467 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
1468 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
1469 .accessfn = teehbr_access, .resetvalue = 0 },
1470 REGINFO_SENTINEL
1473 static const ARMCPRegInfo v6k_cp_reginfo[] = {
1474 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
1475 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
1476 .access = PL0_RW,
1477 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
1478 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
1479 .access = PL0_RW,
1480 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
1481 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
1482 .resetfn = arm_cp_reset_ignore },
1483 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
1484 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
1485 .access = PL0_R|PL1_W,
1486 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
1487 .resetvalue = 0},
1488 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
1489 .access = PL0_R|PL1_W,
1490 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
1491 offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
1492 .resetfn = arm_cp_reset_ignore },
1493 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
1494 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
1495 .access = PL1_RW,
1496 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
1497 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
1498 .access = PL1_RW,
1499 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
1500 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
1501 .resetvalue = 0 },
1502 REGINFO_SENTINEL
1505 #ifndef CONFIG_USER_ONLY
1507 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri,
1508 bool isread)
1510 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero.
1511 * Writable only at the highest implemented exception level.
1513 int el = arm_current_el(env);
1515 switch (el) {
1516 case 0:
1517 if (!extract32(env->cp15.c14_cntkctl, 0, 2)) {
1518 return CP_ACCESS_TRAP;
1520 break;
1521 case 1:
1522 if (!isread && ri->state == ARM_CP_STATE_AA32 &&
1523 arm_is_secure_below_el3(env)) {
1524 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */
1525 return CP_ACCESS_TRAP_UNCATEGORIZED;
1527 break;
1528 case 2:
1529 case 3:
1530 break;
1533 if (!isread && el < arm_highest_el(env)) {
1534 return CP_ACCESS_TRAP_UNCATEGORIZED;
1537 return CP_ACCESS_OK;
1540 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx,
1541 bool isread)
1543 unsigned int cur_el = arm_current_el(env);
1544 bool secure = arm_is_secure(env);
1546 /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */
1547 if (cur_el == 0 &&
1548 !extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
1549 return CP_ACCESS_TRAP;
1552 if (arm_feature(env, ARM_FEATURE_EL2) &&
1553 timeridx == GTIMER_PHYS && !secure && cur_el < 2 &&
1554 !extract32(env->cp15.cnthctl_el2, 0, 1)) {
1555 return CP_ACCESS_TRAP_EL2;
1557 return CP_ACCESS_OK;
1560 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx,
1561 bool isread)
1563 unsigned int cur_el = arm_current_el(env);
1564 bool secure = arm_is_secure(env);
1566 /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if
1567 * EL0[PV]TEN is zero.
1569 if (cur_el == 0 &&
1570 !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
1571 return CP_ACCESS_TRAP;
1574 if (arm_feature(env, ARM_FEATURE_EL2) &&
1575 timeridx == GTIMER_PHYS && !secure && cur_el < 2 &&
1576 !extract32(env->cp15.cnthctl_el2, 1, 1)) {
1577 return CP_ACCESS_TRAP_EL2;
1579 return CP_ACCESS_OK;
1582 static CPAccessResult gt_pct_access(CPUARMState *env,
1583 const ARMCPRegInfo *ri,
1584 bool isread)
1586 return gt_counter_access(env, GTIMER_PHYS, isread);
1589 static CPAccessResult gt_vct_access(CPUARMState *env,
1590 const ARMCPRegInfo *ri,
1591 bool isread)
1593 return gt_counter_access(env, GTIMER_VIRT, isread);
1596 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
1597 bool isread)
1599 return gt_timer_access(env, GTIMER_PHYS, isread);
1602 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
1603 bool isread)
1605 return gt_timer_access(env, GTIMER_VIRT, isread);
1608 static CPAccessResult gt_stimer_access(CPUARMState *env,
1609 const ARMCPRegInfo *ri,
1610 bool isread)
1612 /* The AArch64 register view of the secure physical timer is
1613 * always accessible from EL3, and configurably accessible from
1614 * Secure EL1.
1616 switch (arm_current_el(env)) {
1617 case 1:
1618 if (!arm_is_secure(env)) {
1619 return CP_ACCESS_TRAP;
1621 if (!(env->cp15.scr_el3 & SCR_ST)) {
1622 return CP_ACCESS_TRAP_EL3;
1624 return CP_ACCESS_OK;
1625 case 0:
1626 case 2:
1627 return CP_ACCESS_TRAP;
1628 case 3:
1629 return CP_ACCESS_OK;
1630 default:
1631 g_assert_not_reached();
1635 static uint64_t gt_get_countervalue(CPUARMState *env)
1637 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / GTIMER_SCALE;
1640 static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
1642 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
1644 if (gt->ctl & 1) {
1645 /* Timer enabled: calculate and set current ISTATUS, irq, and
1646 * reset timer to when ISTATUS next has to change
1648 uint64_t offset = timeridx == GTIMER_VIRT ?
1649 cpu->env.cp15.cntvoff_el2 : 0;
1650 uint64_t count = gt_get_countervalue(&cpu->env);
1651 /* Note that this must be unsigned 64 bit arithmetic: */
1652 int istatus = count - offset >= gt->cval;
1653 uint64_t nexttick;
1654 int irqstate;
1656 gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
1658 irqstate = (istatus && !(gt->ctl & 2));
1659 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
1661 if (istatus) {
1662 /* Next transition is when count rolls back over to zero */
1663 nexttick = UINT64_MAX;
1664 } else {
1665 /* Next transition is when we hit cval */
1666 nexttick = gt->cval + offset;
1668 /* Note that the desired next expiry time might be beyond the
1669 * signed-64-bit range of a QEMUTimer -- in this case we just
1670 * set the timer for as far in the future as possible. When the
1671 * timer expires we will reset the timer for any remaining period.
1673 if (nexttick > INT64_MAX / GTIMER_SCALE) {
1674 nexttick = INT64_MAX / GTIMER_SCALE;
1676 timer_mod(cpu->gt_timer[timeridx], nexttick);
1677 trace_arm_gt_recalc(timeridx, irqstate, nexttick);
1678 } else {
1679 /* Timer disabled: ISTATUS and timer output always clear */
1680 gt->ctl &= ~4;
1681 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0);
1682 timer_del(cpu->gt_timer[timeridx]);
1683 trace_arm_gt_recalc_disabled(timeridx);
1687 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri,
1688 int timeridx)
1690 ARMCPU *cpu = arm_env_get_cpu(env);
1692 timer_del(cpu->gt_timer[timeridx]);
1695 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
1697 return gt_get_countervalue(env);
1700 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
1702 return gt_get_countervalue(env) - env->cp15.cntvoff_el2;
1705 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1706 int timeridx,
1707 uint64_t value)
1709 trace_arm_gt_cval_write(timeridx, value);
1710 env->cp15.c14_timer[timeridx].cval = value;
1711 gt_recalc_timer(arm_env_get_cpu(env), timeridx);
1714 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
1715 int timeridx)
1717 uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0;
1719 return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
1720 (gt_get_countervalue(env) - offset));
1723 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1724 int timeridx,
1725 uint64_t value)
1727 uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0;
1729 trace_arm_gt_tval_write(timeridx, value);
1730 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset +
1731 sextract64(value, 0, 32);
1732 gt_recalc_timer(arm_env_get_cpu(env), timeridx);
1735 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1736 int timeridx,
1737 uint64_t value)
1739 ARMCPU *cpu = arm_env_get_cpu(env);
1740 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
1742 trace_arm_gt_ctl_write(timeridx, value);
1743 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
1744 if ((oldval ^ value) & 1) {
1745 /* Enable toggled */
1746 gt_recalc_timer(cpu, timeridx);
1747 } else if ((oldval ^ value) & 2) {
1748 /* IMASK toggled: don't need to recalculate,
1749 * just set the interrupt line based on ISTATUS
1751 int irqstate = (oldval & 4) && !(value & 2);
1753 trace_arm_gt_imask_toggle(timeridx, irqstate);
1754 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
1758 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1760 gt_timer_reset(env, ri, GTIMER_PHYS);
1763 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1764 uint64_t value)
1766 gt_cval_write(env, ri, GTIMER_PHYS, value);
1769 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1771 return gt_tval_read(env, ri, GTIMER_PHYS);
1774 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1775 uint64_t value)
1777 gt_tval_write(env, ri, GTIMER_PHYS, value);
1780 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1781 uint64_t value)
1783 gt_ctl_write(env, ri, GTIMER_PHYS, value);
1786 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1788 gt_timer_reset(env, ri, GTIMER_VIRT);
1791 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1792 uint64_t value)
1794 gt_cval_write(env, ri, GTIMER_VIRT, value);
1797 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1799 return gt_tval_read(env, ri, GTIMER_VIRT);
1802 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1803 uint64_t value)
1805 gt_tval_write(env, ri, GTIMER_VIRT, value);
1808 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1809 uint64_t value)
1811 gt_ctl_write(env, ri, GTIMER_VIRT, value);
1814 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
1815 uint64_t value)
1817 ARMCPU *cpu = arm_env_get_cpu(env);
1819 trace_arm_gt_cntvoff_write(value);
1820 raw_write(env, ri, value);
1821 gt_recalc_timer(cpu, GTIMER_VIRT);
1824 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1826 gt_timer_reset(env, ri, GTIMER_HYP);
1829 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1830 uint64_t value)
1832 gt_cval_write(env, ri, GTIMER_HYP, value);
1835 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1837 return gt_tval_read(env, ri, GTIMER_HYP);
1840 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1841 uint64_t value)
1843 gt_tval_write(env, ri, GTIMER_HYP, value);
1846 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1847 uint64_t value)
1849 gt_ctl_write(env, ri, GTIMER_HYP, value);
1852 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1854 gt_timer_reset(env, ri, GTIMER_SEC);
1857 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1858 uint64_t value)
1860 gt_cval_write(env, ri, GTIMER_SEC, value);
1863 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1865 return gt_tval_read(env, ri, GTIMER_SEC);
1868 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1869 uint64_t value)
1871 gt_tval_write(env, ri, GTIMER_SEC, value);
1874 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1875 uint64_t value)
1877 gt_ctl_write(env, ri, GTIMER_SEC, value);
1880 void arm_gt_ptimer_cb(void *opaque)
1882 ARMCPU *cpu = opaque;
1884 gt_recalc_timer(cpu, GTIMER_PHYS);
1887 void arm_gt_vtimer_cb(void *opaque)
1889 ARMCPU *cpu = opaque;
1891 gt_recalc_timer(cpu, GTIMER_VIRT);
1894 void arm_gt_htimer_cb(void *opaque)
1896 ARMCPU *cpu = opaque;
1898 gt_recalc_timer(cpu, GTIMER_HYP);
1901 void arm_gt_stimer_cb(void *opaque)
1903 ARMCPU *cpu = opaque;
1905 gt_recalc_timer(cpu, GTIMER_SEC);
1908 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
1909 /* Note that CNTFRQ is purely reads-as-written for the benefit
1910 * of software; writing it doesn't actually change the timer frequency.
1911 * Our reset value matches the fixed frequency we implement the timer at.
1913 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
1914 .type = ARM_CP_ALIAS,
1915 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
1916 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
1918 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
1919 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
1920 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
1921 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
1922 .resetvalue = (1000 * 1000 * 1000) / GTIMER_SCALE,
1924 /* overall control: mostly access permissions */
1925 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
1926 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
1927 .access = PL1_RW,
1928 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
1929 .resetvalue = 0,
1931 /* per-timer control */
1932 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
1933 .secure = ARM_CP_SECSTATE_NS,
1934 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
1935 .accessfn = gt_ptimer_access,
1936 .fieldoffset = offsetoflow32(CPUARMState,
1937 cp15.c14_timer[GTIMER_PHYS].ctl),
1938 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write,
1940 { .name = "CNTP_CTL(S)",
1941 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
1942 .secure = ARM_CP_SECSTATE_S,
1943 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
1944 .accessfn = gt_ptimer_access,
1945 .fieldoffset = offsetoflow32(CPUARMState,
1946 cp15.c14_timer[GTIMER_SEC].ctl),
1947 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
1949 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
1950 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
1951 .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
1952 .accessfn = gt_ptimer_access,
1953 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
1954 .resetvalue = 0,
1955 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write,
1957 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
1958 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
1959 .accessfn = gt_vtimer_access,
1960 .fieldoffset = offsetoflow32(CPUARMState,
1961 cp15.c14_timer[GTIMER_VIRT].ctl),
1962 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write,
1964 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
1965 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
1966 .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
1967 .accessfn = gt_vtimer_access,
1968 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
1969 .resetvalue = 0,
1970 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write,
1972 /* TimerValue views: a 32 bit downcounting view of the underlying state */
1973 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
1974 .secure = ARM_CP_SECSTATE_NS,
1975 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
1976 .accessfn = gt_ptimer_access,
1977 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write,
1979 { .name = "CNTP_TVAL(S)",
1980 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
1981 .secure = ARM_CP_SECSTATE_S,
1982 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
1983 .accessfn = gt_ptimer_access,
1984 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write,
1986 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
1987 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
1988 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
1989 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset,
1990 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write,
1992 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
1993 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
1994 .accessfn = gt_vtimer_access,
1995 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write,
1997 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
1998 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
1999 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
2000 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset,
2001 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write,
2003 /* The counter itself */
2004 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
2005 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
2006 .accessfn = gt_pct_access,
2007 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
2009 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
2010 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
2011 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2012 .accessfn = gt_pct_access, .readfn = gt_cnt_read,
2014 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
2015 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
2016 .accessfn = gt_vct_access,
2017 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
2019 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
2020 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
2021 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2022 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
2024 /* Comparison value, indicating when the timer goes off */
2025 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
2026 .secure = ARM_CP_SECSTATE_NS,
2027 .access = PL1_RW | PL0_R,
2028 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
2029 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
2030 .accessfn = gt_ptimer_access,
2031 .writefn = gt_phys_cval_write, .raw_writefn = raw_write,
2033 { .name = "CNTP_CVAL(S)", .cp = 15, .crm = 14, .opc1 = 2,
2034 .secure = ARM_CP_SECSTATE_S,
2035 .access = PL1_RW | PL0_R,
2036 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
2037 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
2038 .accessfn = gt_ptimer_access,
2039 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
2041 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
2042 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
2043 .access = PL1_RW | PL0_R,
2044 .type = ARM_CP_IO,
2045 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
2046 .resetvalue = 0, .accessfn = gt_ptimer_access,
2047 .writefn = gt_phys_cval_write, .raw_writefn = raw_write,
2049 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
2050 .access = PL1_RW | PL0_R,
2051 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
2052 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
2053 .accessfn = gt_vtimer_access,
2054 .writefn = gt_virt_cval_write, .raw_writefn = raw_write,
2056 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
2057 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
2058 .access = PL1_RW | PL0_R,
2059 .type = ARM_CP_IO,
2060 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
2061 .resetvalue = 0, .accessfn = gt_vtimer_access,
2062 .writefn = gt_virt_cval_write, .raw_writefn = raw_write,
2064 /* Secure timer -- this is actually restricted to only EL3
2065 * and configurably Secure-EL1 via the accessfn.
2067 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64,
2068 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0,
2069 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW,
2070 .accessfn = gt_stimer_access,
2071 .readfn = gt_sec_tval_read,
2072 .writefn = gt_sec_tval_write,
2073 .resetfn = gt_sec_timer_reset,
2075 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64,
2076 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1,
2077 .type = ARM_CP_IO, .access = PL1_RW,
2078 .accessfn = gt_stimer_access,
2079 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl),
2080 .resetvalue = 0,
2081 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
2083 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64,
2084 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2,
2085 .type = ARM_CP_IO, .access = PL1_RW,
2086 .accessfn = gt_stimer_access,
2087 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
2088 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
2090 REGINFO_SENTINEL
2093 #else
2094 /* In user-mode none of the generic timer registers are accessible,
2095 * and their implementation depends on QEMU_CLOCK_VIRTUAL and qdev gpio outputs,
2096 * so instead just don't register any of them.
2098 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
2099 REGINFO_SENTINEL
2102 #endif
2104 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
2106 if (arm_feature(env, ARM_FEATURE_LPAE)) {
2107 raw_write(env, ri, value);
2108 } else if (arm_feature(env, ARM_FEATURE_V7)) {
2109 raw_write(env, ri, value & 0xfffff6ff);
2110 } else {
2111 raw_write(env, ri, value & 0xfffff1ff);
2115 #ifndef CONFIG_USER_ONLY
2116 /* get_phys_addr() isn't present for user-mode-only targets */
2118 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri,
2119 bool isread)
2121 if (ri->opc2 & 4) {
2122 /* The ATS12NSO* operations must trap to EL3 if executed in
2123 * Secure EL1 (which can only happen if EL3 is AArch64).
2124 * They are simply UNDEF if executed from NS EL1.
2125 * They function normally from EL2 or EL3.
2127 if (arm_current_el(env) == 1) {
2128 if (arm_is_secure_below_el3(env)) {
2129 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3;
2131 return CP_ACCESS_TRAP_UNCATEGORIZED;
2134 return CP_ACCESS_OK;
2137 static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
2138 MMUAccessType access_type, ARMMMUIdx mmu_idx)
2140 hwaddr phys_addr;
2141 target_ulong page_size;
2142 int prot;
2143 uint32_t fsr;
2144 bool ret;
2145 uint64_t par64;
2146 MemTxAttrs attrs = {};
2147 ARMMMUFaultInfo fi = {};
2149 ret = get_phys_addr(env, value, access_type, mmu_idx,
2150 &phys_addr, &attrs, &prot, &page_size, &fsr, &fi);
2151 if (extended_addresses_enabled(env)) {
2152 /* fsr is a DFSR/IFSR value for the long descriptor
2153 * translation table format, but with WnR always clear.
2154 * Convert it to a 64-bit PAR.
2156 par64 = (1 << 11); /* LPAE bit always set */
2157 if (!ret) {
2158 par64 |= phys_addr & ~0xfffULL;
2159 if (!attrs.secure) {
2160 par64 |= (1 << 9); /* NS */
2162 /* We don't set the ATTR or SH fields in the PAR. */
2163 } else {
2164 par64 |= 1; /* F */
2165 par64 |= (fsr & 0x3f) << 1; /* FS */
2166 /* Note that S2WLK and FSTAGE are always zero, because we don't
2167 * implement virtualization and therefore there can't be a stage 2
2168 * fault.
2171 } else {
2172 /* fsr is a DFSR/IFSR value for the short descriptor
2173 * translation table format (with WnR always clear).
2174 * Convert it to a 32-bit PAR.
2176 if (!ret) {
2177 /* We do not set any attribute bits in the PAR */
2178 if (page_size == (1 << 24)
2179 && arm_feature(env, ARM_FEATURE_V7)) {
2180 par64 = (phys_addr & 0xff000000) | (1 << 1);
2181 } else {
2182 par64 = phys_addr & 0xfffff000;
2184 if (!attrs.secure) {
2185 par64 |= (1 << 9); /* NS */
2187 } else {
2188 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) |
2189 ((fsr & 0xf) << 1) | 1;
2192 return par64;
2195 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
2197 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
2198 uint64_t par64;
2199 ARMMMUIdx mmu_idx;
2200 int el = arm_current_el(env);
2201 bool secure = arm_is_secure_below_el3(env);
2203 switch (ri->opc2 & 6) {
2204 case 0:
2205 /* stage 1 current state PL1: ATS1CPR, ATS1CPW */
2206 switch (el) {
2207 case 3:
2208 mmu_idx = ARMMMUIdx_S1E3;
2209 break;
2210 case 2:
2211 mmu_idx = ARMMMUIdx_S1NSE1;
2212 break;
2213 case 1:
2214 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
2215 break;
2216 default:
2217 g_assert_not_reached();
2219 break;
2220 case 2:
2221 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
2222 switch (el) {
2223 case 3:
2224 mmu_idx = ARMMMUIdx_S1SE0;
2225 break;
2226 case 2:
2227 mmu_idx = ARMMMUIdx_S1NSE0;
2228 break;
2229 case 1:
2230 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
2231 break;
2232 default:
2233 g_assert_not_reached();
2235 break;
2236 case 4:
2237 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
2238 mmu_idx = ARMMMUIdx_S12NSE1;
2239 break;
2240 case 6:
2241 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
2242 mmu_idx = ARMMMUIdx_S12NSE0;
2243 break;
2244 default:
2245 g_assert_not_reached();
2248 par64 = do_ats_write(env, value, access_type, mmu_idx);
2250 A32_BANKED_CURRENT_REG_SET(env, par, par64);
2253 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri,
2254 uint64_t value)
2256 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
2257 uint64_t par64;
2259 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_S2NS);
2261 A32_BANKED_CURRENT_REG_SET(env, par, par64);
2264 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri,
2265 bool isread)
2267 if (arm_current_el(env) == 3 && !(env->cp15.scr_el3 & SCR_NS)) {
2268 return CP_ACCESS_TRAP;
2270 return CP_ACCESS_OK;
2273 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
2274 uint64_t value)
2276 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
2277 ARMMMUIdx mmu_idx;
2278 int secure = arm_is_secure_below_el3(env);
2280 switch (ri->opc2 & 6) {
2281 case 0:
2282 switch (ri->opc1) {
2283 case 0: /* AT S1E1R, AT S1E1W */
2284 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
2285 break;
2286 case 4: /* AT S1E2R, AT S1E2W */
2287 mmu_idx = ARMMMUIdx_S1E2;
2288 break;
2289 case 6: /* AT S1E3R, AT S1E3W */
2290 mmu_idx = ARMMMUIdx_S1E3;
2291 break;
2292 default:
2293 g_assert_not_reached();
2295 break;
2296 case 2: /* AT S1E0R, AT S1E0W */
2297 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
2298 break;
2299 case 4: /* AT S12E1R, AT S12E1W */
2300 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S12NSE1;
2301 break;
2302 case 6: /* AT S12E0R, AT S12E0W */
2303 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S12NSE0;
2304 break;
2305 default:
2306 g_assert_not_reached();
2309 env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx);
2311 #endif
2313 static const ARMCPRegInfo vapa_cp_reginfo[] = {
2314 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
2315 .access = PL1_RW, .resetvalue = 0,
2316 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
2317 offsetoflow32(CPUARMState, cp15.par_ns) },
2318 .writefn = par_write },
2319 #ifndef CONFIG_USER_ONLY
2320 /* This underdecoding is safe because the reginfo is NO_RAW. */
2321 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
2322 .access = PL1_W, .accessfn = ats_access,
2323 .writefn = ats_write, .type = ARM_CP_NO_RAW },
2324 #endif
2325 REGINFO_SENTINEL
2328 /* Return basic MPU access permission bits. */
2329 static uint32_t simple_mpu_ap_bits(uint32_t val)
2331 uint32_t ret;
2332 uint32_t mask;
2333 int i;
2334 ret = 0;
2335 mask = 3;
2336 for (i = 0; i < 16; i += 2) {
2337 ret |= (val >> i) & mask;
2338 mask <<= 2;
2340 return ret;
2343 /* Pad basic MPU access permission bits to extended format. */
2344 static uint32_t extended_mpu_ap_bits(uint32_t val)
2346 uint32_t ret;
2347 uint32_t mask;
2348 int i;
2349 ret = 0;
2350 mask = 3;
2351 for (i = 0; i < 16; i += 2) {
2352 ret |= (val & mask) << i;
2353 mask <<= 2;
2355 return ret;
2358 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
2359 uint64_t value)
2361 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
2364 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
2366 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
2369 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
2370 uint64_t value)
2372 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
2375 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
2377 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
2380 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri)
2382 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
2384 if (!u32p) {
2385 return 0;
2388 u32p += env->pmsav7.rnr[M_REG_NS];
2389 return *u32p;
2392 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri,
2393 uint64_t value)
2395 ARMCPU *cpu = arm_env_get_cpu(env);
2396 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
2398 if (!u32p) {
2399 return;
2402 u32p += env->pmsav7.rnr[M_REG_NS];
2403 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
2404 *u32p = value;
2407 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2408 uint64_t value)
2410 ARMCPU *cpu = arm_env_get_cpu(env);
2411 uint32_t nrgs = cpu->pmsav7_dregion;
2413 if (value >= nrgs) {
2414 qemu_log_mask(LOG_GUEST_ERROR,
2415 "PMSAv7 RGNR write >= # supported regions, %" PRIu32
2416 " > %" PRIu32 "\n", (uint32_t)value, nrgs);
2417 return;
2420 raw_write(env, ri, value);
2423 static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
2424 /* Reset for all these registers is handled in arm_cpu_reset(),
2425 * because the PMSAv7 is also used by M-profile CPUs, which do
2426 * not register cpregs but still need the state to be reset.
2428 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0,
2429 .access = PL1_RW, .type = ARM_CP_NO_RAW,
2430 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar),
2431 .readfn = pmsav7_read, .writefn = pmsav7_write,
2432 .resetfn = arm_cp_reset_ignore },
2433 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2,
2434 .access = PL1_RW, .type = ARM_CP_NO_RAW,
2435 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr),
2436 .readfn = pmsav7_read, .writefn = pmsav7_write,
2437 .resetfn = arm_cp_reset_ignore },
2438 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4,
2439 .access = PL1_RW, .type = ARM_CP_NO_RAW,
2440 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr),
2441 .readfn = pmsav7_read, .writefn = pmsav7_write,
2442 .resetfn = arm_cp_reset_ignore },
2443 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0,
2444 .access = PL1_RW,
2445 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]),
2446 .writefn = pmsav7_rgnr_write,
2447 .resetfn = arm_cp_reset_ignore },
2448 REGINFO_SENTINEL
2451 static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
2452 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
2453 .access = PL1_RW, .type = ARM_CP_ALIAS,
2454 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
2455 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
2456 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
2457 .access = PL1_RW, .type = ARM_CP_ALIAS,
2458 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
2459 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
2460 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
2461 .access = PL1_RW,
2462 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
2463 .resetvalue = 0, },
2464 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
2465 .access = PL1_RW,
2466 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
2467 .resetvalue = 0, },
2468 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
2469 .access = PL1_RW,
2470 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
2471 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
2472 .access = PL1_RW,
2473 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
2474 /* Protection region base and size registers */
2475 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
2476 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2477 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
2478 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
2479 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2480 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
2481 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
2482 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2483 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
2484 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
2485 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2486 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
2487 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
2488 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2489 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
2490 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
2491 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2492 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
2493 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
2494 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2495 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
2496 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
2497 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2498 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
2499 REGINFO_SENTINEL
2502 static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
2503 uint64_t value)
2505 TCR *tcr = raw_ptr(env, ri);
2506 int maskshift = extract32(value, 0, 3);
2508 if (!arm_feature(env, ARM_FEATURE_V8)) {
2509 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
2510 /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
2511 * using Long-desciptor translation table format */
2512 value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
2513 } else if (arm_feature(env, ARM_FEATURE_EL3)) {
2514 /* In an implementation that includes the Security Extensions
2515 * TTBCR has additional fields PD0 [4] and PD1 [5] for
2516 * Short-descriptor translation table format.
2518 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
2519 } else {
2520 value &= TTBCR_N;
2524 /* Update the masks corresponding to the TCR bank being written
2525 * Note that we always calculate mask and base_mask, but
2526 * they are only used for short-descriptor tables (ie if EAE is 0);
2527 * for long-descriptor tables the TCR fields are used differently
2528 * and the mask and base_mask values are meaningless.
2530 tcr->raw_tcr = value;
2531 tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift);
2532 tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift);
2535 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2536 uint64_t value)
2538 ARMCPU *cpu = arm_env_get_cpu(env);
2540 if (arm_feature(env, ARM_FEATURE_LPAE)) {
2541 /* With LPAE the TTBCR could result in a change of ASID
2542 * via the TTBCR.A1 bit, so do a TLB flush.
2544 tlb_flush(CPU(cpu));
2546 vmsa_ttbcr_raw_write(env, ri, value);
2549 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2551 TCR *tcr = raw_ptr(env, ri);
2553 /* Reset both the TCR as well as the masks corresponding to the bank of
2554 * the TCR being reset.
2556 tcr->raw_tcr = 0;
2557 tcr->mask = 0;
2558 tcr->base_mask = 0xffffc000u;
2561 static void vmsa_tcr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri,
2562 uint64_t value)
2564 ARMCPU *cpu = arm_env_get_cpu(env);
2565 TCR *tcr = raw_ptr(env, ri);
2567 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
2568 tlb_flush(CPU(cpu));
2569 tcr->raw_tcr = value;
2572 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2573 uint64_t value)
2575 /* 64 bit accesses to the TTBRs can change the ASID and so we
2576 * must flush the TLB.
2578 if (cpreg_field_is_64bit(ri)) {
2579 ARMCPU *cpu = arm_env_get_cpu(env);
2581 tlb_flush(CPU(cpu));
2583 raw_write(env, ri, value);
2586 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2587 uint64_t value)
2589 ARMCPU *cpu = arm_env_get_cpu(env);
2590 CPUState *cs = CPU(cpu);
2592 /* Accesses to VTTBR may change the VMID so we must flush the TLB. */
2593 if (raw_read(env, ri) != value) {
2594 tlb_flush_by_mmuidx(cs,
2595 ARMMMUIdxBit_S12NSE1 |
2596 ARMMMUIdxBit_S12NSE0 |
2597 ARMMMUIdxBit_S2NS);
2598 raw_write(env, ri, value);
2602 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = {
2603 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
2604 .access = PL1_RW, .type = ARM_CP_ALIAS,
2605 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
2606 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, },
2607 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
2608 .access = PL1_RW, .resetvalue = 0,
2609 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
2610 offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
2611 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
2612 .access = PL1_RW, .resetvalue = 0,
2613 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
2614 offsetof(CPUARMState, cp15.dfar_ns) } },
2615 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
2616 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
2617 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
2618 .resetvalue = 0, },
2619 REGINFO_SENTINEL
2622 static const ARMCPRegInfo vmsa_cp_reginfo[] = {
2623 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
2624 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
2625 .access = PL1_RW,
2626 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
2627 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
2628 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
2629 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
2630 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
2631 offsetof(CPUARMState, cp15.ttbr0_ns) } },
2632 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
2633 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
2634 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
2635 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
2636 offsetof(CPUARMState, cp15.ttbr1_ns) } },
2637 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
2638 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
2639 .access = PL1_RW, .writefn = vmsa_tcr_el1_write,
2640 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
2641 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
2642 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
2643 .access = PL1_RW, .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
2644 .raw_writefn = vmsa_ttbcr_raw_write,
2645 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]),
2646 offsetoflow32(CPUARMState, cp15.tcr_el[1])} },
2647 REGINFO_SENTINEL
2650 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
2651 uint64_t value)
2653 env->cp15.c15_ticonfig = value & 0xe7;
2654 /* The OS_TYPE bit in this register changes the reported CPUID! */
2655 env->cp15.c0_cpuid = (value & (1 << 5)) ?
2656 ARM_CPUID_TI915T : ARM_CPUID_TI925T;
2659 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
2660 uint64_t value)
2662 env->cp15.c15_threadid = value & 0xffff;
2665 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
2666 uint64_t value)
2668 /* Wait-for-interrupt (deprecated) */
2669 cpu_interrupt(CPU(arm_env_get_cpu(env)), CPU_INTERRUPT_HALT);
2672 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
2673 uint64_t value)
2675 /* On OMAP there are registers indicating the max/min index of dcache lines
2676 * containing a dirty line; cache flush operations have to reset these.
2678 env->cp15.c15_i_max = 0x000;
2679 env->cp15.c15_i_min = 0xff0;
2682 static const ARMCPRegInfo omap_cp_reginfo[] = {
2683 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
2684 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
2685 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
2686 .resetvalue = 0, },
2687 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
2688 .access = PL1_RW, .type = ARM_CP_NOP },
2689 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
2690 .access = PL1_RW,
2691 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
2692 .writefn = omap_ticonfig_write },
2693 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
2694 .access = PL1_RW,
2695 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
2696 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
2697 .access = PL1_RW, .resetvalue = 0xff0,
2698 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
2699 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
2700 .access = PL1_RW,
2701 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
2702 .writefn = omap_threadid_write },
2703 { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
2704 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
2705 .type = ARM_CP_NO_RAW,
2706 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
2707 /* TODO: Peripheral port remap register:
2708 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
2709 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
2710 * when MMU is off.
2712 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
2713 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
2714 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
2715 .writefn = omap_cachemaint_write },
2716 { .name = "C9", .cp = 15, .crn = 9,
2717 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
2718 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
2719 REGINFO_SENTINEL
2722 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
2723 uint64_t value)
2725 env->cp15.c15_cpar = value & 0x3fff;
2728 static const ARMCPRegInfo xscale_cp_reginfo[] = {
2729 { .name = "XSCALE_CPAR",
2730 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
2731 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
2732 .writefn = xscale_cpar_write, },
2733 { .name = "XSCALE_AUXCR",
2734 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
2735 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
2736 .resetvalue = 0, },
2737 /* XScale specific cache-lockdown: since we have no cache we NOP these
2738 * and hope the guest does not really rely on cache behaviour.
2740 { .name = "XSCALE_LOCK_ICACHE_LINE",
2741 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
2742 .access = PL1_W, .type = ARM_CP_NOP },
2743 { .name = "XSCALE_UNLOCK_ICACHE",
2744 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
2745 .access = PL1_W, .type = ARM_CP_NOP },
2746 { .name = "XSCALE_DCACHE_LOCK",
2747 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
2748 .access = PL1_RW, .type = ARM_CP_NOP },
2749 { .name = "XSCALE_UNLOCK_DCACHE",
2750 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
2751 .access = PL1_W, .type = ARM_CP_NOP },
2752 REGINFO_SENTINEL
2755 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
2756 /* RAZ/WI the whole crn=15 space, when we don't have a more specific
2757 * implementation of this implementation-defined space.
2758 * Ideally this should eventually disappear in favour of actually
2759 * implementing the correct behaviour for all cores.
2761 { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
2762 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
2763 .access = PL1_RW,
2764 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
2765 .resetvalue = 0 },
2766 REGINFO_SENTINEL
2769 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
2770 /* Cache status: RAZ because we have no cache so it's always clean */
2771 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
2772 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2773 .resetvalue = 0 },
2774 REGINFO_SENTINEL
2777 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
2778 /* We never have a a block transfer operation in progress */
2779 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
2780 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2781 .resetvalue = 0 },
2782 /* The cache ops themselves: these all NOP for QEMU */
2783 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
2784 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2785 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
2786 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2787 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
2788 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2789 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
2790 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2791 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
2792 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2793 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
2794 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2795 REGINFO_SENTINEL
2798 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
2799 /* The cache test-and-clean instructions always return (1 << 30)
2800 * to indicate that there are no dirty cache lines.
2802 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
2803 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2804 .resetvalue = (1 << 30) },
2805 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
2806 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2807 .resetvalue = (1 << 30) },
2808 REGINFO_SENTINEL
2811 static const ARMCPRegInfo strongarm_cp_reginfo[] = {
2812 /* Ignore ReadBuffer accesses */
2813 { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
2814 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
2815 .access = PL1_RW, .resetvalue = 0,
2816 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
2817 REGINFO_SENTINEL
2820 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2822 ARMCPU *cpu = arm_env_get_cpu(env);
2823 unsigned int cur_el = arm_current_el(env);
2824 bool secure = arm_is_secure(env);
2826 if (arm_feature(&cpu->env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
2827 return env->cp15.vpidr_el2;
2829 return raw_read(env, ri);
2832 static uint64_t mpidr_read_val(CPUARMState *env)
2834 ARMCPU *cpu = ARM_CPU(arm_env_get_cpu(env));
2835 uint64_t mpidr = cpu->mp_affinity;
2837 if (arm_feature(env, ARM_FEATURE_V7MP)) {
2838 mpidr |= (1U << 31);
2839 /* Cores which are uniprocessor (non-coherent)
2840 * but still implement the MP extensions set
2841 * bit 30. (For instance, Cortex-R5).
2843 if (cpu->mp_is_up) {
2844 mpidr |= (1u << 30);
2847 return mpidr;
2850 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2852 unsigned int cur_el = arm_current_el(env);
2853 bool secure = arm_is_secure(env);
2855 if (arm_feature(env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
2856 return env->cp15.vmpidr_el2;
2858 return mpidr_read_val(env);
2861 static const ARMCPRegInfo mpidr_cp_reginfo[] = {
2862 { .name = "MPIDR", .state = ARM_CP_STATE_BOTH,
2863 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
2864 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
2865 REGINFO_SENTINEL
2868 static const ARMCPRegInfo lpae_cp_reginfo[] = {
2869 /* NOP AMAIR0/1 */
2870 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
2871 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
2872 .access = PL1_RW, .type = ARM_CP_CONST,
2873 .resetvalue = 0 },
2874 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
2875 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
2876 .access = PL1_RW, .type = ARM_CP_CONST,
2877 .resetvalue = 0 },
2878 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
2879 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
2880 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
2881 offsetof(CPUARMState, cp15.par_ns)} },
2882 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
2883 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
2884 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
2885 offsetof(CPUARMState, cp15.ttbr0_ns) },
2886 .writefn = vmsa_ttbr_write, },
2887 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
2888 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
2889 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
2890 offsetof(CPUARMState, cp15.ttbr1_ns) },
2891 .writefn = vmsa_ttbr_write, },
2892 REGINFO_SENTINEL
2895 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2897 return vfp_get_fpcr(env);
2900 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2901 uint64_t value)
2903 vfp_set_fpcr(env, value);
2906 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2908 return vfp_get_fpsr(env);
2911 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2912 uint64_t value)
2914 vfp_set_fpsr(env, value);
2917 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri,
2918 bool isread)
2920 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) {
2921 return CP_ACCESS_TRAP;
2923 return CP_ACCESS_OK;
2926 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
2927 uint64_t value)
2929 env->daif = value & PSTATE_DAIF;
2932 static CPAccessResult aa64_cacheop_access(CPUARMState *env,
2933 const ARMCPRegInfo *ri,
2934 bool isread)
2936 /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless
2937 * SCTLR_EL1.UCI is set.
2939 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCI)) {
2940 return CP_ACCESS_TRAP;
2942 return CP_ACCESS_OK;
2945 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
2946 * Page D4-1736 (DDI0487A.b)
2949 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
2950 uint64_t value)
2952 CPUState *cs = ENV_GET_CPU(env);
2954 if (arm_is_secure_below_el3(env)) {
2955 tlb_flush_by_mmuidx(cs,
2956 ARMMMUIdxBit_S1SE1 |
2957 ARMMMUIdxBit_S1SE0);
2958 } else {
2959 tlb_flush_by_mmuidx(cs,
2960 ARMMMUIdxBit_S12NSE1 |
2961 ARMMMUIdxBit_S12NSE0);
2965 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
2966 uint64_t value)
2968 CPUState *cs = ENV_GET_CPU(env);
2969 bool sec = arm_is_secure_below_el3(env);
2971 if (sec) {
2972 tlb_flush_by_mmuidx_all_cpus_synced(cs,
2973 ARMMMUIdxBit_S1SE1 |
2974 ARMMMUIdxBit_S1SE0);
2975 } else {
2976 tlb_flush_by_mmuidx_all_cpus_synced(cs,
2977 ARMMMUIdxBit_S12NSE1 |
2978 ARMMMUIdxBit_S12NSE0);
2982 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
2983 uint64_t value)
2985 /* Note that the 'ALL' scope must invalidate both stage 1 and
2986 * stage 2 translations, whereas most other scopes only invalidate
2987 * stage 1 translations.
2989 ARMCPU *cpu = arm_env_get_cpu(env);
2990 CPUState *cs = CPU(cpu);
2992 if (arm_is_secure_below_el3(env)) {
2993 tlb_flush_by_mmuidx(cs,
2994 ARMMMUIdxBit_S1SE1 |
2995 ARMMMUIdxBit_S1SE0);
2996 } else {
2997 if (arm_feature(env, ARM_FEATURE_EL2)) {
2998 tlb_flush_by_mmuidx(cs,
2999 ARMMMUIdxBit_S12NSE1 |
3000 ARMMMUIdxBit_S12NSE0 |
3001 ARMMMUIdxBit_S2NS);
3002 } else {
3003 tlb_flush_by_mmuidx(cs,
3004 ARMMMUIdxBit_S12NSE1 |
3005 ARMMMUIdxBit_S12NSE0);
3010 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri,
3011 uint64_t value)
3013 ARMCPU *cpu = arm_env_get_cpu(env);
3014 CPUState *cs = CPU(cpu);
3016 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2);
3019 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri,
3020 uint64_t value)
3022 ARMCPU *cpu = arm_env_get_cpu(env);
3023 CPUState *cs = CPU(cpu);
3025 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E3);
3028 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3029 uint64_t value)
3031 /* Note that the 'ALL' scope must invalidate both stage 1 and
3032 * stage 2 translations, whereas most other scopes only invalidate
3033 * stage 1 translations.
3035 CPUState *cs = ENV_GET_CPU(env);
3036 bool sec = arm_is_secure_below_el3(env);
3037 bool has_el2 = arm_feature(env, ARM_FEATURE_EL2);
3039 if (sec) {
3040 tlb_flush_by_mmuidx_all_cpus_synced(cs,
3041 ARMMMUIdxBit_S1SE1 |
3042 ARMMMUIdxBit_S1SE0);
3043 } else if (has_el2) {
3044 tlb_flush_by_mmuidx_all_cpus_synced(cs,
3045 ARMMMUIdxBit_S12NSE1 |
3046 ARMMMUIdxBit_S12NSE0 |
3047 ARMMMUIdxBit_S2NS);
3048 } else {
3049 tlb_flush_by_mmuidx_all_cpus_synced(cs,
3050 ARMMMUIdxBit_S12NSE1 |
3051 ARMMMUIdxBit_S12NSE0);
3055 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3056 uint64_t value)
3058 CPUState *cs = ENV_GET_CPU(env);
3060 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2);
3063 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3064 uint64_t value)
3066 CPUState *cs = ENV_GET_CPU(env);
3068 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E3);
3071 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3072 uint64_t value)
3074 /* Invalidate by VA, EL1&0 (AArch64 version).
3075 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
3076 * since we don't support flush-for-specific-ASID-only or
3077 * flush-last-level-only.
3079 ARMCPU *cpu = arm_env_get_cpu(env);
3080 CPUState *cs = CPU(cpu);
3081 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3083 if (arm_is_secure_below_el3(env)) {
3084 tlb_flush_page_by_mmuidx(cs, pageaddr,
3085 ARMMMUIdxBit_S1SE1 |
3086 ARMMMUIdxBit_S1SE0);
3087 } else {
3088 tlb_flush_page_by_mmuidx(cs, pageaddr,
3089 ARMMMUIdxBit_S12NSE1 |
3090 ARMMMUIdxBit_S12NSE0);
3094 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri,
3095 uint64_t value)
3097 /* Invalidate by VA, EL2
3098 * Currently handles both VAE2 and VALE2, since we don't support
3099 * flush-last-level-only.
3101 ARMCPU *cpu = arm_env_get_cpu(env);
3102 CPUState *cs = CPU(cpu);
3103 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3105 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2);
3108 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri,
3109 uint64_t value)
3111 /* Invalidate by VA, EL3
3112 * Currently handles both VAE3 and VALE3, since we don't support
3113 * flush-last-level-only.
3115 ARMCPU *cpu = arm_env_get_cpu(env);
3116 CPUState *cs = CPU(cpu);
3117 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3119 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E3);
3122 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3123 uint64_t value)
3125 ARMCPU *cpu = arm_env_get_cpu(env);
3126 CPUState *cs = CPU(cpu);
3127 bool sec = arm_is_secure_below_el3(env);
3128 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3130 if (sec) {
3131 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3132 ARMMMUIdxBit_S1SE1 |
3133 ARMMMUIdxBit_S1SE0);
3134 } else {
3135 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3136 ARMMMUIdxBit_S12NSE1 |
3137 ARMMMUIdxBit_S12NSE0);
3141 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3142 uint64_t value)
3144 CPUState *cs = ENV_GET_CPU(env);
3145 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3147 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3148 ARMMMUIdxBit_S1E2);
3151 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3152 uint64_t value)
3154 CPUState *cs = ENV_GET_CPU(env);
3155 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3157 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3158 ARMMMUIdxBit_S1E3);
3161 static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3162 uint64_t value)
3164 /* Invalidate by IPA. This has to invalidate any structures that
3165 * contain only stage 2 translation information, but does not need
3166 * to apply to structures that contain combined stage 1 and stage 2
3167 * translation information.
3168 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
3170 ARMCPU *cpu = arm_env_get_cpu(env);
3171 CPUState *cs = CPU(cpu);
3172 uint64_t pageaddr;
3174 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
3175 return;
3178 pageaddr = sextract64(value << 12, 0, 48);
3180 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS);
3183 static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3184 uint64_t value)
3186 CPUState *cs = ENV_GET_CPU(env);
3187 uint64_t pageaddr;
3189 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
3190 return;
3193 pageaddr = sextract64(value << 12, 0, 48);
3195 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3196 ARMMMUIdxBit_S2NS);
3199 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri,
3200 bool isread)
3202 /* We don't implement EL2, so the only control on DC ZVA is the
3203 * bit in the SCTLR which can prohibit access for EL0.
3205 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
3206 return CP_ACCESS_TRAP;
3208 return CP_ACCESS_OK;
3211 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
3213 ARMCPU *cpu = arm_env_get_cpu(env);
3214 int dzp_bit = 1 << 4;
3216 /* DZP indicates whether DC ZVA access is allowed */
3217 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) {
3218 dzp_bit = 0;
3220 return cpu->dcz_blocksize | dzp_bit;
3223 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
3224 bool isread)
3226 if (!(env->pstate & PSTATE_SP)) {
3227 /* Access to SP_EL0 is undefined if it's being used as
3228 * the stack pointer.
3230 return CP_ACCESS_TRAP_UNCATEGORIZED;
3232 return CP_ACCESS_OK;
3235 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
3237 return env->pstate & PSTATE_SP;
3240 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
3242 update_spsel(env, val);
3245 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3246 uint64_t value)
3248 ARMCPU *cpu = arm_env_get_cpu(env);
3250 if (raw_read(env, ri) == value) {
3251 /* Skip the TLB flush if nothing actually changed; Linux likes
3252 * to do a lot of pointless SCTLR writes.
3254 return;
3257 if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) {
3258 /* M bit is RAZ/WI for PMSA with no MPU implemented */
3259 value &= ~SCTLR_M;
3262 raw_write(env, ri, value);
3263 /* ??? Lots of these bits are not implemented. */
3264 /* This may enable/disable the MMU, so do a TLB flush. */
3265 tlb_flush(CPU(cpu));
3268 static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri,
3269 bool isread)
3271 if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) {
3272 return CP_ACCESS_TRAP_FP_EL2;
3274 if (env->cp15.cptr_el[3] & CPTR_TFP) {
3275 return CP_ACCESS_TRAP_FP_EL3;
3277 return CP_ACCESS_OK;
3280 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3281 uint64_t value)
3283 env->cp15.mdcr_el3 = value & SDCR_VALID_MASK;
3286 static const ARMCPRegInfo v8_cp_reginfo[] = {
3287 /* Minimal set of EL0-visible registers. This will need to be expanded
3288 * significantly for system emulation of AArch64 CPUs.
3290 { .name = "NZCV", .state = ARM_CP_STATE_AA64,
3291 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
3292 .access = PL0_RW, .type = ARM_CP_NZCV },
3293 { .name = "DAIF", .state = ARM_CP_STATE_AA64,
3294 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
3295 .type = ARM_CP_NO_RAW,
3296 .access = PL0_RW, .accessfn = aa64_daif_access,
3297 .fieldoffset = offsetof(CPUARMState, daif),
3298 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
3299 { .name = "FPCR", .state = ARM_CP_STATE_AA64,
3300 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
3301 .access = PL0_RW, .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
3302 { .name = "FPSR", .state = ARM_CP_STATE_AA64,
3303 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
3304 .access = PL0_RW, .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
3305 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
3306 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
3307 .access = PL0_R, .type = ARM_CP_NO_RAW,
3308 .readfn = aa64_dczid_read },
3309 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
3310 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
3311 .access = PL0_W, .type = ARM_CP_DC_ZVA,
3312 #ifndef CONFIG_USER_ONLY
3313 /* Avoid overhead of an access check that always passes in user-mode */
3314 .accessfn = aa64_zva_access,
3315 #endif
3317 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
3318 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
3319 .access = PL1_R, .type = ARM_CP_CURRENTEL },
3320 /* Cache ops: all NOPs since we don't emulate caches */
3321 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
3322 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
3323 .access = PL1_W, .type = ARM_CP_NOP },
3324 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
3325 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
3326 .access = PL1_W, .type = ARM_CP_NOP },
3327 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
3328 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
3329 .access = PL0_W, .type = ARM_CP_NOP,
3330 .accessfn = aa64_cacheop_access },
3331 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
3332 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
3333 .access = PL1_W, .type = ARM_CP_NOP },
3334 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
3335 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
3336 .access = PL1_W, .type = ARM_CP_NOP },
3337 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
3338 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
3339 .access = PL0_W, .type = ARM_CP_NOP,
3340 .accessfn = aa64_cacheop_access },
3341 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
3342 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
3343 .access = PL1_W, .type = ARM_CP_NOP },
3344 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
3345 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
3346 .access = PL0_W, .type = ARM_CP_NOP,
3347 .accessfn = aa64_cacheop_access },
3348 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
3349 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
3350 .access = PL0_W, .type = ARM_CP_NOP,
3351 .accessfn = aa64_cacheop_access },
3352 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
3353 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
3354 .access = PL1_W, .type = ARM_CP_NOP },
3355 /* TLBI operations */
3356 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
3357 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
3358 .access = PL1_W, .type = ARM_CP_NO_RAW,
3359 .writefn = tlbi_aa64_vmalle1is_write },
3360 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
3361 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
3362 .access = PL1_W, .type = ARM_CP_NO_RAW,
3363 .writefn = tlbi_aa64_vae1is_write },
3364 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
3365 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
3366 .access = PL1_W, .type = ARM_CP_NO_RAW,
3367 .writefn = tlbi_aa64_vmalle1is_write },
3368 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
3369 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
3370 .access = PL1_W, .type = ARM_CP_NO_RAW,
3371 .writefn = tlbi_aa64_vae1is_write },
3372 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
3373 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
3374 .access = PL1_W, .type = ARM_CP_NO_RAW,
3375 .writefn = tlbi_aa64_vae1is_write },
3376 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
3377 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
3378 .access = PL1_W, .type = ARM_CP_NO_RAW,
3379 .writefn = tlbi_aa64_vae1is_write },
3380 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
3381 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
3382 .access = PL1_W, .type = ARM_CP_NO_RAW,
3383 .writefn = tlbi_aa64_vmalle1_write },
3384 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
3385 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
3386 .access = PL1_W, .type = ARM_CP_NO_RAW,
3387 .writefn = tlbi_aa64_vae1_write },
3388 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
3389 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
3390 .access = PL1_W, .type = ARM_CP_NO_RAW,
3391 .writefn = tlbi_aa64_vmalle1_write },
3392 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
3393 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
3394 .access = PL1_W, .type = ARM_CP_NO_RAW,
3395 .writefn = tlbi_aa64_vae1_write },
3396 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
3397 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
3398 .access = PL1_W, .type = ARM_CP_NO_RAW,
3399 .writefn = tlbi_aa64_vae1_write },
3400 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
3401 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
3402 .access = PL1_W, .type = ARM_CP_NO_RAW,
3403 .writefn = tlbi_aa64_vae1_write },
3404 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64,
3405 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
3406 .access = PL2_W, .type = ARM_CP_NO_RAW,
3407 .writefn = tlbi_aa64_ipas2e1is_write },
3408 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64,
3409 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
3410 .access = PL2_W, .type = ARM_CP_NO_RAW,
3411 .writefn = tlbi_aa64_ipas2e1is_write },
3412 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64,
3413 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
3414 .access = PL2_W, .type = ARM_CP_NO_RAW,
3415 .writefn = tlbi_aa64_alle1is_write },
3416 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64,
3417 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6,
3418 .access = PL2_W, .type = ARM_CP_NO_RAW,
3419 .writefn = tlbi_aa64_alle1is_write },
3420 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64,
3421 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
3422 .access = PL2_W, .type = ARM_CP_NO_RAW,
3423 .writefn = tlbi_aa64_ipas2e1_write },
3424 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64,
3425 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
3426 .access = PL2_W, .type = ARM_CP_NO_RAW,
3427 .writefn = tlbi_aa64_ipas2e1_write },
3428 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64,
3429 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
3430 .access = PL2_W, .type = ARM_CP_NO_RAW,
3431 .writefn = tlbi_aa64_alle1_write },
3432 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64,
3433 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6,
3434 .access = PL2_W, .type = ARM_CP_NO_RAW,
3435 .writefn = tlbi_aa64_alle1is_write },
3436 #ifndef CONFIG_USER_ONLY
3437 /* 64 bit address translation operations */
3438 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
3439 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
3440 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3441 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
3442 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
3443 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3444 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
3445 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
3446 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3447 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
3448 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
3449 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3450 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64,
3451 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4,
3452 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3453 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64,
3454 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5,
3455 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3456 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64,
3457 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6,
3458 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3459 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64,
3460 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7,
3461 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3462 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
3463 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64,
3464 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0,
3465 .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3466 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64,
3467 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1,
3468 .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3469 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64,
3470 .type = ARM_CP_ALIAS,
3471 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0,
3472 .access = PL1_RW, .resetvalue = 0,
3473 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]),
3474 .writefn = par_write },
3475 #endif
3476 /* TLB invalidate last level of translation table walk */
3477 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
3478 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
3479 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
3480 .type = ARM_CP_NO_RAW, .access = PL1_W,
3481 .writefn = tlbimvaa_is_write },
3482 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
3483 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
3484 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
3485 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
3486 { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
3487 .type = ARM_CP_NO_RAW, .access = PL2_W,
3488 .writefn = tlbimva_hyp_write },
3489 { .name = "TLBIMVALHIS",
3490 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
3491 .type = ARM_CP_NO_RAW, .access = PL2_W,
3492 .writefn = tlbimva_hyp_is_write },
3493 { .name = "TLBIIPAS2",
3494 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
3495 .type = ARM_CP_NO_RAW, .access = PL2_W,
3496 .writefn = tlbiipas2_write },
3497 { .name = "TLBIIPAS2IS",
3498 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
3499 .type = ARM_CP_NO_RAW, .access = PL2_W,
3500 .writefn = tlbiipas2_is_write },
3501 { .name = "TLBIIPAS2L",
3502 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
3503 .type = ARM_CP_NO_RAW, .access = PL2_W,
3504 .writefn = tlbiipas2_write },
3505 { .name = "TLBIIPAS2LIS",
3506 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
3507 .type = ARM_CP_NO_RAW, .access = PL2_W,
3508 .writefn = tlbiipas2_is_write },
3509 /* 32 bit cache operations */
3510 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
3511 .type = ARM_CP_NOP, .access = PL1_W },
3512 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
3513 .type = ARM_CP_NOP, .access = PL1_W },
3514 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
3515 .type = ARM_CP_NOP, .access = PL1_W },
3516 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
3517 .type = ARM_CP_NOP, .access = PL1_W },
3518 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
3519 .type = ARM_CP_NOP, .access = PL1_W },
3520 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
3521 .type = ARM_CP_NOP, .access = PL1_W },
3522 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
3523 .type = ARM_CP_NOP, .access = PL1_W },
3524 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
3525 .type = ARM_CP_NOP, .access = PL1_W },
3526 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
3527 .type = ARM_CP_NOP, .access = PL1_W },
3528 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
3529 .type = ARM_CP_NOP, .access = PL1_W },
3530 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
3531 .type = ARM_CP_NOP, .access = PL1_W },
3532 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
3533 .type = ARM_CP_NOP, .access = PL1_W },
3534 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
3535 .type = ARM_CP_NOP, .access = PL1_W },
3536 /* MMU Domain access control / MPU write buffer control */
3537 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
3538 .access = PL1_RW, .resetvalue = 0,
3539 .writefn = dacr_write, .raw_writefn = raw_write,
3540 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
3541 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
3542 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
3543 .type = ARM_CP_ALIAS,
3544 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
3545 .access = PL1_RW,
3546 .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
3547 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
3548 .type = ARM_CP_ALIAS,
3549 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
3550 .access = PL1_RW,
3551 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) },
3552 /* We rely on the access checks not allowing the guest to write to the
3553 * state field when SPSel indicates that it's being used as the stack
3554 * pointer.
3556 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
3557 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
3558 .access = PL1_RW, .accessfn = sp_el0_access,
3559 .type = ARM_CP_ALIAS,
3560 .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
3561 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
3562 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
3563 .access = PL2_RW, .type = ARM_CP_ALIAS,
3564 .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
3565 { .name = "SPSel", .state = ARM_CP_STATE_AA64,
3566 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
3567 .type = ARM_CP_NO_RAW,
3568 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
3569 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64,
3570 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0,
3571 .type = ARM_CP_ALIAS,
3572 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]),
3573 .access = PL2_RW, .accessfn = fpexc32_access },
3574 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
3575 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
3576 .access = PL2_RW, .resetvalue = 0,
3577 .writefn = dacr_write, .raw_writefn = raw_write,
3578 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
3579 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
3580 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
3581 .access = PL2_RW, .resetvalue = 0,
3582 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
3583 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64,
3584 .type = ARM_CP_ALIAS,
3585 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0,
3586 .access = PL2_RW,
3587 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) },
3588 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64,
3589 .type = ARM_CP_ALIAS,
3590 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1,
3591 .access = PL2_RW,
3592 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) },
3593 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64,
3594 .type = ARM_CP_ALIAS,
3595 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2,
3596 .access = PL2_RW,
3597 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) },
3598 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64,
3599 .type = ARM_CP_ALIAS,
3600 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3,
3601 .access = PL2_RW,
3602 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) },
3603 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64,
3604 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1,
3605 .resetvalue = 0,
3606 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) },
3607 { .name = "SDCR", .type = ARM_CP_ALIAS,
3608 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1,
3609 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
3610 .writefn = sdcr_write,
3611 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) },
3612 REGINFO_SENTINEL
3615 /* Used to describe the behaviour of EL2 regs when EL2 does not exist. */
3616 static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = {
3617 { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64,
3618 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
3619 .access = PL2_RW,
3620 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
3621 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
3622 .type = ARM_CP_NO_RAW,
3623 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
3624 .access = PL2_RW,
3625 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
3626 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
3627 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
3628 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3629 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
3630 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
3631 .access = PL2_RW, .type = ARM_CP_CONST,
3632 .resetvalue = 0 },
3633 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3634 .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
3635 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3636 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
3637 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
3638 .access = PL2_RW, .type = ARM_CP_CONST,
3639 .resetvalue = 0 },
3640 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3641 .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
3642 .access = PL2_RW, .type = ARM_CP_CONST,
3643 .resetvalue = 0 },
3644 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
3645 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
3646 .access = PL2_RW, .type = ARM_CP_CONST,
3647 .resetvalue = 0 },
3648 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
3649 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
3650 .access = PL2_RW, .type = ARM_CP_CONST,
3651 .resetvalue = 0 },
3652 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
3653 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
3654 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3655 { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH,
3656 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
3657 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
3658 .type = ARM_CP_CONST, .resetvalue = 0 },
3659 { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
3660 .cp = 15, .opc1 = 6, .crm = 2,
3661 .access = PL2_RW, .accessfn = access_el3_aa32ns,
3662 .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
3663 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
3664 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
3665 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3666 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
3667 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
3668 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3669 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
3670 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
3671 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3672 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
3673 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
3674 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3675 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
3676 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
3677 .resetvalue = 0 },
3678 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
3679 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
3680 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3681 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
3682 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
3683 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3684 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
3685 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
3686 .resetvalue = 0 },
3687 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
3688 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
3689 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3690 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
3691 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
3692 .resetvalue = 0 },
3693 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
3694 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
3695 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3696 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
3697 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
3698 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3699 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
3700 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
3701 .access = PL2_RW, .accessfn = access_tda,
3702 .type = ARM_CP_CONST, .resetvalue = 0 },
3703 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH,
3704 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
3705 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
3706 .type = ARM_CP_CONST, .resetvalue = 0 },
3707 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
3708 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
3709 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3710 REGINFO_SENTINEL
3713 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3715 ARMCPU *cpu = arm_env_get_cpu(env);
3716 uint64_t valid_mask = HCR_MASK;
3718 if (arm_feature(env, ARM_FEATURE_EL3)) {
3719 valid_mask &= ~HCR_HCD;
3720 } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) {
3721 /* Architecturally HCR.TSC is RES0 if EL3 is not implemented.
3722 * However, if we're using the SMC PSCI conduit then QEMU is
3723 * effectively acting like EL3 firmware and so the guest at
3724 * EL2 should retain the ability to prevent EL1 from being
3725 * able to make SMC calls into the ersatz firmware, so in
3726 * that case HCR.TSC should be read/write.
3728 valid_mask &= ~HCR_TSC;
3731 /* Clear RES0 bits. */
3732 value &= valid_mask;
3734 /* These bits change the MMU setup:
3735 * HCR_VM enables stage 2 translation
3736 * HCR_PTW forbids certain page-table setups
3737 * HCR_DC Disables stage1 and enables stage2 translation
3739 if ((raw_read(env, ri) ^ value) & (HCR_VM | HCR_PTW | HCR_DC)) {
3740 tlb_flush(CPU(cpu));
3742 raw_write(env, ri, value);
3745 static const ARMCPRegInfo el2_cp_reginfo[] = {
3746 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
3747 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
3748 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
3749 .writefn = hcr_write },
3750 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
3751 .type = ARM_CP_ALIAS,
3752 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
3753 .access = PL2_RW,
3754 .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
3755 { .name = "ESR_EL2", .state = ARM_CP_STATE_AA64,
3756 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
3757 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
3758 { .name = "FAR_EL2", .state = ARM_CP_STATE_AA64,
3759 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
3760 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
3761 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
3762 .type = ARM_CP_ALIAS,
3763 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
3764 .access = PL2_RW,
3765 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) },
3766 { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64,
3767 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
3768 .access = PL2_RW, .writefn = vbar_write,
3769 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
3770 .resetvalue = 0 },
3771 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
3772 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
3773 .access = PL3_RW, .type = ARM_CP_ALIAS,
3774 .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
3775 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
3776 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
3777 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
3778 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]) },
3779 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
3780 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
3781 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
3782 .resetvalue = 0 },
3783 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3784 .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
3785 .access = PL2_RW, .type = ARM_CP_ALIAS,
3786 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
3787 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
3788 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
3789 .access = PL2_RW, .type = ARM_CP_CONST,
3790 .resetvalue = 0 },
3791 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
3792 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3793 .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
3794 .access = PL2_RW, .type = ARM_CP_CONST,
3795 .resetvalue = 0 },
3796 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
3797 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
3798 .access = PL2_RW, .type = ARM_CP_CONST,
3799 .resetvalue = 0 },
3800 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
3801 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
3802 .access = PL2_RW, .type = ARM_CP_CONST,
3803 .resetvalue = 0 },
3804 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
3805 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
3806 .access = PL2_RW,
3807 /* no .writefn needed as this can't cause an ASID change;
3808 * no .raw_writefn or .resetfn needed as we never use mask/base_mask
3810 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
3811 { .name = "VTCR", .state = ARM_CP_STATE_AA32,
3812 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
3813 .type = ARM_CP_ALIAS,
3814 .access = PL2_RW, .accessfn = access_el3_aa32ns,
3815 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
3816 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64,
3817 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
3818 .access = PL2_RW,
3819 /* no .writefn needed as this can't cause an ASID change;
3820 * no .raw_writefn or .resetfn needed as we never use mask/base_mask
3822 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
3823 { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
3824 .cp = 15, .opc1 = 6, .crm = 2,
3825 .type = ARM_CP_64BIT | ARM_CP_ALIAS,
3826 .access = PL2_RW, .accessfn = access_el3_aa32ns,
3827 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2),
3828 .writefn = vttbr_write },
3829 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
3830 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
3831 .access = PL2_RW, .writefn = vttbr_write,
3832 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) },
3833 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
3834 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
3835 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
3836 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
3837 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
3838 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
3839 .access = PL2_RW, .resetvalue = 0,
3840 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
3841 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
3842 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
3843 .access = PL2_RW, .resetvalue = 0,
3844 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
3845 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
3846 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
3847 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
3848 { .name = "TLBIALLNSNH",
3849 .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
3850 .type = ARM_CP_NO_RAW, .access = PL2_W,
3851 .writefn = tlbiall_nsnh_write },
3852 { .name = "TLBIALLNSNHIS",
3853 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
3854 .type = ARM_CP_NO_RAW, .access = PL2_W,
3855 .writefn = tlbiall_nsnh_is_write },
3856 { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
3857 .type = ARM_CP_NO_RAW, .access = PL2_W,
3858 .writefn = tlbiall_hyp_write },
3859 { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
3860 .type = ARM_CP_NO_RAW, .access = PL2_W,
3861 .writefn = tlbiall_hyp_is_write },
3862 { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
3863 .type = ARM_CP_NO_RAW, .access = PL2_W,
3864 .writefn = tlbimva_hyp_write },
3865 { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
3866 .type = ARM_CP_NO_RAW, .access = PL2_W,
3867 .writefn = tlbimva_hyp_is_write },
3868 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64,
3869 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
3870 .type = ARM_CP_NO_RAW, .access = PL2_W,
3871 .writefn = tlbi_aa64_alle2_write },
3872 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64,
3873 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
3874 .type = ARM_CP_NO_RAW, .access = PL2_W,
3875 .writefn = tlbi_aa64_vae2_write },
3876 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64,
3877 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
3878 .access = PL2_W, .type = ARM_CP_NO_RAW,
3879 .writefn = tlbi_aa64_vae2_write },
3880 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64,
3881 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
3882 .access = PL2_W, .type = ARM_CP_NO_RAW,
3883 .writefn = tlbi_aa64_alle2is_write },
3884 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64,
3885 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
3886 .type = ARM_CP_NO_RAW, .access = PL2_W,
3887 .writefn = tlbi_aa64_vae2is_write },
3888 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64,
3889 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
3890 .access = PL2_W, .type = ARM_CP_NO_RAW,
3891 .writefn = tlbi_aa64_vae2is_write },
3892 #ifndef CONFIG_USER_ONLY
3893 /* Unlike the other EL2-related AT operations, these must
3894 * UNDEF from EL3 if EL2 is not implemented, which is why we
3895 * define them here rather than with the rest of the AT ops.
3897 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64,
3898 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
3899 .access = PL2_W, .accessfn = at_s1e2_access,
3900 .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3901 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64,
3902 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
3903 .access = PL2_W, .accessfn = at_s1e2_access,
3904 .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3905 /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
3906 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
3907 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
3908 * to behave as if SCR.NS was 1.
3910 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
3911 .access = PL2_W,
3912 .writefn = ats1h_write, .type = ARM_CP_NO_RAW },
3913 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
3914 .access = PL2_W,
3915 .writefn = ats1h_write, .type = ARM_CP_NO_RAW },
3916 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
3917 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
3918 /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
3919 * reset values as IMPDEF. We choose to reset to 3 to comply with
3920 * both ARMv7 and ARMv8.
3922 .access = PL2_RW, .resetvalue = 3,
3923 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) },
3924 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
3925 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
3926 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
3927 .writefn = gt_cntvoff_write,
3928 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
3929 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
3930 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO,
3931 .writefn = gt_cntvoff_write,
3932 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
3933 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
3934 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
3935 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
3936 .type = ARM_CP_IO, .access = PL2_RW,
3937 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
3938 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
3939 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
3940 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO,
3941 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
3942 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
3943 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
3944 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
3945 .resetfn = gt_hyp_timer_reset,
3946 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write },
3947 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
3948 .type = ARM_CP_IO,
3949 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
3950 .access = PL2_RW,
3951 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl),
3952 .resetvalue = 0,
3953 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write },
3954 #endif
3955 /* The only field of MDCR_EL2 that has a defined architectural reset value
3956 * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N; but we
3957 * don't impelment any PMU event counters, so using zero as a reset
3958 * value for MDCR_EL2 is okay
3960 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
3961 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
3962 .access = PL2_RW, .resetvalue = 0,
3963 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), },
3964 { .name = "HPFAR", .state = ARM_CP_STATE_AA32,
3965 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
3966 .access = PL2_RW, .accessfn = access_el3_aa32ns,
3967 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
3968 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64,
3969 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
3970 .access = PL2_RW,
3971 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
3972 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
3973 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
3974 .access = PL2_RW,
3975 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) },
3976 REGINFO_SENTINEL
3979 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
3980 bool isread)
3982 /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2.
3983 * At Secure EL1 it traps to EL3.
3985 if (arm_current_el(env) == 3) {
3986 return CP_ACCESS_OK;
3988 if (arm_is_secure_below_el3(env)) {
3989 return CP_ACCESS_TRAP_EL3;
3991 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */
3992 if (isread) {
3993 return CP_ACCESS_OK;
3995 return CP_ACCESS_TRAP_UNCATEGORIZED;
3998 static const ARMCPRegInfo el3_cp_reginfo[] = {
3999 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
4000 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
4001 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
4002 .resetvalue = 0, .writefn = scr_write },
4003 { .name = "SCR", .type = ARM_CP_ALIAS,
4004 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
4005 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
4006 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
4007 .writefn = scr_write },
4008 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
4009 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
4010 .access = PL3_RW, .resetvalue = 0,
4011 .fieldoffset = offsetof(CPUARMState, cp15.sder) },
4012 { .name = "SDER",
4013 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
4014 .access = PL3_RW, .resetvalue = 0,
4015 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
4016 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
4017 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
4018 .writefn = vbar_write, .resetvalue = 0,
4019 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
4020 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
4021 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
4022 .access = PL3_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
4023 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
4024 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
4025 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
4026 .access = PL3_RW,
4027 /* no .writefn needed as this can't cause an ASID change;
4028 * we must provide a .raw_writefn and .resetfn because we handle
4029 * reset and migration for the AArch32 TTBCR(S), which might be
4030 * using mask and base_mask.
4032 .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write,
4033 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
4034 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
4035 .type = ARM_CP_ALIAS,
4036 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
4037 .access = PL3_RW,
4038 .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
4039 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
4040 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
4041 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
4042 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
4043 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
4044 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
4045 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
4046 .type = ARM_CP_ALIAS,
4047 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
4048 .access = PL3_RW,
4049 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) },
4050 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
4051 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
4052 .access = PL3_RW, .writefn = vbar_write,
4053 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
4054 .resetvalue = 0 },
4055 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
4056 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
4057 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
4058 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
4059 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64,
4060 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2,
4061 .access = PL3_RW, .resetvalue = 0,
4062 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) },
4063 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64,
4064 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0,
4065 .access = PL3_RW, .type = ARM_CP_CONST,
4066 .resetvalue = 0 },
4067 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH,
4068 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0,
4069 .access = PL3_RW, .type = ARM_CP_CONST,
4070 .resetvalue = 0 },
4071 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH,
4072 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1,
4073 .access = PL3_RW, .type = ARM_CP_CONST,
4074 .resetvalue = 0 },
4075 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64,
4076 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0,
4077 .access = PL3_W, .type = ARM_CP_NO_RAW,
4078 .writefn = tlbi_aa64_alle3is_write },
4079 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64,
4080 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1,
4081 .access = PL3_W, .type = ARM_CP_NO_RAW,
4082 .writefn = tlbi_aa64_vae3is_write },
4083 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64,
4084 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5,
4085 .access = PL3_W, .type = ARM_CP_NO_RAW,
4086 .writefn = tlbi_aa64_vae3is_write },
4087 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64,
4088 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0,
4089 .access = PL3_W, .type = ARM_CP_NO_RAW,
4090 .writefn = tlbi_aa64_alle3_write },
4091 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64,
4092 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1,
4093 .access = PL3_W, .type = ARM_CP_NO_RAW,
4094 .writefn = tlbi_aa64_vae3_write },
4095 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64,
4096 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5,
4097 .access = PL3_W, .type = ARM_CP_NO_RAW,
4098 .writefn = tlbi_aa64_vae3_write },
4099 REGINFO_SENTINEL
4102 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
4103 bool isread)
4105 /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64,
4106 * but the AArch32 CTR has its own reginfo struct)
4108 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
4109 return CP_ACCESS_TRAP;
4111 return CP_ACCESS_OK;
4114 static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri,
4115 uint64_t value)
4117 /* Writes to OSLAR_EL1 may update the OS lock status, which can be
4118 * read via a bit in OSLSR_EL1.
4120 int oslock;
4122 if (ri->state == ARM_CP_STATE_AA32) {
4123 oslock = (value == 0xC5ACCE55);
4124 } else {
4125 oslock = value & 1;
4128 env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock);
4131 static const ARMCPRegInfo debug_cp_reginfo[] = {
4132 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
4133 * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1;
4134 * unlike DBGDRAR it is never accessible from EL0.
4135 * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64
4136 * accessor.
4138 { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
4139 .access = PL0_R, .accessfn = access_tdra,
4140 .type = ARM_CP_CONST, .resetvalue = 0 },
4141 { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64,
4142 .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
4143 .access = PL1_R, .accessfn = access_tdra,
4144 .type = ARM_CP_CONST, .resetvalue = 0 },
4145 { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
4146 .access = PL0_R, .accessfn = access_tdra,
4147 .type = ARM_CP_CONST, .resetvalue = 0 },
4148 /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */
4149 { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH,
4150 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
4151 .access = PL1_RW, .accessfn = access_tda,
4152 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1),
4153 .resetvalue = 0 },
4154 /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1.
4155 * We don't implement the configurable EL0 access.
4157 { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH,
4158 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
4159 .type = ARM_CP_ALIAS,
4160 .access = PL1_R, .accessfn = access_tda,
4161 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), },
4162 { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH,
4163 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4,
4164 .access = PL1_W, .type = ARM_CP_NO_RAW,
4165 .accessfn = access_tdosa,
4166 .writefn = oslar_write },
4167 { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH,
4168 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4,
4169 .access = PL1_R, .resetvalue = 10,
4170 .accessfn = access_tdosa,
4171 .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) },
4172 /* Dummy OSDLR_EL1: 32-bit Linux will read this */
4173 { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH,
4174 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4,
4175 .access = PL1_RW, .accessfn = access_tdosa,
4176 .type = ARM_CP_NOP },
4177 /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't
4178 * implement vector catch debug events yet.
4180 { .name = "DBGVCR",
4181 .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
4182 .access = PL1_RW, .accessfn = access_tda,
4183 .type = ARM_CP_NOP },
4184 /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor
4185 * to save and restore a 32-bit guest's DBGVCR)
4187 { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64,
4188 .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0,
4189 .access = PL2_RW, .accessfn = access_tda,
4190 .type = ARM_CP_NOP },
4191 /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications
4192 * Channel but Linux may try to access this register. The 32-bit
4193 * alias is DBGDCCINT.
4195 { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH,
4196 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
4197 .access = PL1_RW, .accessfn = access_tda,
4198 .type = ARM_CP_NOP },
4199 REGINFO_SENTINEL
4202 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = {
4203 /* 64 bit access versions of the (dummy) debug registers */
4204 { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
4205 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
4206 { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
4207 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
4208 REGINFO_SENTINEL
4211 void hw_watchpoint_update(ARMCPU *cpu, int n)
4213 CPUARMState *env = &cpu->env;
4214 vaddr len = 0;
4215 vaddr wvr = env->cp15.dbgwvr[n];
4216 uint64_t wcr = env->cp15.dbgwcr[n];
4217 int mask;
4218 int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;
4220 if (env->cpu_watchpoint[n]) {
4221 cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]);
4222 env->cpu_watchpoint[n] = NULL;
4225 if (!extract64(wcr, 0, 1)) {
4226 /* E bit clear : watchpoint disabled */
4227 return;
4230 switch (extract64(wcr, 3, 2)) {
4231 case 0:
4232 /* LSC 00 is reserved and must behave as if the wp is disabled */
4233 return;
4234 case 1:
4235 flags |= BP_MEM_READ;
4236 break;
4237 case 2:
4238 flags |= BP_MEM_WRITE;
4239 break;
4240 case 3:
4241 flags |= BP_MEM_ACCESS;
4242 break;
4245 /* Attempts to use both MASK and BAS fields simultaneously are
4246 * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
4247 * thus generating a watchpoint for every byte in the masked region.
4249 mask = extract64(wcr, 24, 4);
4250 if (mask == 1 || mask == 2) {
4251 /* Reserved values of MASK; we must act as if the mask value was
4252 * some non-reserved value, or as if the watchpoint were disabled.
4253 * We choose the latter.
4255 return;
4256 } else if (mask) {
4257 /* Watchpoint covers an aligned area up to 2GB in size */
4258 len = 1ULL << mask;
4259 /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
4260 * whether the watchpoint fires when the unmasked bits match; we opt
4261 * to generate the exceptions.
4263 wvr &= ~(len - 1);
4264 } else {
4265 /* Watchpoint covers bytes defined by the byte address select bits */
4266 int bas = extract64(wcr, 5, 8);
4267 int basstart;
4269 if (bas == 0) {
4270 /* This must act as if the watchpoint is disabled */
4271 return;
4274 if (extract64(wvr, 2, 1)) {
4275 /* Deprecated case of an only 4-aligned address. BAS[7:4] are
4276 * ignored, and BAS[3:0] define which bytes to watch.
4278 bas &= 0xf;
4280 /* The BAS bits are supposed to be programmed to indicate a contiguous
4281 * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
4282 * we fire for each byte in the word/doubleword addressed by the WVR.
4283 * We choose to ignore any non-zero bits after the first range of 1s.
4285 basstart = ctz32(bas);
4286 len = cto32(bas >> basstart);
4287 wvr += basstart;
4290 cpu_watchpoint_insert(CPU(cpu), wvr, len, flags,
4291 &env->cpu_watchpoint[n]);
4294 void hw_watchpoint_update_all(ARMCPU *cpu)
4296 int i;
4297 CPUARMState *env = &cpu->env;
4299 /* Completely clear out existing QEMU watchpoints and our array, to
4300 * avoid possible stale entries following migration load.
4302 cpu_watchpoint_remove_all(CPU(cpu), BP_CPU);
4303 memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint));
4305 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) {
4306 hw_watchpoint_update(cpu, i);
4310 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4311 uint64_t value)
4313 ARMCPU *cpu = arm_env_get_cpu(env);
4314 int i = ri->crm;
4316 /* Bits [63:49] are hardwired to the value of bit [48]; that is, the
4317 * register reads and behaves as if values written are sign extended.
4318 * Bits [1:0] are RES0.
4320 value = sextract64(value, 0, 49) & ~3ULL;
4322 raw_write(env, ri, value);
4323 hw_watchpoint_update(cpu, i);
4326 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4327 uint64_t value)
4329 ARMCPU *cpu = arm_env_get_cpu(env);
4330 int i = ri->crm;
4332 raw_write(env, ri, value);
4333 hw_watchpoint_update(cpu, i);
4336 void hw_breakpoint_update(ARMCPU *cpu, int n)
4338 CPUARMState *env = &cpu->env;
4339 uint64_t bvr = env->cp15.dbgbvr[n];
4340 uint64_t bcr = env->cp15.dbgbcr[n];
4341 vaddr addr;
4342 int bt;
4343 int flags = BP_CPU;
4345 if (env->cpu_breakpoint[n]) {
4346 cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]);
4347 env->cpu_breakpoint[n] = NULL;
4350 if (!extract64(bcr, 0, 1)) {
4351 /* E bit clear : watchpoint disabled */
4352 return;
4355 bt = extract64(bcr, 20, 4);
4357 switch (bt) {
4358 case 4: /* unlinked address mismatch (reserved if AArch64) */
4359 case 5: /* linked address mismatch (reserved if AArch64) */
4360 qemu_log_mask(LOG_UNIMP,
4361 "arm: address mismatch breakpoint types not implemented");
4362 return;
4363 case 0: /* unlinked address match */
4364 case 1: /* linked address match */
4366 /* Bits [63:49] are hardwired to the value of bit [48]; that is,
4367 * we behave as if the register was sign extended. Bits [1:0] are
4368 * RES0. The BAS field is used to allow setting breakpoints on 16
4369 * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether
4370 * a bp will fire if the addresses covered by the bp and the addresses
4371 * covered by the insn overlap but the insn doesn't start at the
4372 * start of the bp address range. We choose to require the insn and
4373 * the bp to have the same address. The constraints on writing to
4374 * BAS enforced in dbgbcr_write mean we have only four cases:
4375 * 0b0000 => no breakpoint
4376 * 0b0011 => breakpoint on addr
4377 * 0b1100 => breakpoint on addr + 2
4378 * 0b1111 => breakpoint on addr
4379 * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
4381 int bas = extract64(bcr, 5, 4);
4382 addr = sextract64(bvr, 0, 49) & ~3ULL;
4383 if (bas == 0) {
4384 return;
4386 if (bas == 0xc) {
4387 addr += 2;
4389 break;
4391 case 2: /* unlinked context ID match */
4392 case 8: /* unlinked VMID match (reserved if no EL2) */
4393 case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
4394 qemu_log_mask(LOG_UNIMP,
4395 "arm: unlinked context breakpoint types not implemented");
4396 return;
4397 case 9: /* linked VMID match (reserved if no EL2) */
4398 case 11: /* linked context ID and VMID match (reserved if no EL2) */
4399 case 3: /* linked context ID match */
4400 default:
4401 /* We must generate no events for Linked context matches (unless
4402 * they are linked to by some other bp/wp, which is handled in
4403 * updates for the linking bp/wp). We choose to also generate no events
4404 * for reserved values.
4406 return;
4409 cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]);
4412 void hw_breakpoint_update_all(ARMCPU *cpu)
4414 int i;
4415 CPUARMState *env = &cpu->env;
4417 /* Completely clear out existing QEMU breakpoints and our array, to
4418 * avoid possible stale entries following migration load.
4420 cpu_breakpoint_remove_all(CPU(cpu), BP_CPU);
4421 memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint));
4423 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) {
4424 hw_breakpoint_update(cpu, i);
4428 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4429 uint64_t value)
4431 ARMCPU *cpu = arm_env_get_cpu(env);
4432 int i = ri->crm;
4434 raw_write(env, ri, value);
4435 hw_breakpoint_update(cpu, i);
4438 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4439 uint64_t value)
4441 ARMCPU *cpu = arm_env_get_cpu(env);
4442 int i = ri->crm;
4444 /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only
4445 * copy of BAS[0].
4447 value = deposit64(value, 6, 1, extract64(value, 5, 1));
4448 value = deposit64(value, 8, 1, extract64(value, 7, 1));
4450 raw_write(env, ri, value);
4451 hw_breakpoint_update(cpu, i);
4454 static void define_debug_regs(ARMCPU *cpu)
4456 /* Define v7 and v8 architectural debug registers.
4457 * These are just dummy implementations for now.
4459 int i;
4460 int wrps, brps, ctx_cmps;
4461 ARMCPRegInfo dbgdidr = {
4462 .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
4463 .access = PL0_R, .accessfn = access_tda,
4464 .type = ARM_CP_CONST, .resetvalue = cpu->dbgdidr,
4467 /* Note that all these register fields hold "number of Xs minus 1". */
4468 brps = extract32(cpu->dbgdidr, 24, 4);
4469 wrps = extract32(cpu->dbgdidr, 28, 4);
4470 ctx_cmps = extract32(cpu->dbgdidr, 20, 4);
4472 assert(ctx_cmps <= brps);
4474 /* The DBGDIDR and ID_AA64DFR0_EL1 define various properties
4475 * of the debug registers such as number of breakpoints;
4476 * check that if they both exist then they agree.
4478 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
4479 assert(extract32(cpu->id_aa64dfr0, 12, 4) == brps);
4480 assert(extract32(cpu->id_aa64dfr0, 20, 4) == wrps);
4481 assert(extract32(cpu->id_aa64dfr0, 28, 4) == ctx_cmps);
4484 define_one_arm_cp_reg(cpu, &dbgdidr);
4485 define_arm_cp_regs(cpu, debug_cp_reginfo);
4487 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) {
4488 define_arm_cp_regs(cpu, debug_lpae_cp_reginfo);
4491 for (i = 0; i < brps + 1; i++) {
4492 ARMCPRegInfo dbgregs[] = {
4493 { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH,
4494 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4,
4495 .access = PL1_RW, .accessfn = access_tda,
4496 .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]),
4497 .writefn = dbgbvr_write, .raw_writefn = raw_write
4499 { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH,
4500 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5,
4501 .access = PL1_RW, .accessfn = access_tda,
4502 .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]),
4503 .writefn = dbgbcr_write, .raw_writefn = raw_write
4505 REGINFO_SENTINEL
4507 define_arm_cp_regs(cpu, dbgregs);
4510 for (i = 0; i < wrps + 1; i++) {
4511 ARMCPRegInfo dbgregs[] = {
4512 { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH,
4513 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6,
4514 .access = PL1_RW, .accessfn = access_tda,
4515 .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]),
4516 .writefn = dbgwvr_write, .raw_writefn = raw_write
4518 { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH,
4519 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7,
4520 .access = PL1_RW, .accessfn = access_tda,
4521 .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]),
4522 .writefn = dbgwcr_write, .raw_writefn = raw_write
4524 REGINFO_SENTINEL
4526 define_arm_cp_regs(cpu, dbgregs);
4530 void register_cp_regs_for_features(ARMCPU *cpu)
4532 /* Register all the coprocessor registers based on feature bits */
4533 CPUARMState *env = &cpu->env;
4534 if (arm_feature(env, ARM_FEATURE_M)) {
4535 /* M profile has no coprocessor registers */
4536 return;
4539 define_arm_cp_regs(cpu, cp_reginfo);
4540 if (!arm_feature(env, ARM_FEATURE_V8)) {
4541 /* Must go early as it is full of wildcards that may be
4542 * overridden by later definitions.
4544 define_arm_cp_regs(cpu, not_v8_cp_reginfo);
4547 if (arm_feature(env, ARM_FEATURE_V6)) {
4548 /* The ID registers all have impdef reset values */
4549 ARMCPRegInfo v6_idregs[] = {
4550 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
4551 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
4552 .access = PL1_R, .type = ARM_CP_CONST,
4553 .resetvalue = cpu->id_pfr0 },
4554 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
4555 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
4556 .access = PL1_R, .type = ARM_CP_CONST,
4557 .resetvalue = cpu->id_pfr1 },
4558 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
4559 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
4560 .access = PL1_R, .type = ARM_CP_CONST,
4561 .resetvalue = cpu->id_dfr0 },
4562 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
4563 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
4564 .access = PL1_R, .type = ARM_CP_CONST,
4565 .resetvalue = cpu->id_afr0 },
4566 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
4567 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
4568 .access = PL1_R, .type = ARM_CP_CONST,
4569 .resetvalue = cpu->id_mmfr0 },
4570 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
4571 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
4572 .access = PL1_R, .type = ARM_CP_CONST,
4573 .resetvalue = cpu->id_mmfr1 },
4574 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
4575 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
4576 .access = PL1_R, .type = ARM_CP_CONST,
4577 .resetvalue = cpu->id_mmfr2 },
4578 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
4579 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
4580 .access = PL1_R, .type = ARM_CP_CONST,
4581 .resetvalue = cpu->id_mmfr3 },
4582 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
4583 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
4584 .access = PL1_R, .type = ARM_CP_CONST,
4585 .resetvalue = cpu->id_isar0 },
4586 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
4587 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
4588 .access = PL1_R, .type = ARM_CP_CONST,
4589 .resetvalue = cpu->id_isar1 },
4590 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
4591 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
4592 .access = PL1_R, .type = ARM_CP_CONST,
4593 .resetvalue = cpu->id_isar2 },
4594 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
4595 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
4596 .access = PL1_R, .type = ARM_CP_CONST,
4597 .resetvalue = cpu->id_isar3 },
4598 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
4599 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
4600 .access = PL1_R, .type = ARM_CP_CONST,
4601 .resetvalue = cpu->id_isar4 },
4602 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
4603 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
4604 .access = PL1_R, .type = ARM_CP_CONST,
4605 .resetvalue = cpu->id_isar5 },
4606 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH,
4607 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6,
4608 .access = PL1_R, .type = ARM_CP_CONST,
4609 .resetvalue = cpu->id_mmfr4 },
4610 /* 7 is as yet unallocated and must RAZ */
4611 { .name = "ID_ISAR7_RESERVED", .state = ARM_CP_STATE_BOTH,
4612 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7,
4613 .access = PL1_R, .type = ARM_CP_CONST,
4614 .resetvalue = 0 },
4615 REGINFO_SENTINEL
4617 define_arm_cp_regs(cpu, v6_idregs);
4618 define_arm_cp_regs(cpu, v6_cp_reginfo);
4619 } else {
4620 define_arm_cp_regs(cpu, not_v6_cp_reginfo);
4622 if (arm_feature(env, ARM_FEATURE_V6K)) {
4623 define_arm_cp_regs(cpu, v6k_cp_reginfo);
4625 if (arm_feature(env, ARM_FEATURE_V7MP) &&
4626 !arm_feature(env, ARM_FEATURE_PMSA)) {
4627 define_arm_cp_regs(cpu, v7mp_cp_reginfo);
4629 if (arm_feature(env, ARM_FEATURE_V7)) {
4630 /* v7 performance monitor control register: same implementor
4631 * field as main ID register, and we implement only the cycle
4632 * count register.
4634 #ifndef CONFIG_USER_ONLY
4635 ARMCPRegInfo pmcr = {
4636 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
4637 .access = PL0_RW,
4638 .type = ARM_CP_IO | ARM_CP_ALIAS,
4639 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
4640 .accessfn = pmreg_access, .writefn = pmcr_write,
4641 .raw_writefn = raw_write,
4643 ARMCPRegInfo pmcr64 = {
4644 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
4645 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
4646 .access = PL0_RW, .accessfn = pmreg_access,
4647 .type = ARM_CP_IO,
4648 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
4649 .resetvalue = cpu->midr & 0xff000000,
4650 .writefn = pmcr_write, .raw_writefn = raw_write,
4652 define_one_arm_cp_reg(cpu, &pmcr);
4653 define_one_arm_cp_reg(cpu, &pmcr64);
4654 #endif
4655 ARMCPRegInfo clidr = {
4656 .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
4657 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
4658 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr
4660 define_one_arm_cp_reg(cpu, &clidr);
4661 define_arm_cp_regs(cpu, v7_cp_reginfo);
4662 define_debug_regs(cpu);
4663 } else {
4664 define_arm_cp_regs(cpu, not_v7_cp_reginfo);
4666 if (arm_feature(env, ARM_FEATURE_V8)) {
4667 /* AArch64 ID registers, which all have impdef reset values.
4668 * Note that within the ID register ranges the unused slots
4669 * must all RAZ, not UNDEF; future architecture versions may
4670 * define new registers here.
4672 ARMCPRegInfo v8_idregs[] = {
4673 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
4674 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
4675 .access = PL1_R, .type = ARM_CP_CONST,
4676 .resetvalue = cpu->id_aa64pfr0 },
4677 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
4678 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
4679 .access = PL1_R, .type = ARM_CP_CONST,
4680 .resetvalue = cpu->id_aa64pfr1},
4681 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4682 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2,
4683 .access = PL1_R, .type = ARM_CP_CONST,
4684 .resetvalue = 0 },
4685 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4686 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3,
4687 .access = PL1_R, .type = ARM_CP_CONST,
4688 .resetvalue = 0 },
4689 { .name = "ID_AA64PFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4690 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4,
4691 .access = PL1_R, .type = ARM_CP_CONST,
4692 .resetvalue = 0 },
4693 { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4694 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5,
4695 .access = PL1_R, .type = ARM_CP_CONST,
4696 .resetvalue = 0 },
4697 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4698 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6,
4699 .access = PL1_R, .type = ARM_CP_CONST,
4700 .resetvalue = 0 },
4701 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4702 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7,
4703 .access = PL1_R, .type = ARM_CP_CONST,
4704 .resetvalue = 0 },
4705 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
4706 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
4707 .access = PL1_R, .type = ARM_CP_CONST,
4708 .resetvalue = cpu->id_aa64dfr0 },
4709 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
4710 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
4711 .access = PL1_R, .type = ARM_CP_CONST,
4712 .resetvalue = cpu->id_aa64dfr1 },
4713 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4714 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2,
4715 .access = PL1_R, .type = ARM_CP_CONST,
4716 .resetvalue = 0 },
4717 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4718 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3,
4719 .access = PL1_R, .type = ARM_CP_CONST,
4720 .resetvalue = 0 },
4721 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
4722 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
4723 .access = PL1_R, .type = ARM_CP_CONST,
4724 .resetvalue = cpu->id_aa64afr0 },
4725 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
4726 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
4727 .access = PL1_R, .type = ARM_CP_CONST,
4728 .resetvalue = cpu->id_aa64afr1 },
4729 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4730 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6,
4731 .access = PL1_R, .type = ARM_CP_CONST,
4732 .resetvalue = 0 },
4733 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4734 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7,
4735 .access = PL1_R, .type = ARM_CP_CONST,
4736 .resetvalue = 0 },
4737 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
4738 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
4739 .access = PL1_R, .type = ARM_CP_CONST,
4740 .resetvalue = cpu->id_aa64isar0 },
4741 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
4742 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
4743 .access = PL1_R, .type = ARM_CP_CONST,
4744 .resetvalue = cpu->id_aa64isar1 },
4745 { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4746 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2,
4747 .access = PL1_R, .type = ARM_CP_CONST,
4748 .resetvalue = 0 },
4749 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4750 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3,
4751 .access = PL1_R, .type = ARM_CP_CONST,
4752 .resetvalue = 0 },
4753 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4754 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4,
4755 .access = PL1_R, .type = ARM_CP_CONST,
4756 .resetvalue = 0 },
4757 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4758 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5,
4759 .access = PL1_R, .type = ARM_CP_CONST,
4760 .resetvalue = 0 },
4761 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4762 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6,
4763 .access = PL1_R, .type = ARM_CP_CONST,
4764 .resetvalue = 0 },
4765 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4766 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7,
4767 .access = PL1_R, .type = ARM_CP_CONST,
4768 .resetvalue = 0 },
4769 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
4770 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
4771 .access = PL1_R, .type = ARM_CP_CONST,
4772 .resetvalue = cpu->id_aa64mmfr0 },
4773 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
4774 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
4775 .access = PL1_R, .type = ARM_CP_CONST,
4776 .resetvalue = cpu->id_aa64mmfr1 },
4777 { .name = "ID_AA64MMFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4778 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2,
4779 .access = PL1_R, .type = ARM_CP_CONST,
4780 .resetvalue = 0 },
4781 { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4782 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3,
4783 .access = PL1_R, .type = ARM_CP_CONST,
4784 .resetvalue = 0 },
4785 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4786 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4,
4787 .access = PL1_R, .type = ARM_CP_CONST,
4788 .resetvalue = 0 },
4789 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4790 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5,
4791 .access = PL1_R, .type = ARM_CP_CONST,
4792 .resetvalue = 0 },
4793 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4794 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6,
4795 .access = PL1_R, .type = ARM_CP_CONST,
4796 .resetvalue = 0 },
4797 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4798 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7,
4799 .access = PL1_R, .type = ARM_CP_CONST,
4800 .resetvalue = 0 },
4801 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
4802 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
4803 .access = PL1_R, .type = ARM_CP_CONST,
4804 .resetvalue = cpu->mvfr0 },
4805 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
4806 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
4807 .access = PL1_R, .type = ARM_CP_CONST,
4808 .resetvalue = cpu->mvfr1 },
4809 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
4810 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
4811 .access = PL1_R, .type = ARM_CP_CONST,
4812 .resetvalue = cpu->mvfr2 },
4813 { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4814 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3,
4815 .access = PL1_R, .type = ARM_CP_CONST,
4816 .resetvalue = 0 },
4817 { .name = "MVFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4818 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4,
4819 .access = PL1_R, .type = ARM_CP_CONST,
4820 .resetvalue = 0 },
4821 { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4822 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5,
4823 .access = PL1_R, .type = ARM_CP_CONST,
4824 .resetvalue = 0 },
4825 { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4826 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6,
4827 .access = PL1_R, .type = ARM_CP_CONST,
4828 .resetvalue = 0 },
4829 { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4830 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7,
4831 .access = PL1_R, .type = ARM_CP_CONST,
4832 .resetvalue = 0 },
4833 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32,
4834 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6,
4835 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
4836 .resetvalue = cpu->pmceid0 },
4837 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64,
4838 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6,
4839 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
4840 .resetvalue = cpu->pmceid0 },
4841 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32,
4842 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7,
4843 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
4844 .resetvalue = cpu->pmceid1 },
4845 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64,
4846 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7,
4847 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
4848 .resetvalue = cpu->pmceid1 },
4849 REGINFO_SENTINEL
4851 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */
4852 if (!arm_feature(env, ARM_FEATURE_EL3) &&
4853 !arm_feature(env, ARM_FEATURE_EL2)) {
4854 ARMCPRegInfo rvbar = {
4855 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64,
4856 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
4857 .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar
4859 define_one_arm_cp_reg(cpu, &rvbar);
4861 define_arm_cp_regs(cpu, v8_idregs);
4862 define_arm_cp_regs(cpu, v8_cp_reginfo);
4864 if (arm_feature(env, ARM_FEATURE_EL2)) {
4865 uint64_t vmpidr_def = mpidr_read_val(env);
4866 ARMCPRegInfo vpidr_regs[] = {
4867 { .name = "VPIDR", .state = ARM_CP_STATE_AA32,
4868 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
4869 .access = PL2_RW, .accessfn = access_el3_aa32ns,
4870 .resetvalue = cpu->midr,
4871 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
4872 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64,
4873 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
4874 .access = PL2_RW, .resetvalue = cpu->midr,
4875 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
4876 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32,
4877 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
4878 .access = PL2_RW, .accessfn = access_el3_aa32ns,
4879 .resetvalue = vmpidr_def,
4880 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
4881 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64,
4882 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
4883 .access = PL2_RW,
4884 .resetvalue = vmpidr_def,
4885 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
4886 REGINFO_SENTINEL
4888 define_arm_cp_regs(cpu, vpidr_regs);
4889 define_arm_cp_regs(cpu, el2_cp_reginfo);
4890 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */
4891 if (!arm_feature(env, ARM_FEATURE_EL3)) {
4892 ARMCPRegInfo rvbar = {
4893 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
4894 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
4895 .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar
4897 define_one_arm_cp_reg(cpu, &rvbar);
4899 } else {
4900 /* If EL2 is missing but higher ELs are enabled, we need to
4901 * register the no_el2 reginfos.
4903 if (arm_feature(env, ARM_FEATURE_EL3)) {
4904 /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value
4905 * of MIDR_EL1 and MPIDR_EL1.
4907 ARMCPRegInfo vpidr_regs[] = {
4908 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH,
4909 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
4910 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
4911 .type = ARM_CP_CONST, .resetvalue = cpu->midr,
4912 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
4913 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH,
4914 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
4915 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
4916 .type = ARM_CP_NO_RAW,
4917 .writefn = arm_cp_write_ignore, .readfn = mpidr_read },
4918 REGINFO_SENTINEL
4920 define_arm_cp_regs(cpu, vpidr_regs);
4921 define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo);
4924 if (arm_feature(env, ARM_FEATURE_EL3)) {
4925 define_arm_cp_regs(cpu, el3_cp_reginfo);
4926 ARMCPRegInfo el3_regs[] = {
4927 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
4928 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
4929 .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar },
4930 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
4931 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
4932 .access = PL3_RW,
4933 .raw_writefn = raw_write, .writefn = sctlr_write,
4934 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]),
4935 .resetvalue = cpu->reset_sctlr },
4936 REGINFO_SENTINEL
4939 define_arm_cp_regs(cpu, el3_regs);
4941 /* The behaviour of NSACR is sufficiently various that we don't
4942 * try to describe it in a single reginfo:
4943 * if EL3 is 64 bit, then trap to EL3 from S EL1,
4944 * reads as constant 0xc00 from NS EL1 and NS EL2
4945 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2
4946 * if v7 without EL3, register doesn't exist
4947 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2
4949 if (arm_feature(env, ARM_FEATURE_EL3)) {
4950 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
4951 ARMCPRegInfo nsacr = {
4952 .name = "NSACR", .type = ARM_CP_CONST,
4953 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
4954 .access = PL1_RW, .accessfn = nsacr_access,
4955 .resetvalue = 0xc00
4957 define_one_arm_cp_reg(cpu, &nsacr);
4958 } else {
4959 ARMCPRegInfo nsacr = {
4960 .name = "NSACR",
4961 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
4962 .access = PL3_RW | PL1_R,
4963 .resetvalue = 0,
4964 .fieldoffset = offsetof(CPUARMState, cp15.nsacr)
4966 define_one_arm_cp_reg(cpu, &nsacr);
4968 } else {
4969 if (arm_feature(env, ARM_FEATURE_V8)) {
4970 ARMCPRegInfo nsacr = {
4971 .name = "NSACR", .type = ARM_CP_CONST,
4972 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
4973 .access = PL1_R,
4974 .resetvalue = 0xc00
4976 define_one_arm_cp_reg(cpu, &nsacr);
4980 if (arm_feature(env, ARM_FEATURE_PMSA)) {
4981 if (arm_feature(env, ARM_FEATURE_V6)) {
4982 /* PMSAv6 not implemented */
4983 assert(arm_feature(env, ARM_FEATURE_V7));
4984 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
4985 define_arm_cp_regs(cpu, pmsav7_cp_reginfo);
4986 } else {
4987 define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
4989 } else {
4990 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
4991 define_arm_cp_regs(cpu, vmsa_cp_reginfo);
4993 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
4994 define_arm_cp_regs(cpu, t2ee_cp_reginfo);
4996 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
4997 define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
4999 if (arm_feature(env, ARM_FEATURE_VAPA)) {
5000 define_arm_cp_regs(cpu, vapa_cp_reginfo);
5002 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
5003 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
5005 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
5006 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
5008 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
5009 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
5011 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
5012 define_arm_cp_regs(cpu, omap_cp_reginfo);
5014 if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
5015 define_arm_cp_regs(cpu, strongarm_cp_reginfo);
5017 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
5018 define_arm_cp_regs(cpu, xscale_cp_reginfo);
5020 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
5021 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
5023 if (arm_feature(env, ARM_FEATURE_LPAE)) {
5024 define_arm_cp_regs(cpu, lpae_cp_reginfo);
5026 /* Slightly awkwardly, the OMAP and StrongARM cores need all of
5027 * cp15 crn=0 to be writes-ignored, whereas for other cores they should
5028 * be read-only (ie write causes UNDEF exception).
5031 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
5032 /* Pre-v8 MIDR space.
5033 * Note that the MIDR isn't a simple constant register because
5034 * of the TI925 behaviour where writes to another register can
5035 * cause the MIDR value to change.
5037 * Unimplemented registers in the c15 0 0 0 space default to
5038 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
5039 * and friends override accordingly.
5041 { .name = "MIDR",
5042 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
5043 .access = PL1_R, .resetvalue = cpu->midr,
5044 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
5045 .readfn = midr_read,
5046 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
5047 .type = ARM_CP_OVERRIDE },
5048 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
5049 { .name = "DUMMY",
5050 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
5051 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5052 { .name = "DUMMY",
5053 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
5054 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5055 { .name = "DUMMY",
5056 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
5057 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5058 { .name = "DUMMY",
5059 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
5060 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5061 { .name = "DUMMY",
5062 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
5063 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5064 REGINFO_SENTINEL
5066 ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
5067 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
5068 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
5069 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr,
5070 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
5071 .readfn = midr_read },
5072 /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */
5073 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
5074 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
5075 .access = PL1_R, .resetvalue = cpu->midr },
5076 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
5077 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7,
5078 .access = PL1_R, .resetvalue = cpu->midr },
5079 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
5080 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
5081 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->revidr },
5082 REGINFO_SENTINEL
5084 ARMCPRegInfo id_cp_reginfo[] = {
5085 /* These are common to v8 and pre-v8 */
5086 { .name = "CTR",
5087 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
5088 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
5089 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
5090 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
5091 .access = PL0_R, .accessfn = ctr_el0_access,
5092 .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
5093 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
5094 { .name = "TCMTR",
5095 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
5096 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5097 REGINFO_SENTINEL
5099 /* TLBTR is specific to VMSA */
5100 ARMCPRegInfo id_tlbtr_reginfo = {
5101 .name = "TLBTR",
5102 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
5103 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0,
5105 /* MPUIR is specific to PMSA V6+ */
5106 ARMCPRegInfo id_mpuir_reginfo = {
5107 .name = "MPUIR",
5108 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
5109 .access = PL1_R, .type = ARM_CP_CONST,
5110 .resetvalue = cpu->pmsav7_dregion << 8
5112 ARMCPRegInfo crn0_wi_reginfo = {
5113 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
5114 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
5115 .type = ARM_CP_NOP | ARM_CP_OVERRIDE
5117 if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
5118 arm_feature(env, ARM_FEATURE_STRONGARM)) {
5119 ARMCPRegInfo *r;
5120 /* Register the blanket "writes ignored" value first to cover the
5121 * whole space. Then update the specific ID registers to allow write
5122 * access, so that they ignore writes rather than causing them to
5123 * UNDEF.
5125 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
5126 for (r = id_pre_v8_midr_cp_reginfo;
5127 r->type != ARM_CP_SENTINEL; r++) {
5128 r->access = PL1_RW;
5130 for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) {
5131 r->access = PL1_RW;
5133 id_tlbtr_reginfo.access = PL1_RW;
5134 id_tlbtr_reginfo.access = PL1_RW;
5136 if (arm_feature(env, ARM_FEATURE_V8)) {
5137 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
5138 } else {
5139 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
5141 define_arm_cp_regs(cpu, id_cp_reginfo);
5142 if (!arm_feature(env, ARM_FEATURE_PMSA)) {
5143 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo);
5144 } else if (arm_feature(env, ARM_FEATURE_V7)) {
5145 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
5149 if (arm_feature(env, ARM_FEATURE_MPIDR)) {
5150 define_arm_cp_regs(cpu, mpidr_cp_reginfo);
5153 if (arm_feature(env, ARM_FEATURE_AUXCR)) {
5154 ARMCPRegInfo auxcr_reginfo[] = {
5155 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
5156 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
5157 .access = PL1_RW, .type = ARM_CP_CONST,
5158 .resetvalue = cpu->reset_auxcr },
5159 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH,
5160 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1,
5161 .access = PL2_RW, .type = ARM_CP_CONST,
5162 .resetvalue = 0 },
5163 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64,
5164 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1,
5165 .access = PL3_RW, .type = ARM_CP_CONST,
5166 .resetvalue = 0 },
5167 REGINFO_SENTINEL
5169 define_arm_cp_regs(cpu, auxcr_reginfo);
5172 if (arm_feature(env, ARM_FEATURE_CBAR)) {
5173 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
5174 /* 32 bit view is [31:18] 0...0 [43:32]. */
5175 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
5176 | extract64(cpu->reset_cbar, 32, 12);
5177 ARMCPRegInfo cbar_reginfo[] = {
5178 { .name = "CBAR",
5179 .type = ARM_CP_CONST,
5180 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
5181 .access = PL1_R, .resetvalue = cpu->reset_cbar },
5182 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
5183 .type = ARM_CP_CONST,
5184 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
5185 .access = PL1_R, .resetvalue = cbar32 },
5186 REGINFO_SENTINEL
5188 /* We don't implement a r/w 64 bit CBAR currently */
5189 assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
5190 define_arm_cp_regs(cpu, cbar_reginfo);
5191 } else {
5192 ARMCPRegInfo cbar = {
5193 .name = "CBAR",
5194 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
5195 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar,
5196 .fieldoffset = offsetof(CPUARMState,
5197 cp15.c15_config_base_address)
5199 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
5200 cbar.access = PL1_R;
5201 cbar.fieldoffset = 0;
5202 cbar.type = ARM_CP_CONST;
5204 define_one_arm_cp_reg(cpu, &cbar);
5208 if (arm_feature(env, ARM_FEATURE_VBAR)) {
5209 ARMCPRegInfo vbar_cp_reginfo[] = {
5210 { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
5211 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
5212 .access = PL1_RW, .writefn = vbar_write,
5213 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
5214 offsetof(CPUARMState, cp15.vbar_ns) },
5215 .resetvalue = 0 },
5216 REGINFO_SENTINEL
5218 define_arm_cp_regs(cpu, vbar_cp_reginfo);
5221 /* Generic registers whose values depend on the implementation */
5223 ARMCPRegInfo sctlr = {
5224 .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
5225 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
5226 .access = PL1_RW,
5227 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
5228 offsetof(CPUARMState, cp15.sctlr_ns) },
5229 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
5230 .raw_writefn = raw_write,
5232 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
5233 /* Normally we would always end the TB on an SCTLR write, but Linux
5234 * arch/arm/mach-pxa/sleep.S expects two instructions following
5235 * an MMU enable to execute from cache. Imitate this behaviour.
5237 sctlr.type |= ARM_CP_SUPPRESS_TB_END;
5239 define_one_arm_cp_reg(cpu, &sctlr);
5243 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu)
5245 CPUState *cs = CPU(cpu);
5246 CPUARMState *env = &cpu->env;
5248 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
5249 gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg,
5250 aarch64_fpu_gdb_set_reg,
5251 34, "aarch64-fpu.xml", 0);
5252 } else if (arm_feature(env, ARM_FEATURE_NEON)) {
5253 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
5254 51, "arm-neon.xml", 0);
5255 } else if (arm_feature(env, ARM_FEATURE_VFP3)) {
5256 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
5257 35, "arm-vfp3.xml", 0);
5258 } else if (arm_feature(env, ARM_FEATURE_VFP)) {
5259 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
5260 19, "arm-vfp.xml", 0);
5264 /* Sort alphabetically by type name, except for "any". */
5265 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
5267 ObjectClass *class_a = (ObjectClass *)a;
5268 ObjectClass *class_b = (ObjectClass *)b;
5269 const char *name_a, *name_b;
5271 name_a = object_class_get_name(class_a);
5272 name_b = object_class_get_name(class_b);
5273 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
5274 return 1;
5275 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
5276 return -1;
5277 } else {
5278 return strcmp(name_a, name_b);
5282 static void arm_cpu_list_entry(gpointer data, gpointer user_data)
5284 ObjectClass *oc = data;
5285 CPUListState *s = user_data;
5286 const char *typename;
5287 char *name;
5289 typename = object_class_get_name(oc);
5290 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
5291 (*s->cpu_fprintf)(s->file, " %s\n",
5292 name);
5293 g_free(name);
5296 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf)
5298 CPUListState s = {
5299 .file = f,
5300 .cpu_fprintf = cpu_fprintf,
5302 GSList *list;
5304 list = object_class_get_list(TYPE_ARM_CPU, false);
5305 list = g_slist_sort(list, arm_cpu_list_compare);
5306 (*cpu_fprintf)(f, "Available CPUs:\n");
5307 g_slist_foreach(list, arm_cpu_list_entry, &s);
5308 g_slist_free(list);
5309 #ifdef CONFIG_KVM
5310 /* The 'host' CPU type is dynamically registered only if KVM is
5311 * enabled, so we have to special-case it here:
5313 (*cpu_fprintf)(f, " host (only available in KVM mode)\n");
5314 #endif
5317 static void arm_cpu_add_definition(gpointer data, gpointer user_data)
5319 ObjectClass *oc = data;
5320 CpuDefinitionInfoList **cpu_list = user_data;
5321 CpuDefinitionInfoList *entry;
5322 CpuDefinitionInfo *info;
5323 const char *typename;
5325 typename = object_class_get_name(oc);
5326 info = g_malloc0(sizeof(*info));
5327 info->name = g_strndup(typename,
5328 strlen(typename) - strlen("-" TYPE_ARM_CPU));
5329 info->q_typename = g_strdup(typename);
5331 entry = g_malloc0(sizeof(*entry));
5332 entry->value = info;
5333 entry->next = *cpu_list;
5334 *cpu_list = entry;
5337 CpuDefinitionInfoList *arch_query_cpu_definitions(Error **errp)
5339 CpuDefinitionInfoList *cpu_list = NULL;
5340 GSList *list;
5342 list = object_class_get_list(TYPE_ARM_CPU, false);
5343 g_slist_foreach(list, arm_cpu_add_definition, &cpu_list);
5344 g_slist_free(list);
5346 return cpu_list;
5349 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
5350 void *opaque, int state, int secstate,
5351 int crm, int opc1, int opc2)
5353 /* Private utility function for define_one_arm_cp_reg_with_opaque():
5354 * add a single reginfo struct to the hash table.
5356 uint32_t *key = g_new(uint32_t, 1);
5357 ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo));
5358 int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0;
5359 int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0;
5361 /* Reset the secure state to the specific incoming state. This is
5362 * necessary as the register may have been defined with both states.
5364 r2->secure = secstate;
5366 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
5367 /* Register is banked (using both entries in array).
5368 * Overwriting fieldoffset as the array is only used to define
5369 * banked registers but later only fieldoffset is used.
5371 r2->fieldoffset = r->bank_fieldoffsets[ns];
5374 if (state == ARM_CP_STATE_AA32) {
5375 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
5376 /* If the register is banked then we don't need to migrate or
5377 * reset the 32-bit instance in certain cases:
5379 * 1) If the register has both 32-bit and 64-bit instances then we
5380 * can count on the 64-bit instance taking care of the
5381 * non-secure bank.
5382 * 2) If ARMv8 is enabled then we can count on a 64-bit version
5383 * taking care of the secure bank. This requires that separate
5384 * 32 and 64-bit definitions are provided.
5386 if ((r->state == ARM_CP_STATE_BOTH && ns) ||
5387 (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) {
5388 r2->type |= ARM_CP_ALIAS;
5390 } else if ((secstate != r->secure) && !ns) {
5391 /* The register is not banked so we only want to allow migration of
5392 * the non-secure instance.
5394 r2->type |= ARM_CP_ALIAS;
5397 if (r->state == ARM_CP_STATE_BOTH) {
5398 /* We assume it is a cp15 register if the .cp field is left unset.
5400 if (r2->cp == 0) {
5401 r2->cp = 15;
5404 #ifdef HOST_WORDS_BIGENDIAN
5405 if (r2->fieldoffset) {
5406 r2->fieldoffset += sizeof(uint32_t);
5408 #endif
5411 if (state == ARM_CP_STATE_AA64) {
5412 /* To allow abbreviation of ARMCPRegInfo
5413 * definitions, we treat cp == 0 as equivalent to
5414 * the value for "standard guest-visible sysreg".
5415 * STATE_BOTH definitions are also always "standard
5416 * sysreg" in their AArch64 view (the .cp value may
5417 * be non-zero for the benefit of the AArch32 view).
5419 if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) {
5420 r2->cp = CP_REG_ARM64_SYSREG_CP;
5422 *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm,
5423 r2->opc0, opc1, opc2);
5424 } else {
5425 *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2);
5427 if (opaque) {
5428 r2->opaque = opaque;
5430 /* reginfo passed to helpers is correct for the actual access,
5431 * and is never ARM_CP_STATE_BOTH:
5433 r2->state = state;
5434 /* Make sure reginfo passed to helpers for wildcarded regs
5435 * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
5437 r2->crm = crm;
5438 r2->opc1 = opc1;
5439 r2->opc2 = opc2;
5440 /* By convention, for wildcarded registers only the first
5441 * entry is used for migration; the others are marked as
5442 * ALIAS so we don't try to transfer the register
5443 * multiple times. Special registers (ie NOP/WFI) are
5444 * never migratable and not even raw-accessible.
5446 if ((r->type & ARM_CP_SPECIAL)) {
5447 r2->type |= ARM_CP_NO_RAW;
5449 if (((r->crm == CP_ANY) && crm != 0) ||
5450 ((r->opc1 == CP_ANY) && opc1 != 0) ||
5451 ((r->opc2 == CP_ANY) && opc2 != 0)) {
5452 r2->type |= ARM_CP_ALIAS;
5455 /* Check that raw accesses are either forbidden or handled. Note that
5456 * we can't assert this earlier because the setup of fieldoffset for
5457 * banked registers has to be done first.
5459 if (!(r2->type & ARM_CP_NO_RAW)) {
5460 assert(!raw_accessors_invalid(r2));
5463 /* Overriding of an existing definition must be explicitly
5464 * requested.
5466 if (!(r->type & ARM_CP_OVERRIDE)) {
5467 ARMCPRegInfo *oldreg;
5468 oldreg = g_hash_table_lookup(cpu->cp_regs, key);
5469 if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) {
5470 fprintf(stderr, "Register redefined: cp=%d %d bit "
5471 "crn=%d crm=%d opc1=%d opc2=%d, "
5472 "was %s, now %s\n", r2->cp, 32 + 32 * is64,
5473 r2->crn, r2->crm, r2->opc1, r2->opc2,
5474 oldreg->name, r2->name);
5475 g_assert_not_reached();
5478 g_hash_table_insert(cpu->cp_regs, key, r2);
5482 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
5483 const ARMCPRegInfo *r, void *opaque)
5485 /* Define implementations of coprocessor registers.
5486 * We store these in a hashtable because typically
5487 * there are less than 150 registers in a space which
5488 * is 16*16*16*8*8 = 262144 in size.
5489 * Wildcarding is supported for the crm, opc1 and opc2 fields.
5490 * If a register is defined twice then the second definition is
5491 * used, so this can be used to define some generic registers and
5492 * then override them with implementation specific variations.
5493 * At least one of the original and the second definition should
5494 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
5495 * against accidental use.
5497 * The state field defines whether the register is to be
5498 * visible in the AArch32 or AArch64 execution state. If the
5499 * state is set to ARM_CP_STATE_BOTH then we synthesise a
5500 * reginfo structure for the AArch32 view, which sees the lower
5501 * 32 bits of the 64 bit register.
5503 * Only registers visible in AArch64 may set r->opc0; opc0 cannot
5504 * be wildcarded. AArch64 registers are always considered to be 64
5505 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
5506 * the register, if any.
5508 int crm, opc1, opc2, state;
5509 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
5510 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
5511 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
5512 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
5513 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
5514 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
5515 /* 64 bit registers have only CRm and Opc1 fields */
5516 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
5517 /* op0 only exists in the AArch64 encodings */
5518 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
5519 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
5520 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
5521 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
5522 * encodes a minimum access level for the register. We roll this
5523 * runtime check into our general permission check code, so check
5524 * here that the reginfo's specified permissions are strict enough
5525 * to encompass the generic architectural permission check.
5527 if (r->state != ARM_CP_STATE_AA32) {
5528 int mask = 0;
5529 switch (r->opc1) {
5530 case 0: case 1: case 2:
5531 /* min_EL EL1 */
5532 mask = PL1_RW;
5533 break;
5534 case 3:
5535 /* min_EL EL0 */
5536 mask = PL0_RW;
5537 break;
5538 case 4:
5539 /* min_EL EL2 */
5540 mask = PL2_RW;
5541 break;
5542 case 5:
5543 /* unallocated encoding, so not possible */
5544 assert(false);
5545 break;
5546 case 6:
5547 /* min_EL EL3 */
5548 mask = PL3_RW;
5549 break;
5550 case 7:
5551 /* min_EL EL1, secure mode only (we don't check the latter) */
5552 mask = PL1_RW;
5553 break;
5554 default:
5555 /* broken reginfo with out-of-range opc1 */
5556 assert(false);
5557 break;
5559 /* assert our permissions are not too lax (stricter is fine) */
5560 assert((r->access & ~mask) == 0);
5563 /* Check that the register definition has enough info to handle
5564 * reads and writes if they are permitted.
5566 if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) {
5567 if (r->access & PL3_R) {
5568 assert((r->fieldoffset ||
5569 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
5570 r->readfn);
5572 if (r->access & PL3_W) {
5573 assert((r->fieldoffset ||
5574 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
5575 r->writefn);
5578 /* Bad type field probably means missing sentinel at end of reg list */
5579 assert(cptype_valid(r->type));
5580 for (crm = crmmin; crm <= crmmax; crm++) {
5581 for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
5582 for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
5583 for (state = ARM_CP_STATE_AA32;
5584 state <= ARM_CP_STATE_AA64; state++) {
5585 if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
5586 continue;
5588 if (state == ARM_CP_STATE_AA32) {
5589 /* Under AArch32 CP registers can be common
5590 * (same for secure and non-secure world) or banked.
5592 switch (r->secure) {
5593 case ARM_CP_SECSTATE_S:
5594 case ARM_CP_SECSTATE_NS:
5595 add_cpreg_to_hashtable(cpu, r, opaque, state,
5596 r->secure, crm, opc1, opc2);
5597 break;
5598 default:
5599 add_cpreg_to_hashtable(cpu, r, opaque, state,
5600 ARM_CP_SECSTATE_S,
5601 crm, opc1, opc2);
5602 add_cpreg_to_hashtable(cpu, r, opaque, state,
5603 ARM_CP_SECSTATE_NS,
5604 crm, opc1, opc2);
5605 break;
5607 } else {
5608 /* AArch64 registers get mapped to non-secure instance
5609 * of AArch32 */
5610 add_cpreg_to_hashtable(cpu, r, opaque, state,
5611 ARM_CP_SECSTATE_NS,
5612 crm, opc1, opc2);
5620 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
5621 const ARMCPRegInfo *regs, void *opaque)
5623 /* Define a whole list of registers */
5624 const ARMCPRegInfo *r;
5625 for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
5626 define_one_arm_cp_reg_with_opaque(cpu, r, opaque);
5630 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
5632 return g_hash_table_lookup(cpregs, &encoded_cp);
5635 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
5636 uint64_t value)
5638 /* Helper coprocessor write function for write-ignore registers */
5641 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
5643 /* Helper coprocessor write function for read-as-zero registers */
5644 return 0;
5647 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
5649 /* Helper coprocessor reset function for do-nothing-on-reset registers */
5652 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type)
5654 /* Return true if it is not valid for us to switch to
5655 * this CPU mode (ie all the UNPREDICTABLE cases in
5656 * the ARM ARM CPSRWriteByInstr pseudocode).
5659 /* Changes to or from Hyp via MSR and CPS are illegal. */
5660 if (write_type == CPSRWriteByInstr &&
5661 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP ||
5662 mode == ARM_CPU_MODE_HYP)) {
5663 return 1;
5666 switch (mode) {
5667 case ARM_CPU_MODE_USR:
5668 return 0;
5669 case ARM_CPU_MODE_SYS:
5670 case ARM_CPU_MODE_SVC:
5671 case ARM_CPU_MODE_ABT:
5672 case ARM_CPU_MODE_UND:
5673 case ARM_CPU_MODE_IRQ:
5674 case ARM_CPU_MODE_FIQ:
5675 /* Note that we don't implement the IMPDEF NSACR.RFR which in v7
5676 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.)
5678 /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR
5679 * and CPS are treated as illegal mode changes.
5681 if (write_type == CPSRWriteByInstr &&
5682 (env->cp15.hcr_el2 & HCR_TGE) &&
5683 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON &&
5684 !arm_is_secure_below_el3(env)) {
5685 return 1;
5687 return 0;
5688 case ARM_CPU_MODE_HYP:
5689 return !arm_feature(env, ARM_FEATURE_EL2)
5690 || arm_current_el(env) < 2 || arm_is_secure(env);
5691 case ARM_CPU_MODE_MON:
5692 return arm_current_el(env) < 3;
5693 default:
5694 return 1;
5698 uint32_t cpsr_read(CPUARMState *env)
5700 int ZF;
5701 ZF = (env->ZF == 0);
5702 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
5703 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
5704 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
5705 | ((env->condexec_bits & 0xfc) << 8)
5706 | (env->GE << 16) | (env->daif & CPSR_AIF);
5709 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
5710 CPSRWriteType write_type)
5712 uint32_t changed_daif;
5714 if (mask & CPSR_NZCV) {
5715 env->ZF = (~val) & CPSR_Z;
5716 env->NF = val;
5717 env->CF = (val >> 29) & 1;
5718 env->VF = (val << 3) & 0x80000000;
5720 if (mask & CPSR_Q)
5721 env->QF = ((val & CPSR_Q) != 0);
5722 if (mask & CPSR_T)
5723 env->thumb = ((val & CPSR_T) != 0);
5724 if (mask & CPSR_IT_0_1) {
5725 env->condexec_bits &= ~3;
5726 env->condexec_bits |= (val >> 25) & 3;
5728 if (mask & CPSR_IT_2_7) {
5729 env->condexec_bits &= 3;
5730 env->condexec_bits |= (val >> 8) & 0xfc;
5732 if (mask & CPSR_GE) {
5733 env->GE = (val >> 16) & 0xf;
5736 /* In a V7 implementation that includes the security extensions but does
5737 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
5738 * whether non-secure software is allowed to change the CPSR_F and CPSR_A
5739 * bits respectively.
5741 * In a V8 implementation, it is permitted for privileged software to
5742 * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
5744 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) &&
5745 arm_feature(env, ARM_FEATURE_EL3) &&
5746 !arm_feature(env, ARM_FEATURE_EL2) &&
5747 !arm_is_secure(env)) {
5749 changed_daif = (env->daif ^ val) & mask;
5751 if (changed_daif & CPSR_A) {
5752 /* Check to see if we are allowed to change the masking of async
5753 * abort exceptions from a non-secure state.
5755 if (!(env->cp15.scr_el3 & SCR_AW)) {
5756 qemu_log_mask(LOG_GUEST_ERROR,
5757 "Ignoring attempt to switch CPSR_A flag from "
5758 "non-secure world with SCR.AW bit clear\n");
5759 mask &= ~CPSR_A;
5763 if (changed_daif & CPSR_F) {
5764 /* Check to see if we are allowed to change the masking of FIQ
5765 * exceptions from a non-secure state.
5767 if (!(env->cp15.scr_el3 & SCR_FW)) {
5768 qemu_log_mask(LOG_GUEST_ERROR,
5769 "Ignoring attempt to switch CPSR_F flag from "
5770 "non-secure world with SCR.FW bit clear\n");
5771 mask &= ~CPSR_F;
5774 /* Check whether non-maskable FIQ (NMFI) support is enabled.
5775 * If this bit is set software is not allowed to mask
5776 * FIQs, but is allowed to set CPSR_F to 0.
5778 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
5779 (val & CPSR_F)) {
5780 qemu_log_mask(LOG_GUEST_ERROR,
5781 "Ignoring attempt to enable CPSR_F flag "
5782 "(non-maskable FIQ [NMFI] support enabled)\n");
5783 mask &= ~CPSR_F;
5788 env->daif &= ~(CPSR_AIF & mask);
5789 env->daif |= val & CPSR_AIF & mask;
5791 if (write_type != CPSRWriteRaw &&
5792 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) {
5793 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) {
5794 /* Note that we can only get here in USR mode if this is a
5795 * gdb stub write; for this case we follow the architectural
5796 * behaviour for guest writes in USR mode of ignoring an attempt
5797 * to switch mode. (Those are caught by translate.c for writes
5798 * triggered by guest instructions.)
5800 mask &= ~CPSR_M;
5801 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) {
5802 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in
5803 * v7, and has defined behaviour in v8:
5804 * + leave CPSR.M untouched
5805 * + allow changes to the other CPSR fields
5806 * + set PSTATE.IL
5807 * For user changes via the GDB stub, we don't set PSTATE.IL,
5808 * as this would be unnecessarily harsh for a user error.
5810 mask &= ~CPSR_M;
5811 if (write_type != CPSRWriteByGDBStub &&
5812 arm_feature(env, ARM_FEATURE_V8)) {
5813 mask |= CPSR_IL;
5814 val |= CPSR_IL;
5816 } else {
5817 switch_mode(env, val & CPSR_M);
5820 mask &= ~CACHED_CPSR_BITS;
5821 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
5824 /* Sign/zero extend */
5825 uint32_t HELPER(sxtb16)(uint32_t x)
5827 uint32_t res;
5828 res = (uint16_t)(int8_t)x;
5829 res |= (uint32_t)(int8_t)(x >> 16) << 16;
5830 return res;
5833 uint32_t HELPER(uxtb16)(uint32_t x)
5835 uint32_t res;
5836 res = (uint16_t)(uint8_t)x;
5837 res |= (uint32_t)(uint8_t)(x >> 16) << 16;
5838 return res;
5841 int32_t HELPER(sdiv)(int32_t num, int32_t den)
5843 if (den == 0)
5844 return 0;
5845 if (num == INT_MIN && den == -1)
5846 return INT_MIN;
5847 return num / den;
5850 uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
5852 if (den == 0)
5853 return 0;
5854 return num / den;
5857 uint32_t HELPER(rbit)(uint32_t x)
5859 return revbit32(x);
5862 #if defined(CONFIG_USER_ONLY)
5864 /* These should probably raise undefined insn exceptions. */
5865 void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
5867 ARMCPU *cpu = arm_env_get_cpu(env);
5869 cpu_abort(CPU(cpu), "v7m_msr %d\n", reg);
5872 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
5874 ARMCPU *cpu = arm_env_get_cpu(env);
5876 cpu_abort(CPU(cpu), "v7m_mrs %d\n", reg);
5877 return 0;
5880 void HELPER(v7m_bxns)(CPUARMState *env, uint32_t dest)
5882 /* translate.c should never generate calls here in user-only mode */
5883 g_assert_not_reached();
5886 void switch_mode(CPUARMState *env, int mode)
5888 ARMCPU *cpu = arm_env_get_cpu(env);
5890 if (mode != ARM_CPU_MODE_USR) {
5891 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
5895 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
5896 uint32_t cur_el, bool secure)
5898 return 1;
5901 void aarch64_sync_64_to_32(CPUARMState *env)
5903 g_assert_not_reached();
5906 #else
5908 void switch_mode(CPUARMState *env, int mode)
5910 int old_mode;
5911 int i;
5913 old_mode = env->uncached_cpsr & CPSR_M;
5914 if (mode == old_mode)
5915 return;
5917 if (old_mode == ARM_CPU_MODE_FIQ) {
5918 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
5919 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
5920 } else if (mode == ARM_CPU_MODE_FIQ) {
5921 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
5922 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
5925 i = bank_number(old_mode);
5926 env->banked_r13[i] = env->regs[13];
5927 env->banked_r14[i] = env->regs[14];
5928 env->banked_spsr[i] = env->spsr;
5930 i = bank_number(mode);
5931 env->regs[13] = env->banked_r13[i];
5932 env->regs[14] = env->banked_r14[i];
5933 env->spsr = env->banked_spsr[i];
5936 /* Physical Interrupt Target EL Lookup Table
5938 * [ From ARM ARM section G1.13.4 (Table G1-15) ]
5940 * The below multi-dimensional table is used for looking up the target
5941 * exception level given numerous condition criteria. Specifically, the
5942 * target EL is based on SCR and HCR routing controls as well as the
5943 * currently executing EL and secure state.
5945 * Dimensions:
5946 * target_el_table[2][2][2][2][2][4]
5947 * | | | | | +--- Current EL
5948 * | | | | +------ Non-secure(0)/Secure(1)
5949 * | | | +--------- HCR mask override
5950 * | | +------------ SCR exec state control
5951 * | +--------------- SCR mask override
5952 * +------------------ 32-bit(0)/64-bit(1) EL3
5954 * The table values are as such:
5955 * 0-3 = EL0-EL3
5956 * -1 = Cannot occur
5958 * The ARM ARM target EL table includes entries indicating that an "exception
5959 * is not taken". The two cases where this is applicable are:
5960 * 1) An exception is taken from EL3 but the SCR does not have the exception
5961 * routed to EL3.
5962 * 2) An exception is taken from EL2 but the HCR does not have the exception
5963 * routed to EL2.
5964 * In these two cases, the below table contain a target of EL1. This value is
5965 * returned as it is expected that the consumer of the table data will check
5966 * for "target EL >= current EL" to ensure the exception is not taken.
5968 * SCR HCR
5969 * 64 EA AMO From
5970 * BIT IRQ IMO Non-secure Secure
5971 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3
5973 static const int8_t target_el_table[2][2][2][2][2][4] = {
5974 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
5975 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},
5976 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
5977 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},},
5978 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
5979 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},
5980 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
5981 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},},
5982 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },},
5983 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},
5984 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, -1, 1 },},
5985 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},},
5986 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
5987 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},
5988 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
5989 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},},},
5993 * Determine the target EL for physical exceptions
5995 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
5996 uint32_t cur_el, bool secure)
5998 CPUARMState *env = cs->env_ptr;
5999 int rw;
6000 int scr;
6001 int hcr;
6002 int target_el;
6003 /* Is the highest EL AArch64? */
6004 int is64 = arm_feature(env, ARM_FEATURE_AARCH64);
6006 if (arm_feature(env, ARM_FEATURE_EL3)) {
6007 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
6008 } else {
6009 /* Either EL2 is the highest EL (and so the EL2 register width
6010 * is given by is64); or there is no EL2 or EL3, in which case
6011 * the value of 'rw' does not affect the table lookup anyway.
6013 rw = is64;
6016 switch (excp_idx) {
6017 case EXCP_IRQ:
6018 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
6019 hcr = ((env->cp15.hcr_el2 & HCR_IMO) == HCR_IMO);
6020 break;
6021 case EXCP_FIQ:
6022 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
6023 hcr = ((env->cp15.hcr_el2 & HCR_FMO) == HCR_FMO);
6024 break;
6025 default:
6026 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
6027 hcr = ((env->cp15.hcr_el2 & HCR_AMO) == HCR_AMO);
6028 break;
6031 /* If HCR.TGE is set then HCR is treated as being 1 */
6032 hcr |= ((env->cp15.hcr_el2 & HCR_TGE) == HCR_TGE);
6034 /* Perform a table-lookup for the target EL given the current state */
6035 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];
6037 assert(target_el > 0);
6039 return target_el;
6042 static void v7m_push(CPUARMState *env, uint32_t val)
6044 CPUState *cs = CPU(arm_env_get_cpu(env));
6046 env->regs[13] -= 4;
6047 stl_phys(cs->as, env->regs[13], val);
6050 /* Return true if we're using the process stack pointer (not the MSP) */
6051 static bool v7m_using_psp(CPUARMState *env)
6053 /* Handler mode always uses the main stack; for thread mode
6054 * the CONTROL.SPSEL bit determines the answer.
6055 * Note that in v7M it is not possible to be in Handler mode with
6056 * CONTROL.SPSEL non-zero, but in v8M it is, so we must check both.
6058 return !arm_v7m_is_handler_mode(env) &&
6059 env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK;
6062 /* Switch to V7M main or process stack pointer. */
6063 static void switch_v7m_sp(CPUARMState *env, bool new_spsel)
6065 uint32_t tmp;
6066 uint32_t old_control = env->v7m.control[env->v7m.secure];
6067 bool old_spsel = old_control & R_V7M_CONTROL_SPSEL_MASK;
6069 if (old_spsel != new_spsel) {
6070 tmp = env->v7m.other_sp;
6071 env->v7m.other_sp = env->regs[13];
6072 env->regs[13] = tmp;
6074 env->v7m.control[env->v7m.secure] = deposit32(old_control,
6075 R_V7M_CONTROL_SPSEL_SHIFT,
6076 R_V7M_CONTROL_SPSEL_LENGTH, new_spsel);
6080 /* Switch M profile security state between NS and S */
6081 static void switch_v7m_security_state(CPUARMState *env, bool new_secstate)
6083 uint32_t new_ss_msp, new_ss_psp;
6085 if (env->v7m.secure == new_secstate) {
6086 return;
6089 /* All the banked state is accessed by looking at env->v7m.secure
6090 * except for the stack pointer; rearrange the SP appropriately.
6092 new_ss_msp = env->v7m.other_ss_msp;
6093 new_ss_psp = env->v7m.other_ss_psp;
6095 if (v7m_using_psp(env)) {
6096 env->v7m.other_ss_psp = env->regs[13];
6097 env->v7m.other_ss_msp = env->v7m.other_sp;
6098 } else {
6099 env->v7m.other_ss_msp = env->regs[13];
6100 env->v7m.other_ss_psp = env->v7m.other_sp;
6103 env->v7m.secure = new_secstate;
6105 if (v7m_using_psp(env)) {
6106 env->regs[13] = new_ss_psp;
6107 env->v7m.other_sp = new_ss_msp;
6108 } else {
6109 env->regs[13] = new_ss_msp;
6110 env->v7m.other_sp = new_ss_psp;
6114 void HELPER(v7m_bxns)(CPUARMState *env, uint32_t dest)
6116 /* Handle v7M BXNS:
6117 * - if the return value is a magic value, do exception return (like BX)
6118 * - otherwise bit 0 of the return value is the target security state
6120 if (dest >= 0xff000000) {
6121 /* This is an exception return magic value; put it where
6122 * do_v7m_exception_exit() expects and raise EXCEPTION_EXIT.
6123 * Note that if we ever add gen_ss_advance() singlestep support to
6124 * M profile this should count as an "instruction execution complete"
6125 * event (compare gen_bx_excret_final_code()).
6127 env->regs[15] = dest & ~1;
6128 env->thumb = dest & 1;
6129 HELPER(exception_internal)(env, EXCP_EXCEPTION_EXIT);
6130 /* notreached */
6133 /* translate.c should have made BXNS UNDEF unless we're secure */
6134 assert(env->v7m.secure);
6136 switch_v7m_security_state(env, dest & 1);
6137 env->thumb = 1;
6138 env->regs[15] = dest & ~1;
6141 static uint32_t *get_v7m_sp_ptr(CPUARMState *env, bool secure, bool threadmode,
6142 bool spsel)
6144 /* Return a pointer to the location where we currently store the
6145 * stack pointer for the requested security state and thread mode.
6146 * This pointer will become invalid if the CPU state is updated
6147 * such that the stack pointers are switched around (eg changing
6148 * the SPSEL control bit).
6149 * Compare the v8M ARM ARM pseudocode LookUpSP_with_security_mode().
6150 * Unlike that pseudocode, we require the caller to pass us in the
6151 * SPSEL control bit value; this is because we also use this
6152 * function in handling of pushing of the callee-saves registers
6153 * part of the v8M stack frame (pseudocode PushCalleeStack()),
6154 * and in the tailchain codepath the SPSEL bit comes from the exception
6155 * return magic LR value from the previous exception. The pseudocode
6156 * opencodes the stack-selection in PushCalleeStack(), but we prefer
6157 * to make this utility function generic enough to do the job.
6159 bool want_psp = threadmode && spsel;
6161 if (secure == env->v7m.secure) {
6162 /* Currently switch_v7m_sp switches SP as it updates SPSEL,
6163 * so the SP we want is always in regs[13].
6164 * When we decouple SPSEL from the actually selected SP
6165 * we need to check want_psp against v7m_using_psp()
6166 * to see whether we need regs[13] or v7m.other_sp.
6168 return &env->regs[13];
6169 } else {
6170 if (want_psp) {
6171 return &env->v7m.other_ss_psp;
6172 } else {
6173 return &env->v7m.other_ss_msp;
6178 static uint32_t arm_v7m_load_vector(ARMCPU *cpu)
6180 CPUState *cs = CPU(cpu);
6181 CPUARMState *env = &cpu->env;
6182 MemTxResult result;
6183 hwaddr vec = env->v7m.vecbase[env->v7m.secure] + env->v7m.exception * 4;
6184 uint32_t addr;
6186 addr = address_space_ldl(cs->as, vec,
6187 MEMTXATTRS_UNSPECIFIED, &result);
6188 if (result != MEMTX_OK) {
6189 /* Architecturally this should cause a HardFault setting HSFR.VECTTBL,
6190 * which would then be immediately followed by our failing to load
6191 * the entry vector for that HardFault, which is a Lockup case.
6192 * Since we don't model Lockup, we just report this guest error
6193 * via cpu_abort().
6195 cpu_abort(cs, "Failed to read from exception vector table "
6196 "entry %08x\n", (unsigned)vec);
6198 return addr;
6201 static void v7m_exception_taken(ARMCPU *cpu, uint32_t lr)
6203 /* Do the "take the exception" parts of exception entry,
6204 * but not the pushing of state to the stack. This is
6205 * similar to the pseudocode ExceptionTaken() function.
6207 CPUARMState *env = &cpu->env;
6208 uint32_t addr;
6210 armv7m_nvic_acknowledge_irq(env->nvic);
6211 switch_v7m_sp(env, 0);
6212 arm_clear_exclusive(env);
6213 /* Clear IT bits */
6214 env->condexec_bits = 0;
6215 env->regs[14] = lr;
6216 addr = arm_v7m_load_vector(cpu);
6217 env->regs[15] = addr & 0xfffffffe;
6218 env->thumb = addr & 1;
6221 static void v7m_push_stack(ARMCPU *cpu)
6223 /* Do the "set up stack frame" part of exception entry,
6224 * similar to pseudocode PushStack().
6226 CPUARMState *env = &cpu->env;
6227 uint32_t xpsr = xpsr_read(env);
6229 /* Align stack pointer if the guest wants that */
6230 if ((env->regs[13] & 4) &&
6231 (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_STKALIGN_MASK)) {
6232 env->regs[13] -= 4;
6233 xpsr |= XPSR_SPREALIGN;
6235 /* Switch to the handler mode. */
6236 v7m_push(env, xpsr);
6237 v7m_push(env, env->regs[15]);
6238 v7m_push(env, env->regs[14]);
6239 v7m_push(env, env->regs[12]);
6240 v7m_push(env, env->regs[3]);
6241 v7m_push(env, env->regs[2]);
6242 v7m_push(env, env->regs[1]);
6243 v7m_push(env, env->regs[0]);
6246 static void do_v7m_exception_exit(ARMCPU *cpu)
6248 CPUARMState *env = &cpu->env;
6249 CPUState *cs = CPU(cpu);
6250 uint32_t excret;
6251 uint32_t xpsr;
6252 bool ufault = false;
6253 bool return_to_sp_process = false;
6254 bool return_to_handler = false;
6255 bool rettobase = false;
6256 bool exc_secure = false;
6257 bool return_to_secure;
6259 /* We can only get here from an EXCP_EXCEPTION_EXIT, and
6260 * gen_bx_excret() enforces the architectural rule
6261 * that jumps to magic addresses don't have magic behaviour unless
6262 * we're in Handler mode (compare pseudocode BXWritePC()).
6264 assert(arm_v7m_is_handler_mode(env));
6266 /* In the spec pseudocode ExceptionReturn() is called directly
6267 * from BXWritePC() and gets the full target PC value including
6268 * bit zero. In QEMU's implementation we treat it as a normal
6269 * jump-to-register (which is then caught later on), and so split
6270 * the target value up between env->regs[15] and env->thumb in
6271 * gen_bx(). Reconstitute it.
6273 excret = env->regs[15];
6274 if (env->thumb) {
6275 excret |= 1;
6278 qemu_log_mask(CPU_LOG_INT, "Exception return: magic PC %" PRIx32
6279 " previous exception %d\n",
6280 excret, env->v7m.exception);
6282 if ((excret & R_V7M_EXCRET_RES1_MASK) != R_V7M_EXCRET_RES1_MASK) {
6283 qemu_log_mask(LOG_GUEST_ERROR, "M profile: zero high bits in exception "
6284 "exit PC value 0x%" PRIx32 " are UNPREDICTABLE\n",
6285 excret);
6288 if (env->v7m.exception != ARMV7M_EXCP_NMI) {
6289 /* Auto-clear FAULTMASK on return from other than NMI.
6290 * If the security extension is implemented then this only
6291 * happens if the raw execution priority is >= 0; the
6292 * value of the ES bit in the exception return value indicates
6293 * which security state's faultmask to clear. (v8M ARM ARM R_KBNF.)
6295 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
6296 exc_secure = excret & R_V7M_EXCRET_ES_MASK;
6297 if (armv7m_nvic_raw_execution_priority(env->nvic) >= 0) {
6298 env->v7m.faultmask[exc_secure] = 0;
6300 } else {
6301 env->v7m.faultmask[M_REG_NS] = 0;
6305 switch (armv7m_nvic_complete_irq(env->nvic, env->v7m.exception,
6306 exc_secure)) {
6307 case -1:
6308 /* attempt to exit an exception that isn't active */
6309 ufault = true;
6310 break;
6311 case 0:
6312 /* still an irq active now */
6313 break;
6314 case 1:
6315 /* we returned to base exception level, no nesting.
6316 * (In the pseudocode this is written using "NestedActivation != 1"
6317 * where we have 'rettobase == false'.)
6319 rettobase = true;
6320 break;
6321 default:
6322 g_assert_not_reached();
6325 return_to_secure = arm_feature(env, ARM_FEATURE_M_SECURITY) &&
6326 (excret & R_V7M_EXCRET_S_MASK);
6328 switch (excret & 0xf) {
6329 case 1: /* Return to Handler */
6330 return_to_handler = true;
6331 break;
6332 case 13: /* Return to Thread using Process stack */
6333 return_to_sp_process = true;
6334 /* fall through */
6335 case 9: /* Return to Thread using Main stack */
6336 if (!rettobase &&
6337 !(env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_NONBASETHRDENA_MASK)) {
6338 ufault = true;
6340 break;
6341 default:
6342 ufault = true;
6345 if (ufault) {
6346 /* Bad exception return: instead of popping the exception
6347 * stack, directly take a usage fault on the current stack.
6349 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
6350 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
6351 v7m_exception_taken(cpu, excret);
6352 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on existing "
6353 "stackframe: failed exception return integrity check\n");
6354 return;
6357 /* Set CONTROL.SPSEL from excret.SPSEL. For QEMU this currently
6358 * causes us to switch the active SP, but we will change this
6359 * later to not do that so we can support v8M.
6361 switch_v7m_sp(env, return_to_sp_process);
6364 /* The stack pointer we should be reading the exception frame from
6365 * depends on bits in the magic exception return type value (and
6366 * for v8M isn't necessarily the stack pointer we will eventually
6367 * end up resuming execution with). Get a pointer to the location
6368 * in the CPU state struct where the SP we need is currently being
6369 * stored; we will use and modify it in place.
6370 * We use this limited C variable scope so we don't accidentally
6371 * use 'frame_sp_p' after we do something that makes it invalid.
6373 uint32_t *frame_sp_p = get_v7m_sp_ptr(env,
6374 return_to_secure,
6375 !return_to_handler,
6376 return_to_sp_process);
6377 uint32_t frameptr = *frame_sp_p;
6379 /* Pop registers. TODO: make these accesses use the correct
6380 * attributes and address space (S/NS, priv/unpriv) and handle
6381 * memory transaction failures.
6383 env->regs[0] = ldl_phys(cs->as, frameptr);
6384 env->regs[1] = ldl_phys(cs->as, frameptr + 0x4);
6385 env->regs[2] = ldl_phys(cs->as, frameptr + 0x8);
6386 env->regs[3] = ldl_phys(cs->as, frameptr + 0xc);
6387 env->regs[12] = ldl_phys(cs->as, frameptr + 0x10);
6388 env->regs[14] = ldl_phys(cs->as, frameptr + 0x14);
6389 env->regs[15] = ldl_phys(cs->as, frameptr + 0x18);
6390 if (env->regs[15] & 1) {
6391 qemu_log_mask(LOG_GUEST_ERROR,
6392 "M profile return from interrupt with misaligned "
6393 "PC is UNPREDICTABLE\n");
6394 /* Actual hardware seems to ignore the lsbit, and there are several
6395 * RTOSes out there which incorrectly assume the r15 in the stack
6396 * frame should be a Thumb-style "lsbit indicates ARM/Thumb" value.
6398 env->regs[15] &= ~1U;
6400 xpsr = ldl_phys(cs->as, frameptr + 0x1c);
6402 /* Commit to consuming the stack frame */
6403 frameptr += 0x20;
6404 /* Undo stack alignment (the SPREALIGN bit indicates that the original
6405 * pre-exception SP was not 8-aligned and we added a padding word to
6406 * align it, so we undo this by ORing in the bit that increases it
6407 * from the current 8-aligned value to the 8-unaligned value. (Adding 4
6408 * would work too but a logical OR is how the pseudocode specifies it.)
6410 if (xpsr & XPSR_SPREALIGN) {
6411 frameptr |= 4;
6413 *frame_sp_p = frameptr;
6415 /* This xpsr_write() will invalidate frame_sp_p as it may switch stack */
6416 xpsr_write(env, xpsr, ~XPSR_SPREALIGN);
6418 /* The restored xPSR exception field will be zero if we're
6419 * resuming in Thread mode. If that doesn't match what the
6420 * exception return excret specified then this is a UsageFault.
6422 if (return_to_handler != arm_v7m_is_handler_mode(env)) {
6423 /* Take an INVPC UsageFault by pushing the stack again.
6424 * TODO: the v8M version of this code should target the
6425 * background state for this exception.
6427 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, false);
6428 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
6429 v7m_push_stack(cpu);
6430 v7m_exception_taken(cpu, excret);
6431 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on new stackframe: "
6432 "failed exception return integrity check\n");
6433 return;
6436 /* Otherwise, we have a successful exception exit. */
6437 arm_clear_exclusive(env);
6438 qemu_log_mask(CPU_LOG_INT, "...successful exception return\n");
6441 static void arm_log_exception(int idx)
6443 if (qemu_loglevel_mask(CPU_LOG_INT)) {
6444 const char *exc = NULL;
6445 static const char * const excnames[] = {
6446 [EXCP_UDEF] = "Undefined Instruction",
6447 [EXCP_SWI] = "SVC",
6448 [EXCP_PREFETCH_ABORT] = "Prefetch Abort",
6449 [EXCP_DATA_ABORT] = "Data Abort",
6450 [EXCP_IRQ] = "IRQ",
6451 [EXCP_FIQ] = "FIQ",
6452 [EXCP_BKPT] = "Breakpoint",
6453 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit",
6454 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage",
6455 [EXCP_HVC] = "Hypervisor Call",
6456 [EXCP_HYP_TRAP] = "Hypervisor Trap",
6457 [EXCP_SMC] = "Secure Monitor Call",
6458 [EXCP_VIRQ] = "Virtual IRQ",
6459 [EXCP_VFIQ] = "Virtual FIQ",
6460 [EXCP_SEMIHOST] = "Semihosting call",
6461 [EXCP_NOCP] = "v7M NOCP UsageFault",
6462 [EXCP_INVSTATE] = "v7M INVSTATE UsageFault",
6465 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
6466 exc = excnames[idx];
6468 if (!exc) {
6469 exc = "unknown";
6471 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc);
6475 void arm_v7m_cpu_do_interrupt(CPUState *cs)
6477 ARMCPU *cpu = ARM_CPU(cs);
6478 CPUARMState *env = &cpu->env;
6479 uint32_t lr;
6481 arm_log_exception(cs->exception_index);
6483 /* For exceptions we just mark as pending on the NVIC, and let that
6484 handle it. */
6485 switch (cs->exception_index) {
6486 case EXCP_UDEF:
6487 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
6488 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_UNDEFINSTR_MASK;
6489 break;
6490 case EXCP_NOCP:
6491 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
6492 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_NOCP_MASK;
6493 break;
6494 case EXCP_INVSTATE:
6495 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
6496 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVSTATE_MASK;
6497 break;
6498 case EXCP_SWI:
6499 /* The PC already points to the next instruction. */
6500 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC, env->v7m.secure);
6501 break;
6502 case EXCP_PREFETCH_ABORT:
6503 case EXCP_DATA_ABORT:
6504 /* Note that for M profile we don't have a guest facing FSR, but
6505 * the env->exception.fsr will be populated by the code that
6506 * raises the fault, in the A profile short-descriptor format.
6508 switch (env->exception.fsr & 0xf) {
6509 case 0x8: /* External Abort */
6510 switch (cs->exception_index) {
6511 case EXCP_PREFETCH_ABORT:
6512 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_IBUSERR_MASK;
6513 qemu_log_mask(CPU_LOG_INT, "...with CFSR.IBUSERR\n");
6514 break;
6515 case EXCP_DATA_ABORT:
6516 env->v7m.cfsr[M_REG_NS] |=
6517 (R_V7M_CFSR_PRECISERR_MASK | R_V7M_CFSR_BFARVALID_MASK);
6518 env->v7m.bfar = env->exception.vaddress;
6519 qemu_log_mask(CPU_LOG_INT,
6520 "...with CFSR.PRECISERR and BFAR 0x%x\n",
6521 env->v7m.bfar);
6522 break;
6524 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_BUS, false);
6525 break;
6526 default:
6527 /* All other FSR values are either MPU faults or "can't happen
6528 * for M profile" cases.
6530 switch (cs->exception_index) {
6531 case EXCP_PREFETCH_ABORT:
6532 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_IACCVIOL_MASK;
6533 qemu_log_mask(CPU_LOG_INT, "...with CFSR.IACCVIOL\n");
6534 break;
6535 case EXCP_DATA_ABORT:
6536 env->v7m.cfsr[env->v7m.secure] |=
6537 (R_V7M_CFSR_DACCVIOL_MASK | R_V7M_CFSR_MMARVALID_MASK);
6538 env->v7m.mmfar[env->v7m.secure] = env->exception.vaddress;
6539 qemu_log_mask(CPU_LOG_INT,
6540 "...with CFSR.DACCVIOL and MMFAR 0x%x\n",
6541 env->v7m.mmfar[env->v7m.secure]);
6542 break;
6544 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM,
6545 env->v7m.secure);
6546 break;
6548 break;
6549 case EXCP_BKPT:
6550 if (semihosting_enabled()) {
6551 int nr;
6552 nr = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env)) & 0xff;
6553 if (nr == 0xab) {
6554 env->regs[15] += 2;
6555 qemu_log_mask(CPU_LOG_INT,
6556 "...handling as semihosting call 0x%x\n",
6557 env->regs[0]);
6558 env->regs[0] = do_arm_semihosting(env);
6559 return;
6562 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG, false);
6563 break;
6564 case EXCP_IRQ:
6565 break;
6566 case EXCP_EXCEPTION_EXIT:
6567 do_v7m_exception_exit(cpu);
6568 return;
6569 default:
6570 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
6571 return; /* Never happens. Keep compiler happy. */
6574 lr = R_V7M_EXCRET_RES1_MASK |
6575 R_V7M_EXCRET_S_MASK |
6576 R_V7M_EXCRET_DCRS_MASK |
6577 R_V7M_EXCRET_FTYPE_MASK |
6578 R_V7M_EXCRET_ES_MASK;
6579 if (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK) {
6580 lr |= R_V7M_EXCRET_SPSEL_MASK;
6582 if (!arm_v7m_is_handler_mode(env)) {
6583 lr |= R_V7M_EXCRET_MODE_MASK;
6586 v7m_push_stack(cpu);
6587 v7m_exception_taken(cpu, lr);
6588 qemu_log_mask(CPU_LOG_INT, "... as %d\n", env->v7m.exception);
6591 /* Function used to synchronize QEMU's AArch64 register set with AArch32
6592 * register set. This is necessary when switching between AArch32 and AArch64
6593 * execution state.
6595 void aarch64_sync_32_to_64(CPUARMState *env)
6597 int i;
6598 uint32_t mode = env->uncached_cpsr & CPSR_M;
6600 /* We can blanket copy R[0:7] to X[0:7] */
6601 for (i = 0; i < 8; i++) {
6602 env->xregs[i] = env->regs[i];
6605 /* Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
6606 * Otherwise, they come from the banked user regs.
6608 if (mode == ARM_CPU_MODE_FIQ) {
6609 for (i = 8; i < 13; i++) {
6610 env->xregs[i] = env->usr_regs[i - 8];
6612 } else {
6613 for (i = 8; i < 13; i++) {
6614 env->xregs[i] = env->regs[i];
6618 /* Registers x13-x23 are the various mode SP and FP registers. Registers
6619 * r13 and r14 are only copied if we are in that mode, otherwise we copy
6620 * from the mode banked register.
6622 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
6623 env->xregs[13] = env->regs[13];
6624 env->xregs[14] = env->regs[14];
6625 } else {
6626 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
6627 /* HYP is an exception in that it is copied from r14 */
6628 if (mode == ARM_CPU_MODE_HYP) {
6629 env->xregs[14] = env->regs[14];
6630 } else {
6631 env->xregs[14] = env->banked_r14[bank_number(ARM_CPU_MODE_USR)];
6635 if (mode == ARM_CPU_MODE_HYP) {
6636 env->xregs[15] = env->regs[13];
6637 } else {
6638 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
6641 if (mode == ARM_CPU_MODE_IRQ) {
6642 env->xregs[16] = env->regs[14];
6643 env->xregs[17] = env->regs[13];
6644 } else {
6645 env->xregs[16] = env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)];
6646 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
6649 if (mode == ARM_CPU_MODE_SVC) {
6650 env->xregs[18] = env->regs[14];
6651 env->xregs[19] = env->regs[13];
6652 } else {
6653 env->xregs[18] = env->banked_r14[bank_number(ARM_CPU_MODE_SVC)];
6654 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
6657 if (mode == ARM_CPU_MODE_ABT) {
6658 env->xregs[20] = env->regs[14];
6659 env->xregs[21] = env->regs[13];
6660 } else {
6661 env->xregs[20] = env->banked_r14[bank_number(ARM_CPU_MODE_ABT)];
6662 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
6665 if (mode == ARM_CPU_MODE_UND) {
6666 env->xregs[22] = env->regs[14];
6667 env->xregs[23] = env->regs[13];
6668 } else {
6669 env->xregs[22] = env->banked_r14[bank_number(ARM_CPU_MODE_UND)];
6670 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
6673 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
6674 * mode, then we can copy from r8-r14. Otherwise, we copy from the
6675 * FIQ bank for r8-r14.
6677 if (mode == ARM_CPU_MODE_FIQ) {
6678 for (i = 24; i < 31; i++) {
6679 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */
6681 } else {
6682 for (i = 24; i < 29; i++) {
6683 env->xregs[i] = env->fiq_regs[i - 24];
6685 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
6686 env->xregs[30] = env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)];
6689 env->pc = env->regs[15];
6692 /* Function used to synchronize QEMU's AArch32 register set with AArch64
6693 * register set. This is necessary when switching between AArch32 and AArch64
6694 * execution state.
6696 void aarch64_sync_64_to_32(CPUARMState *env)
6698 int i;
6699 uint32_t mode = env->uncached_cpsr & CPSR_M;
6701 /* We can blanket copy X[0:7] to R[0:7] */
6702 for (i = 0; i < 8; i++) {
6703 env->regs[i] = env->xregs[i];
6706 /* Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
6707 * Otherwise, we copy x8-x12 into the banked user regs.
6709 if (mode == ARM_CPU_MODE_FIQ) {
6710 for (i = 8; i < 13; i++) {
6711 env->usr_regs[i - 8] = env->xregs[i];
6713 } else {
6714 for (i = 8; i < 13; i++) {
6715 env->regs[i] = env->xregs[i];
6719 /* Registers r13 & r14 depend on the current mode.
6720 * If we are in a given mode, we copy the corresponding x registers to r13
6721 * and r14. Otherwise, we copy the x register to the banked r13 and r14
6722 * for the mode.
6724 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
6725 env->regs[13] = env->xregs[13];
6726 env->regs[14] = env->xregs[14];
6727 } else {
6728 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];
6730 /* HYP is an exception in that it does not have its own banked r14 but
6731 * shares the USR r14
6733 if (mode == ARM_CPU_MODE_HYP) {
6734 env->regs[14] = env->xregs[14];
6735 } else {
6736 env->banked_r14[bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
6740 if (mode == ARM_CPU_MODE_HYP) {
6741 env->regs[13] = env->xregs[15];
6742 } else {
6743 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
6746 if (mode == ARM_CPU_MODE_IRQ) {
6747 env->regs[14] = env->xregs[16];
6748 env->regs[13] = env->xregs[17];
6749 } else {
6750 env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
6751 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
6754 if (mode == ARM_CPU_MODE_SVC) {
6755 env->regs[14] = env->xregs[18];
6756 env->regs[13] = env->xregs[19];
6757 } else {
6758 env->banked_r14[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
6759 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
6762 if (mode == ARM_CPU_MODE_ABT) {
6763 env->regs[14] = env->xregs[20];
6764 env->regs[13] = env->xregs[21];
6765 } else {
6766 env->banked_r14[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
6767 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
6770 if (mode == ARM_CPU_MODE_UND) {
6771 env->regs[14] = env->xregs[22];
6772 env->regs[13] = env->xregs[23];
6773 } else {
6774 env->banked_r14[bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
6775 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
6778 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
6779 * mode, then we can copy to r8-r14. Otherwise, we copy to the
6780 * FIQ bank for r8-r14.
6782 if (mode == ARM_CPU_MODE_FIQ) {
6783 for (i = 24; i < 31; i++) {
6784 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */
6786 } else {
6787 for (i = 24; i < 29; i++) {
6788 env->fiq_regs[i - 24] = env->xregs[i];
6790 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
6791 env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
6794 env->regs[15] = env->pc;
6797 static void arm_cpu_do_interrupt_aarch32(CPUState *cs)
6799 ARMCPU *cpu = ARM_CPU(cs);
6800 CPUARMState *env = &cpu->env;
6801 uint32_t addr;
6802 uint32_t mask;
6803 int new_mode;
6804 uint32_t offset;
6805 uint32_t moe;
6807 /* If this is a debug exception we must update the DBGDSCR.MOE bits */
6808 switch (env->exception.syndrome >> ARM_EL_EC_SHIFT) {
6809 case EC_BREAKPOINT:
6810 case EC_BREAKPOINT_SAME_EL:
6811 moe = 1;
6812 break;
6813 case EC_WATCHPOINT:
6814 case EC_WATCHPOINT_SAME_EL:
6815 moe = 10;
6816 break;
6817 case EC_AA32_BKPT:
6818 moe = 3;
6819 break;
6820 case EC_VECTORCATCH:
6821 moe = 5;
6822 break;
6823 default:
6824 moe = 0;
6825 break;
6828 if (moe) {
6829 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
6832 /* TODO: Vectored interrupt controller. */
6833 switch (cs->exception_index) {
6834 case EXCP_UDEF:
6835 new_mode = ARM_CPU_MODE_UND;
6836 addr = 0x04;
6837 mask = CPSR_I;
6838 if (env->thumb)
6839 offset = 2;
6840 else
6841 offset = 4;
6842 break;
6843 case EXCP_SWI:
6844 new_mode = ARM_CPU_MODE_SVC;
6845 addr = 0x08;
6846 mask = CPSR_I;
6847 /* The PC already points to the next instruction. */
6848 offset = 0;
6849 break;
6850 case EXCP_BKPT:
6851 env->exception.fsr = 2;
6852 /* Fall through to prefetch abort. */
6853 case EXCP_PREFETCH_ABORT:
6854 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
6855 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
6856 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
6857 env->exception.fsr, (uint32_t)env->exception.vaddress);
6858 new_mode = ARM_CPU_MODE_ABT;
6859 addr = 0x0c;
6860 mask = CPSR_A | CPSR_I;
6861 offset = 4;
6862 break;
6863 case EXCP_DATA_ABORT:
6864 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
6865 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
6866 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
6867 env->exception.fsr,
6868 (uint32_t)env->exception.vaddress);
6869 new_mode = ARM_CPU_MODE_ABT;
6870 addr = 0x10;
6871 mask = CPSR_A | CPSR_I;
6872 offset = 8;
6873 break;
6874 case EXCP_IRQ:
6875 new_mode = ARM_CPU_MODE_IRQ;
6876 addr = 0x18;
6877 /* Disable IRQ and imprecise data aborts. */
6878 mask = CPSR_A | CPSR_I;
6879 offset = 4;
6880 if (env->cp15.scr_el3 & SCR_IRQ) {
6881 /* IRQ routed to monitor mode */
6882 new_mode = ARM_CPU_MODE_MON;
6883 mask |= CPSR_F;
6885 break;
6886 case EXCP_FIQ:
6887 new_mode = ARM_CPU_MODE_FIQ;
6888 addr = 0x1c;
6889 /* Disable FIQ, IRQ and imprecise data aborts. */
6890 mask = CPSR_A | CPSR_I | CPSR_F;
6891 if (env->cp15.scr_el3 & SCR_FIQ) {
6892 /* FIQ routed to monitor mode */
6893 new_mode = ARM_CPU_MODE_MON;
6895 offset = 4;
6896 break;
6897 case EXCP_VIRQ:
6898 new_mode = ARM_CPU_MODE_IRQ;
6899 addr = 0x18;
6900 /* Disable IRQ and imprecise data aborts. */
6901 mask = CPSR_A | CPSR_I;
6902 offset = 4;
6903 break;
6904 case EXCP_VFIQ:
6905 new_mode = ARM_CPU_MODE_FIQ;
6906 addr = 0x1c;
6907 /* Disable FIQ, IRQ and imprecise data aborts. */
6908 mask = CPSR_A | CPSR_I | CPSR_F;
6909 offset = 4;
6910 break;
6911 case EXCP_SMC:
6912 new_mode = ARM_CPU_MODE_MON;
6913 addr = 0x08;
6914 mask = CPSR_A | CPSR_I | CPSR_F;
6915 offset = 0;
6916 break;
6917 default:
6918 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
6919 return; /* Never happens. Keep compiler happy. */
6922 if (new_mode == ARM_CPU_MODE_MON) {
6923 addr += env->cp15.mvbar;
6924 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
6925 /* High vectors. When enabled, base address cannot be remapped. */
6926 addr += 0xffff0000;
6927 } else {
6928 /* ARM v7 architectures provide a vector base address register to remap
6929 * the interrupt vector table.
6930 * This register is only followed in non-monitor mode, and is banked.
6931 * Note: only bits 31:5 are valid.
6933 addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
6936 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
6937 env->cp15.scr_el3 &= ~SCR_NS;
6940 switch_mode (env, new_mode);
6941 /* For exceptions taken to AArch32 we must clear the SS bit in both
6942 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
6944 env->uncached_cpsr &= ~PSTATE_SS;
6945 env->spsr = cpsr_read(env);
6946 /* Clear IT bits. */
6947 env->condexec_bits = 0;
6948 /* Switch to the new mode, and to the correct instruction set. */
6949 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
6950 /* Set new mode endianness */
6951 env->uncached_cpsr &= ~CPSR_E;
6952 if (env->cp15.sctlr_el[arm_current_el(env)] & SCTLR_EE) {
6953 env->uncached_cpsr |= CPSR_E;
6955 env->daif |= mask;
6956 /* this is a lie, as the was no c1_sys on V4T/V5, but who cares
6957 * and we should just guard the thumb mode on V4 */
6958 if (arm_feature(env, ARM_FEATURE_V4T)) {
6959 env->thumb = (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
6961 env->regs[14] = env->regs[15] + offset;
6962 env->regs[15] = addr;
6965 /* Handle exception entry to a target EL which is using AArch64 */
6966 static void arm_cpu_do_interrupt_aarch64(CPUState *cs)
6968 ARMCPU *cpu = ARM_CPU(cs);
6969 CPUARMState *env = &cpu->env;
6970 unsigned int new_el = env->exception.target_el;
6971 target_ulong addr = env->cp15.vbar_el[new_el];
6972 unsigned int new_mode = aarch64_pstate_mode(new_el, true);
6974 if (arm_current_el(env) < new_el) {
6975 /* Entry vector offset depends on whether the implemented EL
6976 * immediately lower than the target level is using AArch32 or AArch64
6978 bool is_aa64;
6980 switch (new_el) {
6981 case 3:
6982 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0;
6983 break;
6984 case 2:
6985 is_aa64 = (env->cp15.hcr_el2 & HCR_RW) != 0;
6986 break;
6987 case 1:
6988 is_aa64 = is_a64(env);
6989 break;
6990 default:
6991 g_assert_not_reached();
6994 if (is_aa64) {
6995 addr += 0x400;
6996 } else {
6997 addr += 0x600;
6999 } else if (pstate_read(env) & PSTATE_SP) {
7000 addr += 0x200;
7003 switch (cs->exception_index) {
7004 case EXCP_PREFETCH_ABORT:
7005 case EXCP_DATA_ABORT:
7006 env->cp15.far_el[new_el] = env->exception.vaddress;
7007 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n",
7008 env->cp15.far_el[new_el]);
7009 /* fall through */
7010 case EXCP_BKPT:
7011 case EXCP_UDEF:
7012 case EXCP_SWI:
7013 case EXCP_HVC:
7014 case EXCP_HYP_TRAP:
7015 case EXCP_SMC:
7016 env->cp15.esr_el[new_el] = env->exception.syndrome;
7017 break;
7018 case EXCP_IRQ:
7019 case EXCP_VIRQ:
7020 addr += 0x80;
7021 break;
7022 case EXCP_FIQ:
7023 case EXCP_VFIQ:
7024 addr += 0x100;
7025 break;
7026 case EXCP_SEMIHOST:
7027 qemu_log_mask(CPU_LOG_INT,
7028 "...handling as semihosting call 0x%" PRIx64 "\n",
7029 env->xregs[0]);
7030 env->xregs[0] = do_arm_semihosting(env);
7031 return;
7032 default:
7033 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
7036 if (is_a64(env)) {
7037 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = pstate_read(env);
7038 aarch64_save_sp(env, arm_current_el(env));
7039 env->elr_el[new_el] = env->pc;
7040 } else {
7041 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = cpsr_read(env);
7042 env->elr_el[new_el] = env->regs[15];
7044 aarch64_sync_32_to_64(env);
7046 env->condexec_bits = 0;
7048 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n",
7049 env->elr_el[new_el]);
7051 pstate_write(env, PSTATE_DAIF | new_mode);
7052 env->aarch64 = 1;
7053 aarch64_restore_sp(env, new_el);
7055 env->pc = addr;
7057 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n",
7058 new_el, env->pc, pstate_read(env));
7061 static inline bool check_for_semihosting(CPUState *cs)
7063 /* Check whether this exception is a semihosting call; if so
7064 * then handle it and return true; otherwise return false.
7066 ARMCPU *cpu = ARM_CPU(cs);
7067 CPUARMState *env = &cpu->env;
7069 if (is_a64(env)) {
7070 if (cs->exception_index == EXCP_SEMIHOST) {
7071 /* This is always the 64-bit semihosting exception.
7072 * The "is this usermode" and "is semihosting enabled"
7073 * checks have been done at translate time.
7075 qemu_log_mask(CPU_LOG_INT,
7076 "...handling as semihosting call 0x%" PRIx64 "\n",
7077 env->xregs[0]);
7078 env->xregs[0] = do_arm_semihosting(env);
7079 return true;
7081 return false;
7082 } else {
7083 uint32_t imm;
7085 /* Only intercept calls from privileged modes, to provide some
7086 * semblance of security.
7088 if (cs->exception_index != EXCP_SEMIHOST &&
7089 (!semihosting_enabled() ||
7090 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR))) {
7091 return false;
7094 switch (cs->exception_index) {
7095 case EXCP_SEMIHOST:
7096 /* This is always a semihosting call; the "is this usermode"
7097 * and "is semihosting enabled" checks have been done at
7098 * translate time.
7100 break;
7101 case EXCP_SWI:
7102 /* Check for semihosting interrupt. */
7103 if (env->thumb) {
7104 imm = arm_lduw_code(env, env->regs[15] - 2, arm_sctlr_b(env))
7105 & 0xff;
7106 if (imm == 0xab) {
7107 break;
7109 } else {
7110 imm = arm_ldl_code(env, env->regs[15] - 4, arm_sctlr_b(env))
7111 & 0xffffff;
7112 if (imm == 0x123456) {
7113 break;
7116 return false;
7117 case EXCP_BKPT:
7118 /* See if this is a semihosting syscall. */
7119 if (env->thumb) {
7120 imm = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env))
7121 & 0xff;
7122 if (imm == 0xab) {
7123 env->regs[15] += 2;
7124 break;
7127 return false;
7128 default:
7129 return false;
7132 qemu_log_mask(CPU_LOG_INT,
7133 "...handling as semihosting call 0x%x\n",
7134 env->regs[0]);
7135 env->regs[0] = do_arm_semihosting(env);
7136 return true;
7140 /* Handle a CPU exception for A and R profile CPUs.
7141 * Do any appropriate logging, handle PSCI calls, and then hand off
7142 * to the AArch64-entry or AArch32-entry function depending on the
7143 * target exception level's register width.
7145 void arm_cpu_do_interrupt(CPUState *cs)
7147 ARMCPU *cpu = ARM_CPU(cs);
7148 CPUARMState *env = &cpu->env;
7149 unsigned int new_el = env->exception.target_el;
7151 assert(!arm_feature(env, ARM_FEATURE_M));
7153 arm_log_exception(cs->exception_index);
7154 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env),
7155 new_el);
7156 if (qemu_loglevel_mask(CPU_LOG_INT)
7157 && !excp_is_internal(cs->exception_index)) {
7158 qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n",
7159 env->exception.syndrome >> ARM_EL_EC_SHIFT,
7160 env->exception.syndrome);
7163 if (arm_is_psci_call(cpu, cs->exception_index)) {
7164 arm_handle_psci_call(cpu);
7165 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
7166 return;
7169 /* Semihosting semantics depend on the register width of the
7170 * code that caused the exception, not the target exception level,
7171 * so must be handled here.
7173 if (check_for_semihosting(cs)) {
7174 return;
7177 assert(!excp_is_internal(cs->exception_index));
7178 if (arm_el_is_aa64(env, new_el)) {
7179 arm_cpu_do_interrupt_aarch64(cs);
7180 } else {
7181 arm_cpu_do_interrupt_aarch32(cs);
7184 /* Hooks may change global state so BQL should be held, also the
7185 * BQL needs to be held for any modification of
7186 * cs->interrupt_request.
7188 g_assert(qemu_mutex_iothread_locked());
7190 arm_call_el_change_hook(cpu);
7192 if (!kvm_enabled()) {
7193 cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
7197 /* Return the exception level which controls this address translation regime */
7198 static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx)
7200 switch (mmu_idx) {
7201 case ARMMMUIdx_S2NS:
7202 case ARMMMUIdx_S1E2:
7203 return 2;
7204 case ARMMMUIdx_S1E3:
7205 return 3;
7206 case ARMMMUIdx_S1SE0:
7207 return arm_el_is_aa64(env, 3) ? 1 : 3;
7208 case ARMMMUIdx_S1SE1:
7209 case ARMMMUIdx_S1NSE0:
7210 case ARMMMUIdx_S1NSE1:
7211 case ARMMMUIdx_MPriv:
7212 case ARMMMUIdx_MNegPri:
7213 case ARMMMUIdx_MUser:
7214 case ARMMMUIdx_MSPriv:
7215 case ARMMMUIdx_MSNegPri:
7216 case ARMMMUIdx_MSUser:
7217 return 1;
7218 default:
7219 g_assert_not_reached();
7223 /* Return the SCTLR value which controls this address translation regime */
7224 static inline uint32_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx)
7226 return env->cp15.sctlr_el[regime_el(env, mmu_idx)];
7229 /* Return true if the specified stage of address translation is disabled */
7230 static inline bool regime_translation_disabled(CPUARMState *env,
7231 ARMMMUIdx mmu_idx)
7233 if (arm_feature(env, ARM_FEATURE_M)) {
7234 switch (env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] &
7235 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) {
7236 case R_V7M_MPU_CTRL_ENABLE_MASK:
7237 /* Enabled, but not for HardFault and NMI */
7238 return mmu_idx == ARMMMUIdx_MNegPri ||
7239 mmu_idx == ARMMMUIdx_MSNegPri;
7240 case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK:
7241 /* Enabled for all cases */
7242 return false;
7243 case 0:
7244 default:
7245 /* HFNMIENA set and ENABLE clear is UNPREDICTABLE, but
7246 * we warned about that in armv7m_nvic.c when the guest set it.
7248 return true;
7252 if (mmu_idx == ARMMMUIdx_S2NS) {
7253 return (env->cp15.hcr_el2 & HCR_VM) == 0;
7255 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0;
7258 static inline bool regime_translation_big_endian(CPUARMState *env,
7259 ARMMMUIdx mmu_idx)
7261 return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0;
7264 /* Return the TCR controlling this translation regime */
7265 static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx)
7267 if (mmu_idx == ARMMMUIdx_S2NS) {
7268 return &env->cp15.vtcr_el2;
7270 return &env->cp15.tcr_el[regime_el(env, mmu_idx)];
7273 /* Convert a possible stage1+2 MMU index into the appropriate
7274 * stage 1 MMU index
7276 static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx)
7278 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
7279 mmu_idx += (ARMMMUIdx_S1NSE0 - ARMMMUIdx_S12NSE0);
7281 return mmu_idx;
7284 /* Returns TBI0 value for current regime el */
7285 uint32_t arm_regime_tbi0(CPUARMState *env, ARMMMUIdx mmu_idx)
7287 TCR *tcr;
7288 uint32_t el;
7290 /* For EL0 and EL1, TBI is controlled by stage 1's TCR, so convert
7291 * a stage 1+2 mmu index into the appropriate stage 1 mmu index.
7293 mmu_idx = stage_1_mmu_idx(mmu_idx);
7295 tcr = regime_tcr(env, mmu_idx);
7296 el = regime_el(env, mmu_idx);
7298 if (el > 1) {
7299 return extract64(tcr->raw_tcr, 20, 1);
7300 } else {
7301 return extract64(tcr->raw_tcr, 37, 1);
7305 /* Returns TBI1 value for current regime el */
7306 uint32_t arm_regime_tbi1(CPUARMState *env, ARMMMUIdx mmu_idx)
7308 TCR *tcr;
7309 uint32_t el;
7311 /* For EL0 and EL1, TBI is controlled by stage 1's TCR, so convert
7312 * a stage 1+2 mmu index into the appropriate stage 1 mmu index.
7314 mmu_idx = stage_1_mmu_idx(mmu_idx);
7316 tcr = regime_tcr(env, mmu_idx);
7317 el = regime_el(env, mmu_idx);
7319 if (el > 1) {
7320 return 0;
7321 } else {
7322 return extract64(tcr->raw_tcr, 38, 1);
7326 /* Return the TTBR associated with this translation regime */
7327 static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx,
7328 int ttbrn)
7330 if (mmu_idx == ARMMMUIdx_S2NS) {
7331 return env->cp15.vttbr_el2;
7333 if (ttbrn == 0) {
7334 return env->cp15.ttbr0_el[regime_el(env, mmu_idx)];
7335 } else {
7336 return env->cp15.ttbr1_el[regime_el(env, mmu_idx)];
7340 /* Return true if the translation regime is using LPAE format page tables */
7341 static inline bool regime_using_lpae_format(CPUARMState *env,
7342 ARMMMUIdx mmu_idx)
7344 int el = regime_el(env, mmu_idx);
7345 if (el == 2 || arm_el_is_aa64(env, el)) {
7346 return true;
7348 if (arm_feature(env, ARM_FEATURE_LPAE)
7349 && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) {
7350 return true;
7352 return false;
7355 /* Returns true if the stage 1 translation regime is using LPAE format page
7356 * tables. Used when raising alignment exceptions, whose FSR changes depending
7357 * on whether the long or short descriptor format is in use. */
7358 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx)
7360 mmu_idx = stage_1_mmu_idx(mmu_idx);
7362 return regime_using_lpae_format(env, mmu_idx);
7365 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx)
7367 switch (mmu_idx) {
7368 case ARMMMUIdx_S1SE0:
7369 case ARMMMUIdx_S1NSE0:
7370 case ARMMMUIdx_MUser:
7371 return true;
7372 default:
7373 return false;
7374 case ARMMMUIdx_S12NSE0:
7375 case ARMMMUIdx_S12NSE1:
7376 g_assert_not_reached();
7380 /* Translate section/page access permissions to page
7381 * R/W protection flags
7383 * @env: CPUARMState
7384 * @mmu_idx: MMU index indicating required translation regime
7385 * @ap: The 3-bit access permissions (AP[2:0])
7386 * @domain_prot: The 2-bit domain access permissions
7388 static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx,
7389 int ap, int domain_prot)
7391 bool is_user = regime_is_user(env, mmu_idx);
7393 if (domain_prot == 3) {
7394 return PAGE_READ | PAGE_WRITE;
7397 switch (ap) {
7398 case 0:
7399 if (arm_feature(env, ARM_FEATURE_V7)) {
7400 return 0;
7402 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) {
7403 case SCTLR_S:
7404 return is_user ? 0 : PAGE_READ;
7405 case SCTLR_R:
7406 return PAGE_READ;
7407 default:
7408 return 0;
7410 case 1:
7411 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
7412 case 2:
7413 if (is_user) {
7414 return PAGE_READ;
7415 } else {
7416 return PAGE_READ | PAGE_WRITE;
7418 case 3:
7419 return PAGE_READ | PAGE_WRITE;
7420 case 4: /* Reserved. */
7421 return 0;
7422 case 5:
7423 return is_user ? 0 : PAGE_READ;
7424 case 6:
7425 return PAGE_READ;
7426 case 7:
7427 if (!arm_feature(env, ARM_FEATURE_V6K)) {
7428 return 0;
7430 return PAGE_READ;
7431 default:
7432 g_assert_not_reached();
7436 /* Translate section/page access permissions to page
7437 * R/W protection flags.
7439 * @ap: The 2-bit simple AP (AP[2:1])
7440 * @is_user: TRUE if accessing from PL0
7442 static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user)
7444 switch (ap) {
7445 case 0:
7446 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
7447 case 1:
7448 return PAGE_READ | PAGE_WRITE;
7449 case 2:
7450 return is_user ? 0 : PAGE_READ;
7451 case 3:
7452 return PAGE_READ;
7453 default:
7454 g_assert_not_reached();
7458 static inline int
7459 simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap)
7461 return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx));
7464 /* Translate S2 section/page access permissions to protection flags
7466 * @env: CPUARMState
7467 * @s2ap: The 2-bit stage2 access permissions (S2AP)
7468 * @xn: XN (execute-never) bit
7470 static int get_S2prot(CPUARMState *env, int s2ap, int xn)
7472 int prot = 0;
7474 if (s2ap & 1) {
7475 prot |= PAGE_READ;
7477 if (s2ap & 2) {
7478 prot |= PAGE_WRITE;
7480 if (!xn) {
7481 if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) {
7482 prot |= PAGE_EXEC;
7485 return prot;
7488 /* Translate section/page access permissions to protection flags
7490 * @env: CPUARMState
7491 * @mmu_idx: MMU index indicating required translation regime
7492 * @is_aa64: TRUE if AArch64
7493 * @ap: The 2-bit simple AP (AP[2:1])
7494 * @ns: NS (non-secure) bit
7495 * @xn: XN (execute-never) bit
7496 * @pxn: PXN (privileged execute-never) bit
7498 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
7499 int ap, int ns, int xn, int pxn)
7501 bool is_user = regime_is_user(env, mmu_idx);
7502 int prot_rw, user_rw;
7503 bool have_wxn;
7504 int wxn = 0;
7506 assert(mmu_idx != ARMMMUIdx_S2NS);
7508 user_rw = simple_ap_to_rw_prot_is_user(ap, true);
7509 if (is_user) {
7510 prot_rw = user_rw;
7511 } else {
7512 prot_rw = simple_ap_to_rw_prot_is_user(ap, false);
7515 if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) {
7516 return prot_rw;
7519 /* TODO have_wxn should be replaced with
7520 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
7521 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
7522 * compatible processors have EL2, which is required for [U]WXN.
7524 have_wxn = arm_feature(env, ARM_FEATURE_LPAE);
7526 if (have_wxn) {
7527 wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN;
7530 if (is_aa64) {
7531 switch (regime_el(env, mmu_idx)) {
7532 case 1:
7533 if (!is_user) {
7534 xn = pxn || (user_rw & PAGE_WRITE);
7536 break;
7537 case 2:
7538 case 3:
7539 break;
7541 } else if (arm_feature(env, ARM_FEATURE_V7)) {
7542 switch (regime_el(env, mmu_idx)) {
7543 case 1:
7544 case 3:
7545 if (is_user) {
7546 xn = xn || !(user_rw & PAGE_READ);
7547 } else {
7548 int uwxn = 0;
7549 if (have_wxn) {
7550 uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN;
7552 xn = xn || !(prot_rw & PAGE_READ) || pxn ||
7553 (uwxn && (user_rw & PAGE_WRITE));
7555 break;
7556 case 2:
7557 break;
7559 } else {
7560 xn = wxn = 0;
7563 if (xn || (wxn && (prot_rw & PAGE_WRITE))) {
7564 return prot_rw;
7566 return prot_rw | PAGE_EXEC;
7569 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx,
7570 uint32_t *table, uint32_t address)
7572 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
7573 TCR *tcr = regime_tcr(env, mmu_idx);
7575 if (address & tcr->mask) {
7576 if (tcr->raw_tcr & TTBCR_PD1) {
7577 /* Translation table walk disabled for TTBR1 */
7578 return false;
7580 *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000;
7581 } else {
7582 if (tcr->raw_tcr & TTBCR_PD0) {
7583 /* Translation table walk disabled for TTBR0 */
7584 return false;
7586 *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask;
7588 *table |= (address >> 18) & 0x3ffc;
7589 return true;
7592 /* Translate a S1 pagetable walk through S2 if needed. */
7593 static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx,
7594 hwaddr addr, MemTxAttrs txattrs,
7595 uint32_t *fsr,
7596 ARMMMUFaultInfo *fi)
7598 if ((mmu_idx == ARMMMUIdx_S1NSE0 || mmu_idx == ARMMMUIdx_S1NSE1) &&
7599 !regime_translation_disabled(env, ARMMMUIdx_S2NS)) {
7600 target_ulong s2size;
7601 hwaddr s2pa;
7602 int s2prot;
7603 int ret;
7605 ret = get_phys_addr_lpae(env, addr, 0, ARMMMUIdx_S2NS, &s2pa,
7606 &txattrs, &s2prot, &s2size, fsr, fi);
7607 if (ret) {
7608 fi->s2addr = addr;
7609 fi->stage2 = true;
7610 fi->s1ptw = true;
7611 return ~0;
7613 addr = s2pa;
7615 return addr;
7618 /* All loads done in the course of a page table walk go through here.
7619 * TODO: rather than ignoring errors from physical memory reads (which
7620 * are external aborts in ARM terminology) we should propagate this
7621 * error out so that we can turn it into a Data Abort if this walk
7622 * was being done for a CPU load/store or an address translation instruction
7623 * (but not if it was for a debug access).
7625 static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure,
7626 ARMMMUIdx mmu_idx, uint32_t *fsr,
7627 ARMMMUFaultInfo *fi)
7629 ARMCPU *cpu = ARM_CPU(cs);
7630 CPUARMState *env = &cpu->env;
7631 MemTxAttrs attrs = {};
7632 AddressSpace *as;
7634 attrs.secure = is_secure;
7635 as = arm_addressspace(cs, attrs);
7636 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fsr, fi);
7637 if (fi->s1ptw) {
7638 return 0;
7640 if (regime_translation_big_endian(env, mmu_idx)) {
7641 return address_space_ldl_be(as, addr, attrs, NULL);
7642 } else {
7643 return address_space_ldl_le(as, addr, attrs, NULL);
7647 static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure,
7648 ARMMMUIdx mmu_idx, uint32_t *fsr,
7649 ARMMMUFaultInfo *fi)
7651 ARMCPU *cpu = ARM_CPU(cs);
7652 CPUARMState *env = &cpu->env;
7653 MemTxAttrs attrs = {};
7654 AddressSpace *as;
7656 attrs.secure = is_secure;
7657 as = arm_addressspace(cs, attrs);
7658 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fsr, fi);
7659 if (fi->s1ptw) {
7660 return 0;
7662 if (regime_translation_big_endian(env, mmu_idx)) {
7663 return address_space_ldq_be(as, addr, attrs, NULL);
7664 } else {
7665 return address_space_ldq_le(as, addr, attrs, NULL);
7669 static bool get_phys_addr_v5(CPUARMState *env, uint32_t address,
7670 MMUAccessType access_type, ARMMMUIdx mmu_idx,
7671 hwaddr *phys_ptr, int *prot,
7672 target_ulong *page_size, uint32_t *fsr,
7673 ARMMMUFaultInfo *fi)
7675 CPUState *cs = CPU(arm_env_get_cpu(env));
7676 int code;
7677 uint32_t table;
7678 uint32_t desc;
7679 int type;
7680 int ap;
7681 int domain = 0;
7682 int domain_prot;
7683 hwaddr phys_addr;
7684 uint32_t dacr;
7686 /* Pagetable walk. */
7687 /* Lookup l1 descriptor. */
7688 if (!get_level1_table_address(env, mmu_idx, &table, address)) {
7689 /* Section translation fault if page walk is disabled by PD0 or PD1 */
7690 code = 5;
7691 goto do_fault;
7693 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
7694 mmu_idx, fsr, fi);
7695 type = (desc & 3);
7696 domain = (desc >> 5) & 0x0f;
7697 if (regime_el(env, mmu_idx) == 1) {
7698 dacr = env->cp15.dacr_ns;
7699 } else {
7700 dacr = env->cp15.dacr_s;
7702 domain_prot = (dacr >> (domain * 2)) & 3;
7703 if (type == 0) {
7704 /* Section translation fault. */
7705 code = 5;
7706 goto do_fault;
7708 if (domain_prot == 0 || domain_prot == 2) {
7709 if (type == 2)
7710 code = 9; /* Section domain fault. */
7711 else
7712 code = 11; /* Page domain fault. */
7713 goto do_fault;
7715 if (type == 2) {
7716 /* 1Mb section. */
7717 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
7718 ap = (desc >> 10) & 3;
7719 code = 13;
7720 *page_size = 1024 * 1024;
7721 } else {
7722 /* Lookup l2 entry. */
7723 if (type == 1) {
7724 /* Coarse pagetable. */
7725 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
7726 } else {
7727 /* Fine pagetable. */
7728 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
7730 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
7731 mmu_idx, fsr, fi);
7732 switch (desc & 3) {
7733 case 0: /* Page translation fault. */
7734 code = 7;
7735 goto do_fault;
7736 case 1: /* 64k page. */
7737 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
7738 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
7739 *page_size = 0x10000;
7740 break;
7741 case 2: /* 4k page. */
7742 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
7743 ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
7744 *page_size = 0x1000;
7745 break;
7746 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
7747 if (type == 1) {
7748 /* ARMv6/XScale extended small page format */
7749 if (arm_feature(env, ARM_FEATURE_XSCALE)
7750 || arm_feature(env, ARM_FEATURE_V6)) {
7751 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
7752 *page_size = 0x1000;
7753 } else {
7754 /* UNPREDICTABLE in ARMv5; we choose to take a
7755 * page translation fault.
7757 code = 7;
7758 goto do_fault;
7760 } else {
7761 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
7762 *page_size = 0x400;
7764 ap = (desc >> 4) & 3;
7765 break;
7766 default:
7767 /* Never happens, but compiler isn't smart enough to tell. */
7768 abort();
7770 code = 15;
7772 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
7773 *prot |= *prot ? PAGE_EXEC : 0;
7774 if (!(*prot & (1 << access_type))) {
7775 /* Access permission fault. */
7776 goto do_fault;
7778 *phys_ptr = phys_addr;
7779 return false;
7780 do_fault:
7781 *fsr = code | (domain << 4);
7782 return true;
7785 static bool get_phys_addr_v6(CPUARMState *env, uint32_t address,
7786 MMUAccessType access_type, ARMMMUIdx mmu_idx,
7787 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
7788 target_ulong *page_size, uint32_t *fsr,
7789 ARMMMUFaultInfo *fi)
7791 CPUState *cs = CPU(arm_env_get_cpu(env));
7792 int code;
7793 uint32_t table;
7794 uint32_t desc;
7795 uint32_t xn;
7796 uint32_t pxn = 0;
7797 int type;
7798 int ap;
7799 int domain = 0;
7800 int domain_prot;
7801 hwaddr phys_addr;
7802 uint32_t dacr;
7803 bool ns;
7805 /* Pagetable walk. */
7806 /* Lookup l1 descriptor. */
7807 if (!get_level1_table_address(env, mmu_idx, &table, address)) {
7808 /* Section translation fault if page walk is disabled by PD0 or PD1 */
7809 code = 5;
7810 goto do_fault;
7812 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
7813 mmu_idx, fsr, fi);
7814 type = (desc & 3);
7815 if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) {
7816 /* Section translation fault, or attempt to use the encoding
7817 * which is Reserved on implementations without PXN.
7819 code = 5;
7820 goto do_fault;
7822 if ((type == 1) || !(desc & (1 << 18))) {
7823 /* Page or Section. */
7824 domain = (desc >> 5) & 0x0f;
7826 if (regime_el(env, mmu_idx) == 1) {
7827 dacr = env->cp15.dacr_ns;
7828 } else {
7829 dacr = env->cp15.dacr_s;
7831 domain_prot = (dacr >> (domain * 2)) & 3;
7832 if (domain_prot == 0 || domain_prot == 2) {
7833 if (type != 1) {
7834 code = 9; /* Section domain fault. */
7835 } else {
7836 code = 11; /* Page domain fault. */
7838 goto do_fault;
7840 if (type != 1) {
7841 if (desc & (1 << 18)) {
7842 /* Supersection. */
7843 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
7844 phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32;
7845 phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36;
7846 *page_size = 0x1000000;
7847 } else {
7848 /* Section. */
7849 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
7850 *page_size = 0x100000;
7852 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
7853 xn = desc & (1 << 4);
7854 pxn = desc & 1;
7855 code = 13;
7856 ns = extract32(desc, 19, 1);
7857 } else {
7858 if (arm_feature(env, ARM_FEATURE_PXN)) {
7859 pxn = (desc >> 2) & 1;
7861 ns = extract32(desc, 3, 1);
7862 /* Lookup l2 entry. */
7863 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
7864 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
7865 mmu_idx, fsr, fi);
7866 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
7867 switch (desc & 3) {
7868 case 0: /* Page translation fault. */
7869 code = 7;
7870 goto do_fault;
7871 case 1: /* 64k page. */
7872 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
7873 xn = desc & (1 << 15);
7874 *page_size = 0x10000;
7875 break;
7876 case 2: case 3: /* 4k page. */
7877 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
7878 xn = desc & 1;
7879 *page_size = 0x1000;
7880 break;
7881 default:
7882 /* Never happens, but compiler isn't smart enough to tell. */
7883 abort();
7885 code = 15;
7887 if (domain_prot == 3) {
7888 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
7889 } else {
7890 if (pxn && !regime_is_user(env, mmu_idx)) {
7891 xn = 1;
7893 if (xn && access_type == MMU_INST_FETCH)
7894 goto do_fault;
7896 if (arm_feature(env, ARM_FEATURE_V6K) &&
7897 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) {
7898 /* The simplified model uses AP[0] as an access control bit. */
7899 if ((ap & 1) == 0) {
7900 /* Access flag fault. */
7901 code = (code == 15) ? 6 : 3;
7902 goto do_fault;
7904 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1);
7905 } else {
7906 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
7908 if (*prot && !xn) {
7909 *prot |= PAGE_EXEC;
7911 if (!(*prot & (1 << access_type))) {
7912 /* Access permission fault. */
7913 goto do_fault;
7916 if (ns) {
7917 /* The NS bit will (as required by the architecture) have no effect if
7918 * the CPU doesn't support TZ or this is a non-secure translation
7919 * regime, because the attribute will already be non-secure.
7921 attrs->secure = false;
7923 *phys_ptr = phys_addr;
7924 return false;
7925 do_fault:
7926 *fsr = code | (domain << 4);
7927 return true;
7930 /* Fault type for long-descriptor MMU fault reporting; this corresponds
7931 * to bits [5..2] in the STATUS field in long-format DFSR/IFSR.
7933 typedef enum {
7934 translation_fault = 1,
7935 access_fault = 2,
7936 permission_fault = 3,
7937 } MMUFaultType;
7940 * check_s2_mmu_setup
7941 * @cpu: ARMCPU
7942 * @is_aa64: True if the translation regime is in AArch64 state
7943 * @startlevel: Suggested starting level
7944 * @inputsize: Bitsize of IPAs
7945 * @stride: Page-table stride (See the ARM ARM)
7947 * Returns true if the suggested S2 translation parameters are OK and
7948 * false otherwise.
7950 static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level,
7951 int inputsize, int stride)
7953 const int grainsize = stride + 3;
7954 int startsizecheck;
7956 /* Negative levels are never allowed. */
7957 if (level < 0) {
7958 return false;
7961 startsizecheck = inputsize - ((3 - level) * stride + grainsize);
7962 if (startsizecheck < 1 || startsizecheck > stride + 4) {
7963 return false;
7966 if (is_aa64) {
7967 CPUARMState *env = &cpu->env;
7968 unsigned int pamax = arm_pamax(cpu);
7970 switch (stride) {
7971 case 13: /* 64KB Pages. */
7972 if (level == 0 || (level == 1 && pamax <= 42)) {
7973 return false;
7975 break;
7976 case 11: /* 16KB Pages. */
7977 if (level == 0 || (level == 1 && pamax <= 40)) {
7978 return false;
7980 break;
7981 case 9: /* 4KB Pages. */
7982 if (level == 0 && pamax <= 42) {
7983 return false;
7985 break;
7986 default:
7987 g_assert_not_reached();
7990 /* Inputsize checks. */
7991 if (inputsize > pamax &&
7992 (arm_el_is_aa64(env, 1) || inputsize > 40)) {
7993 /* This is CONSTRAINED UNPREDICTABLE and we choose to fault. */
7994 return false;
7996 } else {
7997 /* AArch32 only supports 4KB pages. Assert on that. */
7998 assert(stride == 9);
8000 if (level == 0) {
8001 return false;
8004 return true;
8007 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
8008 MMUAccessType access_type, ARMMMUIdx mmu_idx,
8009 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
8010 target_ulong *page_size_ptr, uint32_t *fsr,
8011 ARMMMUFaultInfo *fi)
8013 ARMCPU *cpu = arm_env_get_cpu(env);
8014 CPUState *cs = CPU(cpu);
8015 /* Read an LPAE long-descriptor translation table. */
8016 MMUFaultType fault_type = translation_fault;
8017 uint32_t level;
8018 uint32_t epd = 0;
8019 int32_t t0sz, t1sz;
8020 uint32_t tg;
8021 uint64_t ttbr;
8022 int ttbr_select;
8023 hwaddr descaddr, indexmask, indexmask_grainsize;
8024 uint32_t tableattrs;
8025 target_ulong page_size;
8026 uint32_t attrs;
8027 int32_t stride = 9;
8028 int32_t addrsize;
8029 int inputsize;
8030 int32_t tbi = 0;
8031 TCR *tcr = regime_tcr(env, mmu_idx);
8032 int ap, ns, xn, pxn;
8033 uint32_t el = regime_el(env, mmu_idx);
8034 bool ttbr1_valid = true;
8035 uint64_t descaddrmask;
8036 bool aarch64 = arm_el_is_aa64(env, el);
8038 /* TODO:
8039 * This code does not handle the different format TCR for VTCR_EL2.
8040 * This code also does not support shareability levels.
8041 * Attribute and permission bit handling should also be checked when adding
8042 * support for those page table walks.
8044 if (aarch64) {
8045 level = 0;
8046 addrsize = 64;
8047 if (el > 1) {
8048 if (mmu_idx != ARMMMUIdx_S2NS) {
8049 tbi = extract64(tcr->raw_tcr, 20, 1);
8051 } else {
8052 if (extract64(address, 55, 1)) {
8053 tbi = extract64(tcr->raw_tcr, 38, 1);
8054 } else {
8055 tbi = extract64(tcr->raw_tcr, 37, 1);
8058 tbi *= 8;
8060 /* If we are in 64-bit EL2 or EL3 then there is no TTBR1, so mark it
8061 * invalid.
8063 if (el > 1) {
8064 ttbr1_valid = false;
8066 } else {
8067 level = 1;
8068 addrsize = 32;
8069 /* There is no TTBR1 for EL2 */
8070 if (el == 2) {
8071 ttbr1_valid = false;
8075 /* Determine whether this address is in the region controlled by
8076 * TTBR0 or TTBR1 (or if it is in neither region and should fault).
8077 * This is a Non-secure PL0/1 stage 1 translation, so controlled by
8078 * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32:
8080 if (aarch64) {
8081 /* AArch64 translation. */
8082 t0sz = extract32(tcr->raw_tcr, 0, 6);
8083 t0sz = MIN(t0sz, 39);
8084 t0sz = MAX(t0sz, 16);
8085 } else if (mmu_idx != ARMMMUIdx_S2NS) {
8086 /* AArch32 stage 1 translation. */
8087 t0sz = extract32(tcr->raw_tcr, 0, 3);
8088 } else {
8089 /* AArch32 stage 2 translation. */
8090 bool sext = extract32(tcr->raw_tcr, 4, 1);
8091 bool sign = extract32(tcr->raw_tcr, 3, 1);
8092 /* Address size is 40-bit for a stage 2 translation,
8093 * and t0sz can be negative (from -8 to 7),
8094 * so we need to adjust it to use the TTBR selecting logic below.
8096 addrsize = 40;
8097 t0sz = sextract32(tcr->raw_tcr, 0, 4) + 8;
8099 /* If the sign-extend bit is not the same as t0sz[3], the result
8100 * is unpredictable. Flag this as a guest error. */
8101 if (sign != sext) {
8102 qemu_log_mask(LOG_GUEST_ERROR,
8103 "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n");
8106 t1sz = extract32(tcr->raw_tcr, 16, 6);
8107 if (aarch64) {
8108 t1sz = MIN(t1sz, 39);
8109 t1sz = MAX(t1sz, 16);
8111 if (t0sz && !extract64(address, addrsize - t0sz, t0sz - tbi)) {
8112 /* there is a ttbr0 region and we are in it (high bits all zero) */
8113 ttbr_select = 0;
8114 } else if (ttbr1_valid && t1sz &&
8115 !extract64(~address, addrsize - t1sz, t1sz - tbi)) {
8116 /* there is a ttbr1 region and we are in it (high bits all one) */
8117 ttbr_select = 1;
8118 } else if (!t0sz) {
8119 /* ttbr0 region is "everything not in the ttbr1 region" */
8120 ttbr_select = 0;
8121 } else if (!t1sz && ttbr1_valid) {
8122 /* ttbr1 region is "everything not in the ttbr0 region" */
8123 ttbr_select = 1;
8124 } else {
8125 /* in the gap between the two regions, this is a Translation fault */
8126 fault_type = translation_fault;
8127 goto do_fault;
8130 /* Note that QEMU ignores shareability and cacheability attributes,
8131 * so we don't need to do anything with the SH, ORGN, IRGN fields
8132 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the
8133 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
8134 * implement any ASID-like capability so we can ignore it (instead
8135 * we will always flush the TLB any time the ASID is changed).
8137 if (ttbr_select == 0) {
8138 ttbr = regime_ttbr(env, mmu_idx, 0);
8139 if (el < 2) {
8140 epd = extract32(tcr->raw_tcr, 7, 1);
8142 inputsize = addrsize - t0sz;
8144 tg = extract32(tcr->raw_tcr, 14, 2);
8145 if (tg == 1) { /* 64KB pages */
8146 stride = 13;
8148 if (tg == 2) { /* 16KB pages */
8149 stride = 11;
8151 } else {
8152 /* We should only be here if TTBR1 is valid */
8153 assert(ttbr1_valid);
8155 ttbr = regime_ttbr(env, mmu_idx, 1);
8156 epd = extract32(tcr->raw_tcr, 23, 1);
8157 inputsize = addrsize - t1sz;
8159 tg = extract32(tcr->raw_tcr, 30, 2);
8160 if (tg == 3) { /* 64KB pages */
8161 stride = 13;
8163 if (tg == 1) { /* 16KB pages */
8164 stride = 11;
8168 /* Here we should have set up all the parameters for the translation:
8169 * inputsize, ttbr, epd, stride, tbi
8172 if (epd) {
8173 /* Translation table walk disabled => Translation fault on TLB miss
8174 * Note: This is always 0 on 64-bit EL2 and EL3.
8176 goto do_fault;
8179 if (mmu_idx != ARMMMUIdx_S2NS) {
8180 /* The starting level depends on the virtual address size (which can
8181 * be up to 48 bits) and the translation granule size. It indicates
8182 * the number of strides (stride bits at a time) needed to
8183 * consume the bits of the input address. In the pseudocode this is:
8184 * level = 4 - RoundUp((inputsize - grainsize) / stride)
8185 * where their 'inputsize' is our 'inputsize', 'grainsize' is
8186 * our 'stride + 3' and 'stride' is our 'stride'.
8187 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
8188 * = 4 - (inputsize - stride - 3 + stride - 1) / stride
8189 * = 4 - (inputsize - 4) / stride;
8191 level = 4 - (inputsize - 4) / stride;
8192 } else {
8193 /* For stage 2 translations the starting level is specified by the
8194 * VTCR_EL2.SL0 field (whose interpretation depends on the page size)
8196 uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2);
8197 uint32_t startlevel;
8198 bool ok;
8200 if (!aarch64 || stride == 9) {
8201 /* AArch32 or 4KB pages */
8202 startlevel = 2 - sl0;
8203 } else {
8204 /* 16KB or 64KB pages */
8205 startlevel = 3 - sl0;
8208 /* Check that the starting level is valid. */
8209 ok = check_s2_mmu_setup(cpu, aarch64, startlevel,
8210 inputsize, stride);
8211 if (!ok) {
8212 fault_type = translation_fault;
8213 goto do_fault;
8215 level = startlevel;
8218 indexmask_grainsize = (1ULL << (stride + 3)) - 1;
8219 indexmask = (1ULL << (inputsize - (stride * (4 - level)))) - 1;
8221 /* Now we can extract the actual base address from the TTBR */
8222 descaddr = extract64(ttbr, 0, 48);
8223 descaddr &= ~indexmask;
8225 /* The address field in the descriptor goes up to bit 39 for ARMv7
8226 * but up to bit 47 for ARMv8, but we use the descaddrmask
8227 * up to bit 39 for AArch32, because we don't need other bits in that case
8228 * to construct next descriptor address (anyway they should be all zeroes).
8230 descaddrmask = ((1ull << (aarch64 ? 48 : 40)) - 1) &
8231 ~indexmask_grainsize;
8233 /* Secure accesses start with the page table in secure memory and
8234 * can be downgraded to non-secure at any step. Non-secure accesses
8235 * remain non-secure. We implement this by just ORing in the NSTable/NS
8236 * bits at each step.
8238 tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4);
8239 for (;;) {
8240 uint64_t descriptor;
8241 bool nstable;
8243 descaddr |= (address >> (stride * (4 - level))) & indexmask;
8244 descaddr &= ~7ULL;
8245 nstable = extract32(tableattrs, 4, 1);
8246 descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fsr, fi);
8247 if (fi->s1ptw) {
8248 goto do_fault;
8251 if (!(descriptor & 1) ||
8252 (!(descriptor & 2) && (level == 3))) {
8253 /* Invalid, or the Reserved level 3 encoding */
8254 goto do_fault;
8256 descaddr = descriptor & descaddrmask;
8258 if ((descriptor & 2) && (level < 3)) {
8259 /* Table entry. The top five bits are attributes which may
8260 * propagate down through lower levels of the table (and
8261 * which are all arranged so that 0 means "no effect", so
8262 * we can gather them up by ORing in the bits at each level).
8264 tableattrs |= extract64(descriptor, 59, 5);
8265 level++;
8266 indexmask = indexmask_grainsize;
8267 continue;
8269 /* Block entry at level 1 or 2, or page entry at level 3.
8270 * These are basically the same thing, although the number
8271 * of bits we pull in from the vaddr varies.
8273 page_size = (1ULL << ((stride * (4 - level)) + 3));
8274 descaddr |= (address & (page_size - 1));
8275 /* Extract attributes from the descriptor */
8276 attrs = extract64(descriptor, 2, 10)
8277 | (extract64(descriptor, 52, 12) << 10);
8279 if (mmu_idx == ARMMMUIdx_S2NS) {
8280 /* Stage 2 table descriptors do not include any attribute fields */
8281 break;
8283 /* Merge in attributes from table descriptors */
8284 attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */
8285 attrs |= extract32(tableattrs, 3, 1) << 5; /* APTable[1] => AP[2] */
8286 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
8287 * means "force PL1 access only", which means forcing AP[1] to 0.
8289 if (extract32(tableattrs, 2, 1)) {
8290 attrs &= ~(1 << 4);
8292 attrs |= nstable << 3; /* NS */
8293 break;
8295 /* Here descaddr is the final physical address, and attributes
8296 * are all in attrs.
8298 fault_type = access_fault;
8299 if ((attrs & (1 << 8)) == 0) {
8300 /* Access flag */
8301 goto do_fault;
8304 ap = extract32(attrs, 4, 2);
8305 xn = extract32(attrs, 12, 1);
8307 if (mmu_idx == ARMMMUIdx_S2NS) {
8308 ns = true;
8309 *prot = get_S2prot(env, ap, xn);
8310 } else {
8311 ns = extract32(attrs, 3, 1);
8312 pxn = extract32(attrs, 11, 1);
8313 *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn);
8316 fault_type = permission_fault;
8317 if (!(*prot & (1 << access_type))) {
8318 goto do_fault;
8321 if (ns) {
8322 /* The NS bit will (as required by the architecture) have no effect if
8323 * the CPU doesn't support TZ or this is a non-secure translation
8324 * regime, because the attribute will already be non-secure.
8326 txattrs->secure = false;
8328 *phys_ptr = descaddr;
8329 *page_size_ptr = page_size;
8330 return false;
8332 do_fault:
8333 /* Long-descriptor format IFSR/DFSR value */
8334 *fsr = (1 << 9) | (fault_type << 2) | level;
8335 /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */
8336 fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_S2NS);
8337 return true;
8340 static inline void get_phys_addr_pmsav7_default(CPUARMState *env,
8341 ARMMMUIdx mmu_idx,
8342 int32_t address, int *prot)
8344 if (!arm_feature(env, ARM_FEATURE_M)) {
8345 *prot = PAGE_READ | PAGE_WRITE;
8346 switch (address) {
8347 case 0xF0000000 ... 0xFFFFFFFF:
8348 if (regime_sctlr(env, mmu_idx) & SCTLR_V) {
8349 /* hivecs execing is ok */
8350 *prot |= PAGE_EXEC;
8352 break;
8353 case 0x00000000 ... 0x7FFFFFFF:
8354 *prot |= PAGE_EXEC;
8355 break;
8357 } else {
8358 /* Default system address map for M profile cores.
8359 * The architecture specifies which regions are execute-never;
8360 * at the MPU level no other checks are defined.
8362 switch (address) {
8363 case 0x00000000 ... 0x1fffffff: /* ROM */
8364 case 0x20000000 ... 0x3fffffff: /* SRAM */
8365 case 0x60000000 ... 0x7fffffff: /* RAM */
8366 case 0x80000000 ... 0x9fffffff: /* RAM */
8367 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
8368 break;
8369 case 0x40000000 ... 0x5fffffff: /* Peripheral */
8370 case 0xa0000000 ... 0xbfffffff: /* Device */
8371 case 0xc0000000 ... 0xdfffffff: /* Device */
8372 case 0xe0000000 ... 0xffffffff: /* System */
8373 *prot = PAGE_READ | PAGE_WRITE;
8374 break;
8375 default:
8376 g_assert_not_reached();
8381 static bool pmsav7_use_background_region(ARMCPU *cpu,
8382 ARMMMUIdx mmu_idx, bool is_user)
8384 /* Return true if we should use the default memory map as a
8385 * "background" region if there are no hits against any MPU regions.
8387 CPUARMState *env = &cpu->env;
8389 if (is_user) {
8390 return false;
8393 if (arm_feature(env, ARM_FEATURE_M)) {
8394 return env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)]
8395 & R_V7M_MPU_CTRL_PRIVDEFENA_MASK;
8396 } else {
8397 return regime_sctlr(env, mmu_idx) & SCTLR_BR;
8401 static inline bool m_is_ppb_region(CPUARMState *env, uint32_t address)
8403 /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */
8404 return arm_feature(env, ARM_FEATURE_M) &&
8405 extract32(address, 20, 12) == 0xe00;
8408 static inline bool m_is_system_region(CPUARMState *env, uint32_t address)
8410 /* True if address is in the M profile system region
8411 * 0xe0000000 - 0xffffffff
8413 return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7;
8416 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address,
8417 MMUAccessType access_type, ARMMMUIdx mmu_idx,
8418 hwaddr *phys_ptr, int *prot, uint32_t *fsr)
8420 ARMCPU *cpu = arm_env_get_cpu(env);
8421 int n;
8422 bool is_user = regime_is_user(env, mmu_idx);
8424 *phys_ptr = address;
8425 *prot = 0;
8427 if (regime_translation_disabled(env, mmu_idx) ||
8428 m_is_ppb_region(env, address)) {
8429 /* MPU disabled or M profile PPB access: use default memory map.
8430 * The other case which uses the default memory map in the
8431 * v7M ARM ARM pseudocode is exception vector reads from the vector
8432 * table. In QEMU those accesses are done in arm_v7m_load_vector(),
8433 * which always does a direct read using address_space_ldl(), rather
8434 * than going via this function, so we don't need to check that here.
8436 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
8437 } else { /* MPU enabled */
8438 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
8439 /* region search */
8440 uint32_t base = env->pmsav7.drbar[n];
8441 uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5);
8442 uint32_t rmask;
8443 bool srdis = false;
8445 if (!(env->pmsav7.drsr[n] & 0x1)) {
8446 continue;
8449 if (!rsize) {
8450 qemu_log_mask(LOG_GUEST_ERROR,
8451 "DRSR[%d]: Rsize field cannot be 0\n", n);
8452 continue;
8454 rsize++;
8455 rmask = (1ull << rsize) - 1;
8457 if (base & rmask) {
8458 qemu_log_mask(LOG_GUEST_ERROR,
8459 "DRBAR[%d]: 0x%" PRIx32 " misaligned "
8460 "to DRSR region size, mask = 0x%" PRIx32 "\n",
8461 n, base, rmask);
8462 continue;
8465 if (address < base || address > base + rmask) {
8466 continue;
8469 /* Region matched */
8471 if (rsize >= 8) { /* no subregions for regions < 256 bytes */
8472 int i, snd;
8473 uint32_t srdis_mask;
8475 rsize -= 3; /* sub region size (power of 2) */
8476 snd = ((address - base) >> rsize) & 0x7;
8477 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1);
8479 srdis_mask = srdis ? 0x3 : 0x0;
8480 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) {
8481 /* This will check in groups of 2, 4 and then 8, whether
8482 * the subregion bits are consistent. rsize is incremented
8483 * back up to give the region size, considering consistent
8484 * adjacent subregions as one region. Stop testing if rsize
8485 * is already big enough for an entire QEMU page.
8487 int snd_rounded = snd & ~(i - 1);
8488 uint32_t srdis_multi = extract32(env->pmsav7.drsr[n],
8489 snd_rounded + 8, i);
8490 if (srdis_mask ^ srdis_multi) {
8491 break;
8493 srdis_mask = (srdis_mask << i) | srdis_mask;
8494 rsize++;
8497 if (rsize < TARGET_PAGE_BITS) {
8498 qemu_log_mask(LOG_UNIMP,
8499 "DRSR[%d]: No support for MPU (sub)region "
8500 "alignment of %" PRIu32 " bits. Minimum is %d\n",
8501 n, rsize, TARGET_PAGE_BITS);
8502 continue;
8504 if (srdis) {
8505 continue;
8507 break;
8510 if (n == -1) { /* no hits */
8511 if (!pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
8512 /* background fault */
8513 *fsr = 0;
8514 return true;
8516 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
8517 } else { /* a MPU hit! */
8518 uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3);
8519 uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1);
8521 if (m_is_system_region(env, address)) {
8522 /* System space is always execute never */
8523 xn = 1;
8526 if (is_user) { /* User mode AP bit decoding */
8527 switch (ap) {
8528 case 0:
8529 case 1:
8530 case 5:
8531 break; /* no access */
8532 case 3:
8533 *prot |= PAGE_WRITE;
8534 /* fall through */
8535 case 2:
8536 case 6:
8537 *prot |= PAGE_READ | PAGE_EXEC;
8538 break;
8539 default:
8540 qemu_log_mask(LOG_GUEST_ERROR,
8541 "DRACR[%d]: Bad value for AP bits: 0x%"
8542 PRIx32 "\n", n, ap);
8544 } else { /* Priv. mode AP bits decoding */
8545 switch (ap) {
8546 case 0:
8547 break; /* no access */
8548 case 1:
8549 case 2:
8550 case 3:
8551 *prot |= PAGE_WRITE;
8552 /* fall through */
8553 case 5:
8554 case 6:
8555 *prot |= PAGE_READ | PAGE_EXEC;
8556 break;
8557 default:
8558 qemu_log_mask(LOG_GUEST_ERROR,
8559 "DRACR[%d]: Bad value for AP bits: 0x%"
8560 PRIx32 "\n", n, ap);
8564 /* execute never */
8565 if (xn) {
8566 *prot &= ~PAGE_EXEC;
8571 *fsr = 0x00d; /* Permission fault */
8572 return !(*prot & (1 << access_type));
8575 static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address,
8576 MMUAccessType access_type, ARMMMUIdx mmu_idx,
8577 hwaddr *phys_ptr, int *prot, uint32_t *fsr)
8579 ARMCPU *cpu = arm_env_get_cpu(env);
8580 bool is_user = regime_is_user(env, mmu_idx);
8581 uint32_t secure = regime_is_secure(env, mmu_idx);
8582 int n;
8583 int matchregion = -1;
8584 bool hit = false;
8586 *phys_ptr = address;
8587 *prot = 0;
8589 /* Unlike the ARM ARM pseudocode, we don't need to check whether this
8590 * was an exception vector read from the vector table (which is always
8591 * done using the default system address map), because those accesses
8592 * are done in arm_v7m_load_vector(), which always does a direct
8593 * read using address_space_ldl(), rather than going via this function.
8595 if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */
8596 hit = true;
8597 } else if (m_is_ppb_region(env, address)) {
8598 hit = true;
8599 } else if (pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
8600 hit = true;
8601 } else {
8602 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
8603 /* region search */
8604 /* Note that the base address is bits [31:5] from the register
8605 * with bits [4:0] all zeroes, but the limit address is bits
8606 * [31:5] from the register with bits [4:0] all ones.
8608 uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f;
8609 uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f;
8611 if (!(env->pmsav8.rlar[secure][n] & 0x1)) {
8612 /* Region disabled */
8613 continue;
8616 if (address < base || address > limit) {
8617 continue;
8620 if (hit) {
8621 /* Multiple regions match -- always a failure (unlike
8622 * PMSAv7 where highest-numbered-region wins)
8624 *fsr = 0x00d; /* permission fault */
8625 return true;
8628 matchregion = n;
8629 hit = true;
8631 if (base & ~TARGET_PAGE_MASK) {
8632 qemu_log_mask(LOG_UNIMP,
8633 "MPU_RBAR[%d]: No support for MPU region base"
8634 "address of 0x%" PRIx32 ". Minimum alignment is "
8635 "%d\n",
8636 n, base, TARGET_PAGE_BITS);
8637 continue;
8639 if ((limit + 1) & ~TARGET_PAGE_MASK) {
8640 qemu_log_mask(LOG_UNIMP,
8641 "MPU_RBAR[%d]: No support for MPU region limit"
8642 "address of 0x%" PRIx32 ". Minimum alignment is "
8643 "%d\n",
8644 n, limit, TARGET_PAGE_BITS);
8645 continue;
8650 if (!hit) {
8651 /* background fault */
8652 *fsr = 0;
8653 return true;
8656 if (matchregion == -1) {
8657 /* hit using the background region */
8658 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
8659 } else {
8660 uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2);
8661 uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1);
8663 if (m_is_system_region(env, address)) {
8664 /* System space is always execute never */
8665 xn = 1;
8668 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap);
8669 if (*prot && !xn) {
8670 *prot |= PAGE_EXEC;
8672 /* We don't need to look the attribute up in the MAIR0/MAIR1
8673 * registers because that only tells us about cacheability.
8677 *fsr = 0x00d; /* Permission fault */
8678 return !(*prot & (1 << access_type));
8681 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address,
8682 MMUAccessType access_type, ARMMMUIdx mmu_idx,
8683 hwaddr *phys_ptr, int *prot, uint32_t *fsr)
8685 int n;
8686 uint32_t mask;
8687 uint32_t base;
8688 bool is_user = regime_is_user(env, mmu_idx);
8690 if (regime_translation_disabled(env, mmu_idx)) {
8691 /* MPU disabled. */
8692 *phys_ptr = address;
8693 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
8694 return false;
8697 *phys_ptr = address;
8698 for (n = 7; n >= 0; n--) {
8699 base = env->cp15.c6_region[n];
8700 if ((base & 1) == 0) {
8701 continue;
8703 mask = 1 << ((base >> 1) & 0x1f);
8704 /* Keep this shift separate from the above to avoid an
8705 (undefined) << 32. */
8706 mask = (mask << 1) - 1;
8707 if (((base ^ address) & ~mask) == 0) {
8708 break;
8711 if (n < 0) {
8712 *fsr = 2;
8713 return true;
8716 if (access_type == MMU_INST_FETCH) {
8717 mask = env->cp15.pmsav5_insn_ap;
8718 } else {
8719 mask = env->cp15.pmsav5_data_ap;
8721 mask = (mask >> (n * 4)) & 0xf;
8722 switch (mask) {
8723 case 0:
8724 *fsr = 1;
8725 return true;
8726 case 1:
8727 if (is_user) {
8728 *fsr = 1;
8729 return true;
8731 *prot = PAGE_READ | PAGE_WRITE;
8732 break;
8733 case 2:
8734 *prot = PAGE_READ;
8735 if (!is_user) {
8736 *prot |= PAGE_WRITE;
8738 break;
8739 case 3:
8740 *prot = PAGE_READ | PAGE_WRITE;
8741 break;
8742 case 5:
8743 if (is_user) {
8744 *fsr = 1;
8745 return true;
8747 *prot = PAGE_READ;
8748 break;
8749 case 6:
8750 *prot = PAGE_READ;
8751 break;
8752 default:
8753 /* Bad permission. */
8754 *fsr = 1;
8755 return true;
8757 *prot |= PAGE_EXEC;
8758 return false;
8761 /* get_phys_addr - get the physical address for this virtual address
8763 * Find the physical address corresponding to the given virtual address,
8764 * by doing a translation table walk on MMU based systems or using the
8765 * MPU state on MPU based systems.
8767 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
8768 * prot and page_size may not be filled in, and the populated fsr value provides
8769 * information on why the translation aborted, in the format of a
8770 * DFSR/IFSR fault register, with the following caveats:
8771 * * we honour the short vs long DFSR format differences.
8772 * * the WnR bit is never set (the caller must do this).
8773 * * for PSMAv5 based systems we don't bother to return a full FSR format
8774 * value.
8776 * @env: CPUARMState
8777 * @address: virtual address to get physical address for
8778 * @access_type: 0 for read, 1 for write, 2 for execute
8779 * @mmu_idx: MMU index indicating required translation regime
8780 * @phys_ptr: set to the physical address corresponding to the virtual address
8781 * @attrs: set to the memory transaction attributes to use
8782 * @prot: set to the permissions for the page containing phys_ptr
8783 * @page_size: set to the size of the page containing phys_ptr
8784 * @fsr: set to the DFSR/IFSR value on failure
8786 static bool get_phys_addr(CPUARMState *env, target_ulong address,
8787 MMUAccessType access_type, ARMMMUIdx mmu_idx,
8788 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
8789 target_ulong *page_size, uint32_t *fsr,
8790 ARMMMUFaultInfo *fi)
8792 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
8793 /* Call ourselves recursively to do the stage 1 and then stage 2
8794 * translations.
8796 if (arm_feature(env, ARM_FEATURE_EL2)) {
8797 hwaddr ipa;
8798 int s2_prot;
8799 int ret;
8801 ret = get_phys_addr(env, address, access_type,
8802 stage_1_mmu_idx(mmu_idx), &ipa, attrs,
8803 prot, page_size, fsr, fi);
8805 /* If S1 fails or S2 is disabled, return early. */
8806 if (ret || regime_translation_disabled(env, ARMMMUIdx_S2NS)) {
8807 *phys_ptr = ipa;
8808 return ret;
8811 /* S1 is done. Now do S2 translation. */
8812 ret = get_phys_addr_lpae(env, ipa, access_type, ARMMMUIdx_S2NS,
8813 phys_ptr, attrs, &s2_prot,
8814 page_size, fsr, fi);
8815 fi->s2addr = ipa;
8816 /* Combine the S1 and S2 perms. */
8817 *prot &= s2_prot;
8818 return ret;
8819 } else {
8821 * For non-EL2 CPUs a stage1+stage2 translation is just stage 1.
8823 mmu_idx = stage_1_mmu_idx(mmu_idx);
8827 /* The page table entries may downgrade secure to non-secure, but
8828 * cannot upgrade an non-secure translation regime's attributes
8829 * to secure.
8831 attrs->secure = regime_is_secure(env, mmu_idx);
8832 attrs->user = regime_is_user(env, mmu_idx);
8834 /* Fast Context Switch Extension. This doesn't exist at all in v8.
8835 * In v7 and earlier it affects all stage 1 translations.
8837 if (address < 0x02000000 && mmu_idx != ARMMMUIdx_S2NS
8838 && !arm_feature(env, ARM_FEATURE_V8)) {
8839 if (regime_el(env, mmu_idx) == 3) {
8840 address += env->cp15.fcseidr_s;
8841 } else {
8842 address += env->cp15.fcseidr_ns;
8846 if (arm_feature(env, ARM_FEATURE_PMSA)) {
8847 bool ret;
8848 *page_size = TARGET_PAGE_SIZE;
8850 if (arm_feature(env, ARM_FEATURE_V8)) {
8851 /* PMSAv8 */
8852 ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx,
8853 phys_ptr, prot, fsr);
8854 } else if (arm_feature(env, ARM_FEATURE_V7)) {
8855 /* PMSAv7 */
8856 ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx,
8857 phys_ptr, prot, fsr);
8858 } else {
8859 /* Pre-v7 MPU */
8860 ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx,
8861 phys_ptr, prot, fsr);
8863 qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32
8864 " mmu_idx %u -> %s (prot %c%c%c)\n",
8865 access_type == MMU_DATA_LOAD ? "reading" :
8866 (access_type == MMU_DATA_STORE ? "writing" : "execute"),
8867 (uint32_t)address, mmu_idx,
8868 ret ? "Miss" : "Hit",
8869 *prot & PAGE_READ ? 'r' : '-',
8870 *prot & PAGE_WRITE ? 'w' : '-',
8871 *prot & PAGE_EXEC ? 'x' : '-');
8873 return ret;
8876 /* Definitely a real MMU, not an MPU */
8878 if (regime_translation_disabled(env, mmu_idx)) {
8879 /* MMU disabled. */
8880 *phys_ptr = address;
8881 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
8882 *page_size = TARGET_PAGE_SIZE;
8883 return 0;
8886 if (regime_using_lpae_format(env, mmu_idx)) {
8887 return get_phys_addr_lpae(env, address, access_type, mmu_idx, phys_ptr,
8888 attrs, prot, page_size, fsr, fi);
8889 } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) {
8890 return get_phys_addr_v6(env, address, access_type, mmu_idx, phys_ptr,
8891 attrs, prot, page_size, fsr, fi);
8892 } else {
8893 return get_phys_addr_v5(env, address, access_type, mmu_idx, phys_ptr,
8894 prot, page_size, fsr, fi);
8898 /* Walk the page table and (if the mapping exists) add the page
8899 * to the TLB. Return false on success, or true on failure. Populate
8900 * fsr with ARM DFSR/IFSR fault register format value on failure.
8902 bool arm_tlb_fill(CPUState *cs, vaddr address,
8903 MMUAccessType access_type, int mmu_idx, uint32_t *fsr,
8904 ARMMMUFaultInfo *fi)
8906 ARMCPU *cpu = ARM_CPU(cs);
8907 CPUARMState *env = &cpu->env;
8908 hwaddr phys_addr;
8909 target_ulong page_size;
8910 int prot;
8911 int ret;
8912 MemTxAttrs attrs = {};
8914 ret = get_phys_addr(env, address, access_type,
8915 core_to_arm_mmu_idx(env, mmu_idx), &phys_addr,
8916 &attrs, &prot, &page_size, fsr, fi);
8917 if (!ret) {
8918 /* Map a single [sub]page. */
8919 phys_addr &= TARGET_PAGE_MASK;
8920 address &= TARGET_PAGE_MASK;
8921 tlb_set_page_with_attrs(cs, address, phys_addr, attrs,
8922 prot, mmu_idx, page_size);
8923 return 0;
8926 return ret;
8929 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr,
8930 MemTxAttrs *attrs)
8932 ARMCPU *cpu = ARM_CPU(cs);
8933 CPUARMState *env = &cpu->env;
8934 hwaddr phys_addr;
8935 target_ulong page_size;
8936 int prot;
8937 bool ret;
8938 uint32_t fsr;
8939 ARMMMUFaultInfo fi = {};
8940 ARMMMUIdx mmu_idx = core_to_arm_mmu_idx(env, cpu_mmu_index(env, false));
8942 *attrs = (MemTxAttrs) {};
8944 ret = get_phys_addr(env, addr, 0, mmu_idx, &phys_addr,
8945 attrs, &prot, &page_size, &fsr, &fi);
8947 if (ret) {
8948 return -1;
8950 return phys_addr;
8953 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
8955 uint32_t mask;
8956 unsigned el = arm_current_el(env);
8958 /* First handle registers which unprivileged can read */
8960 switch (reg) {
8961 case 0 ... 7: /* xPSR sub-fields */
8962 mask = 0;
8963 if ((reg & 1) && el) {
8964 mask |= XPSR_EXCP; /* IPSR (unpriv. reads as zero) */
8966 if (!(reg & 4)) {
8967 mask |= XPSR_NZCV | XPSR_Q; /* APSR */
8969 /* EPSR reads as zero */
8970 return xpsr_read(env) & mask;
8971 break;
8972 case 20: /* CONTROL */
8973 return env->v7m.control[env->v7m.secure];
8974 case 0x94: /* CONTROL_NS */
8975 /* We have to handle this here because unprivileged Secure code
8976 * can read the NS CONTROL register.
8978 if (!env->v7m.secure) {
8979 return 0;
8981 return env->v7m.control[M_REG_NS];
8984 if (el == 0) {
8985 return 0; /* unprivileged reads others as zero */
8988 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
8989 switch (reg) {
8990 case 0x88: /* MSP_NS */
8991 if (!env->v7m.secure) {
8992 return 0;
8994 return env->v7m.other_ss_msp;
8995 case 0x89: /* PSP_NS */
8996 if (!env->v7m.secure) {
8997 return 0;
8999 return env->v7m.other_ss_psp;
9000 case 0x90: /* PRIMASK_NS */
9001 if (!env->v7m.secure) {
9002 return 0;
9004 return env->v7m.primask[M_REG_NS];
9005 case 0x91: /* BASEPRI_NS */
9006 if (!env->v7m.secure) {
9007 return 0;
9009 return env->v7m.basepri[M_REG_NS];
9010 case 0x93: /* FAULTMASK_NS */
9011 if (!env->v7m.secure) {
9012 return 0;
9014 return env->v7m.faultmask[M_REG_NS];
9015 case 0x98: /* SP_NS */
9017 /* This gives the non-secure SP selected based on whether we're
9018 * currently in handler mode or not, using the NS CONTROL.SPSEL.
9020 bool spsel = env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK;
9022 if (!env->v7m.secure) {
9023 return 0;
9025 if (!arm_v7m_is_handler_mode(env) && spsel) {
9026 return env->v7m.other_ss_psp;
9027 } else {
9028 return env->v7m.other_ss_msp;
9031 default:
9032 break;
9036 switch (reg) {
9037 case 8: /* MSP */
9038 return (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK) ?
9039 env->v7m.other_sp : env->regs[13];
9040 case 9: /* PSP */
9041 return (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK) ?
9042 env->regs[13] : env->v7m.other_sp;
9043 case 16: /* PRIMASK */
9044 return env->v7m.primask[env->v7m.secure];
9045 case 17: /* BASEPRI */
9046 case 18: /* BASEPRI_MAX */
9047 return env->v7m.basepri[env->v7m.secure];
9048 case 19: /* FAULTMASK */
9049 return env->v7m.faultmask[env->v7m.secure];
9050 default:
9051 qemu_log_mask(LOG_GUEST_ERROR, "Attempt to read unknown special"
9052 " register %d\n", reg);
9053 return 0;
9057 void HELPER(v7m_msr)(CPUARMState *env, uint32_t maskreg, uint32_t val)
9059 /* We're passed bits [11..0] of the instruction; extract
9060 * SYSm and the mask bits.
9061 * Invalid combinations of SYSm and mask are UNPREDICTABLE;
9062 * we choose to treat them as if the mask bits were valid.
9063 * NB that the pseudocode 'mask' variable is bits [11..10],
9064 * whereas ours is [11..8].
9066 uint32_t mask = extract32(maskreg, 8, 4);
9067 uint32_t reg = extract32(maskreg, 0, 8);
9069 if (arm_current_el(env) == 0 && reg > 7) {
9070 /* only xPSR sub-fields may be written by unprivileged */
9071 return;
9074 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
9075 switch (reg) {
9076 case 0x88: /* MSP_NS */
9077 if (!env->v7m.secure) {
9078 return;
9080 env->v7m.other_ss_msp = val;
9081 return;
9082 case 0x89: /* PSP_NS */
9083 if (!env->v7m.secure) {
9084 return;
9086 env->v7m.other_ss_psp = val;
9087 return;
9088 case 0x90: /* PRIMASK_NS */
9089 if (!env->v7m.secure) {
9090 return;
9092 env->v7m.primask[M_REG_NS] = val & 1;
9093 return;
9094 case 0x91: /* BASEPRI_NS */
9095 if (!env->v7m.secure) {
9096 return;
9098 env->v7m.basepri[M_REG_NS] = val & 0xff;
9099 return;
9100 case 0x93: /* FAULTMASK_NS */
9101 if (!env->v7m.secure) {
9102 return;
9104 env->v7m.faultmask[M_REG_NS] = val & 1;
9105 return;
9106 case 0x98: /* SP_NS */
9108 /* This gives the non-secure SP selected based on whether we're
9109 * currently in handler mode or not, using the NS CONTROL.SPSEL.
9111 bool spsel = env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK;
9113 if (!env->v7m.secure) {
9114 return;
9116 if (!arm_v7m_is_handler_mode(env) && spsel) {
9117 env->v7m.other_ss_psp = val;
9118 } else {
9119 env->v7m.other_ss_msp = val;
9121 return;
9123 default:
9124 break;
9128 switch (reg) {
9129 case 0 ... 7: /* xPSR sub-fields */
9130 /* only APSR is actually writable */
9131 if (!(reg & 4)) {
9132 uint32_t apsrmask = 0;
9134 if (mask & 8) {
9135 apsrmask |= XPSR_NZCV | XPSR_Q;
9137 if ((mask & 4) && arm_feature(env, ARM_FEATURE_THUMB_DSP)) {
9138 apsrmask |= XPSR_GE;
9140 xpsr_write(env, val, apsrmask);
9142 break;
9143 case 8: /* MSP */
9144 if (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK) {
9145 env->v7m.other_sp = val;
9146 } else {
9147 env->regs[13] = val;
9149 break;
9150 case 9: /* PSP */
9151 if (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK) {
9152 env->regs[13] = val;
9153 } else {
9154 env->v7m.other_sp = val;
9156 break;
9157 case 16: /* PRIMASK */
9158 env->v7m.primask[env->v7m.secure] = val & 1;
9159 break;
9160 case 17: /* BASEPRI */
9161 env->v7m.basepri[env->v7m.secure] = val & 0xff;
9162 break;
9163 case 18: /* BASEPRI_MAX */
9164 val &= 0xff;
9165 if (val != 0 && (val < env->v7m.basepri[env->v7m.secure]
9166 || env->v7m.basepri[env->v7m.secure] == 0)) {
9167 env->v7m.basepri[env->v7m.secure] = val;
9169 break;
9170 case 19: /* FAULTMASK */
9171 env->v7m.faultmask[env->v7m.secure] = val & 1;
9172 break;
9173 case 20: /* CONTROL */
9174 /* Writing to the SPSEL bit only has an effect if we are in
9175 * thread mode; other bits can be updated by any privileged code.
9176 * switch_v7m_sp() deals with updating the SPSEL bit in
9177 * env->v7m.control, so we only need update the others.
9179 if (!arm_v7m_is_handler_mode(env)) {
9180 switch_v7m_sp(env, (val & R_V7M_CONTROL_SPSEL_MASK) != 0);
9182 env->v7m.control[env->v7m.secure] &= ~R_V7M_CONTROL_NPRIV_MASK;
9183 env->v7m.control[env->v7m.secure] |= val & R_V7M_CONTROL_NPRIV_MASK;
9184 break;
9185 default:
9186 qemu_log_mask(LOG_GUEST_ERROR, "Attempt to write unknown special"
9187 " register %d\n", reg);
9188 return;
9192 #endif
9194 void HELPER(dc_zva)(CPUARMState *env, uint64_t vaddr_in)
9196 /* Implement DC ZVA, which zeroes a fixed-length block of memory.
9197 * Note that we do not implement the (architecturally mandated)
9198 * alignment fault for attempts to use this on Device memory
9199 * (which matches the usual QEMU behaviour of not implementing either
9200 * alignment faults or any memory attribute handling).
9203 ARMCPU *cpu = arm_env_get_cpu(env);
9204 uint64_t blocklen = 4 << cpu->dcz_blocksize;
9205 uint64_t vaddr = vaddr_in & ~(blocklen - 1);
9207 #ifndef CONFIG_USER_ONLY
9209 /* Slightly awkwardly, QEMU's TARGET_PAGE_SIZE may be less than
9210 * the block size so we might have to do more than one TLB lookup.
9211 * We know that in fact for any v8 CPU the page size is at least 4K
9212 * and the block size must be 2K or less, but TARGET_PAGE_SIZE is only
9213 * 1K as an artefact of legacy v5 subpage support being present in the
9214 * same QEMU executable.
9216 int maxidx = DIV_ROUND_UP(blocklen, TARGET_PAGE_SIZE);
9217 void *hostaddr[maxidx];
9218 int try, i;
9219 unsigned mmu_idx = cpu_mmu_index(env, false);
9220 TCGMemOpIdx oi = make_memop_idx(MO_UB, mmu_idx);
9222 for (try = 0; try < 2; try++) {
9224 for (i = 0; i < maxidx; i++) {
9225 hostaddr[i] = tlb_vaddr_to_host(env,
9226 vaddr + TARGET_PAGE_SIZE * i,
9227 1, mmu_idx);
9228 if (!hostaddr[i]) {
9229 break;
9232 if (i == maxidx) {
9233 /* If it's all in the TLB it's fair game for just writing to;
9234 * we know we don't need to update dirty status, etc.
9236 for (i = 0; i < maxidx - 1; i++) {
9237 memset(hostaddr[i], 0, TARGET_PAGE_SIZE);
9239 memset(hostaddr[i], 0, blocklen - (i * TARGET_PAGE_SIZE));
9240 return;
9242 /* OK, try a store and see if we can populate the tlb. This
9243 * might cause an exception if the memory isn't writable,
9244 * in which case we will longjmp out of here. We must for
9245 * this purpose use the actual register value passed to us
9246 * so that we get the fault address right.
9248 helper_ret_stb_mmu(env, vaddr_in, 0, oi, GETPC());
9249 /* Now we can populate the other TLB entries, if any */
9250 for (i = 0; i < maxidx; i++) {
9251 uint64_t va = vaddr + TARGET_PAGE_SIZE * i;
9252 if (va != (vaddr_in & TARGET_PAGE_MASK)) {
9253 helper_ret_stb_mmu(env, va, 0, oi, GETPC());
9258 /* Slow path (probably attempt to do this to an I/O device or
9259 * similar, or clearing of a block of code we have translations
9260 * cached for). Just do a series of byte writes as the architecture
9261 * demands. It's not worth trying to use a cpu_physical_memory_map(),
9262 * memset(), unmap() sequence here because:
9263 * + we'd need to account for the blocksize being larger than a page
9264 * + the direct-RAM access case is almost always going to be dealt
9265 * with in the fastpath code above, so there's no speed benefit
9266 * + we would have to deal with the map returning NULL because the
9267 * bounce buffer was in use
9269 for (i = 0; i < blocklen; i++) {
9270 helper_ret_stb_mmu(env, vaddr + i, 0, oi, GETPC());
9273 #else
9274 memset(g2h(vaddr), 0, blocklen);
9275 #endif
9278 /* Note that signed overflow is undefined in C. The following routines are
9279 careful to use unsigned types where modulo arithmetic is required.
9280 Failure to do so _will_ break on newer gcc. */
9282 /* Signed saturating arithmetic. */
9284 /* Perform 16-bit signed saturating addition. */
9285 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
9287 uint16_t res;
9289 res = a + b;
9290 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
9291 if (a & 0x8000)
9292 res = 0x8000;
9293 else
9294 res = 0x7fff;
9296 return res;
9299 /* Perform 8-bit signed saturating addition. */
9300 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
9302 uint8_t res;
9304 res = a + b;
9305 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
9306 if (a & 0x80)
9307 res = 0x80;
9308 else
9309 res = 0x7f;
9311 return res;
9314 /* Perform 16-bit signed saturating subtraction. */
9315 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
9317 uint16_t res;
9319 res = a - b;
9320 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
9321 if (a & 0x8000)
9322 res = 0x8000;
9323 else
9324 res = 0x7fff;
9326 return res;
9329 /* Perform 8-bit signed saturating subtraction. */
9330 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
9332 uint8_t res;
9334 res = a - b;
9335 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
9336 if (a & 0x80)
9337 res = 0x80;
9338 else
9339 res = 0x7f;
9341 return res;
9344 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
9345 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
9346 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
9347 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
9348 #define PFX q
9350 #include "op_addsub.h"
9352 /* Unsigned saturating arithmetic. */
9353 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
9355 uint16_t res;
9356 res = a + b;
9357 if (res < a)
9358 res = 0xffff;
9359 return res;
9362 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
9364 if (a > b)
9365 return a - b;
9366 else
9367 return 0;
9370 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
9372 uint8_t res;
9373 res = a + b;
9374 if (res < a)
9375 res = 0xff;
9376 return res;
9379 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
9381 if (a > b)
9382 return a - b;
9383 else
9384 return 0;
9387 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
9388 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
9389 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
9390 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
9391 #define PFX uq
9393 #include "op_addsub.h"
9395 /* Signed modulo arithmetic. */
9396 #define SARITH16(a, b, n, op) do { \
9397 int32_t sum; \
9398 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
9399 RESULT(sum, n, 16); \
9400 if (sum >= 0) \
9401 ge |= 3 << (n * 2); \
9402 } while(0)
9404 #define SARITH8(a, b, n, op) do { \
9405 int32_t sum; \
9406 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
9407 RESULT(sum, n, 8); \
9408 if (sum >= 0) \
9409 ge |= 1 << n; \
9410 } while(0)
9413 #define ADD16(a, b, n) SARITH16(a, b, n, +)
9414 #define SUB16(a, b, n) SARITH16(a, b, n, -)
9415 #define ADD8(a, b, n) SARITH8(a, b, n, +)
9416 #define SUB8(a, b, n) SARITH8(a, b, n, -)
9417 #define PFX s
9418 #define ARITH_GE
9420 #include "op_addsub.h"
9422 /* Unsigned modulo arithmetic. */
9423 #define ADD16(a, b, n) do { \
9424 uint32_t sum; \
9425 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
9426 RESULT(sum, n, 16); \
9427 if ((sum >> 16) == 1) \
9428 ge |= 3 << (n * 2); \
9429 } while(0)
9431 #define ADD8(a, b, n) do { \
9432 uint32_t sum; \
9433 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
9434 RESULT(sum, n, 8); \
9435 if ((sum >> 8) == 1) \
9436 ge |= 1 << n; \
9437 } while(0)
9439 #define SUB16(a, b, n) do { \
9440 uint32_t sum; \
9441 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
9442 RESULT(sum, n, 16); \
9443 if ((sum >> 16) == 0) \
9444 ge |= 3 << (n * 2); \
9445 } while(0)
9447 #define SUB8(a, b, n) do { \
9448 uint32_t sum; \
9449 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
9450 RESULT(sum, n, 8); \
9451 if ((sum >> 8) == 0) \
9452 ge |= 1 << n; \
9453 } while(0)
9455 #define PFX u
9456 #define ARITH_GE
9458 #include "op_addsub.h"
9460 /* Halved signed arithmetic. */
9461 #define ADD16(a, b, n) \
9462 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
9463 #define SUB16(a, b, n) \
9464 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
9465 #define ADD8(a, b, n) \
9466 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
9467 #define SUB8(a, b, n) \
9468 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
9469 #define PFX sh
9471 #include "op_addsub.h"
9473 /* Halved unsigned arithmetic. */
9474 #define ADD16(a, b, n) \
9475 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
9476 #define SUB16(a, b, n) \
9477 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
9478 #define ADD8(a, b, n) \
9479 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
9480 #define SUB8(a, b, n) \
9481 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
9482 #define PFX uh
9484 #include "op_addsub.h"
9486 static inline uint8_t do_usad(uint8_t a, uint8_t b)
9488 if (a > b)
9489 return a - b;
9490 else
9491 return b - a;
9494 /* Unsigned sum of absolute byte differences. */
9495 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
9497 uint32_t sum;
9498 sum = do_usad(a, b);
9499 sum += do_usad(a >> 8, b >> 8);
9500 sum += do_usad(a >> 16, b >>16);
9501 sum += do_usad(a >> 24, b >> 24);
9502 return sum;
9505 /* For ARMv6 SEL instruction. */
9506 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
9508 uint32_t mask;
9510 mask = 0;
9511 if (flags & 1)
9512 mask |= 0xff;
9513 if (flags & 2)
9514 mask |= 0xff00;
9515 if (flags & 4)
9516 mask |= 0xff0000;
9517 if (flags & 8)
9518 mask |= 0xff000000;
9519 return (a & mask) | (b & ~mask);
9522 /* VFP support. We follow the convention used for VFP instructions:
9523 Single precision routines have a "s" suffix, double precision a
9524 "d" suffix. */
9526 /* Convert host exception flags to vfp form. */
9527 static inline int vfp_exceptbits_from_host(int host_bits)
9529 int target_bits = 0;
9531 if (host_bits & float_flag_invalid)
9532 target_bits |= 1;
9533 if (host_bits & float_flag_divbyzero)
9534 target_bits |= 2;
9535 if (host_bits & float_flag_overflow)
9536 target_bits |= 4;
9537 if (host_bits & (float_flag_underflow | float_flag_output_denormal))
9538 target_bits |= 8;
9539 if (host_bits & float_flag_inexact)
9540 target_bits |= 0x10;
9541 if (host_bits & float_flag_input_denormal)
9542 target_bits |= 0x80;
9543 return target_bits;
9546 uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env)
9548 int i;
9549 uint32_t fpscr;
9551 fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff)
9552 | (env->vfp.vec_len << 16)
9553 | (env->vfp.vec_stride << 20);
9554 i = get_float_exception_flags(&env->vfp.fp_status);
9555 i |= get_float_exception_flags(&env->vfp.standard_fp_status);
9556 fpscr |= vfp_exceptbits_from_host(i);
9557 return fpscr;
9560 uint32_t vfp_get_fpscr(CPUARMState *env)
9562 return HELPER(vfp_get_fpscr)(env);
9565 /* Convert vfp exception flags to target form. */
9566 static inline int vfp_exceptbits_to_host(int target_bits)
9568 int host_bits = 0;
9570 if (target_bits & 1)
9571 host_bits |= float_flag_invalid;
9572 if (target_bits & 2)
9573 host_bits |= float_flag_divbyzero;
9574 if (target_bits & 4)
9575 host_bits |= float_flag_overflow;
9576 if (target_bits & 8)
9577 host_bits |= float_flag_underflow;
9578 if (target_bits & 0x10)
9579 host_bits |= float_flag_inexact;
9580 if (target_bits & 0x80)
9581 host_bits |= float_flag_input_denormal;
9582 return host_bits;
9585 void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val)
9587 int i;
9588 uint32_t changed;
9590 changed = env->vfp.xregs[ARM_VFP_FPSCR];
9591 env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff);
9592 env->vfp.vec_len = (val >> 16) & 7;
9593 env->vfp.vec_stride = (val >> 20) & 3;
9595 changed ^= val;
9596 if (changed & (3 << 22)) {
9597 i = (val >> 22) & 3;
9598 switch (i) {
9599 case FPROUNDING_TIEEVEN:
9600 i = float_round_nearest_even;
9601 break;
9602 case FPROUNDING_POSINF:
9603 i = float_round_up;
9604 break;
9605 case FPROUNDING_NEGINF:
9606 i = float_round_down;
9607 break;
9608 case FPROUNDING_ZERO:
9609 i = float_round_to_zero;
9610 break;
9612 set_float_rounding_mode(i, &env->vfp.fp_status);
9614 if (changed & (1 << 24)) {
9615 set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
9616 set_flush_inputs_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
9618 if (changed & (1 << 25))
9619 set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status);
9621 i = vfp_exceptbits_to_host(val);
9622 set_float_exception_flags(i, &env->vfp.fp_status);
9623 set_float_exception_flags(0, &env->vfp.standard_fp_status);
9626 void vfp_set_fpscr(CPUARMState *env, uint32_t val)
9628 HELPER(vfp_set_fpscr)(env, val);
9631 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
9633 #define VFP_BINOP(name) \
9634 float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
9636 float_status *fpst = fpstp; \
9637 return float32_ ## name(a, b, fpst); \
9639 float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
9641 float_status *fpst = fpstp; \
9642 return float64_ ## name(a, b, fpst); \
9644 VFP_BINOP(add)
9645 VFP_BINOP(sub)
9646 VFP_BINOP(mul)
9647 VFP_BINOP(div)
9648 VFP_BINOP(min)
9649 VFP_BINOP(max)
9650 VFP_BINOP(minnum)
9651 VFP_BINOP(maxnum)
9652 #undef VFP_BINOP
9654 float32 VFP_HELPER(neg, s)(float32 a)
9656 return float32_chs(a);
9659 float64 VFP_HELPER(neg, d)(float64 a)
9661 return float64_chs(a);
9664 float32 VFP_HELPER(abs, s)(float32 a)
9666 return float32_abs(a);
9669 float64 VFP_HELPER(abs, d)(float64 a)
9671 return float64_abs(a);
9674 float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env)
9676 return float32_sqrt(a, &env->vfp.fp_status);
9679 float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env)
9681 return float64_sqrt(a, &env->vfp.fp_status);
9684 /* XXX: check quiet/signaling case */
9685 #define DO_VFP_cmp(p, type) \
9686 void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env) \
9688 uint32_t flags; \
9689 switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
9690 case 0: flags = 0x6; break; \
9691 case -1: flags = 0x8; break; \
9692 case 1: flags = 0x2; break; \
9693 default: case 2: flags = 0x3; break; \
9695 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
9696 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
9698 void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \
9700 uint32_t flags; \
9701 switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
9702 case 0: flags = 0x6; break; \
9703 case -1: flags = 0x8; break; \
9704 case 1: flags = 0x2; break; \
9705 default: case 2: flags = 0x3; break; \
9707 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
9708 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
9710 DO_VFP_cmp(s, float32)
9711 DO_VFP_cmp(d, float64)
9712 #undef DO_VFP_cmp
9714 /* Integer to float and float to integer conversions */
9716 #define CONV_ITOF(name, fsz, sign) \
9717 float##fsz HELPER(name)(uint32_t x, void *fpstp) \
9719 float_status *fpst = fpstp; \
9720 return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \
9723 #define CONV_FTOI(name, fsz, sign, round) \
9724 uint32_t HELPER(name)(float##fsz x, void *fpstp) \
9726 float_status *fpst = fpstp; \
9727 if (float##fsz##_is_any_nan(x)) { \
9728 float_raise(float_flag_invalid, fpst); \
9729 return 0; \
9731 return float##fsz##_to_##sign##int32##round(x, fpst); \
9734 #define FLOAT_CONVS(name, p, fsz, sign) \
9735 CONV_ITOF(vfp_##name##to##p, fsz, sign) \
9736 CONV_FTOI(vfp_to##name##p, fsz, sign, ) \
9737 CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero)
9739 FLOAT_CONVS(si, s, 32, )
9740 FLOAT_CONVS(si, d, 64, )
9741 FLOAT_CONVS(ui, s, 32, u)
9742 FLOAT_CONVS(ui, d, 64, u)
9744 #undef CONV_ITOF
9745 #undef CONV_FTOI
9746 #undef FLOAT_CONVS
9748 /* floating point conversion */
9749 float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env)
9751 float64 r = float32_to_float64(x, &env->vfp.fp_status);
9752 /* ARM requires that S<->D conversion of any kind of NaN generates
9753 * a quiet NaN by forcing the most significant frac bit to 1.
9755 return float64_maybe_silence_nan(r, &env->vfp.fp_status);
9758 float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env)
9760 float32 r = float64_to_float32(x, &env->vfp.fp_status);
9761 /* ARM requires that S<->D conversion of any kind of NaN generates
9762 * a quiet NaN by forcing the most significant frac bit to 1.
9764 return float32_maybe_silence_nan(r, &env->vfp.fp_status);
9767 /* VFP3 fixed point conversion. */
9768 #define VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
9769 float##fsz HELPER(vfp_##name##to##p)(uint##isz##_t x, uint32_t shift, \
9770 void *fpstp) \
9772 float_status *fpst = fpstp; \
9773 float##fsz tmp; \
9774 tmp = itype##_to_##float##fsz(x, fpst); \
9775 return float##fsz##_scalbn(tmp, -(int)shift, fpst); \
9778 /* Notice that we want only input-denormal exception flags from the
9779 * scalbn operation: the other possible flags (overflow+inexact if
9780 * we overflow to infinity, output-denormal) aren't correct for the
9781 * complete scale-and-convert operation.
9783 #define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, round) \
9784 uint##isz##_t HELPER(vfp_to##name##p##round)(float##fsz x, \
9785 uint32_t shift, \
9786 void *fpstp) \
9788 float_status *fpst = fpstp; \
9789 int old_exc_flags = get_float_exception_flags(fpst); \
9790 float##fsz tmp; \
9791 if (float##fsz##_is_any_nan(x)) { \
9792 float_raise(float_flag_invalid, fpst); \
9793 return 0; \
9795 tmp = float##fsz##_scalbn(x, shift, fpst); \
9796 old_exc_flags |= get_float_exception_flags(fpst) \
9797 & float_flag_input_denormal; \
9798 set_float_exception_flags(old_exc_flags, fpst); \
9799 return float##fsz##_to_##itype##round(tmp, fpst); \
9802 #define VFP_CONV_FIX(name, p, fsz, isz, itype) \
9803 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
9804 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, _round_to_zero) \
9805 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
9807 #define VFP_CONV_FIX_A64(name, p, fsz, isz, itype) \
9808 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
9809 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
9811 VFP_CONV_FIX(sh, d, 64, 64, int16)
9812 VFP_CONV_FIX(sl, d, 64, 64, int32)
9813 VFP_CONV_FIX_A64(sq, d, 64, 64, int64)
9814 VFP_CONV_FIX(uh, d, 64, 64, uint16)
9815 VFP_CONV_FIX(ul, d, 64, 64, uint32)
9816 VFP_CONV_FIX_A64(uq, d, 64, 64, uint64)
9817 VFP_CONV_FIX(sh, s, 32, 32, int16)
9818 VFP_CONV_FIX(sl, s, 32, 32, int32)
9819 VFP_CONV_FIX_A64(sq, s, 32, 64, int64)
9820 VFP_CONV_FIX(uh, s, 32, 32, uint16)
9821 VFP_CONV_FIX(ul, s, 32, 32, uint32)
9822 VFP_CONV_FIX_A64(uq, s, 32, 64, uint64)
9823 #undef VFP_CONV_FIX
9824 #undef VFP_CONV_FIX_FLOAT
9825 #undef VFP_CONV_FLOAT_FIX_ROUND
9827 /* Set the current fp rounding mode and return the old one.
9828 * The argument is a softfloat float_round_ value.
9830 uint32_t HELPER(set_rmode)(uint32_t rmode, CPUARMState *env)
9832 float_status *fp_status = &env->vfp.fp_status;
9834 uint32_t prev_rmode = get_float_rounding_mode(fp_status);
9835 set_float_rounding_mode(rmode, fp_status);
9837 return prev_rmode;
9840 /* Set the current fp rounding mode in the standard fp status and return
9841 * the old one. This is for NEON instructions that need to change the
9842 * rounding mode but wish to use the standard FPSCR values for everything
9843 * else. Always set the rounding mode back to the correct value after
9844 * modifying it.
9845 * The argument is a softfloat float_round_ value.
9847 uint32_t HELPER(set_neon_rmode)(uint32_t rmode, CPUARMState *env)
9849 float_status *fp_status = &env->vfp.standard_fp_status;
9851 uint32_t prev_rmode = get_float_rounding_mode(fp_status);
9852 set_float_rounding_mode(rmode, fp_status);
9854 return prev_rmode;
9857 /* Half precision conversions. */
9858 static float32 do_fcvt_f16_to_f32(uint32_t a, CPUARMState *env, float_status *s)
9860 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
9861 float32 r = float16_to_float32(make_float16(a), ieee, s);
9862 if (ieee) {
9863 return float32_maybe_silence_nan(r, s);
9865 return r;
9868 static uint32_t do_fcvt_f32_to_f16(float32 a, CPUARMState *env, float_status *s)
9870 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
9871 float16 r = float32_to_float16(a, ieee, s);
9872 if (ieee) {
9873 r = float16_maybe_silence_nan(r, s);
9875 return float16_val(r);
9878 float32 HELPER(neon_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
9880 return do_fcvt_f16_to_f32(a, env, &env->vfp.standard_fp_status);
9883 uint32_t HELPER(neon_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
9885 return do_fcvt_f32_to_f16(a, env, &env->vfp.standard_fp_status);
9888 float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
9890 return do_fcvt_f16_to_f32(a, env, &env->vfp.fp_status);
9893 uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
9895 return do_fcvt_f32_to_f16(a, env, &env->vfp.fp_status);
9898 float64 HELPER(vfp_fcvt_f16_to_f64)(uint32_t a, CPUARMState *env)
9900 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
9901 float64 r = float16_to_float64(make_float16(a), ieee, &env->vfp.fp_status);
9902 if (ieee) {
9903 return float64_maybe_silence_nan(r, &env->vfp.fp_status);
9905 return r;
9908 uint32_t HELPER(vfp_fcvt_f64_to_f16)(float64 a, CPUARMState *env)
9910 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
9911 float16 r = float64_to_float16(a, ieee, &env->vfp.fp_status);
9912 if (ieee) {
9913 r = float16_maybe_silence_nan(r, &env->vfp.fp_status);
9915 return float16_val(r);
9918 #define float32_two make_float32(0x40000000)
9919 #define float32_three make_float32(0x40400000)
9920 #define float32_one_point_five make_float32(0x3fc00000)
9922 float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env)
9924 float_status *s = &env->vfp.standard_fp_status;
9925 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
9926 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
9927 if (!(float32_is_zero(a) || float32_is_zero(b))) {
9928 float_raise(float_flag_input_denormal, s);
9930 return float32_two;
9932 return float32_sub(float32_two, float32_mul(a, b, s), s);
9935 float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env)
9937 float_status *s = &env->vfp.standard_fp_status;
9938 float32 product;
9939 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
9940 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
9941 if (!(float32_is_zero(a) || float32_is_zero(b))) {
9942 float_raise(float_flag_input_denormal, s);
9944 return float32_one_point_five;
9946 product = float32_mul(a, b, s);
9947 return float32_div(float32_sub(float32_three, product, s), float32_two, s);
9950 /* NEON helpers. */
9952 /* Constants 256 and 512 are used in some helpers; we avoid relying on
9953 * int->float conversions at run-time. */
9954 #define float64_256 make_float64(0x4070000000000000LL)
9955 #define float64_512 make_float64(0x4080000000000000LL)
9956 #define float32_maxnorm make_float32(0x7f7fffff)
9957 #define float64_maxnorm make_float64(0x7fefffffffffffffLL)
9959 /* Reciprocal functions
9961 * The algorithm that must be used to calculate the estimate
9962 * is specified by the ARM ARM, see FPRecipEstimate()
9965 static float64 recip_estimate(float64 a, float_status *real_fp_status)
9967 /* These calculations mustn't set any fp exception flags,
9968 * so we use a local copy of the fp_status.
9970 float_status dummy_status = *real_fp_status;
9971 float_status *s = &dummy_status;
9972 /* q = (int)(a * 512.0) */
9973 float64 q = float64_mul(float64_512, a, s);
9974 int64_t q_int = float64_to_int64_round_to_zero(q, s);
9976 /* r = 1.0 / (((double)q + 0.5) / 512.0) */
9977 q = int64_to_float64(q_int, s);
9978 q = float64_add(q, float64_half, s);
9979 q = float64_div(q, float64_512, s);
9980 q = float64_div(float64_one, q, s);
9982 /* s = (int)(256.0 * r + 0.5) */
9983 q = float64_mul(q, float64_256, s);
9984 q = float64_add(q, float64_half, s);
9985 q_int = float64_to_int64_round_to_zero(q, s);
9987 /* return (double)s / 256.0 */
9988 return float64_div(int64_to_float64(q_int, s), float64_256, s);
9991 /* Common wrapper to call recip_estimate */
9992 static float64 call_recip_estimate(float64 num, int off, float_status *fpst)
9994 uint64_t val64 = float64_val(num);
9995 uint64_t frac = extract64(val64, 0, 52);
9996 int64_t exp = extract64(val64, 52, 11);
9997 uint64_t sbit;
9998 float64 scaled, estimate;
10000 /* Generate the scaled number for the estimate function */
10001 if (exp == 0) {
10002 if (extract64(frac, 51, 1) == 0) {
10003 exp = -1;
10004 frac = extract64(frac, 0, 50) << 2;
10005 } else {
10006 frac = extract64(frac, 0, 51) << 1;
10010 /* scaled = '0' : '01111111110' : fraction<51:44> : Zeros(44); */
10011 scaled = make_float64((0x3feULL << 52)
10012 | extract64(frac, 44, 8) << 44);
10014 estimate = recip_estimate(scaled, fpst);
10016 /* Build new result */
10017 val64 = float64_val(estimate);
10018 sbit = 0x8000000000000000ULL & val64;
10019 exp = off - exp;
10020 frac = extract64(val64, 0, 52);
10022 if (exp == 0) {
10023 frac = 1ULL << 51 | extract64(frac, 1, 51);
10024 } else if (exp == -1) {
10025 frac = 1ULL << 50 | extract64(frac, 2, 50);
10026 exp = 0;
10029 return make_float64(sbit | (exp << 52) | frac);
10032 static bool round_to_inf(float_status *fpst, bool sign_bit)
10034 switch (fpst->float_rounding_mode) {
10035 case float_round_nearest_even: /* Round to Nearest */
10036 return true;
10037 case float_round_up: /* Round to +Inf */
10038 return !sign_bit;
10039 case float_round_down: /* Round to -Inf */
10040 return sign_bit;
10041 case float_round_to_zero: /* Round to Zero */
10042 return false;
10045 g_assert_not_reached();
10048 float32 HELPER(recpe_f32)(float32 input, void *fpstp)
10050 float_status *fpst = fpstp;
10051 float32 f32 = float32_squash_input_denormal(input, fpst);
10052 uint32_t f32_val = float32_val(f32);
10053 uint32_t f32_sbit = 0x80000000ULL & f32_val;
10054 int32_t f32_exp = extract32(f32_val, 23, 8);
10055 uint32_t f32_frac = extract32(f32_val, 0, 23);
10056 float64 f64, r64;
10057 uint64_t r64_val;
10058 int64_t r64_exp;
10059 uint64_t r64_frac;
10061 if (float32_is_any_nan(f32)) {
10062 float32 nan = f32;
10063 if (float32_is_signaling_nan(f32, fpst)) {
10064 float_raise(float_flag_invalid, fpst);
10065 nan = float32_maybe_silence_nan(f32, fpst);
10067 if (fpst->default_nan_mode) {
10068 nan = float32_default_nan(fpst);
10070 return nan;
10071 } else if (float32_is_infinity(f32)) {
10072 return float32_set_sign(float32_zero, float32_is_neg(f32));
10073 } else if (float32_is_zero(f32)) {
10074 float_raise(float_flag_divbyzero, fpst);
10075 return float32_set_sign(float32_infinity, float32_is_neg(f32));
10076 } else if ((f32_val & ~(1ULL << 31)) < (1ULL << 21)) {
10077 /* Abs(value) < 2.0^-128 */
10078 float_raise(float_flag_overflow | float_flag_inexact, fpst);
10079 if (round_to_inf(fpst, f32_sbit)) {
10080 return float32_set_sign(float32_infinity, float32_is_neg(f32));
10081 } else {
10082 return float32_set_sign(float32_maxnorm, float32_is_neg(f32));
10084 } else if (f32_exp >= 253 && fpst->flush_to_zero) {
10085 float_raise(float_flag_underflow, fpst);
10086 return float32_set_sign(float32_zero, float32_is_neg(f32));
10090 f64 = make_float64(((int64_t)(f32_exp) << 52) | (int64_t)(f32_frac) << 29);
10091 r64 = call_recip_estimate(f64, 253, fpst);
10092 r64_val = float64_val(r64);
10093 r64_exp = extract64(r64_val, 52, 11);
10094 r64_frac = extract64(r64_val, 0, 52);
10096 /* result = sign : result_exp<7:0> : fraction<51:29>; */
10097 return make_float32(f32_sbit |
10098 (r64_exp & 0xff) << 23 |
10099 extract64(r64_frac, 29, 24));
10102 float64 HELPER(recpe_f64)(float64 input, void *fpstp)
10104 float_status *fpst = fpstp;
10105 float64 f64 = float64_squash_input_denormal(input, fpst);
10106 uint64_t f64_val = float64_val(f64);
10107 uint64_t f64_sbit = 0x8000000000000000ULL & f64_val;
10108 int64_t f64_exp = extract64(f64_val, 52, 11);
10109 float64 r64;
10110 uint64_t r64_val;
10111 int64_t r64_exp;
10112 uint64_t r64_frac;
10114 /* Deal with any special cases */
10115 if (float64_is_any_nan(f64)) {
10116 float64 nan = f64;
10117 if (float64_is_signaling_nan(f64, fpst)) {
10118 float_raise(float_flag_invalid, fpst);
10119 nan = float64_maybe_silence_nan(f64, fpst);
10121 if (fpst->default_nan_mode) {
10122 nan = float64_default_nan(fpst);
10124 return nan;
10125 } else if (float64_is_infinity(f64)) {
10126 return float64_set_sign(float64_zero, float64_is_neg(f64));
10127 } else if (float64_is_zero(f64)) {
10128 float_raise(float_flag_divbyzero, fpst);
10129 return float64_set_sign(float64_infinity, float64_is_neg(f64));
10130 } else if ((f64_val & ~(1ULL << 63)) < (1ULL << 50)) {
10131 /* Abs(value) < 2.0^-1024 */
10132 float_raise(float_flag_overflow | float_flag_inexact, fpst);
10133 if (round_to_inf(fpst, f64_sbit)) {
10134 return float64_set_sign(float64_infinity, float64_is_neg(f64));
10135 } else {
10136 return float64_set_sign(float64_maxnorm, float64_is_neg(f64));
10138 } else if (f64_exp >= 2045 && fpst->flush_to_zero) {
10139 float_raise(float_flag_underflow, fpst);
10140 return float64_set_sign(float64_zero, float64_is_neg(f64));
10143 r64 = call_recip_estimate(f64, 2045, fpst);
10144 r64_val = float64_val(r64);
10145 r64_exp = extract64(r64_val, 52, 11);
10146 r64_frac = extract64(r64_val, 0, 52);
10148 /* result = sign : result_exp<10:0> : fraction<51:0> */
10149 return make_float64(f64_sbit |
10150 ((r64_exp & 0x7ff) << 52) |
10151 r64_frac);
10154 /* The algorithm that must be used to calculate the estimate
10155 * is specified by the ARM ARM.
10157 static float64 recip_sqrt_estimate(float64 a, float_status *real_fp_status)
10159 /* These calculations mustn't set any fp exception flags,
10160 * so we use a local copy of the fp_status.
10162 float_status dummy_status = *real_fp_status;
10163 float_status *s = &dummy_status;
10164 float64 q;
10165 int64_t q_int;
10167 if (float64_lt(a, float64_half, s)) {
10168 /* range 0.25 <= a < 0.5 */
10170 /* a in units of 1/512 rounded down */
10171 /* q0 = (int)(a * 512.0); */
10172 q = float64_mul(float64_512, a, s);
10173 q_int = float64_to_int64_round_to_zero(q, s);
10175 /* reciprocal root r */
10176 /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0); */
10177 q = int64_to_float64(q_int, s);
10178 q = float64_add(q, float64_half, s);
10179 q = float64_div(q, float64_512, s);
10180 q = float64_sqrt(q, s);
10181 q = float64_div(float64_one, q, s);
10182 } else {
10183 /* range 0.5 <= a < 1.0 */
10185 /* a in units of 1/256 rounded down */
10186 /* q1 = (int)(a * 256.0); */
10187 q = float64_mul(float64_256, a, s);
10188 int64_t q_int = float64_to_int64_round_to_zero(q, s);
10190 /* reciprocal root r */
10191 /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */
10192 q = int64_to_float64(q_int, s);
10193 q = float64_add(q, float64_half, s);
10194 q = float64_div(q, float64_256, s);
10195 q = float64_sqrt(q, s);
10196 q = float64_div(float64_one, q, s);
10198 /* r in units of 1/256 rounded to nearest */
10199 /* s = (int)(256.0 * r + 0.5); */
10201 q = float64_mul(q, float64_256,s );
10202 q = float64_add(q, float64_half, s);
10203 q_int = float64_to_int64_round_to_zero(q, s);
10205 /* return (double)s / 256.0;*/
10206 return float64_div(int64_to_float64(q_int, s), float64_256, s);
10209 float32 HELPER(rsqrte_f32)(float32 input, void *fpstp)
10211 float_status *s = fpstp;
10212 float32 f32 = float32_squash_input_denormal(input, s);
10213 uint32_t val = float32_val(f32);
10214 uint32_t f32_sbit = 0x80000000 & val;
10215 int32_t f32_exp = extract32(val, 23, 8);
10216 uint32_t f32_frac = extract32(val, 0, 23);
10217 uint64_t f64_frac;
10218 uint64_t val64;
10219 int result_exp;
10220 float64 f64;
10222 if (float32_is_any_nan(f32)) {
10223 float32 nan = f32;
10224 if (float32_is_signaling_nan(f32, s)) {
10225 float_raise(float_flag_invalid, s);
10226 nan = float32_maybe_silence_nan(f32, s);
10228 if (s->default_nan_mode) {
10229 nan = float32_default_nan(s);
10231 return nan;
10232 } else if (float32_is_zero(f32)) {
10233 float_raise(float_flag_divbyzero, s);
10234 return float32_set_sign(float32_infinity, float32_is_neg(f32));
10235 } else if (float32_is_neg(f32)) {
10236 float_raise(float_flag_invalid, s);
10237 return float32_default_nan(s);
10238 } else if (float32_is_infinity(f32)) {
10239 return float32_zero;
10242 /* Scale and normalize to a double-precision value between 0.25 and 1.0,
10243 * preserving the parity of the exponent. */
10245 f64_frac = ((uint64_t) f32_frac) << 29;
10246 if (f32_exp == 0) {
10247 while (extract64(f64_frac, 51, 1) == 0) {
10248 f64_frac = f64_frac << 1;
10249 f32_exp = f32_exp-1;
10251 f64_frac = extract64(f64_frac, 0, 51) << 1;
10254 if (extract64(f32_exp, 0, 1) == 0) {
10255 f64 = make_float64(((uint64_t) f32_sbit) << 32
10256 | (0x3feULL << 52)
10257 | f64_frac);
10258 } else {
10259 f64 = make_float64(((uint64_t) f32_sbit) << 32
10260 | (0x3fdULL << 52)
10261 | f64_frac);
10264 result_exp = (380 - f32_exp) / 2;
10266 f64 = recip_sqrt_estimate(f64, s);
10268 val64 = float64_val(f64);
10270 val = ((result_exp & 0xff) << 23)
10271 | ((val64 >> 29) & 0x7fffff);
10272 return make_float32(val);
10275 float64 HELPER(rsqrte_f64)(float64 input, void *fpstp)
10277 float_status *s = fpstp;
10278 float64 f64 = float64_squash_input_denormal(input, s);
10279 uint64_t val = float64_val(f64);
10280 uint64_t f64_sbit = 0x8000000000000000ULL & val;
10281 int64_t f64_exp = extract64(val, 52, 11);
10282 uint64_t f64_frac = extract64(val, 0, 52);
10283 int64_t result_exp;
10284 uint64_t result_frac;
10286 if (float64_is_any_nan(f64)) {
10287 float64 nan = f64;
10288 if (float64_is_signaling_nan(f64, s)) {
10289 float_raise(float_flag_invalid, s);
10290 nan = float64_maybe_silence_nan(f64, s);
10292 if (s->default_nan_mode) {
10293 nan = float64_default_nan(s);
10295 return nan;
10296 } else if (float64_is_zero(f64)) {
10297 float_raise(float_flag_divbyzero, s);
10298 return float64_set_sign(float64_infinity, float64_is_neg(f64));
10299 } else if (float64_is_neg(f64)) {
10300 float_raise(float_flag_invalid, s);
10301 return float64_default_nan(s);
10302 } else if (float64_is_infinity(f64)) {
10303 return float64_zero;
10306 /* Scale and normalize to a double-precision value between 0.25 and 1.0,
10307 * preserving the parity of the exponent. */
10309 if (f64_exp == 0) {
10310 while (extract64(f64_frac, 51, 1) == 0) {
10311 f64_frac = f64_frac << 1;
10312 f64_exp = f64_exp - 1;
10314 f64_frac = extract64(f64_frac, 0, 51) << 1;
10317 if (extract64(f64_exp, 0, 1) == 0) {
10318 f64 = make_float64(f64_sbit
10319 | (0x3feULL << 52)
10320 | f64_frac);
10321 } else {
10322 f64 = make_float64(f64_sbit
10323 | (0x3fdULL << 52)
10324 | f64_frac);
10327 result_exp = (3068 - f64_exp) / 2;
10329 f64 = recip_sqrt_estimate(f64, s);
10331 result_frac = extract64(float64_val(f64), 0, 52);
10333 return make_float64(f64_sbit |
10334 ((result_exp & 0x7ff) << 52) |
10335 result_frac);
10338 uint32_t HELPER(recpe_u32)(uint32_t a, void *fpstp)
10340 float_status *s = fpstp;
10341 float64 f64;
10343 if ((a & 0x80000000) == 0) {
10344 return 0xffffffff;
10347 f64 = make_float64((0x3feULL << 52)
10348 | ((int64_t)(a & 0x7fffffff) << 21));
10350 f64 = recip_estimate(f64, s);
10352 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
10355 uint32_t HELPER(rsqrte_u32)(uint32_t a, void *fpstp)
10357 float_status *fpst = fpstp;
10358 float64 f64;
10360 if ((a & 0xc0000000) == 0) {
10361 return 0xffffffff;
10364 if (a & 0x80000000) {
10365 f64 = make_float64((0x3feULL << 52)
10366 | ((uint64_t)(a & 0x7fffffff) << 21));
10367 } else { /* bits 31-30 == '01' */
10368 f64 = make_float64((0x3fdULL << 52)
10369 | ((uint64_t)(a & 0x3fffffff) << 22));
10372 f64 = recip_sqrt_estimate(f64, fpst);
10374 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
10377 /* VFPv4 fused multiply-accumulate */
10378 float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp)
10380 float_status *fpst = fpstp;
10381 return float32_muladd(a, b, c, 0, fpst);
10384 float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp)
10386 float_status *fpst = fpstp;
10387 return float64_muladd(a, b, c, 0, fpst);
10390 /* ARMv8 round to integral */
10391 float32 HELPER(rints_exact)(float32 x, void *fp_status)
10393 return float32_round_to_int(x, fp_status);
10396 float64 HELPER(rintd_exact)(float64 x, void *fp_status)
10398 return float64_round_to_int(x, fp_status);
10401 float32 HELPER(rints)(float32 x, void *fp_status)
10403 int old_flags = get_float_exception_flags(fp_status), new_flags;
10404 float32 ret;
10406 ret = float32_round_to_int(x, fp_status);
10408 /* Suppress any inexact exceptions the conversion produced */
10409 if (!(old_flags & float_flag_inexact)) {
10410 new_flags = get_float_exception_flags(fp_status);
10411 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
10414 return ret;
10417 float64 HELPER(rintd)(float64 x, void *fp_status)
10419 int old_flags = get_float_exception_flags(fp_status), new_flags;
10420 float64 ret;
10422 ret = float64_round_to_int(x, fp_status);
10424 new_flags = get_float_exception_flags(fp_status);
10426 /* Suppress any inexact exceptions the conversion produced */
10427 if (!(old_flags & float_flag_inexact)) {
10428 new_flags = get_float_exception_flags(fp_status);
10429 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
10432 return ret;
10435 /* Convert ARM rounding mode to softfloat */
10436 int arm_rmode_to_sf(int rmode)
10438 switch (rmode) {
10439 case FPROUNDING_TIEAWAY:
10440 rmode = float_round_ties_away;
10441 break;
10442 case FPROUNDING_ODD:
10443 /* FIXME: add support for TIEAWAY and ODD */
10444 qemu_log_mask(LOG_UNIMP, "arm: unimplemented rounding mode: %d\n",
10445 rmode);
10446 case FPROUNDING_TIEEVEN:
10447 default:
10448 rmode = float_round_nearest_even;
10449 break;
10450 case FPROUNDING_POSINF:
10451 rmode = float_round_up;
10452 break;
10453 case FPROUNDING_NEGINF:
10454 rmode = float_round_down;
10455 break;
10456 case FPROUNDING_ZERO:
10457 rmode = float_round_to_zero;
10458 break;
10460 return rmode;
10463 /* CRC helpers.
10464 * The upper bytes of val (above the number specified by 'bytes') must have
10465 * been zeroed out by the caller.
10467 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
10469 uint8_t buf[4];
10471 stl_le_p(buf, val);
10473 /* zlib crc32 converts the accumulator and output to one's complement. */
10474 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
10477 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
10479 uint8_t buf[4];
10481 stl_le_p(buf, val);
10483 /* Linux crc32c converts the output to one's complement. */
10484 return crc32c(acc, buf, bytes) ^ 0xffffffff;