vnc: make sure we finish disconnect
[qemu.git] / qemu-options.hx
blob8e0d9a51bf90665d05263de616dff69c9397c873
1 HXCOMM Use DEFHEADING() to define headings in both help text and texi
2 HXCOMM Text between STEXI and ETEXI are copied to texi version and
3 HXCOMM discarded from C version
4 HXCOMM DEF(option, HAS_ARG/0, opt_enum, opt_help, arch_mask) is used to
5 HXCOMM construct option structures, enums and help message for specified
6 HXCOMM architectures.
7 HXCOMM HXCOMM can be used for comments, discarded from both texi and C
9 DEFHEADING(Standard options:)
10 STEXI
11 @table @option
12 ETEXI
14 DEF("help", 0, QEMU_OPTION_h,
15 "-h or -help display this help and exit\n", QEMU_ARCH_ALL)
16 STEXI
17 @item -h
18 @findex -h
19 Display help and exit
20 ETEXI
22 DEF("version", 0, QEMU_OPTION_version,
23 "-version display version information and exit\n", QEMU_ARCH_ALL)
24 STEXI
25 @item -version
26 @findex -version
27 Display version information and exit
28 ETEXI
30 DEF("machine", HAS_ARG, QEMU_OPTION_machine, \
31 "-machine [type=]name[,prop[=value][,...]]\n"
32 " selects emulated machine ('-machine help' for list)\n"
33 " property accel=accel1[:accel2[:...]] selects accelerator\n"
34 " supported accelerators are kvm, xen, tcg (default: tcg)\n"
35 " kernel_irqchip=on|off controls accelerated irqchip support\n"
36 " kernel_irqchip=on|off|split controls accelerated irqchip support (default=off)\n"
37 " vmport=on|off|auto controls emulation of vmport (default: auto)\n"
38 " kvm_shadow_mem=size of KVM shadow MMU in bytes\n"
39 " dump-guest-core=on|off include guest memory in a core dump (default=on)\n"
40 " mem-merge=on|off controls memory merge support (default: on)\n"
41 " igd-passthru=on|off controls IGD GFX passthrough support (default=off)\n"
42 " aes-key-wrap=on|off controls support for AES key wrapping (default=on)\n"
43 " dea-key-wrap=on|off controls support for DEA key wrapping (default=on)\n"
44 " suppress-vmdesc=on|off disables self-describing migration (default=off)\n"
45 " nvdimm=on|off controls NVDIMM support (default=off)\n"
46 " enforce-config-section=on|off enforce configuration section migration (default=off)\n",
47 QEMU_ARCH_ALL)
48 STEXI
49 @item -machine [type=]@var{name}[,prop=@var{value}[,...]]
50 @findex -machine
51 Select the emulated machine by @var{name}. Use @code{-machine help} to list
52 available machines. Supported machine properties are:
53 @table @option
54 @item accel=@var{accels1}[:@var{accels2}[:...]]
55 This is used to enable an accelerator. Depending on the target architecture,
56 kvm, xen, or tcg can be available. By default, tcg is used. If there is more
57 than one accelerator specified, the next one is used if the previous one fails
58 to initialize.
59 @item kernel_irqchip=on|off
60 Controls in-kernel irqchip support for the chosen accelerator when available.
61 @item gfx_passthru=on|off
62 Enables IGD GFX passthrough support for the chosen machine when available.
63 @item vmport=on|off|auto
64 Enables emulation of VMWare IO port, for vmmouse etc. auto says to select the
65 value based on accel. For accel=xen the default is off otherwise the default
66 is on.
67 @item kvm_shadow_mem=size
68 Defines the size of the KVM shadow MMU.
69 @item dump-guest-core=on|off
70 Include guest memory in a core dump. The default is on.
71 @item mem-merge=on|off
72 Enables or disables memory merge support. This feature, when supported by
73 the host, de-duplicates identical memory pages among VMs instances
74 (enabled by default).
75 @item aes-key-wrap=on|off
76 Enables or disables AES key wrapping support on s390-ccw hosts. This feature
77 controls whether AES wrapping keys will be created to allow
78 execution of AES cryptographic functions. The default is on.
79 @item dea-key-wrap=on|off
80 Enables or disables DEA key wrapping support on s390-ccw hosts. This feature
81 controls whether DEA wrapping keys will be created to allow
82 execution of DEA cryptographic functions. The default is on.
83 @item nvdimm=on|off
84 Enables or disables NVDIMM support. The default is off.
85 @end table
86 ETEXI
88 HXCOMM Deprecated by -machine
89 DEF("M", HAS_ARG, QEMU_OPTION_M, "", QEMU_ARCH_ALL)
91 DEF("cpu", HAS_ARG, QEMU_OPTION_cpu,
92 "-cpu cpu select CPU ('-cpu help' for list)\n", QEMU_ARCH_ALL)
93 STEXI
94 @item -cpu @var{model}
95 @findex -cpu
96 Select CPU model (@code{-cpu help} for list and additional feature selection)
97 ETEXI
99 DEF("smp", HAS_ARG, QEMU_OPTION_smp,
100 "-smp [cpus=]n[,maxcpus=cpus][,cores=cores][,threads=threads][,sockets=sockets]\n"
101 " set the number of CPUs to 'n' [default=1]\n"
102 " maxcpus= maximum number of total cpus, including\n"
103 " offline CPUs for hotplug, etc\n"
104 " cores= number of CPU cores on one socket\n"
105 " threads= number of threads on one CPU core\n"
106 " sockets= number of discrete sockets in the system\n",
107 QEMU_ARCH_ALL)
108 STEXI
109 @item -smp [cpus=]@var{n}[,cores=@var{cores}][,threads=@var{threads}][,sockets=@var{sockets}][,maxcpus=@var{maxcpus}]
110 @findex -smp
111 Simulate an SMP system with @var{n} CPUs. On the PC target, up to 255
112 CPUs are supported. On Sparc32 target, Linux limits the number of usable CPUs
113 to 4.
114 For the PC target, the number of @var{cores} per socket, the number
115 of @var{threads} per cores and the total number of @var{sockets} can be
116 specified. Missing values will be computed. If any on the three values is
117 given, the total number of CPUs @var{n} can be omitted. @var{maxcpus}
118 specifies the maximum number of hotpluggable CPUs.
119 ETEXI
121 DEF("numa", HAS_ARG, QEMU_OPTION_numa,
122 "-numa node[,mem=size][,cpus=cpu[-cpu]][,nodeid=node]\n"
123 "-numa node[,memdev=id][,cpus=cpu[-cpu]][,nodeid=node]\n", QEMU_ARCH_ALL)
124 STEXI
125 @item -numa node[,mem=@var{size}][,cpus=@var{cpu[-cpu]}][,nodeid=@var{node}]
126 @itemx -numa node[,memdev=@var{id}][,cpus=@var{cpu[-cpu]}][,nodeid=@var{node}]
127 @findex -numa
128 Simulate a multi node NUMA system. If @samp{mem}, @samp{memdev}
129 and @samp{cpus} are omitted, resources are split equally. Also, note
130 that the -@option{numa} option doesn't allocate any of the specified
131 resources. That is, it just assigns existing resources to NUMA nodes. This
132 means that one still has to use the @option{-m}, @option{-smp} options
133 to allocate RAM and VCPUs respectively, and possibly @option{-object}
134 to specify the memory backend for the @samp{memdev} suboption.
136 @samp{mem} and @samp{memdev} are mutually exclusive. Furthermore, if one
137 node uses @samp{memdev}, all of them have to use it.
138 ETEXI
140 DEF("add-fd", HAS_ARG, QEMU_OPTION_add_fd,
141 "-add-fd fd=fd,set=set[,opaque=opaque]\n"
142 " Add 'fd' to fd 'set'\n", QEMU_ARCH_ALL)
143 STEXI
144 @item -add-fd fd=@var{fd},set=@var{set}[,opaque=@var{opaque}]
145 @findex -add-fd
147 Add a file descriptor to an fd set. Valid options are:
149 @table @option
150 @item fd=@var{fd}
151 This option defines the file descriptor of which a duplicate is added to fd set.
152 The file descriptor cannot be stdin, stdout, or stderr.
153 @item set=@var{set}
154 This option defines the ID of the fd set to add the file descriptor to.
155 @item opaque=@var{opaque}
156 This option defines a free-form string that can be used to describe @var{fd}.
157 @end table
159 You can open an image using pre-opened file descriptors from an fd set:
160 @example
161 qemu-system-i386
162 -add-fd fd=3,set=2,opaque="rdwr:/path/to/file"
163 -add-fd fd=4,set=2,opaque="rdonly:/path/to/file"
164 -drive file=/dev/fdset/2,index=0,media=disk
165 @end example
166 ETEXI
168 DEF("set", HAS_ARG, QEMU_OPTION_set,
169 "-set group.id.arg=value\n"
170 " set <arg> parameter for item <id> of type <group>\n"
171 " i.e. -set drive.$id.file=/path/to/image\n", QEMU_ARCH_ALL)
172 STEXI
173 @item -set @var{group}.@var{id}.@var{arg}=@var{value}
174 @findex -set
175 Set parameter @var{arg} for item @var{id} of type @var{group}\n"
176 ETEXI
178 DEF("global", HAS_ARG, QEMU_OPTION_global,
179 "-global driver.property=value\n"
180 "-global driver=driver,property=property,value=value\n"
181 " set a global default for a driver property\n",
182 QEMU_ARCH_ALL)
183 STEXI
184 @item -global @var{driver}.@var{prop}=@var{value}
185 @itemx -global driver=@var{driver},property=@var{property},value=@var{value}
186 @findex -global
187 Set default value of @var{driver}'s property @var{prop} to @var{value}, e.g.:
189 @example
190 qemu-system-i386 -global ide-drive.physical_block_size=4096 -drive file=file,if=ide,index=0,media=disk
191 @end example
193 In particular, you can use this to set driver properties for devices which are
194 created automatically by the machine model. To create a device which is not
195 created automatically and set properties on it, use -@option{device}.
197 -global @var{driver}.@var{prop}=@var{value} is shorthand for -global
198 driver=@var{driver},property=@var{prop},value=@var{value}. The
199 longhand syntax works even when @var{driver} contains a dot.
200 ETEXI
202 DEF("boot", HAS_ARG, QEMU_OPTION_boot,
203 "-boot [order=drives][,once=drives][,menu=on|off]\n"
204 " [,splash=sp_name][,splash-time=sp_time][,reboot-timeout=rb_time][,strict=on|off]\n"
205 " 'drives': floppy (a), hard disk (c), CD-ROM (d), network (n)\n"
206 " 'sp_name': the file's name that would be passed to bios as logo picture, if menu=on\n"
207 " 'sp_time': the period that splash picture last if menu=on, unit is ms\n"
208 " 'rb_timeout': the timeout before guest reboot when boot failed, unit is ms\n",
209 QEMU_ARCH_ALL)
210 STEXI
211 @item -boot [order=@var{drives}][,once=@var{drives}][,menu=on|off][,splash=@var{sp_name}][,splash-time=@var{sp_time}][,reboot-timeout=@var{rb_timeout}][,strict=on|off]
212 @findex -boot
213 Specify boot order @var{drives} as a string of drive letters. Valid
214 drive letters depend on the target architecture. The x86 PC uses: a, b
215 (floppy 1 and 2), c (first hard disk), d (first CD-ROM), n-p (Etherboot
216 from network adapter 1-4), hard disk boot is the default. To apply a
217 particular boot order only on the first startup, specify it via
218 @option{once}.
220 Interactive boot menus/prompts can be enabled via @option{menu=on} as far
221 as firmware/BIOS supports them. The default is non-interactive boot.
223 A splash picture could be passed to bios, enabling user to show it as logo,
224 when option splash=@var{sp_name} is given and menu=on, If firmware/BIOS
225 supports them. Currently Seabios for X86 system support it.
226 limitation: The splash file could be a jpeg file or a BMP file in 24 BPP
227 format(true color). The resolution should be supported by the SVGA mode, so
228 the recommended is 320x240, 640x480, 800x640.
230 A timeout could be passed to bios, guest will pause for @var{rb_timeout} ms
231 when boot failed, then reboot. If @var{rb_timeout} is '-1', guest will not
232 reboot, qemu passes '-1' to bios by default. Currently Seabios for X86
233 system support it.
235 Do strict boot via @option{strict=on} as far as firmware/BIOS
236 supports it. This only effects when boot priority is changed by
237 bootindex options. The default is non-strict boot.
239 @example
240 # try to boot from network first, then from hard disk
241 qemu-system-i386 -boot order=nc
242 # boot from CD-ROM first, switch back to default order after reboot
243 qemu-system-i386 -boot once=d
244 # boot with a splash picture for 5 seconds.
245 qemu-system-i386 -boot menu=on,splash=/root/boot.bmp,splash-time=5000
246 @end example
248 Note: The legacy format '-boot @var{drives}' is still supported but its
249 use is discouraged as it may be removed from future versions.
250 ETEXI
252 DEF("m", HAS_ARG, QEMU_OPTION_m,
253 "-m[emory] [size=]megs[,slots=n,maxmem=size]\n"
254 " configure guest RAM\n"
255 " size: initial amount of guest memory\n"
256 " slots: number of hotplug slots (default: none)\n"
257 " maxmem: maximum amount of guest memory (default: none)\n"
258 "NOTE: Some architectures might enforce a specific granularity\n",
259 QEMU_ARCH_ALL)
260 STEXI
261 @item -m [size=]@var{megs}[,slots=n,maxmem=size]
262 @findex -m
263 Sets guest startup RAM size to @var{megs} megabytes. Default is 128 MiB.
264 Optionally, a suffix of ``M'' or ``G'' can be used to signify a value in
265 megabytes or gigabytes respectively. Optional pair @var{slots}, @var{maxmem}
266 could be used to set amount of hotpluggable memory slots and maximum amount of
267 memory. Note that @var{maxmem} must be aligned to the page size.
269 For example, the following command-line sets the guest startup RAM size to
270 1GB, creates 3 slots to hotplug additional memory and sets the maximum
271 memory the guest can reach to 4GB:
273 @example
274 qemu-system-x86_64 -m 1G,slots=3,maxmem=4G
275 @end example
277 If @var{slots} and @var{maxmem} are not specified, memory hotplug won't
278 be enabled and the guest startup RAM will never increase.
279 ETEXI
281 DEF("mem-path", HAS_ARG, QEMU_OPTION_mempath,
282 "-mem-path FILE provide backing storage for guest RAM\n", QEMU_ARCH_ALL)
283 STEXI
284 @item -mem-path @var{path}
285 @findex -mem-path
286 Allocate guest RAM from a temporarily created file in @var{path}.
287 ETEXI
289 DEF("mem-prealloc", 0, QEMU_OPTION_mem_prealloc,
290 "-mem-prealloc preallocate guest memory (use with -mem-path)\n",
291 QEMU_ARCH_ALL)
292 STEXI
293 @item -mem-prealloc
294 @findex -mem-prealloc
295 Preallocate memory when using -mem-path.
296 ETEXI
298 DEF("k", HAS_ARG, QEMU_OPTION_k,
299 "-k language use keyboard layout (for example 'fr' for French)\n",
300 QEMU_ARCH_ALL)
301 STEXI
302 @item -k @var{language}
303 @findex -k
304 Use keyboard layout @var{language} (for example @code{fr} for
305 French). This option is only needed where it is not easy to get raw PC
306 keycodes (e.g. on Macs, with some X11 servers or with a VNC
307 display). You don't normally need to use it on PC/Linux or PC/Windows
308 hosts.
310 The available layouts are:
311 @example
312 ar de-ch es fo fr-ca hu ja mk no pt-br sv
313 da en-gb et fr fr-ch is lt nl pl ru th
314 de en-us fi fr-be hr it lv nl-be pt sl tr
315 @end example
317 The default is @code{en-us}.
318 ETEXI
321 DEF("audio-help", 0, QEMU_OPTION_audio_help,
322 "-audio-help print list of audio drivers and their options\n",
323 QEMU_ARCH_ALL)
324 STEXI
325 @item -audio-help
326 @findex -audio-help
327 Will show the audio subsystem help: list of drivers, tunable
328 parameters.
329 ETEXI
331 DEF("soundhw", HAS_ARG, QEMU_OPTION_soundhw,
332 "-soundhw c1,... enable audio support\n"
333 " and only specified sound cards (comma separated list)\n"
334 " use '-soundhw help' to get the list of supported cards\n"
335 " use '-soundhw all' to enable all of them\n", QEMU_ARCH_ALL)
336 STEXI
337 @item -soundhw @var{card1}[,@var{card2},...] or -soundhw all
338 @findex -soundhw
339 Enable audio and selected sound hardware. Use 'help' to print all
340 available sound hardware.
342 @example
343 qemu-system-i386 -soundhw sb16,adlib disk.img
344 qemu-system-i386 -soundhw es1370 disk.img
345 qemu-system-i386 -soundhw ac97 disk.img
346 qemu-system-i386 -soundhw hda disk.img
347 qemu-system-i386 -soundhw all disk.img
348 qemu-system-i386 -soundhw help
349 @end example
351 Note that Linux's i810_audio OSS kernel (for AC97) module might
352 require manually specifying clocking.
354 @example
355 modprobe i810_audio clocking=48000
356 @end example
357 ETEXI
359 DEF("balloon", HAS_ARG, QEMU_OPTION_balloon,
360 "-balloon none disable balloon device\n"
361 "-balloon virtio[,addr=str]\n"
362 " enable virtio balloon device (default)\n", QEMU_ARCH_ALL)
363 STEXI
364 @item -balloon none
365 @findex -balloon
366 Disable balloon device.
367 @item -balloon virtio[,addr=@var{addr}]
368 Enable virtio balloon device (default), optionally with PCI address
369 @var{addr}.
370 ETEXI
372 DEF("device", HAS_ARG, QEMU_OPTION_device,
373 "-device driver[,prop[=value][,...]]\n"
374 " add device (based on driver)\n"
375 " prop=value,... sets driver properties\n"
376 " use '-device help' to print all possible drivers\n"
377 " use '-device driver,help' to print all possible properties\n",
378 QEMU_ARCH_ALL)
379 STEXI
380 @item -device @var{driver}[,@var{prop}[=@var{value}][,...]]
381 @findex -device
382 Add device @var{driver}. @var{prop}=@var{value} sets driver
383 properties. Valid properties depend on the driver. To get help on
384 possible drivers and properties, use @code{-device help} and
385 @code{-device @var{driver},help}.
387 Some drivers are:
388 @item -device ipmi-bmc-sim,id=@var{id}[,slave_addr=@var{val}]
390 Add an IPMI BMC. This is a simulation of a hardware management
391 interface processor that normally sits on a system. It provides
392 a watchdog and the ability to reset and power control the system.
393 You need to connect this to an IPMI interface to make it useful
395 The IPMI slave address to use for the BMC. The default is 0x20.
396 This address is the BMC's address on the I2C network of management
397 controllers. If you don't know what this means, it is safe to ignore
400 @item -device ipmi-bmc-extern,id=@var{id},chardev=@var{id}[,slave_addr=@var{val}]
402 Add a connection to an external IPMI BMC simulator. Instead of
403 locally emulating the BMC like the above item, instead connect
404 to an external entity that provides the IPMI services.
406 A connection is made to an external BMC simulator. If you do this, it
407 is strongly recommended that you use the "reconnect=" chardev option
408 to reconnect to the simulator if the connection is lost. Note that if
409 this is not used carefully, it can be a security issue, as the
410 interface has the ability to send resets, NMIs, and power off the VM.
411 It's best if QEMU makes a connection to an external simulator running
412 on a secure port on localhost, so neither the simulator nor QEMU is
413 exposed to any outside network.
415 See the "lanserv/README.vm" file in the OpenIPMI library for more
416 details on the external interface.
418 @item -device isa-ipmi-kcs,bmc=@var{id}[,ioport=@var{val}][,irq=@var{val}]
420 Add a KCS IPMI interafce on the ISA bus. This also adds a
421 corresponding ACPI and SMBIOS entries, if appropriate.
423 @table @option
424 @item bmc=@var{id}
425 The BMC to connect to, one of ipmi-bmc-sim or ipmi-bmc-extern above.
426 @item ioport=@var{val}
427 Define the I/O address of the interface. The default is 0xca0 for KCS.
428 @item irq=@var{val}
429 Define the interrupt to use. The default is 5. To disable interrupts,
430 set this to 0.
431 @end table
433 @item -device isa-ipmi-bt,bmc=@var{id}[,ioport=@var{val}][,irq=@var{val}]
435 Like the KCS interface, but defines a BT interface. The default port is
436 0xe4 and the default interrupt is 5.
438 ETEXI
440 DEF("name", HAS_ARG, QEMU_OPTION_name,
441 "-name string1[,process=string2][,debug-threads=on|off]\n"
442 " set the name of the guest\n"
443 " string1 sets the window title and string2 the process name (on Linux)\n"
444 " When debug-threads is enabled, individual threads are given a separate name (on Linux)\n"
445 " NOTE: The thread names are for debugging and not a stable API.\n",
446 QEMU_ARCH_ALL)
447 STEXI
448 @item -name @var{name}
449 @findex -name
450 Sets the @var{name} of the guest.
451 This name will be displayed in the SDL window caption.
452 The @var{name} will also be used for the VNC server.
453 Also optionally set the top visible process name in Linux.
454 Naming of individual threads can also be enabled on Linux to aid debugging.
455 ETEXI
457 DEF("uuid", HAS_ARG, QEMU_OPTION_uuid,
458 "-uuid %08x-%04x-%04x-%04x-%012x\n"
459 " specify machine UUID\n", QEMU_ARCH_ALL)
460 STEXI
461 @item -uuid @var{uuid}
462 @findex -uuid
463 Set system UUID.
464 ETEXI
466 STEXI
467 @end table
468 ETEXI
469 DEFHEADING()
471 DEFHEADING(Block device options:)
472 STEXI
473 @table @option
474 ETEXI
476 DEF("fda", HAS_ARG, QEMU_OPTION_fda,
477 "-fda/-fdb file use 'file' as floppy disk 0/1 image\n", QEMU_ARCH_ALL)
478 DEF("fdb", HAS_ARG, QEMU_OPTION_fdb, "", QEMU_ARCH_ALL)
479 STEXI
480 @item -fda @var{file}
481 @itemx -fdb @var{file}
482 @findex -fda
483 @findex -fdb
484 Use @var{file} as floppy disk 0/1 image (@pxref{disk_images}).
485 ETEXI
487 DEF("hda", HAS_ARG, QEMU_OPTION_hda,
488 "-hda/-hdb file use 'file' as IDE hard disk 0/1 image\n", QEMU_ARCH_ALL)
489 DEF("hdb", HAS_ARG, QEMU_OPTION_hdb, "", QEMU_ARCH_ALL)
490 DEF("hdc", HAS_ARG, QEMU_OPTION_hdc,
491 "-hdc/-hdd file use 'file' as IDE hard disk 2/3 image\n", QEMU_ARCH_ALL)
492 DEF("hdd", HAS_ARG, QEMU_OPTION_hdd, "", QEMU_ARCH_ALL)
493 STEXI
494 @item -hda @var{file}
495 @itemx -hdb @var{file}
496 @itemx -hdc @var{file}
497 @itemx -hdd @var{file}
498 @findex -hda
499 @findex -hdb
500 @findex -hdc
501 @findex -hdd
502 Use @var{file} as hard disk 0, 1, 2 or 3 image (@pxref{disk_images}).
503 ETEXI
505 DEF("cdrom", HAS_ARG, QEMU_OPTION_cdrom,
506 "-cdrom file use 'file' as IDE cdrom image (cdrom is ide1 master)\n",
507 QEMU_ARCH_ALL)
508 STEXI
509 @item -cdrom @var{file}
510 @findex -cdrom
511 Use @var{file} as CD-ROM image (you cannot use @option{-hdc} and
512 @option{-cdrom} at the same time). You can use the host CD-ROM by
513 using @file{/dev/cdrom} as filename (@pxref{host_drives}).
514 ETEXI
516 DEF("drive", HAS_ARG, QEMU_OPTION_drive,
517 "-drive [file=file][,if=type][,bus=n][,unit=m][,media=d][,index=i]\n"
518 " [,cyls=c,heads=h,secs=s[,trans=t]][,snapshot=on|off]\n"
519 " [,cache=writethrough|writeback|none|directsync|unsafe][,format=f]\n"
520 " [,serial=s][,addr=A][,rerror=ignore|stop|report]\n"
521 " [,werror=ignore|stop|report|enospc][,id=name][,aio=threads|native]\n"
522 " [,readonly=on|off][,copy-on-read=on|off]\n"
523 " [,discard=ignore|unmap][,detect-zeroes=on|off|unmap]\n"
524 " [[,bps=b]|[[,bps_rd=r][,bps_wr=w]]]\n"
525 " [[,iops=i]|[[,iops_rd=r][,iops_wr=w]]]\n"
526 " [[,bps_max=bm]|[[,bps_rd_max=rm][,bps_wr_max=wm]]]\n"
527 " [[,iops_max=im]|[[,iops_rd_max=irm][,iops_wr_max=iwm]]]\n"
528 " [[,iops_size=is]]\n"
529 " [[,group=g]]\n"
530 " use 'file' as a drive image\n", QEMU_ARCH_ALL)
531 STEXI
532 @item -drive @var{option}[,@var{option}[,@var{option}[,...]]]
533 @findex -drive
535 Define a new drive. Valid options are:
537 @table @option
538 @item file=@var{file}
539 This option defines which disk image (@pxref{disk_images}) to use with
540 this drive. If the filename contains comma, you must double it
541 (for instance, "file=my,,file" to use file "my,file").
543 Special files such as iSCSI devices can be specified using protocol
544 specific URLs. See the section for "Device URL Syntax" for more information.
545 @item if=@var{interface}
546 This option defines on which type on interface the drive is connected.
547 Available types are: ide, scsi, sd, mtd, floppy, pflash, virtio.
548 @item bus=@var{bus},unit=@var{unit}
549 These options define where is connected the drive by defining the bus number and
550 the unit id.
551 @item index=@var{index}
552 This option defines where is connected the drive by using an index in the list
553 of available connectors of a given interface type.
554 @item media=@var{media}
555 This option defines the type of the media: disk or cdrom.
556 @item cyls=@var{c},heads=@var{h},secs=@var{s}[,trans=@var{t}]
557 These options have the same definition as they have in @option{-hdachs}.
558 @item snapshot=@var{snapshot}
559 @var{snapshot} is "on" or "off" and controls snapshot mode for the given drive
560 (see @option{-snapshot}).
561 @item cache=@var{cache}
562 @var{cache} is "none", "writeback", "unsafe", "directsync" or "writethrough" and controls how the host cache is used to access block data.
563 @item aio=@var{aio}
564 @var{aio} is "threads", or "native" and selects between pthread based disk I/O and native Linux AIO.
565 @item discard=@var{discard}
566 @var{discard} is one of "ignore" (or "off") or "unmap" (or "on") and controls whether @dfn{discard} (also known as @dfn{trim} or @dfn{unmap}) requests are ignored or passed to the filesystem. Some machine types may not support discard requests.
567 @item format=@var{format}
568 Specify which disk @var{format} will be used rather than detecting
569 the format. Can be used to specify format=raw to avoid interpreting
570 an untrusted format header.
571 @item serial=@var{serial}
572 This option specifies the serial number to assign to the device.
573 @item addr=@var{addr}
574 Specify the controller's PCI address (if=virtio only).
575 @item werror=@var{action},rerror=@var{action}
576 Specify which @var{action} to take on write and read errors. Valid actions are:
577 "ignore" (ignore the error and try to continue), "stop" (pause QEMU),
578 "report" (report the error to the guest), "enospc" (pause QEMU only if the
579 host disk is full; report the error to the guest otherwise).
580 The default setting is @option{werror=enospc} and @option{rerror=report}.
581 @item readonly
582 Open drive @option{file} as read-only. Guest write attempts will fail.
583 @item copy-on-read=@var{copy-on-read}
584 @var{copy-on-read} is "on" or "off" and enables whether to copy read backing
585 file sectors into the image file.
586 @item detect-zeroes=@var{detect-zeroes}
587 @var{detect-zeroes} is "off", "on" or "unmap" and enables the automatic
588 conversion of plain zero writes by the OS to driver specific optimized
589 zero write commands. You may even choose "unmap" if @var{discard} is set
590 to "unmap" to allow a zero write to be converted to an UNMAP operation.
591 @end table
593 By default, the @option{cache=writeback} mode is used. It will report data
594 writes as completed as soon as the data is present in the host page cache.
595 This is safe as long as your guest OS makes sure to correctly flush disk caches
596 where needed. If your guest OS does not handle volatile disk write caches
597 correctly and your host crashes or loses power, then the guest may experience
598 data corruption.
600 For such guests, you should consider using @option{cache=writethrough}. This
601 means that the host page cache will be used to read and write data, but write
602 notification will be sent to the guest only after QEMU has made sure to flush
603 each write to the disk. Be aware that this has a major impact on performance.
605 The host page cache can be avoided entirely with @option{cache=none}. This will
606 attempt to do disk IO directly to the guest's memory. QEMU may still perform
607 an internal copy of the data. Note that this is considered a writeback mode and
608 the guest OS must handle the disk write cache correctly in order to avoid data
609 corruption on host crashes.
611 The host page cache can be avoided while only sending write notifications to
612 the guest when the data has been flushed to the disk using
613 @option{cache=directsync}.
615 In case you don't care about data integrity over host failures, use
616 @option{cache=unsafe}. This option tells QEMU that it never needs to write any
617 data to the disk but can instead keep things in cache. If anything goes wrong,
618 like your host losing power, the disk storage getting disconnected accidentally,
619 etc. your image will most probably be rendered unusable. When using
620 the @option{-snapshot} option, unsafe caching is always used.
622 Copy-on-read avoids accessing the same backing file sectors repeatedly and is
623 useful when the backing file is over a slow network. By default copy-on-read
624 is off.
626 Instead of @option{-cdrom} you can use:
627 @example
628 qemu-system-i386 -drive file=file,index=2,media=cdrom
629 @end example
631 Instead of @option{-hda}, @option{-hdb}, @option{-hdc}, @option{-hdd}, you can
632 use:
633 @example
634 qemu-system-i386 -drive file=file,index=0,media=disk
635 qemu-system-i386 -drive file=file,index=1,media=disk
636 qemu-system-i386 -drive file=file,index=2,media=disk
637 qemu-system-i386 -drive file=file,index=3,media=disk
638 @end example
640 You can open an image using pre-opened file descriptors from an fd set:
641 @example
642 qemu-system-i386
643 -add-fd fd=3,set=2,opaque="rdwr:/path/to/file"
644 -add-fd fd=4,set=2,opaque="rdonly:/path/to/file"
645 -drive file=/dev/fdset/2,index=0,media=disk
646 @end example
648 You can connect a CDROM to the slave of ide0:
649 @example
650 qemu-system-i386 -drive file=file,if=ide,index=1,media=cdrom
651 @end example
653 If you don't specify the "file=" argument, you define an empty drive:
654 @example
655 qemu-system-i386 -drive if=ide,index=1,media=cdrom
656 @end example
658 You can connect a SCSI disk with unit ID 6 on the bus #0:
659 @example
660 qemu-system-i386 -drive file=file,if=scsi,bus=0,unit=6
661 @end example
663 Instead of @option{-fda}, @option{-fdb}, you can use:
664 @example
665 qemu-system-i386 -drive file=file,index=0,if=floppy
666 qemu-system-i386 -drive file=file,index=1,if=floppy
667 @end example
669 By default, @var{interface} is "ide" and @var{index} is automatically
670 incremented:
671 @example
672 qemu-system-i386 -drive file=a -drive file=b"
673 @end example
674 is interpreted like:
675 @example
676 qemu-system-i386 -hda a -hdb b
677 @end example
678 ETEXI
680 DEF("mtdblock", HAS_ARG, QEMU_OPTION_mtdblock,
681 "-mtdblock file use 'file' as on-board Flash memory image\n",
682 QEMU_ARCH_ALL)
683 STEXI
684 @item -mtdblock @var{file}
685 @findex -mtdblock
686 Use @var{file} as on-board Flash memory image.
687 ETEXI
689 DEF("sd", HAS_ARG, QEMU_OPTION_sd,
690 "-sd file use 'file' as SecureDigital card image\n", QEMU_ARCH_ALL)
691 STEXI
692 @item -sd @var{file}
693 @findex -sd
694 Use @var{file} as SecureDigital card image.
695 ETEXI
697 DEF("pflash", HAS_ARG, QEMU_OPTION_pflash,
698 "-pflash file use 'file' as a parallel flash image\n", QEMU_ARCH_ALL)
699 STEXI
700 @item -pflash @var{file}
701 @findex -pflash
702 Use @var{file} as a parallel flash image.
703 ETEXI
705 DEF("snapshot", 0, QEMU_OPTION_snapshot,
706 "-snapshot write to temporary files instead of disk image files\n",
707 QEMU_ARCH_ALL)
708 STEXI
709 @item -snapshot
710 @findex -snapshot
711 Write to temporary files instead of disk image files. In this case,
712 the raw disk image you use is not written back. You can however force
713 the write back by pressing @key{C-a s} (@pxref{disk_images}).
714 ETEXI
716 DEF("hdachs", HAS_ARG, QEMU_OPTION_hdachs, \
717 "-hdachs c,h,s[,t]\n" \
718 " force hard disk 0 physical geometry and the optional BIOS\n" \
719 " translation (t=none or lba) (usually QEMU can guess them)\n",
720 QEMU_ARCH_ALL)
721 STEXI
722 @item -hdachs @var{c},@var{h},@var{s},[,@var{t}]
723 @findex -hdachs
724 Force hard disk 0 physical geometry (1 <= @var{c} <= 16383, 1 <=
725 @var{h} <= 16, 1 <= @var{s} <= 63) and optionally force the BIOS
726 translation mode (@var{t}=none, lba or auto). Usually QEMU can guess
727 all those parameters. This option is useful for old MS-DOS disk
728 images.
729 ETEXI
731 DEF("fsdev", HAS_ARG, QEMU_OPTION_fsdev,
732 "-fsdev fsdriver,id=id[,path=path,][security_model={mapped-xattr|mapped-file|passthrough|none}]\n"
733 " [,writeout=immediate][,readonly][,socket=socket|sock_fd=sock_fd]\n",
734 QEMU_ARCH_ALL)
736 STEXI
738 @item -fsdev @var{fsdriver},id=@var{id},path=@var{path},[security_model=@var{security_model}][,writeout=@var{writeout}][,readonly][,socket=@var{socket}|sock_fd=@var{sock_fd}]
739 @findex -fsdev
740 Define a new file system device. Valid options are:
741 @table @option
742 @item @var{fsdriver}
743 This option specifies the fs driver backend to use.
744 Currently "local", "handle" and "proxy" file system drivers are supported.
745 @item id=@var{id}
746 Specifies identifier for this device
747 @item path=@var{path}
748 Specifies the export path for the file system device. Files under
749 this path will be available to the 9p client on the guest.
750 @item security_model=@var{security_model}
751 Specifies the security model to be used for this export path.
752 Supported security models are "passthrough", "mapped-xattr", "mapped-file" and "none".
753 In "passthrough" security model, files are stored using the same
754 credentials as they are created on the guest. This requires QEMU
755 to run as root. In "mapped-xattr" security model, some of the file
756 attributes like uid, gid, mode bits and link target are stored as
757 file attributes. For "mapped-file" these attributes are stored in the
758 hidden .virtfs_metadata directory. Directories exported by this security model cannot
759 interact with other unix tools. "none" security model is same as
760 passthrough except the sever won't report failures if it fails to
761 set file attributes like ownership. Security model is mandatory
762 only for local fsdriver. Other fsdrivers (like handle, proxy) don't take
763 security model as a parameter.
764 @item writeout=@var{writeout}
765 This is an optional argument. The only supported value is "immediate".
766 This means that host page cache will be used to read and write data but
767 write notification will be sent to the guest only when the data has been
768 reported as written by the storage subsystem.
769 @item readonly
770 Enables exporting 9p share as a readonly mount for guests. By default
771 read-write access is given.
772 @item socket=@var{socket}
773 Enables proxy filesystem driver to use passed socket file for communicating
774 with virtfs-proxy-helper
775 @item sock_fd=@var{sock_fd}
776 Enables proxy filesystem driver to use passed socket descriptor for
777 communicating with virtfs-proxy-helper. Usually a helper like libvirt
778 will create socketpair and pass one of the fds as sock_fd
779 @end table
781 -fsdev option is used along with -device driver "virtio-9p-pci".
782 @item -device virtio-9p-pci,fsdev=@var{id},mount_tag=@var{mount_tag}
783 Options for virtio-9p-pci driver are:
784 @table @option
785 @item fsdev=@var{id}
786 Specifies the id value specified along with -fsdev option
787 @item mount_tag=@var{mount_tag}
788 Specifies the tag name to be used by the guest to mount this export point
789 @end table
791 ETEXI
793 DEF("virtfs", HAS_ARG, QEMU_OPTION_virtfs,
794 "-virtfs local,path=path,mount_tag=tag,security_model=[mapped-xattr|mapped-file|passthrough|none]\n"
795 " [,writeout=immediate][,readonly][,socket=socket|sock_fd=sock_fd]\n",
796 QEMU_ARCH_ALL)
798 STEXI
800 @item -virtfs @var{fsdriver}[,path=@var{path}],mount_tag=@var{mount_tag}[,security_model=@var{security_model}][,writeout=@var{writeout}][,readonly][,socket=@var{socket}|sock_fd=@var{sock_fd}]
801 @findex -virtfs
803 The general form of a Virtual File system pass-through options are:
804 @table @option
805 @item @var{fsdriver}
806 This option specifies the fs driver backend to use.
807 Currently "local", "handle" and "proxy" file system drivers are supported.
808 @item id=@var{id}
809 Specifies identifier for this device
810 @item path=@var{path}
811 Specifies the export path for the file system device. Files under
812 this path will be available to the 9p client on the guest.
813 @item security_model=@var{security_model}
814 Specifies the security model to be used for this export path.
815 Supported security models are "passthrough", "mapped-xattr", "mapped-file" and "none".
816 In "passthrough" security model, files are stored using the same
817 credentials as they are created on the guest. This requires QEMU
818 to run as root. In "mapped-xattr" security model, some of the file
819 attributes like uid, gid, mode bits and link target are stored as
820 file attributes. For "mapped-file" these attributes are stored in the
821 hidden .virtfs_metadata directory. Directories exported by this security model cannot
822 interact with other unix tools. "none" security model is same as
823 passthrough except the sever won't report failures if it fails to
824 set file attributes like ownership. Security model is mandatory only
825 for local fsdriver. Other fsdrivers (like handle, proxy) don't take security
826 model as a parameter.
827 @item writeout=@var{writeout}
828 This is an optional argument. The only supported value is "immediate".
829 This means that host page cache will be used to read and write data but
830 write notification will be sent to the guest only when the data has been
831 reported as written by the storage subsystem.
832 @item readonly
833 Enables exporting 9p share as a readonly mount for guests. By default
834 read-write access is given.
835 @item socket=@var{socket}
836 Enables proxy filesystem driver to use passed socket file for
837 communicating with virtfs-proxy-helper. Usually a helper like libvirt
838 will create socketpair and pass one of the fds as sock_fd
839 @item sock_fd
840 Enables proxy filesystem driver to use passed 'sock_fd' as the socket
841 descriptor for interfacing with virtfs-proxy-helper
842 @end table
843 ETEXI
845 DEF("virtfs_synth", 0, QEMU_OPTION_virtfs_synth,
846 "-virtfs_synth Create synthetic file system image\n",
847 QEMU_ARCH_ALL)
848 STEXI
849 @item -virtfs_synth
850 @findex -virtfs_synth
851 Create synthetic file system image
852 ETEXI
854 STEXI
855 @end table
856 ETEXI
857 DEFHEADING()
859 DEFHEADING(USB options:)
860 STEXI
861 @table @option
862 ETEXI
864 DEF("usb", 0, QEMU_OPTION_usb,
865 "-usb enable the USB driver (will be the default soon)\n",
866 QEMU_ARCH_ALL)
867 STEXI
868 @item -usb
869 @findex -usb
870 Enable the USB driver (will be the default soon)
871 ETEXI
873 DEF("usbdevice", HAS_ARG, QEMU_OPTION_usbdevice,
874 "-usbdevice name add the host or guest USB device 'name'\n",
875 QEMU_ARCH_ALL)
876 STEXI
878 @item -usbdevice @var{devname}
879 @findex -usbdevice
880 Add the USB device @var{devname}. @xref{usb_devices}.
882 @table @option
884 @item mouse
885 Virtual Mouse. This will override the PS/2 mouse emulation when activated.
887 @item tablet
888 Pointer device that uses absolute coordinates (like a touchscreen). This
889 means QEMU is able to report the mouse position without having to grab the
890 mouse. Also overrides the PS/2 mouse emulation when activated.
892 @item disk:[format=@var{format}]:@var{file}
893 Mass storage device based on file. The optional @var{format} argument
894 will be used rather than detecting the format. Can be used to specify
895 @code{format=raw} to avoid interpreting an untrusted format header.
897 @item host:@var{bus}.@var{addr}
898 Pass through the host device identified by @var{bus}.@var{addr} (Linux only).
900 @item host:@var{vendor_id}:@var{product_id}
901 Pass through the host device identified by @var{vendor_id}:@var{product_id}
902 (Linux only).
904 @item serial:[vendorid=@var{vendor_id}][,productid=@var{product_id}]:@var{dev}
905 Serial converter to host character device @var{dev}, see @code{-serial} for the
906 available devices.
908 @item braille
909 Braille device. This will use BrlAPI to display the braille output on a real
910 or fake device.
912 @item net:@var{options}
913 Network adapter that supports CDC ethernet and RNDIS protocols.
915 @end table
916 ETEXI
918 STEXI
919 @end table
920 ETEXI
921 DEFHEADING()
923 DEFHEADING(Display options:)
924 STEXI
925 @table @option
926 ETEXI
928 DEF("display", HAS_ARG, QEMU_OPTION_display,
929 "-display sdl[,frame=on|off][,alt_grab=on|off][,ctrl_grab=on|off]\n"
930 " [,window_close=on|off]|curses|none|\n"
931 " gtk[,grab_on_hover=on|off]|\n"
932 " vnc=<display>[,<optargs>]\n"
933 " select display type\n", QEMU_ARCH_ALL)
934 STEXI
935 @item -display @var{type}
936 @findex -display
937 Select type of display to use. This option is a replacement for the
938 old style -sdl/-curses/... options. Valid values for @var{type} are
939 @table @option
940 @item sdl
941 Display video output via SDL (usually in a separate graphics
942 window; see the SDL documentation for other possibilities).
943 @item curses
944 Display video output via curses. For graphics device models which
945 support a text mode, QEMU can display this output using a
946 curses/ncurses interface. Nothing is displayed when the graphics
947 device is in graphical mode or if the graphics device does not support
948 a text mode. Generally only the VGA device models support text mode.
949 @item none
950 Do not display video output. The guest will still see an emulated
951 graphics card, but its output will not be displayed to the QEMU
952 user. This option differs from the -nographic option in that it
953 only affects what is done with video output; -nographic also changes
954 the destination of the serial and parallel port data.
955 @item gtk
956 Display video output in a GTK window. This interface provides drop-down
957 menus and other UI elements to configure and control the VM during
958 runtime.
959 @item vnc
960 Start a VNC server on display <arg>
961 @end table
962 ETEXI
964 DEF("nographic", 0, QEMU_OPTION_nographic,
965 "-nographic disable graphical output and redirect serial I/Os to console\n",
966 QEMU_ARCH_ALL)
967 STEXI
968 @item -nographic
969 @findex -nographic
970 Normally, QEMU uses SDL to display the VGA output. With this option,
971 you can totally disable graphical output so that QEMU is a simple
972 command line application. The emulated serial port is redirected on
973 the console and muxed with the monitor (unless redirected elsewhere
974 explicitly). Therefore, you can still use QEMU to debug a Linux kernel
975 with a serial console. Use @key{C-a h} for help on switching between
976 the console and monitor.
977 ETEXI
979 DEF("curses", 0, QEMU_OPTION_curses,
980 "-curses use a curses/ncurses interface instead of SDL\n",
981 QEMU_ARCH_ALL)
982 STEXI
983 @item -curses
984 @findex -curses
985 Normally, QEMU uses SDL to display the VGA output. With this option,
986 QEMU can display the VGA output when in text mode using a
987 curses/ncurses interface. Nothing is displayed in graphical mode.
988 ETEXI
990 DEF("no-frame", 0, QEMU_OPTION_no_frame,
991 "-no-frame open SDL window without a frame and window decorations\n",
992 QEMU_ARCH_ALL)
993 STEXI
994 @item -no-frame
995 @findex -no-frame
996 Do not use decorations for SDL windows and start them using the whole
997 available screen space. This makes the using QEMU in a dedicated desktop
998 workspace more convenient.
999 ETEXI
1001 DEF("alt-grab", 0, QEMU_OPTION_alt_grab,
1002 "-alt-grab use Ctrl-Alt-Shift to grab mouse (instead of Ctrl-Alt)\n",
1003 QEMU_ARCH_ALL)
1004 STEXI
1005 @item -alt-grab
1006 @findex -alt-grab
1007 Use Ctrl-Alt-Shift to grab mouse (instead of Ctrl-Alt). Note that this also
1008 affects the special keys (for fullscreen, monitor-mode switching, etc).
1009 ETEXI
1011 DEF("ctrl-grab", 0, QEMU_OPTION_ctrl_grab,
1012 "-ctrl-grab use Right-Ctrl to grab mouse (instead of Ctrl-Alt)\n",
1013 QEMU_ARCH_ALL)
1014 STEXI
1015 @item -ctrl-grab
1016 @findex -ctrl-grab
1017 Use Right-Ctrl to grab mouse (instead of Ctrl-Alt). Note that this also
1018 affects the special keys (for fullscreen, monitor-mode switching, etc).
1019 ETEXI
1021 DEF("no-quit", 0, QEMU_OPTION_no_quit,
1022 "-no-quit disable SDL window close capability\n", QEMU_ARCH_ALL)
1023 STEXI
1024 @item -no-quit
1025 @findex -no-quit
1026 Disable SDL window close capability.
1027 ETEXI
1029 DEF("sdl", 0, QEMU_OPTION_sdl,
1030 "-sdl enable SDL\n", QEMU_ARCH_ALL)
1031 STEXI
1032 @item -sdl
1033 @findex -sdl
1034 Enable SDL.
1035 ETEXI
1037 DEF("spice", HAS_ARG, QEMU_OPTION_spice,
1038 "-spice [port=port][,tls-port=secured-port][,x509-dir=<dir>]\n"
1039 " [,x509-key-file=<file>][,x509-key-password=<file>]\n"
1040 " [,x509-cert-file=<file>][,x509-cacert-file=<file>]\n"
1041 " [,x509-dh-key-file=<file>][,addr=addr][,ipv4|ipv6|unix]\n"
1042 " [,tls-ciphers=<list>]\n"
1043 " [,tls-channel=[main|display|cursor|inputs|record|playback]]\n"
1044 " [,plaintext-channel=[main|display|cursor|inputs|record|playback]]\n"
1045 " [,sasl][,password=<secret>][,disable-ticketing]\n"
1046 " [,image-compression=[auto_glz|auto_lz|quic|glz|lz|off]]\n"
1047 " [,jpeg-wan-compression=[auto|never|always]]\n"
1048 " [,zlib-glz-wan-compression=[auto|never|always]]\n"
1049 " [,streaming-video=[off|all|filter]][,disable-copy-paste]\n"
1050 " [,disable-agent-file-xfer][,agent-mouse=[on|off]]\n"
1051 " [,playback-compression=[on|off]][,seamless-migration=[on|off]]\n"
1052 " [,gl=[on|off]]\n"
1053 " enable spice\n"
1054 " at least one of {port, tls-port} is mandatory\n",
1055 QEMU_ARCH_ALL)
1056 STEXI
1057 @item -spice @var{option}[,@var{option}[,...]]
1058 @findex -spice
1059 Enable the spice remote desktop protocol. Valid options are
1061 @table @option
1063 @item port=<nr>
1064 Set the TCP port spice is listening on for plaintext channels.
1066 @item addr=<addr>
1067 Set the IP address spice is listening on. Default is any address.
1069 @item ipv4
1070 @itemx ipv6
1071 @itemx unix
1072 Force using the specified IP version.
1074 @item password=<secret>
1075 Set the password you need to authenticate.
1077 @item sasl
1078 Require that the client use SASL to authenticate with the spice.
1079 The exact choice of authentication method used is controlled from the
1080 system / user's SASL configuration file for the 'qemu' service. This
1081 is typically found in /etc/sasl2/qemu.conf. If running QEMU as an
1082 unprivileged user, an environment variable SASL_CONF_PATH can be used
1083 to make it search alternate locations for the service config.
1084 While some SASL auth methods can also provide data encryption (eg GSSAPI),
1085 it is recommended that SASL always be combined with the 'tls' and
1086 'x509' settings to enable use of SSL and server certificates. This
1087 ensures a data encryption preventing compromise of authentication
1088 credentials.
1090 @item disable-ticketing
1091 Allow client connects without authentication.
1093 @item disable-copy-paste
1094 Disable copy paste between the client and the guest.
1096 @item disable-agent-file-xfer
1097 Disable spice-vdagent based file-xfer between the client and the guest.
1099 @item tls-port=<nr>
1100 Set the TCP port spice is listening on for encrypted channels.
1102 @item x509-dir=<dir>
1103 Set the x509 file directory. Expects same filenames as -vnc $display,x509=$dir
1105 @item x509-key-file=<file>
1106 @itemx x509-key-password=<file>
1107 @itemx x509-cert-file=<file>
1108 @itemx x509-cacert-file=<file>
1109 @itemx x509-dh-key-file=<file>
1110 The x509 file names can also be configured individually.
1112 @item tls-ciphers=<list>
1113 Specify which ciphers to use.
1115 @item tls-channel=[main|display|cursor|inputs|record|playback]
1116 @itemx plaintext-channel=[main|display|cursor|inputs|record|playback]
1117 Force specific channel to be used with or without TLS encryption. The
1118 options can be specified multiple times to configure multiple
1119 channels. The special name "default" can be used to set the default
1120 mode. For channels which are not explicitly forced into one mode the
1121 spice client is allowed to pick tls/plaintext as he pleases.
1123 @item image-compression=[auto_glz|auto_lz|quic|glz|lz|off]
1124 Configure image compression (lossless).
1125 Default is auto_glz.
1127 @item jpeg-wan-compression=[auto|never|always]
1128 @itemx zlib-glz-wan-compression=[auto|never|always]
1129 Configure wan image compression (lossy for slow links).
1130 Default is auto.
1132 @item streaming-video=[off|all|filter]
1133 Configure video stream detection. Default is filter.
1135 @item agent-mouse=[on|off]
1136 Enable/disable passing mouse events via vdagent. Default is on.
1138 @item playback-compression=[on|off]
1139 Enable/disable audio stream compression (using celt 0.5.1). Default is on.
1141 @item seamless-migration=[on|off]
1142 Enable/disable spice seamless migration. Default is off.
1144 @item gl=[on|off]
1145 Enable/disable OpenGL context. Default is off.
1147 @end table
1148 ETEXI
1150 DEF("portrait", 0, QEMU_OPTION_portrait,
1151 "-portrait rotate graphical output 90 deg left (only PXA LCD)\n",
1152 QEMU_ARCH_ALL)
1153 STEXI
1154 @item -portrait
1155 @findex -portrait
1156 Rotate graphical output 90 deg left (only PXA LCD).
1157 ETEXI
1159 DEF("rotate", HAS_ARG, QEMU_OPTION_rotate,
1160 "-rotate <deg> rotate graphical output some deg left (only PXA LCD)\n",
1161 QEMU_ARCH_ALL)
1162 STEXI
1163 @item -rotate @var{deg}
1164 @findex -rotate
1165 Rotate graphical output some deg left (only PXA LCD).
1166 ETEXI
1168 DEF("vga", HAS_ARG, QEMU_OPTION_vga,
1169 "-vga [std|cirrus|vmware|qxl|xenfb|tcx|cg3|virtio|none]\n"
1170 " select video card type\n", QEMU_ARCH_ALL)
1171 STEXI
1172 @item -vga @var{type}
1173 @findex -vga
1174 Select type of VGA card to emulate. Valid values for @var{type} are
1175 @table @option
1176 @item cirrus
1177 Cirrus Logic GD5446 Video card. All Windows versions starting from
1178 Windows 95 should recognize and use this graphic card. For optimal
1179 performances, use 16 bit color depth in the guest and the host OS.
1180 (This one is the default)
1181 @item std
1182 Standard VGA card with Bochs VBE extensions. If your guest OS
1183 supports the VESA 2.0 VBE extensions (e.g. Windows XP) and if you want
1184 to use high resolution modes (>= 1280x1024x16) then you should use
1185 this option.
1186 @item vmware
1187 VMWare SVGA-II compatible adapter. Use it if you have sufficiently
1188 recent XFree86/XOrg server or Windows guest with a driver for this
1189 card.
1190 @item qxl
1191 QXL paravirtual graphic card. It is VGA compatible (including VESA
1192 2.0 VBE support). Works best with qxl guest drivers installed though.
1193 Recommended choice when using the spice protocol.
1194 @item tcx
1195 (sun4m only) Sun TCX framebuffer. This is the default framebuffer for
1196 sun4m machines and offers both 8-bit and 24-bit colour depths at a
1197 fixed resolution of 1024x768.
1198 @item cg3
1199 (sun4m only) Sun cgthree framebuffer. This is a simple 8-bit framebuffer
1200 for sun4m machines available in both 1024x768 (OpenBIOS) and 1152x900 (OBP)
1201 resolutions aimed at people wishing to run older Solaris versions.
1202 @item virtio
1203 Virtio VGA card.
1204 @item none
1205 Disable VGA card.
1206 @end table
1207 ETEXI
1209 DEF("full-screen", 0, QEMU_OPTION_full_screen,
1210 "-full-screen start in full screen\n", QEMU_ARCH_ALL)
1211 STEXI
1212 @item -full-screen
1213 @findex -full-screen
1214 Start in full screen.
1215 ETEXI
1217 DEF("g", 1, QEMU_OPTION_g ,
1218 "-g WxH[xDEPTH] Set the initial graphical resolution and depth\n",
1219 QEMU_ARCH_PPC | QEMU_ARCH_SPARC)
1220 STEXI
1221 @item -g @var{width}x@var{height}[x@var{depth}]
1222 @findex -g
1223 Set the initial graphical resolution and depth (PPC, SPARC only).
1224 ETEXI
1226 DEF("vnc", HAS_ARG, QEMU_OPTION_vnc ,
1227 "-vnc display start a VNC server on display\n", QEMU_ARCH_ALL)
1228 STEXI
1229 @item -vnc @var{display}[,@var{option}[,@var{option}[,...]]]
1230 @findex -vnc
1231 Normally, QEMU uses SDL to display the VGA output. With this option,
1232 you can have QEMU listen on VNC display @var{display} and redirect the VGA
1233 display over the VNC session. It is very useful to enable the usb
1234 tablet device when using this option (option @option{-usbdevice
1235 tablet}). When using the VNC display, you must use the @option{-k}
1236 parameter to set the keyboard layout if you are not using en-us. Valid
1237 syntax for the @var{display} is
1239 @table @option
1241 @item to=@var{L}
1243 With this option, QEMU will try next available VNC @var{display}s, until the
1244 number @var{L}, if the origianlly defined "-vnc @var{display}" is not
1245 available, e.g. port 5900+@var{display} is already used by another
1246 application. By default, to=0.
1248 @item @var{host}:@var{d}
1250 TCP connections will only be allowed from @var{host} on display @var{d}.
1251 By convention the TCP port is 5900+@var{d}. Optionally, @var{host} can
1252 be omitted in which case the server will accept connections from any host.
1254 @item unix:@var{path}
1256 Connections will be allowed over UNIX domain sockets where @var{path} is the
1257 location of a unix socket to listen for connections on.
1259 @item none
1261 VNC is initialized but not started. The monitor @code{change} command
1262 can be used to later start the VNC server.
1264 @end table
1266 Following the @var{display} value there may be one or more @var{option} flags
1267 separated by commas. Valid options are
1269 @table @option
1271 @item reverse
1273 Connect to a listening VNC client via a ``reverse'' connection. The
1274 client is specified by the @var{display}. For reverse network
1275 connections (@var{host}:@var{d},@code{reverse}), the @var{d} argument
1276 is a TCP port number, not a display number.
1278 @item websocket
1280 Opens an additional TCP listening port dedicated to VNC Websocket connections.
1281 By definition the Websocket port is 5700+@var{display}. If @var{host} is
1282 specified connections will only be allowed from this host.
1283 As an alternative the Websocket port could be specified by using
1284 @code{websocket}=@var{port}.
1285 If no TLS credentials are provided, the websocket connection runs in
1286 unencrypted mode. If TLS credentials are provided, the websocket connection
1287 requires encrypted client connections.
1289 @item password
1291 Require that password based authentication is used for client connections.
1293 The password must be set separately using the @code{set_password} command in
1294 the @ref{pcsys_monitor}. The syntax to change your password is:
1295 @code{set_password <protocol> <password>} where <protocol> could be either
1296 "vnc" or "spice".
1298 If you would like to change <protocol> password expiration, you should use
1299 @code{expire_password <protocol> <expiration-time>} where expiration time could
1300 be one of the following options: now, never, +seconds or UNIX time of
1301 expiration, e.g. +60 to make password expire in 60 seconds, or 1335196800
1302 to make password expire on "Mon Apr 23 12:00:00 EDT 2012" (UNIX time for this
1303 date and time).
1305 You can also use keywords "now" or "never" for the expiration time to
1306 allow <protocol> password to expire immediately or never expire.
1308 @item tls-creds=@var{ID}
1310 Provides the ID of a set of TLS credentials to use to secure the
1311 VNC server. They will apply to both the normal VNC server socket
1312 and the websocket socket (if enabled). Setting TLS credentials
1313 will cause the VNC server socket to enable the VeNCrypt auth
1314 mechanism. The credentials should have been previously created
1315 using the @option{-object tls-creds} argument.
1317 The @option{tls-creds} parameter obsoletes the @option{tls},
1318 @option{x509}, and @option{x509verify} options, and as such
1319 it is not permitted to set both new and old type options at
1320 the same time.
1322 @item tls
1324 Require that client use TLS when communicating with the VNC server. This
1325 uses anonymous TLS credentials so is susceptible to a man-in-the-middle
1326 attack. It is recommended that this option be combined with either the
1327 @option{x509} or @option{x509verify} options.
1329 This option is now deprecated in favor of using the @option{tls-creds}
1330 argument.
1332 @item x509=@var{/path/to/certificate/dir}
1334 Valid if @option{tls} is specified. Require that x509 credentials are used
1335 for negotiating the TLS session. The server will send its x509 certificate
1336 to the client. It is recommended that a password be set on the VNC server
1337 to provide authentication of the client when this is used. The path following
1338 this option specifies where the x509 certificates are to be loaded from.
1339 See the @ref{vnc_security} section for details on generating certificates.
1341 This option is now deprecated in favour of using the @option{tls-creds}
1342 argument.
1344 @item x509verify=@var{/path/to/certificate/dir}
1346 Valid if @option{tls} is specified. Require that x509 credentials are used
1347 for negotiating the TLS session. The server will send its x509 certificate
1348 to the client, and request that the client send its own x509 certificate.
1349 The server will validate the client's certificate against the CA certificate,
1350 and reject clients when validation fails. If the certificate authority is
1351 trusted, this is a sufficient authentication mechanism. You may still wish
1352 to set a password on the VNC server as a second authentication layer. The
1353 path following this option specifies where the x509 certificates are to
1354 be loaded from. See the @ref{vnc_security} section for details on generating
1355 certificates.
1357 This option is now deprecated in favour of using the @option{tls-creds}
1358 argument.
1360 @item sasl
1362 Require that the client use SASL to authenticate with the VNC server.
1363 The exact choice of authentication method used is controlled from the
1364 system / user's SASL configuration file for the 'qemu' service. This
1365 is typically found in /etc/sasl2/qemu.conf. If running QEMU as an
1366 unprivileged user, an environment variable SASL_CONF_PATH can be used
1367 to make it search alternate locations for the service config.
1368 While some SASL auth methods can also provide data encryption (eg GSSAPI),
1369 it is recommended that SASL always be combined with the 'tls' and
1370 'x509' settings to enable use of SSL and server certificates. This
1371 ensures a data encryption preventing compromise of authentication
1372 credentials. See the @ref{vnc_security} section for details on using
1373 SASL authentication.
1375 @item acl
1377 Turn on access control lists for checking of the x509 client certificate
1378 and SASL party. For x509 certs, the ACL check is made against the
1379 certificate's distinguished name. This is something that looks like
1380 @code{C=GB,O=ACME,L=Boston,CN=bob}. For SASL party, the ACL check is
1381 made against the username, which depending on the SASL plugin, may
1382 include a realm component, eg @code{bob} or @code{bob@@EXAMPLE.COM}.
1383 When the @option{acl} flag is set, the initial access list will be
1384 empty, with a @code{deny} policy. Thus no one will be allowed to
1385 use the VNC server until the ACLs have been loaded. This can be
1386 achieved using the @code{acl} monitor command.
1388 @item lossy
1390 Enable lossy compression methods (gradient, JPEG, ...). If this
1391 option is set, VNC client may receive lossy framebuffer updates
1392 depending on its encoding settings. Enabling this option can save
1393 a lot of bandwidth at the expense of quality.
1395 @item non-adaptive
1397 Disable adaptive encodings. Adaptive encodings are enabled by default.
1398 An adaptive encoding will try to detect frequently updated screen regions,
1399 and send updates in these regions using a lossy encoding (like JPEG).
1400 This can be really helpful to save bandwidth when playing videos. Disabling
1401 adaptive encodings restores the original static behavior of encodings
1402 like Tight.
1404 @item share=[allow-exclusive|force-shared|ignore]
1406 Set display sharing policy. 'allow-exclusive' allows clients to ask
1407 for exclusive access. As suggested by the rfb spec this is
1408 implemented by dropping other connections. Connecting multiple
1409 clients in parallel requires all clients asking for a shared session
1410 (vncviewer: -shared switch). This is the default. 'force-shared'
1411 disables exclusive client access. Useful for shared desktop sessions,
1412 where you don't want someone forgetting specify -shared disconnect
1413 everybody else. 'ignore' completely ignores the shared flag and
1414 allows everybody connect unconditionally. Doesn't conform to the rfb
1415 spec but is traditional QEMU behavior.
1417 @item key-delay-ms
1419 Set keyboard delay, for key down and key up events, in milliseconds.
1420 Default is 1. Keyboards are low-bandwidth devices, so this slowdown
1421 can help the device and guest to keep up and not lose events in case
1422 events are arriving in bulk. Possible causes for the latter are flaky
1423 network connections, or scripts for automated testing.
1425 @end table
1426 ETEXI
1428 STEXI
1429 @end table
1430 ETEXI
1431 ARCHHEADING(, QEMU_ARCH_I386)
1433 ARCHHEADING(i386 target only:, QEMU_ARCH_I386)
1434 STEXI
1435 @table @option
1436 ETEXI
1438 DEF("win2k-hack", 0, QEMU_OPTION_win2k_hack,
1439 "-win2k-hack use it when installing Windows 2000 to avoid a disk full bug\n",
1440 QEMU_ARCH_I386)
1441 STEXI
1442 @item -win2k-hack
1443 @findex -win2k-hack
1444 Use it when installing Windows 2000 to avoid a disk full bug. After
1445 Windows 2000 is installed, you no longer need this option (this option
1446 slows down the IDE transfers).
1447 ETEXI
1449 HXCOMM Deprecated by -rtc
1450 DEF("rtc-td-hack", 0, QEMU_OPTION_rtc_td_hack, "", QEMU_ARCH_I386)
1452 DEF("no-fd-bootchk", 0, QEMU_OPTION_no_fd_bootchk,
1453 "-no-fd-bootchk disable boot signature checking for floppy disks\n",
1454 QEMU_ARCH_I386)
1455 STEXI
1456 @item -no-fd-bootchk
1457 @findex -no-fd-bootchk
1458 Disable boot signature checking for floppy disks in BIOS. May
1459 be needed to boot from old floppy disks.
1460 ETEXI
1462 DEF("no-acpi", 0, QEMU_OPTION_no_acpi,
1463 "-no-acpi disable ACPI\n", QEMU_ARCH_I386 | QEMU_ARCH_ARM)
1464 STEXI
1465 @item -no-acpi
1466 @findex -no-acpi
1467 Disable ACPI (Advanced Configuration and Power Interface) support. Use
1468 it if your guest OS complains about ACPI problems (PC target machine
1469 only).
1470 ETEXI
1472 DEF("no-hpet", 0, QEMU_OPTION_no_hpet,
1473 "-no-hpet disable HPET\n", QEMU_ARCH_I386)
1474 STEXI
1475 @item -no-hpet
1476 @findex -no-hpet
1477 Disable HPET support.
1478 ETEXI
1480 DEF("acpitable", HAS_ARG, QEMU_OPTION_acpitable,
1481 "-acpitable [sig=str][,rev=n][,oem_id=str][,oem_table_id=str][,oem_rev=n][,asl_compiler_id=str][,asl_compiler_rev=n][,{data|file}=file1[:file2]...]\n"
1482 " ACPI table description\n", QEMU_ARCH_I386)
1483 STEXI
1484 @item -acpitable [sig=@var{str}][,rev=@var{n}][,oem_id=@var{str}][,oem_table_id=@var{str}][,oem_rev=@var{n}] [,asl_compiler_id=@var{str}][,asl_compiler_rev=@var{n}][,data=@var{file1}[:@var{file2}]...]
1485 @findex -acpitable
1486 Add ACPI table with specified header fields and context from specified files.
1487 For file=, take whole ACPI table from the specified files, including all
1488 ACPI headers (possible overridden by other options).
1489 For data=, only data
1490 portion of the table is used, all header information is specified in the
1491 command line.
1492 If a SLIC table is supplied to QEMU, then the SLIC's oem_id and oem_table_id
1493 fields will override the same in the RSDT and the FADT (a.k.a. FACP), in order
1494 to ensure the field matches required by the Microsoft SLIC spec and the ACPI
1495 spec.
1496 ETEXI
1498 DEF("smbios", HAS_ARG, QEMU_OPTION_smbios,
1499 "-smbios file=binary\n"
1500 " load SMBIOS entry from binary file\n"
1501 "-smbios type=0[,vendor=str][,version=str][,date=str][,release=%d.%d]\n"
1502 " [,uefi=on|off]\n"
1503 " specify SMBIOS type 0 fields\n"
1504 "-smbios type=1[,manufacturer=str][,product=str][,version=str][,serial=str]\n"
1505 " [,uuid=uuid][,sku=str][,family=str]\n"
1506 " specify SMBIOS type 1 fields\n"
1507 "-smbios type=2[,manufacturer=str][,product=str][,version=str][,serial=str]\n"
1508 " [,asset=str][,location=str]\n"
1509 " specify SMBIOS type 2 fields\n"
1510 "-smbios type=3[,manufacturer=str][,version=str][,serial=str][,asset=str]\n"
1511 " [,sku=str]\n"
1512 " specify SMBIOS type 3 fields\n"
1513 "-smbios type=4[,sock_pfx=str][,manufacturer=str][,version=str][,serial=str]\n"
1514 " [,asset=str][,part=str]\n"
1515 " specify SMBIOS type 4 fields\n"
1516 "-smbios type=17[,loc_pfx=str][,bank=str][,manufacturer=str][,serial=str]\n"
1517 " [,asset=str][,part=str][,speed=%d]\n"
1518 " specify SMBIOS type 17 fields\n",
1519 QEMU_ARCH_I386 | QEMU_ARCH_ARM)
1520 STEXI
1521 @item -smbios file=@var{binary}
1522 @findex -smbios
1523 Load SMBIOS entry from binary file.
1525 @item -smbios type=0[,vendor=@var{str}][,version=@var{str}][,date=@var{str}][,release=@var{%d.%d}][,uefi=on|off]
1526 Specify SMBIOS type 0 fields
1528 @item -smbios type=1[,manufacturer=@var{str}][,product=@var{str}][,version=@var{str}][,serial=@var{str}][,uuid=@var{uuid}][,sku=@var{str}][,family=@var{str}]
1529 Specify SMBIOS type 1 fields
1531 @item -smbios type=2[,manufacturer=@var{str}][,product=@var{str}][,version=@var{str}][,serial=@var{str}][,asset=@var{str}][,location=@var{str}][,family=@var{str}]
1532 Specify SMBIOS type 2 fields
1534 @item -smbios type=3[,manufacturer=@var{str}][,version=@var{str}][,serial=@var{str}][,asset=@var{str}][,sku=@var{str}]
1535 Specify SMBIOS type 3 fields
1537 @item -smbios type=4[,sock_pfx=@var{str}][,manufacturer=@var{str}][,version=@var{str}][,serial=@var{str}][,asset=@var{str}][,part=@var{str}]
1538 Specify SMBIOS type 4 fields
1540 @item -smbios type=17[,loc_pfx=@var{str}][,bank=@var{str}][,manufacturer=@var{str}][,serial=@var{str}][,asset=@var{str}][,part=@var{str}][,speed=@var{%d}]
1541 Specify SMBIOS type 17 fields
1542 ETEXI
1544 STEXI
1545 @end table
1546 ETEXI
1547 DEFHEADING()
1549 DEFHEADING(Network options:)
1550 STEXI
1551 @table @option
1552 ETEXI
1554 HXCOMM Legacy slirp options (now moved to -net user):
1555 #ifdef CONFIG_SLIRP
1556 DEF("tftp", HAS_ARG, QEMU_OPTION_tftp, "", QEMU_ARCH_ALL)
1557 DEF("bootp", HAS_ARG, QEMU_OPTION_bootp, "", QEMU_ARCH_ALL)
1558 DEF("redir", HAS_ARG, QEMU_OPTION_redir, "", QEMU_ARCH_ALL)
1559 #ifndef _WIN32
1560 DEF("smb", HAS_ARG, QEMU_OPTION_smb, "", QEMU_ARCH_ALL)
1561 #endif
1562 #endif
1564 DEF("netdev", HAS_ARG, QEMU_OPTION_netdev,
1565 #ifdef CONFIG_SLIRP
1566 "-netdev user,id=str[,ipv4[=on|off]][,net=addr[/mask]][,host=addr]\n"
1567 " [,ipv6[=on|off]][,ipv6-net=addr[/int]][,ipv6-host=addr]\n"
1568 " [,restrict=on|off][,hostname=host][,dhcpstart=addr]\n"
1569 " [,dns=addr][,ipv6-dns=addr][,dnssearch=domain][,tftp=dir]\n"
1570 " [,bootfile=f][,hostfwd=rule][,guestfwd=rule]"
1571 #ifndef _WIN32
1572 "[,smb=dir[,smbserver=addr]]\n"
1573 #endif
1574 " configure a user mode network backend with ID 'str',\n"
1575 " its DHCP server and optional services\n"
1576 #endif
1577 #ifdef _WIN32
1578 "-netdev tap,id=str,ifname=name\n"
1579 " configure a host TAP network backend with ID 'str'\n"
1580 #else
1581 "-netdev tap,id=str[,fd=h][,fds=x:y:...:z][,ifname=name][,script=file][,downscript=dfile]\n"
1582 " [,helper=helper][,sndbuf=nbytes][,vnet_hdr=on|off][,vhost=on|off]\n"
1583 " [,vhostfd=h][,vhostfds=x:y:...:z][,vhostforce=on|off][,queues=n]\n"
1584 " [,poll-us=n]\n"
1585 " configure a host TAP network backend with ID 'str'\n"
1586 " use network scripts 'file' (default=" DEFAULT_NETWORK_SCRIPT ")\n"
1587 " to configure it and 'dfile' (default=" DEFAULT_NETWORK_DOWN_SCRIPT ")\n"
1588 " to deconfigure it\n"
1589 " use '[down]script=no' to disable script execution\n"
1590 " use network helper 'helper' (default=" DEFAULT_BRIDGE_HELPER ") to\n"
1591 " configure it\n"
1592 " use 'fd=h' to connect to an already opened TAP interface\n"
1593 " use 'fds=x:y:...:z' to connect to already opened multiqueue capable TAP interfaces\n"
1594 " use 'sndbuf=nbytes' to limit the size of the send buffer (the\n"
1595 " default is disabled 'sndbuf=0' to enable flow control set 'sndbuf=1048576')\n"
1596 " use vnet_hdr=off to avoid enabling the IFF_VNET_HDR tap flag\n"
1597 " use vnet_hdr=on to make the lack of IFF_VNET_HDR support an error condition\n"
1598 " use vhost=on to enable experimental in kernel accelerator\n"
1599 " (only has effect for virtio guests which use MSIX)\n"
1600 " use vhostforce=on to force vhost on for non-MSIX virtio guests\n"
1601 " use 'vhostfd=h' to connect to an already opened vhost net device\n"
1602 " use 'vhostfds=x:y:...:z to connect to multiple already opened vhost net devices\n"
1603 " use 'queues=n' to specify the number of queues to be created for multiqueue TAP\n"
1604 " use 'poll-us=n' to speciy the maximum number of microseconds that could be\n"
1605 " spent on busy polling for vhost net\n"
1606 "-netdev bridge,id=str[,br=bridge][,helper=helper]\n"
1607 " configure a host TAP network backend with ID 'str' that is\n"
1608 " connected to a bridge (default=" DEFAULT_BRIDGE_INTERFACE ")\n"
1609 " using the program 'helper (default=" DEFAULT_BRIDGE_HELPER ")\n"
1610 #endif
1611 #ifdef __linux__
1612 "-netdev l2tpv3,id=str,src=srcaddr,dst=dstaddr[,srcport=srcport][,dstport=dstport]\n"
1613 " [,rxsession=rxsession],txsession=txsession[,ipv6=on/off][,udp=on/off]\n"
1614 " [,cookie64=on/off][,counter][,pincounter][,txcookie=txcookie]\n"
1615 " [,rxcookie=rxcookie][,offset=offset]\n"
1616 " configure a network backend with ID 'str' connected to\n"
1617 " an Ethernet over L2TPv3 pseudowire.\n"
1618 " Linux kernel 3.3+ as well as most routers can talk\n"
1619 " L2TPv3. This transport allows connecting a VM to a VM,\n"
1620 " VM to a router and even VM to Host. It is a nearly-universal\n"
1621 " standard (RFC3391). Note - this implementation uses static\n"
1622 " pre-configured tunnels (same as the Linux kernel).\n"
1623 " use 'src=' to specify source address\n"
1624 " use 'dst=' to specify destination address\n"
1625 " use 'udp=on' to specify udp encapsulation\n"
1626 " use 'srcport=' to specify source udp port\n"
1627 " use 'dstport=' to specify destination udp port\n"
1628 " use 'ipv6=on' to force v6\n"
1629 " L2TPv3 uses cookies to prevent misconfiguration as\n"
1630 " well as a weak security measure\n"
1631 " use 'rxcookie=0x012345678' to specify a rxcookie\n"
1632 " use 'txcookie=0x012345678' to specify a txcookie\n"
1633 " use 'cookie64=on' to set cookie size to 64 bit, otherwise 32\n"
1634 " use 'counter=off' to force a 'cut-down' L2TPv3 with no counter\n"
1635 " use 'pincounter=on' to work around broken counter handling in peer\n"
1636 " use 'offset=X' to add an extra offset between header and data\n"
1637 #endif
1638 "-netdev socket,id=str[,fd=h][,listen=[host]:port][,connect=host:port]\n"
1639 " configure a network backend to connect to another network\n"
1640 " using a socket connection\n"
1641 "-netdev socket,id=str[,fd=h][,mcast=maddr:port[,localaddr=addr]]\n"
1642 " configure a network backend to connect to a multicast maddr and port\n"
1643 " use 'localaddr=addr' to specify the host address to send packets from\n"
1644 "-netdev socket,id=str[,fd=h][,udp=host:port][,localaddr=host:port]\n"
1645 " configure a network backend to connect to another network\n"
1646 " using an UDP tunnel\n"
1647 #ifdef CONFIG_VDE
1648 "-netdev vde,id=str[,sock=socketpath][,port=n][,group=groupname][,mode=octalmode]\n"
1649 " configure a network backend to connect to port 'n' of a vde switch\n"
1650 " running on host and listening for incoming connections on 'socketpath'.\n"
1651 " Use group 'groupname' and mode 'octalmode' to change default\n"
1652 " ownership and permissions for communication port.\n"
1653 #endif
1654 #ifdef CONFIG_NETMAP
1655 "-netdev netmap,id=str,ifname=name[,devname=nmname]\n"
1656 " attach to the existing netmap-enabled network interface 'name', or to a\n"
1657 " VALE port (created on the fly) called 'name' ('nmname' is name of the \n"
1658 " netmap device, defaults to '/dev/netmap')\n"
1659 #endif
1660 "-netdev vhost-user,id=str,chardev=dev[,vhostforce=on|off]\n"
1661 " configure a vhost-user network, backed by a chardev 'dev'\n"
1662 "-netdev hubport,id=str,hubid=n\n"
1663 " configure a hub port on QEMU VLAN 'n'\n", QEMU_ARCH_ALL)
1664 DEF("net", HAS_ARG, QEMU_OPTION_net,
1665 "-net nic[,vlan=n][,macaddr=mac][,model=type][,name=str][,addr=str][,vectors=v]\n"
1666 " old way to create a new NIC and connect it to VLAN 'n'\n"
1667 " (use the '-device devtype,netdev=str' option if possible instead)\n"
1668 "-net dump[,vlan=n][,file=f][,len=n]\n"
1669 " dump traffic on vlan 'n' to file 'f' (max n bytes per packet)\n"
1670 "-net none use it alone to have zero network devices. If no -net option\n"
1671 " is provided, the default is '-net nic -net user'\n"
1672 "-net ["
1673 #ifdef CONFIG_SLIRP
1674 "user|"
1675 #endif
1676 "tap|"
1677 "bridge|"
1678 #ifdef CONFIG_VDE
1679 "vde|"
1680 #endif
1681 #ifdef CONFIG_NETMAP
1682 "netmap|"
1683 #endif
1684 "socket][,vlan=n][,option][,option][,...]\n"
1685 " old way to initialize a host network interface\n"
1686 " (use the -netdev option if possible instead)\n", QEMU_ARCH_ALL)
1687 STEXI
1688 @item -net nic[,vlan=@var{n}][,macaddr=@var{mac}][,model=@var{type}] [,name=@var{name}][,addr=@var{addr}][,vectors=@var{v}]
1689 @findex -net
1690 Create a new Network Interface Card and connect it to VLAN @var{n} (@var{n}
1691 = 0 is the default). The NIC is an e1000 by default on the PC
1692 target. Optionally, the MAC address can be changed to @var{mac}, the
1693 device address set to @var{addr} (PCI cards only),
1694 and a @var{name} can be assigned for use in monitor commands.
1695 Optionally, for PCI cards, you can specify the number @var{v} of MSI-X vectors
1696 that the card should have; this option currently only affects virtio cards; set
1697 @var{v} = 0 to disable MSI-X. If no @option{-net} option is specified, a single
1698 NIC is created. QEMU can emulate several different models of network card.
1699 Valid values for @var{type} are
1700 @code{virtio}, @code{i82551}, @code{i82557b}, @code{i82559er},
1701 @code{ne2k_pci}, @code{ne2k_isa}, @code{pcnet}, @code{rtl8139},
1702 @code{e1000}, @code{smc91c111}, @code{lance} and @code{mcf_fec}.
1703 Not all devices are supported on all targets. Use @code{-net nic,model=help}
1704 for a list of available devices for your target.
1706 @item -netdev user,id=@var{id}[,@var{option}][,@var{option}][,...]
1707 @findex -netdev
1708 @item -net user[,@var{option}][,@var{option}][,...]
1709 Use the user mode network stack which requires no administrator
1710 privilege to run. Valid options are:
1712 @table @option
1713 @item vlan=@var{n}
1714 Connect user mode stack to VLAN @var{n} (@var{n} = 0 is the default).
1716 @item id=@var{id}
1717 @itemx name=@var{name}
1718 Assign symbolic name for use in monitor commands.
1720 @option{ipv4} and @option{ipv6} specify that either IPv4 or IPv6 must
1721 be enabled. If neither is specified both protocols are enabled.
1723 @item net=@var{addr}[/@var{mask}]
1724 Set IP network address the guest will see. Optionally specify the netmask,
1725 either in the form a.b.c.d or as number of valid top-most bits. Default is
1726 10.0.2.0/24.
1728 @item host=@var{addr}
1729 Specify the guest-visible address of the host. Default is the 2nd IP in the
1730 guest network, i.e. x.x.x.2.
1732 @item ipv6-net=@var{addr}[/@var{int}]
1733 Set IPv6 network address the guest will see (default is fec0::/64). The
1734 network prefix is given in the usual hexadecimal IPv6 address
1735 notation. The prefix size is optional, and is given as the number of
1736 valid top-most bits (default is 64).
1738 @item ipv6-host=@var{addr}
1739 Specify the guest-visible IPv6 address of the host. Default is the 2nd IPv6 in
1740 the guest network, i.e. xxxx::2.
1742 @item restrict=on|off
1743 If this option is enabled, the guest will be isolated, i.e. it will not be
1744 able to contact the host and no guest IP packets will be routed over the host
1745 to the outside. This option does not affect any explicitly set forwarding rules.
1747 @item hostname=@var{name}
1748 Specifies the client hostname reported by the built-in DHCP server.
1750 @item dhcpstart=@var{addr}
1751 Specify the first of the 16 IPs the built-in DHCP server can assign. Default
1752 is the 15th to 31st IP in the guest network, i.e. x.x.x.15 to x.x.x.31.
1754 @item dns=@var{addr}
1755 Specify the guest-visible address of the virtual nameserver. The address must
1756 be different from the host address. Default is the 3rd IP in the guest network,
1757 i.e. x.x.x.3.
1759 @item ipv6-dns=@var{addr}
1760 Specify the guest-visible address of the IPv6 virtual nameserver. The address
1761 must be different from the host address. Default is the 3rd IP in the guest
1762 network, i.e. xxxx::3.
1764 @item dnssearch=@var{domain}
1765 Provides an entry for the domain-search list sent by the built-in
1766 DHCP server. More than one domain suffix can be transmitted by specifying
1767 this option multiple times. If supported, this will cause the guest to
1768 automatically try to append the given domain suffix(es) in case a domain name
1769 can not be resolved.
1771 Example:
1772 @example
1773 qemu -net user,dnssearch=mgmt.example.org,dnssearch=example.org [...]
1774 @end example
1776 @item tftp=@var{dir}
1777 When using the user mode network stack, activate a built-in TFTP
1778 server. The files in @var{dir} will be exposed as the root of a TFTP server.
1779 The TFTP client on the guest must be configured in binary mode (use the command
1780 @code{bin} of the Unix TFTP client).
1782 @item bootfile=@var{file}
1783 When using the user mode network stack, broadcast @var{file} as the BOOTP
1784 filename. In conjunction with @option{tftp}, this can be used to network boot
1785 a guest from a local directory.
1787 Example (using pxelinux):
1788 @example
1789 qemu-system-i386 -hda linux.img -boot n -net user,tftp=/path/to/tftp/files,bootfile=/pxelinux.0
1790 @end example
1792 @item smb=@var{dir}[,smbserver=@var{addr}]
1793 When using the user mode network stack, activate a built-in SMB
1794 server so that Windows OSes can access to the host files in @file{@var{dir}}
1795 transparently. The IP address of the SMB server can be set to @var{addr}. By
1796 default the 4th IP in the guest network is used, i.e. x.x.x.4.
1798 In the guest Windows OS, the line:
1799 @example
1800 10.0.2.4 smbserver
1801 @end example
1802 must be added in the file @file{C:\WINDOWS\LMHOSTS} (for windows 9x/Me)
1803 or @file{C:\WINNT\SYSTEM32\DRIVERS\ETC\LMHOSTS} (Windows NT/2000).
1805 Then @file{@var{dir}} can be accessed in @file{\\smbserver\qemu}.
1807 Note that a SAMBA server must be installed on the host OS.
1808 QEMU was tested successfully with smbd versions from Red Hat 9,
1809 Fedora Core 3 and OpenSUSE 11.x.
1811 @item hostfwd=[tcp|udp]:[@var{hostaddr}]:@var{hostport}-[@var{guestaddr}]:@var{guestport}
1812 Redirect incoming TCP or UDP connections to the host port @var{hostport} to
1813 the guest IP address @var{guestaddr} on guest port @var{guestport}. If
1814 @var{guestaddr} is not specified, its value is x.x.x.15 (default first address
1815 given by the built-in DHCP server). By specifying @var{hostaddr}, the rule can
1816 be bound to a specific host interface. If no connection type is set, TCP is
1817 used. This option can be given multiple times.
1819 For example, to redirect host X11 connection from screen 1 to guest
1820 screen 0, use the following:
1822 @example
1823 # on the host
1824 qemu-system-i386 -net user,hostfwd=tcp:127.0.0.1:6001-:6000 [...]
1825 # this host xterm should open in the guest X11 server
1826 xterm -display :1
1827 @end example
1829 To redirect telnet connections from host port 5555 to telnet port on
1830 the guest, use the following:
1832 @example
1833 # on the host
1834 qemu-system-i386 -net user,hostfwd=tcp::5555-:23 [...]
1835 telnet localhost 5555
1836 @end example
1838 Then when you use on the host @code{telnet localhost 5555}, you
1839 connect to the guest telnet server.
1841 @item guestfwd=[tcp]:@var{server}:@var{port}-@var{dev}
1842 @itemx guestfwd=[tcp]:@var{server}:@var{port}-@var{cmd:command}
1843 Forward guest TCP connections to the IP address @var{server} on port @var{port}
1844 to the character device @var{dev} or to a program executed by @var{cmd:command}
1845 which gets spawned for each connection. This option can be given multiple times.
1847 You can either use a chardev directly and have that one used throughout QEMU's
1848 lifetime, like in the following example:
1850 @example
1851 # open 10.10.1.1:4321 on bootup, connect 10.0.2.100:1234 to it whenever
1852 # the guest accesses it
1853 qemu -net user,guestfwd=tcp:10.0.2.100:1234-tcp:10.10.1.1:4321 [...]
1854 @end example
1856 Or you can execute a command on every TCP connection established by the guest,
1857 so that QEMU behaves similar to an inetd process for that virtual server:
1859 @example
1860 # call "netcat 10.10.1.1 4321" on every TCP connection to 10.0.2.100:1234
1861 # and connect the TCP stream to its stdin/stdout
1862 qemu -net 'user,guestfwd=tcp:10.0.2.100:1234-cmd:netcat 10.10.1.1 4321'
1863 @end example
1865 @end table
1867 Note: Legacy stand-alone options -tftp, -bootp, -smb and -redir are still
1868 processed and applied to -net user. Mixing them with the new configuration
1869 syntax gives undefined results. Their use for new applications is discouraged
1870 as they will be removed from future versions.
1872 @item -netdev tap,id=@var{id}[,fd=@var{h}][,ifname=@var{name}][,script=@var{file}][,downscript=@var{dfile}][,helper=@var{helper}]
1873 @itemx -net tap[,vlan=@var{n}][,name=@var{name}][,fd=@var{h}][,ifname=@var{name}][,script=@var{file}][,downscript=@var{dfile}][,helper=@var{helper}]
1874 Connect the host TAP network interface @var{name} to VLAN @var{n}.
1876 Use the network script @var{file} to configure it and the network script
1877 @var{dfile} to deconfigure it. If @var{name} is not provided, the OS
1878 automatically provides one. The default network configure script is
1879 @file{/etc/qemu-ifup} and the default network deconfigure script is
1880 @file{/etc/qemu-ifdown}. Use @option{script=no} or @option{downscript=no}
1881 to disable script execution.
1883 If running QEMU as an unprivileged user, use the network helper
1884 @var{helper} to configure the TAP interface. The default network
1885 helper executable is @file{/path/to/qemu-bridge-helper}.
1887 @option{fd}=@var{h} can be used to specify the handle of an already
1888 opened host TAP interface.
1890 Examples:
1892 @example
1893 #launch a QEMU instance with the default network script
1894 qemu-system-i386 linux.img -net nic -net tap
1895 @end example
1897 @example
1898 #launch a QEMU instance with two NICs, each one connected
1899 #to a TAP device
1900 qemu-system-i386 linux.img \
1901 -net nic,vlan=0 -net tap,vlan=0,ifname=tap0 \
1902 -net nic,vlan=1 -net tap,vlan=1,ifname=tap1
1903 @end example
1905 @example
1906 #launch a QEMU instance with the default network helper to
1907 #connect a TAP device to bridge br0
1908 qemu-system-i386 linux.img \
1909 -net nic -net tap,"helper=/path/to/qemu-bridge-helper"
1910 @end example
1912 @item -netdev bridge,id=@var{id}[,br=@var{bridge}][,helper=@var{helper}]
1913 @itemx -net bridge[,vlan=@var{n}][,name=@var{name}][,br=@var{bridge}][,helper=@var{helper}]
1914 Connect a host TAP network interface to a host bridge device.
1916 Use the network helper @var{helper} to configure the TAP interface and
1917 attach it to the bridge. The default network helper executable is
1918 @file{/path/to/qemu-bridge-helper} and the default bridge
1919 device is @file{br0}.
1921 Examples:
1923 @example
1924 #launch a QEMU instance with the default network helper to
1925 #connect a TAP device to bridge br0
1926 qemu-system-i386 linux.img -net bridge -net nic,model=virtio
1927 @end example
1929 @example
1930 #launch a QEMU instance with the default network helper to
1931 #connect a TAP device to bridge qemubr0
1932 qemu-system-i386 linux.img -net bridge,br=qemubr0 -net nic,model=virtio
1933 @end example
1935 @item -netdev socket,id=@var{id}[,fd=@var{h}][,listen=[@var{host}]:@var{port}][,connect=@var{host}:@var{port}]
1936 @itemx -net socket[,vlan=@var{n}][,name=@var{name}][,fd=@var{h}] [,listen=[@var{host}]:@var{port}][,connect=@var{host}:@var{port}]
1938 Connect the VLAN @var{n} to a remote VLAN in another QEMU virtual
1939 machine using a TCP socket connection. If @option{listen} is
1940 specified, QEMU waits for incoming connections on @var{port}
1941 (@var{host} is optional). @option{connect} is used to connect to
1942 another QEMU instance using the @option{listen} option. @option{fd}=@var{h}
1943 specifies an already opened TCP socket.
1945 Example:
1946 @example
1947 # launch a first QEMU instance
1948 qemu-system-i386 linux.img \
1949 -net nic,macaddr=52:54:00:12:34:56 \
1950 -net socket,listen=:1234
1951 # connect the VLAN 0 of this instance to the VLAN 0
1952 # of the first instance
1953 qemu-system-i386 linux.img \
1954 -net nic,macaddr=52:54:00:12:34:57 \
1955 -net socket,connect=127.0.0.1:1234
1956 @end example
1958 @item -netdev socket,id=@var{id}[,fd=@var{h}][,mcast=@var{maddr}:@var{port}[,localaddr=@var{addr}]]
1959 @itemx -net socket[,vlan=@var{n}][,name=@var{name}][,fd=@var{h}][,mcast=@var{maddr}:@var{port}[,localaddr=@var{addr}]]
1961 Create a VLAN @var{n} shared with another QEMU virtual
1962 machines using a UDP multicast socket, effectively making a bus for
1963 every QEMU with same multicast address @var{maddr} and @var{port}.
1964 NOTES:
1965 @enumerate
1966 @item
1967 Several QEMU can be running on different hosts and share same bus (assuming
1968 correct multicast setup for these hosts).
1969 @item
1970 mcast support is compatible with User Mode Linux (argument @option{eth@var{N}=mcast}), see
1971 @url{http://user-mode-linux.sf.net}.
1972 @item
1973 Use @option{fd=h} to specify an already opened UDP multicast socket.
1974 @end enumerate
1976 Example:
1977 @example
1978 # launch one QEMU instance
1979 qemu-system-i386 linux.img \
1980 -net nic,macaddr=52:54:00:12:34:56 \
1981 -net socket,mcast=230.0.0.1:1234
1982 # launch another QEMU instance on same "bus"
1983 qemu-system-i386 linux.img \
1984 -net nic,macaddr=52:54:00:12:34:57 \
1985 -net socket,mcast=230.0.0.1:1234
1986 # launch yet another QEMU instance on same "bus"
1987 qemu-system-i386 linux.img \
1988 -net nic,macaddr=52:54:00:12:34:58 \
1989 -net socket,mcast=230.0.0.1:1234
1990 @end example
1992 Example (User Mode Linux compat.):
1993 @example
1994 # launch QEMU instance (note mcast address selected
1995 # is UML's default)
1996 qemu-system-i386 linux.img \
1997 -net nic,macaddr=52:54:00:12:34:56 \
1998 -net socket,mcast=239.192.168.1:1102
1999 # launch UML
2000 /path/to/linux ubd0=/path/to/root_fs eth0=mcast
2001 @end example
2003 Example (send packets from host's 1.2.3.4):
2004 @example
2005 qemu-system-i386 linux.img \
2006 -net nic,macaddr=52:54:00:12:34:56 \
2007 -net socket,mcast=239.192.168.1:1102,localaddr=1.2.3.4
2008 @end example
2010 @item -netdev l2tpv3,id=@var{id},src=@var{srcaddr},dst=@var{dstaddr}[,srcport=@var{srcport}][,dstport=@var{dstport}],txsession=@var{txsession}[,rxsession=@var{rxsession}][,ipv6][,udp][,cookie64][,counter][,pincounter][,txcookie=@var{txcookie}][,rxcookie=@var{rxcookie}][,offset=@var{offset}]
2011 @itemx -net l2tpv3[,vlan=@var{n}][,name=@var{name}],src=@var{srcaddr},dst=@var{dstaddr}[,srcport=@var{srcport}][,dstport=@var{dstport}],txsession=@var{txsession}[,rxsession=@var{rxsession}][,ipv6][,udp][,cookie64][,counter][,pincounter][,txcookie=@var{txcookie}][,rxcookie=@var{rxcookie}][,offset=@var{offset}]
2012 Connect VLAN @var{n} to L2TPv3 pseudowire. L2TPv3 (RFC3391) is a popular
2013 protocol to transport Ethernet (and other Layer 2) data frames between
2014 two systems. It is present in routers, firewalls and the Linux kernel
2015 (from version 3.3 onwards).
2017 This transport allows a VM to communicate to another VM, router or firewall directly.
2019 @item src=@var{srcaddr}
2020 source address (mandatory)
2021 @item dst=@var{dstaddr}
2022 destination address (mandatory)
2023 @item udp
2024 select udp encapsulation (default is ip).
2025 @item srcport=@var{srcport}
2026 source udp port.
2027 @item dstport=@var{dstport}
2028 destination udp port.
2029 @item ipv6
2030 force v6, otherwise defaults to v4.
2031 @item rxcookie=@var{rxcookie}
2032 @itemx txcookie=@var{txcookie}
2033 Cookies are a weak form of security in the l2tpv3 specification.
2034 Their function is mostly to prevent misconfiguration. By default they are 32
2035 bit.
2036 @item cookie64
2037 Set cookie size to 64 bit instead of the default 32
2038 @item counter=off
2039 Force a 'cut-down' L2TPv3 with no counter as in
2040 draft-mkonstan-l2tpext-keyed-ipv6-tunnel-00
2041 @item pincounter=on
2042 Work around broken counter handling in peer. This may also help on
2043 networks which have packet reorder.
2044 @item offset=@var{offset}
2045 Add an extra offset between header and data
2047 For example, to attach a VM running on host 4.3.2.1 via L2TPv3 to the bridge br-lan
2048 on the remote Linux host 1.2.3.4:
2049 @example
2050 # Setup tunnel on linux host using raw ip as encapsulation
2051 # on 1.2.3.4
2052 ip l2tp add tunnel remote 4.3.2.1 local 1.2.3.4 tunnel_id 1 peer_tunnel_id 1 \
2053 encap udp udp_sport 16384 udp_dport 16384
2054 ip l2tp add session tunnel_id 1 name vmtunnel0 session_id \
2055 0xFFFFFFFF peer_session_id 0xFFFFFFFF
2056 ifconfig vmtunnel0 mtu 1500
2057 ifconfig vmtunnel0 up
2058 brctl addif br-lan vmtunnel0
2061 # on 4.3.2.1
2062 # launch QEMU instance - if your network has reorder or is very lossy add ,pincounter
2064 qemu-system-i386 linux.img -net nic -net l2tpv3,src=4.2.3.1,dst=1.2.3.4,udp,srcport=16384,dstport=16384,rxsession=0xffffffff,txsession=0xffffffff,counter
2067 @end example
2069 @item -netdev vde,id=@var{id}[,sock=@var{socketpath}][,port=@var{n}][,group=@var{groupname}][,mode=@var{octalmode}]
2070 @itemx -net vde[,vlan=@var{n}][,name=@var{name}][,sock=@var{socketpath}] [,port=@var{n}][,group=@var{groupname}][,mode=@var{octalmode}]
2071 Connect VLAN @var{n} to PORT @var{n} of a vde switch running on host and
2072 listening for incoming connections on @var{socketpath}. Use GROUP @var{groupname}
2073 and MODE @var{octalmode} to change default ownership and permissions for
2074 communication port. This option is only available if QEMU has been compiled
2075 with vde support enabled.
2077 Example:
2078 @example
2079 # launch vde switch
2080 vde_switch -F -sock /tmp/myswitch
2081 # launch QEMU instance
2082 qemu-system-i386 linux.img -net nic -net vde,sock=/tmp/myswitch
2083 @end example
2085 @item -netdev hubport,id=@var{id},hubid=@var{hubid}
2087 Create a hub port on QEMU "vlan" @var{hubid}.
2089 The hubport netdev lets you connect a NIC to a QEMU "vlan" instead of a single
2090 netdev. @code{-net} and @code{-device} with parameter @option{vlan} create the
2091 required hub automatically.
2093 @item -netdev vhost-user,chardev=@var{id}[,vhostforce=on|off][,queues=n]
2095 Establish a vhost-user netdev, backed by a chardev @var{id}. The chardev should
2096 be a unix domain socket backed one. The vhost-user uses a specifically defined
2097 protocol to pass vhost ioctl replacement messages to an application on the other
2098 end of the socket. On non-MSIX guests, the feature can be forced with
2099 @var{vhostforce}. Use 'queues=@var{n}' to specify the number of queues to
2100 be created for multiqueue vhost-user.
2102 Example:
2103 @example
2104 qemu -m 512 -object memory-backend-file,id=mem,size=512M,mem-path=/hugetlbfs,share=on \
2105 -numa node,memdev=mem \
2106 -chardev socket,path=/path/to/socket \
2107 -netdev type=vhost-user,id=net0,chardev=chr0 \
2108 -device virtio-net-pci,netdev=net0
2109 @end example
2111 @item -net dump[,vlan=@var{n}][,file=@var{file}][,len=@var{len}]
2112 Dump network traffic on VLAN @var{n} to file @var{file} (@file{qemu-vlan0.pcap} by default).
2113 At most @var{len} bytes (64k by default) per packet are stored. The file format is
2114 libpcap, so it can be analyzed with tools such as tcpdump or Wireshark.
2115 Note: For devices created with '-netdev', use '-object filter-dump,...' instead.
2117 @item -net none
2118 Indicate that no network devices should be configured. It is used to
2119 override the default configuration (@option{-net nic -net user}) which
2120 is activated if no @option{-net} options are provided.
2121 ETEXI
2123 STEXI
2124 @end table
2125 ETEXI
2126 DEFHEADING()
2128 DEFHEADING(Character device options:)
2129 STEXI
2131 The general form of a character device option is:
2132 @table @option
2133 ETEXI
2135 DEF("chardev", HAS_ARG, QEMU_OPTION_chardev,
2136 "-chardev null,id=id[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2137 "-chardev socket,id=id[,host=host],port=port[,to=to][,ipv4][,ipv6][,nodelay][,reconnect=seconds]\n"
2138 " [,server][,nowait][,telnet][,reconnect=seconds][,mux=on|off]\n"
2139 " [,logfile=PATH][,logappend=on|off][,tls-creds=ID] (tcp)\n"
2140 "-chardev socket,id=id,path=path[,server][,nowait][,telnet][,reconnect=seconds]\n"
2141 " [,mux=on|off][,logfile=PATH][,logappend=on|off] (unix)\n"
2142 "-chardev udp,id=id[,host=host],port=port[,localaddr=localaddr]\n"
2143 " [,localport=localport][,ipv4][,ipv6][,mux=on|off]\n"
2144 " [,logfile=PATH][,logappend=on|off]\n"
2145 "-chardev msmouse,id=id[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2146 "-chardev vc,id=id[[,width=width][,height=height]][[,cols=cols][,rows=rows]]\n"
2147 " [,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2148 "-chardev ringbuf,id=id[,size=size][,logfile=PATH][,logappend=on|off]\n"
2149 "-chardev file,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2150 "-chardev pipe,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2151 #ifdef _WIN32
2152 "-chardev console,id=id[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2153 "-chardev serial,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2154 #else
2155 "-chardev pty,id=id[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2156 "-chardev stdio,id=id[,mux=on|off][,signal=on|off][,logfile=PATH][,logappend=on|off]\n"
2157 #endif
2158 #ifdef CONFIG_BRLAPI
2159 "-chardev braille,id=id[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2160 #endif
2161 #if defined(__linux__) || defined(__sun__) || defined(__FreeBSD__) \
2162 || defined(__NetBSD__) || defined(__OpenBSD__) || defined(__DragonFly__)
2163 "-chardev serial,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2164 "-chardev tty,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2165 #endif
2166 #if defined(__linux__) || defined(__FreeBSD__) || defined(__DragonFly__)
2167 "-chardev parallel,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2168 "-chardev parport,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2169 #endif
2170 #if defined(CONFIG_SPICE)
2171 "-chardev spicevmc,id=id,name=name[,debug=debug][,logfile=PATH][,logappend=on|off]\n"
2172 "-chardev spiceport,id=id,name=name[,debug=debug][,logfile=PATH][,logappend=on|off]\n"
2173 #endif
2174 , QEMU_ARCH_ALL
2177 STEXI
2178 @item -chardev @var{backend} ,id=@var{id} [,mux=on|off] [,@var{options}]
2179 @findex -chardev
2180 Backend is one of:
2181 @option{null},
2182 @option{socket},
2183 @option{udp},
2184 @option{msmouse},
2185 @option{vc},
2186 @option{ringbuf},
2187 @option{file},
2188 @option{pipe},
2189 @option{console},
2190 @option{serial},
2191 @option{pty},
2192 @option{stdio},
2193 @option{braille},
2194 @option{tty},
2195 @option{parallel},
2196 @option{parport},
2197 @option{spicevmc}.
2198 @option{spiceport}.
2199 The specific backend will determine the applicable options.
2201 All devices must have an id, which can be any string up to 127 characters long.
2202 It is used to uniquely identify this device in other command line directives.
2204 A character device may be used in multiplexing mode by multiple front-ends.
2205 Specify @option{mux=on} to enable this mode.
2206 A multiplexer is a "1:N" device, and here the "1" end is your specified chardev
2207 backend, and the "N" end is the various parts of QEMU that can talk to a chardev.
2208 If you create a chardev with @option{id=myid} and @option{mux=on}, QEMU will
2209 create a multiplexer with your specified ID, and you can then configure multiple
2210 front ends to use that chardev ID for their input/output. Up to four different
2211 front ends can be connected to a single multiplexed chardev. (Without
2212 multiplexing enabled, a chardev can only be used by a single front end.)
2213 For instance you could use this to allow a single stdio chardev to be used by
2214 two serial ports and the QEMU monitor:
2216 @example
2217 -chardev stdio,mux=on,id=char0 \
2218 -mon chardev=char0,mode=readline,default \
2219 -serial chardev:char0 \
2220 -serial chardev:char0
2221 @end example
2223 You can have more than one multiplexer in a system configuration; for instance
2224 you could have a TCP port multiplexed between UART 0 and UART 1, and stdio
2225 multiplexed between the QEMU monitor and a parallel port:
2227 @example
2228 -chardev stdio,mux=on,id=char0 \
2229 -mon chardev=char0,mode=readline,default \
2230 -parallel chardev:char0 \
2231 -chardev tcp,...,mux=on,id=char1 \
2232 -serial chardev:char1 \
2233 -serial chardev:char1
2234 @end example
2236 When you're using a multiplexed character device, some escape sequences are
2237 interpreted in the input. @xref{mux_keys, Keys in the character backend
2238 multiplexer}.
2240 Note that some other command line options may implicitly create multiplexed
2241 character backends; for instance @option{-serial mon:stdio} creates a
2242 multiplexed stdio backend connected to the serial port and the QEMU monitor,
2243 and @option{-nographic} also multiplexes the console and the monitor to
2244 stdio.
2246 There is currently no support for multiplexing in the other direction
2247 (where a single QEMU front end takes input and output from multiple chardevs).
2249 Every backend supports the @option{logfile} option, which supplies the path
2250 to a file to record all data transmitted via the backend. The @option{logappend}
2251 option controls whether the log file will be truncated or appended to when
2252 opened.
2254 Further options to each backend are described below.
2256 @item -chardev null ,id=@var{id}
2257 A void device. This device will not emit any data, and will drop any data it
2258 receives. The null backend does not take any options.
2260 @item -chardev socket ,id=@var{id} [@var{TCP options} or @var{unix options}] [,server] [,nowait] [,telnet] [,reconnect=@var{seconds}] [,tls-creds=@var{id}]
2262 Create a two-way stream socket, which can be either a TCP or a unix socket. A
2263 unix socket will be created if @option{path} is specified. Behaviour is
2264 undefined if TCP options are specified for a unix socket.
2266 @option{server} specifies that the socket shall be a listening socket.
2268 @option{nowait} specifies that QEMU should not block waiting for a client to
2269 connect to a listening socket.
2271 @option{telnet} specifies that traffic on the socket should interpret telnet
2272 escape sequences.
2274 @option{reconnect} sets the timeout for reconnecting on non-server sockets when
2275 the remote end goes away. qemu will delay this many seconds and then attempt
2276 to reconnect. Zero disables reconnecting, and is the default.
2278 @option{tls-creds} requests enablement of the TLS protocol for encryption,
2279 and specifies the id of the TLS credentials to use for the handshake. The
2280 credentials must be previously created with the @option{-object tls-creds}
2281 argument.
2283 TCP and unix socket options are given below:
2285 @table @option
2287 @item TCP options: port=@var{port} [,host=@var{host}] [,to=@var{to}] [,ipv4] [,ipv6] [,nodelay]
2289 @option{host} for a listening socket specifies the local address to be bound.
2290 For a connecting socket species the remote host to connect to. @option{host} is
2291 optional for listening sockets. If not specified it defaults to @code{0.0.0.0}.
2293 @option{port} for a listening socket specifies the local port to be bound. For a
2294 connecting socket specifies the port on the remote host to connect to.
2295 @option{port} can be given as either a port number or a service name.
2296 @option{port} is required.
2298 @option{to} is only relevant to listening sockets. If it is specified, and
2299 @option{port} cannot be bound, QEMU will attempt to bind to subsequent ports up
2300 to and including @option{to} until it succeeds. @option{to} must be specified
2301 as a port number.
2303 @option{ipv4} and @option{ipv6} specify that either IPv4 or IPv6 must be used.
2304 If neither is specified the socket may use either protocol.
2306 @option{nodelay} disables the Nagle algorithm.
2308 @item unix options: path=@var{path}
2310 @option{path} specifies the local path of the unix socket. @option{path} is
2311 required.
2313 @end table
2315 @item -chardev udp ,id=@var{id} [,host=@var{host}] ,port=@var{port} [,localaddr=@var{localaddr}] [,localport=@var{localport}] [,ipv4] [,ipv6]
2317 Sends all traffic from the guest to a remote host over UDP.
2319 @option{host} specifies the remote host to connect to. If not specified it
2320 defaults to @code{localhost}.
2322 @option{port} specifies the port on the remote host to connect to. @option{port}
2323 is required.
2325 @option{localaddr} specifies the local address to bind to. If not specified it
2326 defaults to @code{0.0.0.0}.
2328 @option{localport} specifies the local port to bind to. If not specified any
2329 available local port will be used.
2331 @option{ipv4} and @option{ipv6} specify that either IPv4 or IPv6 must be used.
2332 If neither is specified the device may use either protocol.
2334 @item -chardev msmouse ,id=@var{id}
2336 Forward QEMU's emulated msmouse events to the guest. @option{msmouse} does not
2337 take any options.
2339 @item -chardev vc ,id=@var{id} [[,width=@var{width}] [,height=@var{height}]] [[,cols=@var{cols}] [,rows=@var{rows}]]
2341 Connect to a QEMU text console. @option{vc} may optionally be given a specific
2342 size.
2344 @option{width} and @option{height} specify the width and height respectively of
2345 the console, in pixels.
2347 @option{cols} and @option{rows} specify that the console be sized to fit a text
2348 console with the given dimensions.
2350 @item -chardev ringbuf ,id=@var{id} [,size=@var{size}]
2352 Create a ring buffer with fixed size @option{size}.
2353 @var{size} must be a power of two, and defaults to @code{64K}).
2355 @item -chardev file ,id=@var{id} ,path=@var{path}
2357 Log all traffic received from the guest to a file.
2359 @option{path} specifies the path of the file to be opened. This file will be
2360 created if it does not already exist, and overwritten if it does. @option{path}
2361 is required.
2363 @item -chardev pipe ,id=@var{id} ,path=@var{path}
2365 Create a two-way connection to the guest. The behaviour differs slightly between
2366 Windows hosts and other hosts:
2368 On Windows, a single duplex pipe will be created at
2369 @file{\\.pipe\@option{path}}.
2371 On other hosts, 2 pipes will be created called @file{@option{path}.in} and
2372 @file{@option{path}.out}. Data written to @file{@option{path}.in} will be
2373 received by the guest. Data written by the guest can be read from
2374 @file{@option{path}.out}. QEMU will not create these fifos, and requires them to
2375 be present.
2377 @option{path} forms part of the pipe path as described above. @option{path} is
2378 required.
2380 @item -chardev console ,id=@var{id}
2382 Send traffic from the guest to QEMU's standard output. @option{console} does not
2383 take any options.
2385 @option{console} is only available on Windows hosts.
2387 @item -chardev serial ,id=@var{id} ,path=@option{path}
2389 Send traffic from the guest to a serial device on the host.
2391 On Unix hosts serial will actually accept any tty device,
2392 not only serial lines.
2394 @option{path} specifies the name of the serial device to open.
2396 @item -chardev pty ,id=@var{id}
2398 Create a new pseudo-terminal on the host and connect to it. @option{pty} does
2399 not take any options.
2401 @option{pty} is not available on Windows hosts.
2403 @item -chardev stdio ,id=@var{id} [,signal=on|off]
2404 Connect to standard input and standard output of the QEMU process.
2406 @option{signal} controls if signals are enabled on the terminal, that includes
2407 exiting QEMU with the key sequence @key{Control-c}. This option is enabled by
2408 default, use @option{signal=off} to disable it.
2410 @option{stdio} is not available on Windows hosts.
2412 @item -chardev braille ,id=@var{id}
2414 Connect to a local BrlAPI server. @option{braille} does not take any options.
2416 @item -chardev tty ,id=@var{id} ,path=@var{path}
2418 @option{tty} is only available on Linux, Sun, FreeBSD, NetBSD, OpenBSD and
2419 DragonFlyBSD hosts. It is an alias for @option{serial}.
2421 @option{path} specifies the path to the tty. @option{path} is required.
2423 @item -chardev parallel ,id=@var{id} ,path=@var{path}
2424 @itemx -chardev parport ,id=@var{id} ,path=@var{path}
2426 @option{parallel} is only available on Linux, FreeBSD and DragonFlyBSD hosts.
2428 Connect to a local parallel port.
2430 @option{path} specifies the path to the parallel port device. @option{path} is
2431 required.
2433 @item -chardev spicevmc ,id=@var{id} ,debug=@var{debug}, name=@var{name}
2435 @option{spicevmc} is only available when spice support is built in.
2437 @option{debug} debug level for spicevmc
2439 @option{name} name of spice channel to connect to
2441 Connect to a spice virtual machine channel, such as vdiport.
2443 @item -chardev spiceport ,id=@var{id} ,debug=@var{debug}, name=@var{name}
2445 @option{spiceport} is only available when spice support is built in.
2447 @option{debug} debug level for spicevmc
2449 @option{name} name of spice port to connect to
2451 Connect to a spice port, allowing a Spice client to handle the traffic
2452 identified by a name (preferably a fqdn).
2453 ETEXI
2455 STEXI
2456 @end table
2457 ETEXI
2458 DEFHEADING()
2460 DEFHEADING(Device URL Syntax:)
2461 STEXI
2463 In addition to using normal file images for the emulated storage devices,
2464 QEMU can also use networked resources such as iSCSI devices. These are
2465 specified using a special URL syntax.
2467 @table @option
2468 @item iSCSI
2469 iSCSI support allows QEMU to access iSCSI resources directly and use as
2470 images for the guest storage. Both disk and cdrom images are supported.
2472 Syntax for specifying iSCSI LUNs is
2473 ``iscsi://<target-ip>[:<port>]/<target-iqn>/<lun>''
2475 By default qemu will use the iSCSI initiator-name
2476 'iqn.2008-11.org.linux-kvm[:<name>]' but this can also be set from the command
2477 line or a configuration file.
2479 Since version Qemu 2.4 it is possible to specify a iSCSI request timeout to detect
2480 stalled requests and force a reestablishment of the session. The timeout
2481 is specified in seconds. The default is 0 which means no timeout. Libiscsi
2482 1.15.0 or greater is required for this feature.
2484 Example (without authentication):
2485 @example
2486 qemu-system-i386 -iscsi initiator-name=iqn.2001-04.com.example:my-initiator \
2487 -cdrom iscsi://192.0.2.1/iqn.2001-04.com.example/2 \
2488 -drive file=iscsi://192.0.2.1/iqn.2001-04.com.example/1
2489 @end example
2491 Example (CHAP username/password via URL):
2492 @example
2493 qemu-system-i386 -drive file=iscsi://user%password@@192.0.2.1/iqn.2001-04.com.example/1
2494 @end example
2496 Example (CHAP username/password via environment variables):
2497 @example
2498 LIBISCSI_CHAP_USERNAME="user" \
2499 LIBISCSI_CHAP_PASSWORD="password" \
2500 qemu-system-i386 -drive file=iscsi://192.0.2.1/iqn.2001-04.com.example/1
2501 @end example
2503 iSCSI support is an optional feature of QEMU and only available when
2504 compiled and linked against libiscsi.
2505 ETEXI
2506 DEF("iscsi", HAS_ARG, QEMU_OPTION_iscsi,
2507 "-iscsi [user=user][,password=password]\n"
2508 " [,header-digest=CRC32C|CR32C-NONE|NONE-CRC32C|NONE\n"
2509 " [,initiator-name=initiator-iqn][,id=target-iqn]\n"
2510 " [,timeout=timeout]\n"
2511 " iSCSI session parameters\n", QEMU_ARCH_ALL)
2512 STEXI
2514 iSCSI parameters such as username and password can also be specified via
2515 a configuration file. See qemu-doc for more information and examples.
2517 @item NBD
2518 QEMU supports NBD (Network Block Devices) both using TCP protocol as well
2519 as Unix Domain Sockets.
2521 Syntax for specifying a NBD device using TCP
2522 ``nbd:<server-ip>:<port>[:exportname=<export>]''
2524 Syntax for specifying a NBD device using Unix Domain Sockets
2525 ``nbd:unix:<domain-socket>[:exportname=<export>]''
2528 Example for TCP
2529 @example
2530 qemu-system-i386 --drive file=nbd:192.0.2.1:30000
2531 @end example
2533 Example for Unix Domain Sockets
2534 @example
2535 qemu-system-i386 --drive file=nbd:unix:/tmp/nbd-socket
2536 @end example
2538 @item SSH
2539 QEMU supports SSH (Secure Shell) access to remote disks.
2541 Examples:
2542 @example
2543 qemu-system-i386 -drive file=ssh://user@@host/path/to/disk.img
2544 qemu-system-i386 -drive file.driver=ssh,file.user=user,file.host=host,file.port=22,file.path=/path/to/disk.img
2545 @end example
2547 Currently authentication must be done using ssh-agent. Other
2548 authentication methods may be supported in future.
2550 @item Sheepdog
2551 Sheepdog is a distributed storage system for QEMU.
2552 QEMU supports using either local sheepdog devices or remote networked
2553 devices.
2555 Syntax for specifying a sheepdog device
2556 @example
2557 sheepdog[+tcp|+unix]://[host:port]/vdiname[?socket=path][#snapid|#tag]
2558 @end example
2560 Example
2561 @example
2562 qemu-system-i386 --drive file=sheepdog://192.0.2.1:30000/MyVirtualMachine
2563 @end example
2565 See also @url{http://http://www.osrg.net/sheepdog/}.
2567 @item GlusterFS
2568 GlusterFS is an user space distributed file system.
2569 QEMU supports the use of GlusterFS volumes for hosting VM disk images using
2570 TCP, Unix Domain Sockets and RDMA transport protocols.
2572 Syntax for specifying a VM disk image on GlusterFS volume is
2573 @example
2574 gluster[+transport]://[server[:port]]/volname/image[?socket=...]
2575 @end example
2578 Example
2579 @example
2580 qemu-system-x86_64 --drive file=gluster://192.0.2.1/testvol/a.img
2581 @end example
2583 See also @url{http://www.gluster.org}.
2585 @item HTTP/HTTPS/FTP/FTPS/TFTP
2586 QEMU supports read-only access to files accessed over http(s), ftp(s) and tftp.
2588 Syntax using a single filename:
2589 @example
2590 <protocol>://[<username>[:<password>]@@]<host>/<path>
2591 @end example
2593 where:
2594 @table @option
2595 @item protocol
2596 'http', 'https', 'ftp', 'ftps', or 'tftp'.
2598 @item username
2599 Optional username for authentication to the remote server.
2601 @item password
2602 Optional password for authentication to the remote server.
2604 @item host
2605 Address of the remote server.
2607 @item path
2608 Path on the remote server, including any query string.
2609 @end table
2611 The following options are also supported:
2612 @table @option
2613 @item url
2614 The full URL when passing options to the driver explicitly.
2616 @item readahead
2617 The amount of data to read ahead with each range request to the remote server.
2618 This value may optionally have the suffix 'T', 'G', 'M', 'K', 'k' or 'b'. If it
2619 does not have a suffix, it will be assumed to be in bytes. The value must be a
2620 multiple of 512 bytes. It defaults to 256k.
2622 @item sslverify
2623 Whether to verify the remote server's certificate when connecting over SSL. It
2624 can have the value 'on' or 'off'. It defaults to 'on'.
2626 @item cookie
2627 Send this cookie (it can also be a list of cookies separated by ';') with
2628 each outgoing request. Only supported when using protocols such as HTTP
2629 which support cookies, otherwise ignored.
2631 @item timeout
2632 Set the timeout in seconds of the CURL connection. This timeout is the time
2633 that CURL waits for a response from the remote server to get the size of the
2634 image to be downloaded. If not set, the default timeout of 5 seconds is used.
2635 @end table
2637 Note that when passing options to qemu explicitly, @option{driver} is the value
2638 of <protocol>.
2640 Example: boot from a remote Fedora 20 live ISO image
2641 @example
2642 qemu-system-x86_64 --drive media=cdrom,file=http://dl.fedoraproject.org/pub/fedora/linux/releases/20/Live/x86_64/Fedora-Live-Desktop-x86_64-20-1.iso,readonly
2644 qemu-system-x86_64 --drive media=cdrom,file.driver=http,file.url=http://dl.fedoraproject.org/pub/fedora/linux/releases/20/Live/x86_64/Fedora-Live-Desktop-x86_64-20-1.iso,readonly
2645 @end example
2647 Example: boot from a remote Fedora 20 cloud image using a local overlay for
2648 writes, copy-on-read, and a readahead of 64k
2649 @example
2650 qemu-img create -f qcow2 -o backing_file='json:@{"file.driver":"http",, "file.url":"https://dl.fedoraproject.org/pub/fedora/linux/releases/20/Images/x86_64/Fedora-x86_64-20-20131211.1-sda.qcow2",, "file.readahead":"64k"@}' /tmp/Fedora-x86_64-20-20131211.1-sda.qcow2
2652 qemu-system-x86_64 -drive file=/tmp/Fedora-x86_64-20-20131211.1-sda.qcow2,copy-on-read=on
2653 @end example
2655 Example: boot from an image stored on a VMware vSphere server with a self-signed
2656 certificate using a local overlay for writes, a readahead of 64k and a timeout
2657 of 10 seconds.
2658 @example
2659 qemu-img create -f qcow2 -o backing_file='json:@{"file.driver":"https",, "file.url":"https://user:password@@vsphere.example.com/folder/test/test-flat.vmdk?dcPath=Datacenter&dsName=datastore1",, "file.sslverify":"off",, "file.readahead":"64k",, "file.timeout":10@}' /tmp/test.qcow2
2661 qemu-system-x86_64 -drive file=/tmp/test.qcow2
2662 @end example
2663 ETEXI
2665 STEXI
2666 @end table
2667 ETEXI
2669 DEFHEADING(Bluetooth(R) options:)
2670 STEXI
2671 @table @option
2672 ETEXI
2674 DEF("bt", HAS_ARG, QEMU_OPTION_bt, \
2675 "-bt hci,null dumb bluetooth HCI - doesn't respond to commands\n" \
2676 "-bt hci,host[:id]\n" \
2677 " use host's HCI with the given name\n" \
2678 "-bt hci[,vlan=n]\n" \
2679 " emulate a standard HCI in virtual scatternet 'n'\n" \
2680 "-bt vhci[,vlan=n]\n" \
2681 " add host computer to virtual scatternet 'n' using VHCI\n" \
2682 "-bt device:dev[,vlan=n]\n" \
2683 " emulate a bluetooth device 'dev' in scatternet 'n'\n",
2684 QEMU_ARCH_ALL)
2685 STEXI
2686 @item -bt hci[...]
2687 @findex -bt
2688 Defines the function of the corresponding Bluetooth HCI. -bt options
2689 are matched with the HCIs present in the chosen machine type. For
2690 example when emulating a machine with only one HCI built into it, only
2691 the first @code{-bt hci[...]} option is valid and defines the HCI's
2692 logic. The Transport Layer is decided by the machine type. Currently
2693 the machines @code{n800} and @code{n810} have one HCI and all other
2694 machines have none.
2696 @anchor{bt-hcis}
2697 The following three types are recognized:
2699 @table @option
2700 @item -bt hci,null
2701 (default) The corresponding Bluetooth HCI assumes no internal logic
2702 and will not respond to any HCI commands or emit events.
2704 @item -bt hci,host[:@var{id}]
2705 (@code{bluez} only) The corresponding HCI passes commands / events
2706 to / from the physical HCI identified by the name @var{id} (default:
2707 @code{hci0}) on the computer running QEMU. Only available on @code{bluez}
2708 capable systems like Linux.
2710 @item -bt hci[,vlan=@var{n}]
2711 Add a virtual, standard HCI that will participate in the Bluetooth
2712 scatternet @var{n} (default @code{0}). Similarly to @option{-net}
2713 VLANs, devices inside a bluetooth network @var{n} can only communicate
2714 with other devices in the same network (scatternet).
2715 @end table
2717 @item -bt vhci[,vlan=@var{n}]
2718 (Linux-host only) Create a HCI in scatternet @var{n} (default 0) attached
2719 to the host bluetooth stack instead of to the emulated target. This
2720 allows the host and target machines to participate in a common scatternet
2721 and communicate. Requires the Linux @code{vhci} driver installed. Can
2722 be used as following:
2724 @example
2725 qemu-system-i386 [...OPTIONS...] -bt hci,vlan=5 -bt vhci,vlan=5
2726 @end example
2728 @item -bt device:@var{dev}[,vlan=@var{n}]
2729 Emulate a bluetooth device @var{dev} and place it in network @var{n}
2730 (default @code{0}). QEMU can only emulate one type of bluetooth devices
2731 currently:
2733 @table @option
2734 @item keyboard
2735 Virtual wireless keyboard implementing the HIDP bluetooth profile.
2736 @end table
2737 ETEXI
2739 STEXI
2740 @end table
2741 ETEXI
2742 DEFHEADING()
2744 #ifdef CONFIG_TPM
2745 DEFHEADING(TPM device options:)
2747 DEF("tpmdev", HAS_ARG, QEMU_OPTION_tpmdev, \
2748 "-tpmdev passthrough,id=id[,path=path][,cancel-path=path]\n"
2749 " use path to provide path to a character device; default is /dev/tpm0\n"
2750 " use cancel-path to provide path to TPM's cancel sysfs entry; if\n"
2751 " not provided it will be searched for in /sys/class/misc/tpm?/device\n",
2752 QEMU_ARCH_ALL)
2753 STEXI
2755 The general form of a TPM device option is:
2756 @table @option
2758 @item -tpmdev @var{backend} ,id=@var{id} [,@var{options}]
2759 @findex -tpmdev
2760 Backend type must be:
2761 @option{passthrough}.
2763 The specific backend type will determine the applicable options.
2764 The @code{-tpmdev} option creates the TPM backend and requires a
2765 @code{-device} option that specifies the TPM frontend interface model.
2767 Options to each backend are described below.
2769 Use 'help' to print all available TPM backend types.
2770 @example
2771 qemu -tpmdev help
2772 @end example
2774 @item -tpmdev passthrough, id=@var{id}, path=@var{path}, cancel-path=@var{cancel-path}
2776 (Linux-host only) Enable access to the host's TPM using the passthrough
2777 driver.
2779 @option{path} specifies the path to the host's TPM device, i.e., on
2780 a Linux host this would be @code{/dev/tpm0}.
2781 @option{path} is optional and by default @code{/dev/tpm0} is used.
2783 @option{cancel-path} specifies the path to the host TPM device's sysfs
2784 entry allowing for cancellation of an ongoing TPM command.
2785 @option{cancel-path} is optional and by default QEMU will search for the
2786 sysfs entry to use.
2788 Some notes about using the host's TPM with the passthrough driver:
2790 The TPM device accessed by the passthrough driver must not be
2791 used by any other application on the host.
2793 Since the host's firmware (BIOS/UEFI) has already initialized the TPM,
2794 the VM's firmware (BIOS/UEFI) will not be able to initialize the
2795 TPM again and may therefore not show a TPM-specific menu that would
2796 otherwise allow the user to configure the TPM, e.g., allow the user to
2797 enable/disable or activate/deactivate the TPM.
2798 Further, if TPM ownership is released from within a VM then the host's TPM
2799 will get disabled and deactivated. To enable and activate the
2800 TPM again afterwards, the host has to be rebooted and the user is
2801 required to enter the firmware's menu to enable and activate the TPM.
2802 If the TPM is left disabled and/or deactivated most TPM commands will fail.
2804 To create a passthrough TPM use the following two options:
2805 @example
2806 -tpmdev passthrough,id=tpm0 -device tpm-tis,tpmdev=tpm0
2807 @end example
2808 Note that the @code{-tpmdev} id is @code{tpm0} and is referenced by
2809 @code{tpmdev=tpm0} in the device option.
2811 @end table
2813 ETEXI
2815 DEFHEADING()
2817 #endif
2819 DEFHEADING(Linux/Multiboot boot specific:)
2820 STEXI
2822 When using these options, you can use a given Linux or Multiboot
2823 kernel without installing it in the disk image. It can be useful
2824 for easier testing of various kernels.
2826 @table @option
2827 ETEXI
2829 DEF("kernel", HAS_ARG, QEMU_OPTION_kernel, \
2830 "-kernel bzImage use 'bzImage' as kernel image\n", QEMU_ARCH_ALL)
2831 STEXI
2832 @item -kernel @var{bzImage}
2833 @findex -kernel
2834 Use @var{bzImage} as kernel image. The kernel can be either a Linux kernel
2835 or in multiboot format.
2836 ETEXI
2838 DEF("append", HAS_ARG, QEMU_OPTION_append, \
2839 "-append cmdline use 'cmdline' as kernel command line\n", QEMU_ARCH_ALL)
2840 STEXI
2841 @item -append @var{cmdline}
2842 @findex -append
2843 Use @var{cmdline} as kernel command line
2844 ETEXI
2846 DEF("initrd", HAS_ARG, QEMU_OPTION_initrd, \
2847 "-initrd file use 'file' as initial ram disk\n", QEMU_ARCH_ALL)
2848 STEXI
2849 @item -initrd @var{file}
2850 @findex -initrd
2851 Use @var{file} as initial ram disk.
2853 @item -initrd "@var{file1} arg=foo,@var{file2}"
2855 This syntax is only available with multiboot.
2857 Use @var{file1} and @var{file2} as modules and pass arg=foo as parameter to the
2858 first module.
2859 ETEXI
2861 DEF("dtb", HAS_ARG, QEMU_OPTION_dtb, \
2862 "-dtb file use 'file' as device tree image\n", QEMU_ARCH_ALL)
2863 STEXI
2864 @item -dtb @var{file}
2865 @findex -dtb
2866 Use @var{file} as a device tree binary (dtb) image and pass it to the kernel
2867 on boot.
2868 ETEXI
2870 STEXI
2871 @end table
2872 ETEXI
2873 DEFHEADING()
2875 DEFHEADING(Debug/Expert options:)
2876 STEXI
2877 @table @option
2878 ETEXI
2880 DEF("fw_cfg", HAS_ARG, QEMU_OPTION_fwcfg,
2881 "-fw_cfg [name=]<name>,file=<file>\n"
2882 " add named fw_cfg entry with contents from file\n"
2883 "-fw_cfg [name=]<name>,string=<str>\n"
2884 " add named fw_cfg entry with contents from string\n",
2885 QEMU_ARCH_ALL)
2886 STEXI
2888 @item -fw_cfg [name=]@var{name},file=@var{file}
2889 @findex -fw_cfg
2890 Add named fw_cfg entry with contents from file @var{file}.
2892 @item -fw_cfg [name=]@var{name},string=@var{str}
2893 Add named fw_cfg entry with contents from string @var{str}.
2895 The terminating NUL character of the contents of @var{str} will not be
2896 included as part of the fw_cfg item data. To insert contents with
2897 embedded NUL characters, you have to use the @var{file} parameter.
2899 The fw_cfg entries are passed by QEMU through to the guest.
2901 Example:
2902 @example
2903 -fw_cfg name=opt/com.mycompany/blob,file=./my_blob.bin
2904 @end example
2905 creates an fw_cfg entry named opt/com.mycompany/blob with contents
2906 from ./my_blob.bin.
2908 ETEXI
2910 DEF("serial", HAS_ARG, QEMU_OPTION_serial, \
2911 "-serial dev redirect the serial port to char device 'dev'\n",
2912 QEMU_ARCH_ALL)
2913 STEXI
2914 @item -serial @var{dev}
2915 @findex -serial
2916 Redirect the virtual serial port to host character device
2917 @var{dev}. The default device is @code{vc} in graphical mode and
2918 @code{stdio} in non graphical mode.
2920 This option can be used several times to simulate up to 4 serial
2921 ports.
2923 Use @code{-serial none} to disable all serial ports.
2925 Available character devices are:
2926 @table @option
2927 @item vc[:@var{W}x@var{H}]
2928 Virtual console. Optionally, a width and height can be given in pixel with
2929 @example
2930 vc:800x600
2931 @end example
2932 It is also possible to specify width or height in characters:
2933 @example
2934 vc:80Cx24C
2935 @end example
2936 @item pty
2937 [Linux only] Pseudo TTY (a new PTY is automatically allocated)
2938 @item none
2939 No device is allocated.
2940 @item null
2941 void device
2942 @item chardev:@var{id}
2943 Use a named character device defined with the @code{-chardev} option.
2944 @item /dev/XXX
2945 [Linux only] Use host tty, e.g. @file{/dev/ttyS0}. The host serial port
2946 parameters are set according to the emulated ones.
2947 @item /dev/parport@var{N}
2948 [Linux only, parallel port only] Use host parallel port
2949 @var{N}. Currently SPP and EPP parallel port features can be used.
2950 @item file:@var{filename}
2951 Write output to @var{filename}. No character can be read.
2952 @item stdio
2953 [Unix only] standard input/output
2954 @item pipe:@var{filename}
2955 name pipe @var{filename}
2956 @item COM@var{n}
2957 [Windows only] Use host serial port @var{n}
2958 @item udp:[@var{remote_host}]:@var{remote_port}[@@[@var{src_ip}]:@var{src_port}]
2959 This implements UDP Net Console.
2960 When @var{remote_host} or @var{src_ip} are not specified
2961 they default to @code{0.0.0.0}.
2962 When not using a specified @var{src_port} a random port is automatically chosen.
2964 If you just want a simple readonly console you can use @code{netcat} or
2965 @code{nc}, by starting QEMU with: @code{-serial udp::4555} and nc as:
2966 @code{nc -u -l -p 4555}. Any time QEMU writes something to that port it
2967 will appear in the netconsole session.
2969 If you plan to send characters back via netconsole or you want to stop
2970 and start QEMU a lot of times, you should have QEMU use the same
2971 source port each time by using something like @code{-serial
2972 udp::4555@@:4556} to QEMU. Another approach is to use a patched
2973 version of netcat which can listen to a TCP port and send and receive
2974 characters via udp. If you have a patched version of netcat which
2975 activates telnet remote echo and single char transfer, then you can
2976 use the following options to step up a netcat redirector to allow
2977 telnet on port 5555 to access the QEMU port.
2978 @table @code
2979 @item QEMU Options:
2980 -serial udp::4555@@:4556
2981 @item netcat options:
2982 -u -P 4555 -L 0.0.0.0:4556 -t -p 5555 -I -T
2983 @item telnet options:
2984 localhost 5555
2985 @end table
2987 @item tcp:[@var{host}]:@var{port}[,@var{server}][,nowait][,nodelay][,reconnect=@var{seconds}]
2988 The TCP Net Console has two modes of operation. It can send the serial
2989 I/O to a location or wait for a connection from a location. By default
2990 the TCP Net Console is sent to @var{host} at the @var{port}. If you use
2991 the @var{server} option QEMU will wait for a client socket application
2992 to connect to the port before continuing, unless the @code{nowait}
2993 option was specified. The @code{nodelay} option disables the Nagle buffering
2994 algorithm. The @code{reconnect} option only applies if @var{noserver} is
2995 set, if the connection goes down it will attempt to reconnect at the
2996 given interval. If @var{host} is omitted, 0.0.0.0 is assumed. Only
2997 one TCP connection at a time is accepted. You can use @code{telnet} to
2998 connect to the corresponding character device.
2999 @table @code
3000 @item Example to send tcp console to 192.168.0.2 port 4444
3001 -serial tcp:192.168.0.2:4444
3002 @item Example to listen and wait on port 4444 for connection
3003 -serial tcp::4444,server
3004 @item Example to not wait and listen on ip 192.168.0.100 port 4444
3005 -serial tcp:192.168.0.100:4444,server,nowait
3006 @end table
3008 @item telnet:@var{host}:@var{port}[,server][,nowait][,nodelay]
3009 The telnet protocol is used instead of raw tcp sockets. The options
3010 work the same as if you had specified @code{-serial tcp}. The
3011 difference is that the port acts like a telnet server or client using
3012 telnet option negotiation. This will also allow you to send the
3013 MAGIC_SYSRQ sequence if you use a telnet that supports sending the break
3014 sequence. Typically in unix telnet you do it with Control-] and then
3015 type "send break" followed by pressing the enter key.
3017 @item unix:@var{path}[,server][,nowait][,reconnect=@var{seconds}]
3018 A unix domain socket is used instead of a tcp socket. The option works the
3019 same as if you had specified @code{-serial tcp} except the unix domain socket
3020 @var{path} is used for connections.
3022 @item mon:@var{dev_string}
3023 This is a special option to allow the monitor to be multiplexed onto
3024 another serial port. The monitor is accessed with key sequence of
3025 @key{Control-a} and then pressing @key{c}.
3026 @var{dev_string} should be any one of the serial devices specified
3027 above. An example to multiplex the monitor onto a telnet server
3028 listening on port 4444 would be:
3029 @table @code
3030 @item -serial mon:telnet::4444,server,nowait
3031 @end table
3032 When the monitor is multiplexed to stdio in this way, Ctrl+C will not terminate
3033 QEMU any more but will be passed to the guest instead.
3035 @item braille
3036 Braille device. This will use BrlAPI to display the braille output on a real
3037 or fake device.
3039 @item msmouse
3040 Three button serial mouse. Configure the guest to use Microsoft protocol.
3041 @end table
3042 ETEXI
3044 DEF("parallel", HAS_ARG, QEMU_OPTION_parallel, \
3045 "-parallel dev redirect the parallel port to char device 'dev'\n",
3046 QEMU_ARCH_ALL)
3047 STEXI
3048 @item -parallel @var{dev}
3049 @findex -parallel
3050 Redirect the virtual parallel port to host device @var{dev} (same
3051 devices as the serial port). On Linux hosts, @file{/dev/parportN} can
3052 be used to use hardware devices connected on the corresponding host
3053 parallel port.
3055 This option can be used several times to simulate up to 3 parallel
3056 ports.
3058 Use @code{-parallel none} to disable all parallel ports.
3059 ETEXI
3061 DEF("monitor", HAS_ARG, QEMU_OPTION_monitor, \
3062 "-monitor dev redirect the monitor to char device 'dev'\n",
3063 QEMU_ARCH_ALL)
3064 STEXI
3065 @item -monitor @var{dev}
3066 @findex -monitor
3067 Redirect the monitor to host device @var{dev} (same devices as the
3068 serial port).
3069 The default device is @code{vc} in graphical mode and @code{stdio} in
3070 non graphical mode.
3071 Use @code{-monitor none} to disable the default monitor.
3072 ETEXI
3073 DEF("qmp", HAS_ARG, QEMU_OPTION_qmp, \
3074 "-qmp dev like -monitor but opens in 'control' mode\n",
3075 QEMU_ARCH_ALL)
3076 STEXI
3077 @item -qmp @var{dev}
3078 @findex -qmp
3079 Like -monitor but opens in 'control' mode.
3080 ETEXI
3081 DEF("qmp-pretty", HAS_ARG, QEMU_OPTION_qmp_pretty, \
3082 "-qmp-pretty dev like -qmp but uses pretty JSON formatting\n",
3083 QEMU_ARCH_ALL)
3084 STEXI
3085 @item -qmp-pretty @var{dev}
3086 @findex -qmp-pretty
3087 Like -qmp but uses pretty JSON formatting.
3088 ETEXI
3090 DEF("mon", HAS_ARG, QEMU_OPTION_mon, \
3091 "-mon [chardev=]name[,mode=readline|control][,default]\n", QEMU_ARCH_ALL)
3092 STEXI
3093 @item -mon [chardev=]name[,mode=readline|control][,default]
3094 @findex -mon
3095 Setup monitor on chardev @var{name}.
3096 ETEXI
3098 DEF("debugcon", HAS_ARG, QEMU_OPTION_debugcon, \
3099 "-debugcon dev redirect the debug console to char device 'dev'\n",
3100 QEMU_ARCH_ALL)
3101 STEXI
3102 @item -debugcon @var{dev}
3103 @findex -debugcon
3104 Redirect the debug console to host device @var{dev} (same devices as the
3105 serial port). The debug console is an I/O port which is typically port
3106 0xe9; writing to that I/O port sends output to this device.
3107 The default device is @code{vc} in graphical mode and @code{stdio} in
3108 non graphical mode.
3109 ETEXI
3111 DEF("pidfile", HAS_ARG, QEMU_OPTION_pidfile, \
3112 "-pidfile file write PID to 'file'\n", QEMU_ARCH_ALL)
3113 STEXI
3114 @item -pidfile @var{file}
3115 @findex -pidfile
3116 Store the QEMU process PID in @var{file}. It is useful if you launch QEMU
3117 from a script.
3118 ETEXI
3120 DEF("singlestep", 0, QEMU_OPTION_singlestep, \
3121 "-singlestep always run in singlestep mode\n", QEMU_ARCH_ALL)
3122 STEXI
3123 @item -singlestep
3124 @findex -singlestep
3125 Run the emulation in single step mode.
3126 ETEXI
3128 DEF("S", 0, QEMU_OPTION_S, \
3129 "-S freeze CPU at startup (use 'c' to start execution)\n",
3130 QEMU_ARCH_ALL)
3131 STEXI
3132 @item -S
3133 @findex -S
3134 Do not start CPU at startup (you must type 'c' in the monitor).
3135 ETEXI
3137 DEF("realtime", HAS_ARG, QEMU_OPTION_realtime,
3138 "-realtime [mlock=on|off]\n"
3139 " run qemu with realtime features\n"
3140 " mlock=on|off controls mlock support (default: on)\n",
3141 QEMU_ARCH_ALL)
3142 STEXI
3143 @item -realtime mlock=on|off
3144 @findex -realtime
3145 Run qemu with realtime features.
3146 mlocking qemu and guest memory can be enabled via @option{mlock=on}
3147 (enabled by default).
3148 ETEXI
3150 DEF("gdb", HAS_ARG, QEMU_OPTION_gdb, \
3151 "-gdb dev wait for gdb connection on 'dev'\n", QEMU_ARCH_ALL)
3152 STEXI
3153 @item -gdb @var{dev}
3154 @findex -gdb
3155 Wait for gdb connection on device @var{dev} (@pxref{gdb_usage}). Typical
3156 connections will likely be TCP-based, but also UDP, pseudo TTY, or even
3157 stdio are reasonable use case. The latter is allowing to start QEMU from
3158 within gdb and establish the connection via a pipe:
3159 @example
3160 (gdb) target remote | exec qemu-system-i386 -gdb stdio ...
3161 @end example
3162 ETEXI
3164 DEF("s", 0, QEMU_OPTION_s, \
3165 "-s shorthand for -gdb tcp::" DEFAULT_GDBSTUB_PORT "\n",
3166 QEMU_ARCH_ALL)
3167 STEXI
3168 @item -s
3169 @findex -s
3170 Shorthand for -gdb tcp::1234, i.e. open a gdbserver on TCP port 1234
3171 (@pxref{gdb_usage}).
3172 ETEXI
3174 DEF("d", HAS_ARG, QEMU_OPTION_d, \
3175 "-d item1,... enable logging of specified items (use '-d help' for a list of log items)\n",
3176 QEMU_ARCH_ALL)
3177 STEXI
3178 @item -d @var{item1}[,...]
3179 @findex -d
3180 Enable logging of specified items. Use '-d help' for a list of log items.
3181 ETEXI
3183 DEF("D", HAS_ARG, QEMU_OPTION_D, \
3184 "-D logfile output log to logfile (default stderr)\n",
3185 QEMU_ARCH_ALL)
3186 STEXI
3187 @item -D @var{logfile}
3188 @findex -D
3189 Output log in @var{logfile} instead of to stderr
3190 ETEXI
3192 DEF("dfilter", HAS_ARG, QEMU_OPTION_DFILTER, \
3193 "-dfilter range,.. filter debug output to range of addresses (useful for -d cpu,exec,etc..)\n",
3194 QEMU_ARCH_ALL)
3195 STEXI
3196 @item -dfilter @var{range1}[,...]
3197 @findex -dfilter
3198 Filter debug output to that relevant to a range of target addresses. The filter
3199 spec can be either @var{start}+@var{size}, @var{start}-@var{size} or
3200 @var{start}..@var{end} where @var{start} @var{end} and @var{size} are the
3201 addresses and sizes required. For example:
3202 @example
3203 -dfilter 0x8000..0x8fff,0xffffffc000080000+0x200,0xffffffc000060000-0x1000
3204 @end example
3205 Will dump output for any code in the 0x1000 sized block starting at 0x8000 and
3206 the 0x200 sized block starting at 0xffffffc000080000 and another 0x1000 sized
3207 block starting at 0xffffffc00005f000.
3208 ETEXI
3210 DEF("L", HAS_ARG, QEMU_OPTION_L, \
3211 "-L path set the directory for the BIOS, VGA BIOS and keymaps\n",
3212 QEMU_ARCH_ALL)
3213 STEXI
3214 @item -L @var{path}
3215 @findex -L
3216 Set the directory for the BIOS, VGA BIOS and keymaps.
3218 To list all the data directories, use @code{-L help}.
3219 ETEXI
3221 DEF("bios", HAS_ARG, QEMU_OPTION_bios, \
3222 "-bios file set the filename for the BIOS\n", QEMU_ARCH_ALL)
3223 STEXI
3224 @item -bios @var{file}
3225 @findex -bios
3226 Set the filename for the BIOS.
3227 ETEXI
3229 DEF("enable-kvm", 0, QEMU_OPTION_enable_kvm, \
3230 "-enable-kvm enable KVM full virtualization support\n", QEMU_ARCH_ALL)
3231 STEXI
3232 @item -enable-kvm
3233 @findex -enable-kvm
3234 Enable KVM full virtualization support. This option is only available
3235 if KVM support is enabled when compiling.
3236 ETEXI
3238 DEF("xen-domid", HAS_ARG, QEMU_OPTION_xen_domid,
3239 "-xen-domid id specify xen guest domain id\n", QEMU_ARCH_ALL)
3240 DEF("xen-create", 0, QEMU_OPTION_xen_create,
3241 "-xen-create create domain using xen hypercalls, bypassing xend\n"
3242 " warning: should not be used when xend is in use\n",
3243 QEMU_ARCH_ALL)
3244 DEF("xen-attach", 0, QEMU_OPTION_xen_attach,
3245 "-xen-attach attach to existing xen domain\n"
3246 " xend will use this when starting QEMU\n",
3247 QEMU_ARCH_ALL)
3248 STEXI
3249 @item -xen-domid @var{id}
3250 @findex -xen-domid
3251 Specify xen guest domain @var{id} (XEN only).
3252 @item -xen-create
3253 @findex -xen-create
3254 Create domain using xen hypercalls, bypassing xend.
3255 Warning: should not be used when xend is in use (XEN only).
3256 @item -xen-attach
3257 @findex -xen-attach
3258 Attach to existing xen domain.
3259 xend will use this when starting QEMU (XEN only).
3260 ETEXI
3262 DEF("no-reboot", 0, QEMU_OPTION_no_reboot, \
3263 "-no-reboot exit instead of rebooting\n", QEMU_ARCH_ALL)
3264 STEXI
3265 @item -no-reboot
3266 @findex -no-reboot
3267 Exit instead of rebooting.
3268 ETEXI
3270 DEF("no-shutdown", 0, QEMU_OPTION_no_shutdown, \
3271 "-no-shutdown stop before shutdown\n", QEMU_ARCH_ALL)
3272 STEXI
3273 @item -no-shutdown
3274 @findex -no-shutdown
3275 Don't exit QEMU on guest shutdown, but instead only stop the emulation.
3276 This allows for instance switching to monitor to commit changes to the
3277 disk image.
3278 ETEXI
3280 DEF("loadvm", HAS_ARG, QEMU_OPTION_loadvm, \
3281 "-loadvm [tag|id]\n" \
3282 " start right away with a saved state (loadvm in monitor)\n",
3283 QEMU_ARCH_ALL)
3284 STEXI
3285 @item -loadvm @var{file}
3286 @findex -loadvm
3287 Start right away with a saved state (@code{loadvm} in monitor)
3288 ETEXI
3290 #ifndef _WIN32
3291 DEF("daemonize", 0, QEMU_OPTION_daemonize, \
3292 "-daemonize daemonize QEMU after initializing\n", QEMU_ARCH_ALL)
3293 #endif
3294 STEXI
3295 @item -daemonize
3296 @findex -daemonize
3297 Daemonize the QEMU process after initialization. QEMU will not detach from
3298 standard IO until it is ready to receive connections on any of its devices.
3299 This option is a useful way for external programs to launch QEMU without having
3300 to cope with initialization race conditions.
3301 ETEXI
3303 DEF("option-rom", HAS_ARG, QEMU_OPTION_option_rom, \
3304 "-option-rom rom load a file, rom, into the option ROM space\n",
3305 QEMU_ARCH_ALL)
3306 STEXI
3307 @item -option-rom @var{file}
3308 @findex -option-rom
3309 Load the contents of @var{file} as an option ROM.
3310 This option is useful to load things like EtherBoot.
3311 ETEXI
3313 HXCOMM Silently ignored for compatibility
3314 DEF("clock", HAS_ARG, QEMU_OPTION_clock, "", QEMU_ARCH_ALL)
3316 HXCOMM Options deprecated by -rtc
3317 DEF("localtime", 0, QEMU_OPTION_localtime, "", QEMU_ARCH_ALL)
3318 DEF("startdate", HAS_ARG, QEMU_OPTION_startdate, "", QEMU_ARCH_ALL)
3320 DEF("rtc", HAS_ARG, QEMU_OPTION_rtc, \
3321 "-rtc [base=utc|localtime|date][,clock=host|rt|vm][,driftfix=none|slew]\n" \
3322 " set the RTC base and clock, enable drift fix for clock ticks (x86 only)\n",
3323 QEMU_ARCH_ALL)
3325 STEXI
3327 @item -rtc [base=utc|localtime|@var{date}][,clock=host|vm][,driftfix=none|slew]
3328 @findex -rtc
3329 Specify @option{base} as @code{utc} or @code{localtime} to let the RTC start at the current
3330 UTC or local time, respectively. @code{localtime} is required for correct date in
3331 MS-DOS or Windows. To start at a specific point in time, provide @var{date} in the
3332 format @code{2006-06-17T16:01:21} or @code{2006-06-17}. The default base is UTC.
3334 By default the RTC is driven by the host system time. This allows using of the
3335 RTC as accurate reference clock inside the guest, specifically if the host
3336 time is smoothly following an accurate external reference clock, e.g. via NTP.
3337 If you want to isolate the guest time from the host, you can set @option{clock}
3338 to @code{rt} instead. To even prevent it from progressing during suspension,
3339 you can set it to @code{vm}.
3341 Enable @option{driftfix} (i386 targets only) if you experience time drift problems,
3342 specifically with Windows' ACPI HAL. This option will try to figure out how
3343 many timer interrupts were not processed by the Windows guest and will
3344 re-inject them.
3345 ETEXI
3347 DEF("icount", HAS_ARG, QEMU_OPTION_icount, \
3348 "-icount [shift=N|auto][,align=on|off][,sleep=on|off,rr=record|replay,rrfile=<filename>]\n" \
3349 " enable virtual instruction counter with 2^N clock ticks per\n" \
3350 " instruction, enable aligning the host and virtual clocks\n" \
3351 " or disable real time cpu sleeping\n", QEMU_ARCH_ALL)
3352 STEXI
3353 @item -icount [shift=@var{N}|auto][,rr=record|replay,rrfile=@var{filename}]
3354 @findex -icount
3355 Enable virtual instruction counter. The virtual cpu will execute one
3356 instruction every 2^@var{N} ns of virtual time. If @code{auto} is specified
3357 then the virtual cpu speed will be automatically adjusted to keep virtual
3358 time within a few seconds of real time.
3360 When the virtual cpu is sleeping, the virtual time will advance at default
3361 speed unless @option{sleep=on|off} is specified.
3362 With @option{sleep=on|off}, the virtual time will jump to the next timer deadline
3363 instantly whenever the virtual cpu goes to sleep mode and will not advance
3364 if no timer is enabled. This behavior give deterministic execution times from
3365 the guest point of view.
3367 Note that while this option can give deterministic behavior, it does not
3368 provide cycle accurate emulation. Modern CPUs contain superscalar out of
3369 order cores with complex cache hierarchies. The number of instructions
3370 executed often has little or no correlation with actual performance.
3372 @option{align=on} will activate the delay algorithm which will try
3373 to synchronise the host clock and the virtual clock. The goal is to
3374 have a guest running at the real frequency imposed by the shift option.
3375 Whenever the guest clock is behind the host clock and if
3376 @option{align=on} is specified then we print a message to the user
3377 to inform about the delay.
3378 Currently this option does not work when @option{shift} is @code{auto}.
3379 Note: The sync algorithm will work for those shift values for which
3380 the guest clock runs ahead of the host clock. Typically this happens
3381 when the shift value is high (how high depends on the host machine).
3383 When @option{rr} option is specified deterministic record/replay is enabled.
3384 Replay log is written into @var{filename} file in record mode and
3385 read from this file in replay mode.
3386 ETEXI
3388 DEF("watchdog", HAS_ARG, QEMU_OPTION_watchdog, \
3389 "-watchdog model\n" \
3390 " enable virtual hardware watchdog [default=none]\n",
3391 QEMU_ARCH_ALL)
3392 STEXI
3393 @item -watchdog @var{model}
3394 @findex -watchdog
3395 Create a virtual hardware watchdog device. Once enabled (by a guest
3396 action), the watchdog must be periodically polled by an agent inside
3397 the guest or else the guest will be restarted. Choose a model for
3398 which your guest has drivers.
3400 The @var{model} is the model of hardware watchdog to emulate. Use
3401 @code{-watchdog help} to list available hardware models. Only one
3402 watchdog can be enabled for a guest.
3404 The following models may be available:
3405 @table @option
3406 @item ib700
3407 iBASE 700 is a very simple ISA watchdog with a single timer.
3408 @item i6300esb
3409 Intel 6300ESB I/O controller hub is a much more featureful PCI-based
3410 dual-timer watchdog.
3411 @item diag288
3412 A virtual watchdog for s390x backed by the diagnose 288 hypercall
3413 (currently KVM only).
3414 @end table
3415 ETEXI
3417 DEF("watchdog-action", HAS_ARG, QEMU_OPTION_watchdog_action, \
3418 "-watchdog-action reset|shutdown|poweroff|pause|debug|none\n" \
3419 " action when watchdog fires [default=reset]\n",
3420 QEMU_ARCH_ALL)
3421 STEXI
3422 @item -watchdog-action @var{action}
3423 @findex -watchdog-action
3425 The @var{action} controls what QEMU will do when the watchdog timer
3426 expires.
3427 The default is
3428 @code{reset} (forcefully reset the guest).
3429 Other possible actions are:
3430 @code{shutdown} (attempt to gracefully shutdown the guest),
3431 @code{poweroff} (forcefully poweroff the guest),
3432 @code{pause} (pause the guest),
3433 @code{debug} (print a debug message and continue), or
3434 @code{none} (do nothing).
3436 Note that the @code{shutdown} action requires that the guest responds
3437 to ACPI signals, which it may not be able to do in the sort of
3438 situations where the watchdog would have expired, and thus
3439 @code{-watchdog-action shutdown} is not recommended for production use.
3441 Examples:
3443 @table @code
3444 @item -watchdog i6300esb -watchdog-action pause
3445 @itemx -watchdog ib700
3446 @end table
3447 ETEXI
3449 DEF("echr", HAS_ARG, QEMU_OPTION_echr, \
3450 "-echr chr set terminal escape character instead of ctrl-a\n",
3451 QEMU_ARCH_ALL)
3452 STEXI
3454 @item -echr @var{numeric_ascii_value}
3455 @findex -echr
3456 Change the escape character used for switching to the monitor when using
3457 monitor and serial sharing. The default is @code{0x01} when using the
3458 @code{-nographic} option. @code{0x01} is equal to pressing
3459 @code{Control-a}. You can select a different character from the ascii
3460 control keys where 1 through 26 map to Control-a through Control-z. For
3461 instance you could use the either of the following to change the escape
3462 character to Control-t.
3463 @table @code
3464 @item -echr 0x14
3465 @itemx -echr 20
3466 @end table
3467 ETEXI
3469 DEF("virtioconsole", HAS_ARG, QEMU_OPTION_virtiocon, \
3470 "-virtioconsole c\n" \
3471 " set virtio console\n", QEMU_ARCH_ALL)
3472 STEXI
3473 @item -virtioconsole @var{c}
3474 @findex -virtioconsole
3475 Set virtio console.
3477 This option is maintained for backward compatibility.
3479 Please use @code{-device virtconsole} for the new way of invocation.
3480 ETEXI
3482 DEF("show-cursor", 0, QEMU_OPTION_show_cursor, \
3483 "-show-cursor show cursor\n", QEMU_ARCH_ALL)
3484 STEXI
3485 @item -show-cursor
3486 @findex -show-cursor
3487 Show cursor.
3488 ETEXI
3490 DEF("tb-size", HAS_ARG, QEMU_OPTION_tb_size, \
3491 "-tb-size n set TB size\n", QEMU_ARCH_ALL)
3492 STEXI
3493 @item -tb-size @var{n}
3494 @findex -tb-size
3495 Set TB size.
3496 ETEXI
3498 DEF("incoming", HAS_ARG, QEMU_OPTION_incoming, \
3499 "-incoming tcp:[host]:port[,to=maxport][,ipv4][,ipv6]\n" \
3500 "-incoming rdma:host:port[,ipv4][,ipv6]\n" \
3501 "-incoming unix:socketpath\n" \
3502 " prepare for incoming migration, listen on\n" \
3503 " specified protocol and socket address\n" \
3504 "-incoming fd:fd\n" \
3505 "-incoming exec:cmdline\n" \
3506 " accept incoming migration on given file descriptor\n" \
3507 " or from given external command\n" \
3508 "-incoming defer\n" \
3509 " wait for the URI to be specified via migrate_incoming\n",
3510 QEMU_ARCH_ALL)
3511 STEXI
3512 @item -incoming tcp:[@var{host}]:@var{port}[,to=@var{maxport}][,ipv4][,ipv6]
3513 @itemx -incoming rdma:@var{host}:@var{port}[,ipv4][,ipv6]
3514 @findex -incoming
3515 Prepare for incoming migration, listen on a given tcp port.
3517 @item -incoming unix:@var{socketpath}
3518 Prepare for incoming migration, listen on a given unix socket.
3520 @item -incoming fd:@var{fd}
3521 Accept incoming migration from a given filedescriptor.
3523 @item -incoming exec:@var{cmdline}
3524 Accept incoming migration as an output from specified external command.
3526 @item -incoming defer
3527 Wait for the URI to be specified via migrate_incoming. The monitor can
3528 be used to change settings (such as migration parameters) prior to issuing
3529 the migrate_incoming to allow the migration to begin.
3530 ETEXI
3532 DEF("nodefaults", 0, QEMU_OPTION_nodefaults, \
3533 "-nodefaults don't create default devices\n", QEMU_ARCH_ALL)
3534 STEXI
3535 @item -nodefaults
3536 @findex -nodefaults
3537 Don't create default devices. Normally, QEMU sets the default devices like serial
3538 port, parallel port, virtual console, monitor device, VGA adapter, floppy and
3539 CD-ROM drive and others. The @code{-nodefaults} option will disable all those
3540 default devices.
3541 ETEXI
3543 #ifndef _WIN32
3544 DEF("chroot", HAS_ARG, QEMU_OPTION_chroot, \
3545 "-chroot dir chroot to dir just before starting the VM\n",
3546 QEMU_ARCH_ALL)
3547 #endif
3548 STEXI
3549 @item -chroot @var{dir}
3550 @findex -chroot
3551 Immediately before starting guest execution, chroot to the specified
3552 directory. Especially useful in combination with -runas.
3553 ETEXI
3555 #ifndef _WIN32
3556 DEF("runas", HAS_ARG, QEMU_OPTION_runas, \
3557 "-runas user change to user id user just before starting the VM\n",
3558 QEMU_ARCH_ALL)
3559 #endif
3560 STEXI
3561 @item -runas @var{user}
3562 @findex -runas
3563 Immediately before starting guest execution, drop root privileges, switching
3564 to the specified user.
3565 ETEXI
3567 DEF("prom-env", HAS_ARG, QEMU_OPTION_prom_env,
3568 "-prom-env variable=value\n"
3569 " set OpenBIOS nvram variables\n",
3570 QEMU_ARCH_PPC | QEMU_ARCH_SPARC)
3571 STEXI
3572 @item -prom-env @var{variable}=@var{value}
3573 @findex -prom-env
3574 Set OpenBIOS nvram @var{variable} to given @var{value} (PPC, SPARC only).
3575 ETEXI
3576 DEF("semihosting", 0, QEMU_OPTION_semihosting,
3577 "-semihosting semihosting mode\n",
3578 QEMU_ARCH_ARM | QEMU_ARCH_M68K | QEMU_ARCH_XTENSA | QEMU_ARCH_LM32 |
3579 QEMU_ARCH_MIPS)
3580 STEXI
3581 @item -semihosting
3582 @findex -semihosting
3583 Enable semihosting mode (ARM, M68K, Xtensa, MIPS only).
3584 ETEXI
3585 DEF("semihosting-config", HAS_ARG, QEMU_OPTION_semihosting_config,
3586 "-semihosting-config [enable=on|off][,target=native|gdb|auto][,arg=str[,...]]\n" \
3587 " semihosting configuration\n",
3588 QEMU_ARCH_ARM | QEMU_ARCH_M68K | QEMU_ARCH_XTENSA | QEMU_ARCH_LM32 |
3589 QEMU_ARCH_MIPS)
3590 STEXI
3591 @item -semihosting-config [enable=on|off][,target=native|gdb|auto][,arg=str[,...]]
3592 @findex -semihosting-config
3593 Enable and configure semihosting (ARM, M68K, Xtensa, MIPS only).
3594 @table @option
3595 @item target=@code{native|gdb|auto}
3596 Defines where the semihosting calls will be addressed, to QEMU (@code{native})
3597 or to GDB (@code{gdb}). The default is @code{auto}, which means @code{gdb}
3598 during debug sessions and @code{native} otherwise.
3599 @item arg=@var{str1},arg=@var{str2},...
3600 Allows the user to pass input arguments, and can be used multiple times to build
3601 up a list. The old-style @code{-kernel}/@code{-append} method of passing a
3602 command line is still supported for backward compatibility. If both the
3603 @code{--semihosting-config arg} and the @code{-kernel}/@code{-append} are
3604 specified, the former is passed to semihosting as it always takes precedence.
3605 @end table
3606 ETEXI
3607 DEF("old-param", 0, QEMU_OPTION_old_param,
3608 "-old-param old param mode\n", QEMU_ARCH_ARM)
3609 STEXI
3610 @item -old-param
3611 @findex -old-param (ARM)
3612 Old param mode (ARM only).
3613 ETEXI
3615 DEF("sandbox", HAS_ARG, QEMU_OPTION_sandbox, \
3616 "-sandbox <arg> Enable seccomp mode 2 system call filter (default 'off').\n",
3617 QEMU_ARCH_ALL)
3618 STEXI
3619 @item -sandbox @var{arg}
3620 @findex -sandbox
3621 Enable Seccomp mode 2 system call filter. 'on' will enable syscall filtering and 'off' will
3622 disable it. The default is 'off'.
3623 ETEXI
3625 DEF("readconfig", HAS_ARG, QEMU_OPTION_readconfig,
3626 "-readconfig <file>\n", QEMU_ARCH_ALL)
3627 STEXI
3628 @item -readconfig @var{file}
3629 @findex -readconfig
3630 Read device configuration from @var{file}. This approach is useful when you want to spawn
3631 QEMU process with many command line options but you don't want to exceed the command line
3632 character limit.
3633 ETEXI
3634 DEF("writeconfig", HAS_ARG, QEMU_OPTION_writeconfig,
3635 "-writeconfig <file>\n"
3636 " read/write config file\n", QEMU_ARCH_ALL)
3637 STEXI
3638 @item -writeconfig @var{file}
3639 @findex -writeconfig
3640 Write device configuration to @var{file}. The @var{file} can be either filename to save
3641 command line and device configuration into file or dash @code{-}) character to print the
3642 output to stdout. This can be later used as input file for @code{-readconfig} option.
3643 ETEXI
3644 DEF("nodefconfig", 0, QEMU_OPTION_nodefconfig,
3645 "-nodefconfig\n"
3646 " do not load default config files at startup\n",
3647 QEMU_ARCH_ALL)
3648 STEXI
3649 @item -nodefconfig
3650 @findex -nodefconfig
3651 Normally QEMU loads configuration files from @var{sysconfdir} and @var{datadir} at startup.
3652 The @code{-nodefconfig} option will prevent QEMU from loading any of those config files.
3653 ETEXI
3654 DEF("no-user-config", 0, QEMU_OPTION_nouserconfig,
3655 "-no-user-config\n"
3656 " do not load user-provided config files at startup\n",
3657 QEMU_ARCH_ALL)
3658 STEXI
3659 @item -no-user-config
3660 @findex -no-user-config
3661 The @code{-no-user-config} option makes QEMU not load any of the user-provided
3662 config files on @var{sysconfdir}, but won't make it skip the QEMU-provided config
3663 files from @var{datadir}.
3664 ETEXI
3665 DEF("trace", HAS_ARG, QEMU_OPTION_trace,
3666 "-trace [[enable=]<pattern>][,events=<file>][,file=<file>]\n"
3667 " specify tracing options\n",
3668 QEMU_ARCH_ALL)
3669 STEXI
3670 HXCOMM This line is not accurate, as some sub-options are backend-specific but
3671 HXCOMM HX does not support conditional compilation of text.
3672 @item -trace [[enable=]@var{pattern}][,events=@var{file}][,file=@var{file}]
3673 @findex -trace
3674 @include qemu-option-trace.texi
3675 ETEXI
3677 HXCOMM Internal use
3678 DEF("qtest", HAS_ARG, QEMU_OPTION_qtest, "", QEMU_ARCH_ALL)
3679 DEF("qtest-log", HAS_ARG, QEMU_OPTION_qtest_log, "", QEMU_ARCH_ALL)
3681 #ifdef __linux__
3682 DEF("enable-fips", 0, QEMU_OPTION_enablefips,
3683 "-enable-fips enable FIPS 140-2 compliance\n",
3684 QEMU_ARCH_ALL)
3685 #endif
3686 STEXI
3687 @item -enable-fips
3688 @findex -enable-fips
3689 Enable FIPS 140-2 compliance mode.
3690 ETEXI
3692 HXCOMM Deprecated by -machine accel=tcg property
3693 DEF("no-kvm", 0, QEMU_OPTION_no_kvm, "", QEMU_ARCH_I386)
3695 HXCOMM Deprecated by kvm-pit driver properties
3696 DEF("no-kvm-pit-reinjection", 0, QEMU_OPTION_no_kvm_pit_reinjection,
3697 "", QEMU_ARCH_I386)
3699 HXCOMM Deprecated (ignored)
3700 DEF("no-kvm-pit", 0, QEMU_OPTION_no_kvm_pit, "", QEMU_ARCH_I386)
3702 HXCOMM Deprecated by -machine kernel_irqchip=on|off property
3703 DEF("no-kvm-irqchip", 0, QEMU_OPTION_no_kvm_irqchip, "", QEMU_ARCH_I386)
3705 HXCOMM Deprecated (ignored)
3706 DEF("tdf", 0, QEMU_OPTION_tdf,"", QEMU_ARCH_ALL)
3708 DEF("msg", HAS_ARG, QEMU_OPTION_msg,
3709 "-msg timestamp[=on|off]\n"
3710 " change the format of messages\n"
3711 " on|off controls leading timestamps (default:on)\n",
3712 QEMU_ARCH_ALL)
3713 STEXI
3714 @item -msg timestamp[=on|off]
3715 @findex -msg
3716 prepend a timestamp to each log message.(default:on)
3717 ETEXI
3719 DEF("dump-vmstate", HAS_ARG, QEMU_OPTION_dump_vmstate,
3720 "-dump-vmstate <file>\n"
3721 " Output vmstate information in JSON format to file.\n"
3722 " Use the scripts/vmstate-static-checker.py file to\n"
3723 " check for possible regressions in migration code\n"
3724 " by comparing two such vmstate dumps.\n",
3725 QEMU_ARCH_ALL)
3726 STEXI
3727 @item -dump-vmstate @var{file}
3728 @findex -dump-vmstate
3729 Dump json-encoded vmstate information for current machine type to file
3730 in @var{file}
3731 ETEXI
3733 DEFHEADING(Generic object creation)
3735 DEF("object", HAS_ARG, QEMU_OPTION_object,
3736 "-object TYPENAME[,PROP1=VALUE1,...]\n"
3737 " create a new object of type TYPENAME setting properties\n"
3738 " in the order they are specified. Note that the 'id'\n"
3739 " property must be set. These objects are placed in the\n"
3740 " '/objects' path.\n",
3741 QEMU_ARCH_ALL)
3742 STEXI
3743 @item -object @var{typename}[,@var{prop1}=@var{value1},...]
3744 @findex -object
3745 Create a new object of type @var{typename} setting properties
3746 in the order they are specified. Note that the 'id'
3747 property must be set. These objects are placed in the
3748 '/objects' path.
3750 @table @option
3752 @item -object memory-backend-file,id=@var{id},size=@var{size},mem-path=@var{dir},share=@var{on|off}
3754 Creates a memory file backend object, which can be used to back
3755 the guest RAM with huge pages. The @option{id} parameter is a
3756 unique ID that will be used to reference this memory region
3757 when configuring the @option{-numa} argument. The @option{size}
3758 option provides the size of the memory region, and accepts
3759 common suffixes, eg @option{500M}. The @option{mem-path} provides
3760 the path to either a shared memory or huge page filesystem mount.
3761 The @option{share} boolean option determines whether the memory
3762 region is marked as private to QEMU, or shared. The latter allows
3763 a co-operating external process to access the QEMU memory region.
3765 @item -object rng-random,id=@var{id},filename=@var{/dev/random}
3767 Creates a random number generator backend which obtains entropy from
3768 a device on the host. The @option{id} parameter is a unique ID that
3769 will be used to reference this entropy backend from the @option{virtio-rng}
3770 device. The @option{filename} parameter specifies which file to obtain
3771 entropy from and if omitted defaults to @option{/dev/random}.
3773 @item -object rng-egd,id=@var{id},chardev=@var{chardevid}
3775 Creates a random number generator backend which obtains entropy from
3776 an external daemon running on the host. The @option{id} parameter is
3777 a unique ID that will be used to reference this entropy backend from
3778 the @option{virtio-rng} device. The @option{chardev} parameter is
3779 the unique ID of a character device backend that provides the connection
3780 to the RNG daemon.
3782 @item -object tls-creds-anon,id=@var{id},endpoint=@var{endpoint},dir=@var{/path/to/cred/dir},verify-peer=@var{on|off}
3784 Creates a TLS anonymous credentials object, which can be used to provide
3785 TLS support on network backends. The @option{id} parameter is a unique
3786 ID which network backends will use to access the credentials. The
3787 @option{endpoint} is either @option{server} or @option{client} depending
3788 on whether the QEMU network backend that uses the credentials will be
3789 acting as a client or as a server. If @option{verify-peer} is enabled
3790 (the default) then once the handshake is completed, the peer credentials
3791 will be verified, though this is a no-op for anonymous credentials.
3793 The @var{dir} parameter tells QEMU where to find the credential
3794 files. For server endpoints, this directory may contain a file
3795 @var{dh-params.pem} providing diffie-hellman parameters to use
3796 for the TLS server. If the file is missing, QEMU will generate
3797 a set of DH parameters at startup. This is a computationally
3798 expensive operation that consumes random pool entropy, so it is
3799 recommended that a persistent set of parameters be generated
3800 upfront and saved.
3802 @item -object tls-creds-x509,id=@var{id},endpoint=@var{endpoint},dir=@var{/path/to/cred/dir},verify-peer=@var{on|off},passwordid=@var{id}
3804 Creates a TLS anonymous credentials object, which can be used to provide
3805 TLS support on network backends. The @option{id} parameter is a unique
3806 ID which network backends will use to access the credentials. The
3807 @option{endpoint} is either @option{server} or @option{client} depending
3808 on whether the QEMU network backend that uses the credentials will be
3809 acting as a client or as a server. If @option{verify-peer} is enabled
3810 (the default) then once the handshake is completed, the peer credentials
3811 will be verified. With x509 certificates, this implies that the clients
3812 must be provided with valid client certificates too.
3814 The @var{dir} parameter tells QEMU where to find the credential
3815 files. For server endpoints, this directory may contain a file
3816 @var{dh-params.pem} providing diffie-hellman parameters to use
3817 for the TLS server. If the file is missing, QEMU will generate
3818 a set of DH parameters at startup. This is a computationally
3819 expensive operation that consumes random pool entropy, so it is
3820 recommended that a persistent set of parameters be generated
3821 upfront and saved.
3823 For x509 certificate credentials the directory will contain further files
3824 providing the x509 certificates. The certificates must be stored
3825 in PEM format, in filenames @var{ca-cert.pem}, @var{ca-crl.pem} (optional),
3826 @var{server-cert.pem} (only servers), @var{server-key.pem} (only servers),
3827 @var{client-cert.pem} (only clients), and @var{client-key.pem} (only clients).
3829 For the @var{server-key.pem} and @var{client-key.pem} files which
3830 contain sensitive private keys, it is possible to use an encrypted
3831 version by providing the @var{passwordid} parameter. This provides
3832 the ID of a previously created @code{secret} object containing the
3833 password for decryption.
3835 @item -object filter-buffer,id=@var{id},netdev=@var{netdevid},interval=@var{t}[,queue=@var{all|rx|tx}][,status=@var{on|off}]
3837 Interval @var{t} can't be 0, this filter batches the packet delivery: all
3838 packets arriving in a given interval on netdev @var{netdevid} are delayed
3839 until the end of the interval. Interval is in microseconds.
3840 @option{status} is optional that indicate whether the netfilter is
3841 on (enabled) or off (disabled), the default status for netfilter will be 'on'.
3843 queue @var{all|rx|tx} is an option that can be applied to any netfilter.
3845 @option{all}: the filter is attached both to the receive and the transmit
3846 queue of the netdev (default).
3848 @option{rx}: the filter is attached to the receive queue of the netdev,
3849 where it will receive packets sent to the netdev.
3851 @option{tx}: the filter is attached to the transmit queue of the netdev,
3852 where it will receive packets sent by the netdev.
3854 @item -object filter-mirror,id=@var{id},netdev=@var{netdevid},outdev=@var{chardevid}[,queue=@var{all|rx|tx}]
3856 filter-mirror on netdev @var{netdevid},mirror net packet to chardev
3857 @var{chardevid}
3859 @item -object filter-redirector,id=@var{id},netdev=@var{netdevid},indev=@var{chardevid},
3860 outdev=@var{chardevid}[,queue=@var{all|rx|tx}]
3862 filter-redirector on netdev @var{netdevid},redirect filter's net packet to chardev
3863 @var{chardevid},and redirect indev's packet to filter.
3864 Create a filter-redirector we need to differ outdev id from indev id, id can not
3865 be the same. we can just use indev or outdev, but at least one of indev or outdev
3866 need to be specified.
3868 @item -object filter-dump,id=@var{id},netdev=@var{dev},file=@var{filename}][,maxlen=@var{len}]
3870 Dump the network traffic on netdev @var{dev} to the file specified by
3871 @var{filename}. At most @var{len} bytes (64k by default) per packet are stored.
3872 The file format is libpcap, so it can be analyzed with tools such as tcpdump
3873 or Wireshark.
3875 @item -object secret,id=@var{id},data=@var{string},format=@var{raw|base64}[,keyid=@var{secretid},iv=@var{string}]
3876 @item -object secret,id=@var{id},file=@var{filename},format=@var{raw|base64}[,keyid=@var{secretid},iv=@var{string}]
3878 Defines a secret to store a password, encryption key, or some other sensitive
3879 data. The sensitive data can either be passed directly via the @var{data}
3880 parameter, or indirectly via the @var{file} parameter. Using the @var{data}
3881 parameter is insecure unless the sensitive data is encrypted.
3883 The sensitive data can be provided in raw format (the default), or base64.
3884 When encoded as JSON, the raw format only supports valid UTF-8 characters,
3885 so base64 is recommended for sending binary data. QEMU will convert from
3886 which ever format is provided to the format it needs internally. eg, an
3887 RBD password can be provided in raw format, even though it will be base64
3888 encoded when passed onto the RBD sever.
3890 For added protection, it is possible to encrypt the data associated with
3891 a secret using the AES-256-CBC cipher. Use of encryption is indicated
3892 by providing the @var{keyid} and @var{iv} parameters. The @var{keyid}
3893 parameter provides the ID of a previously defined secret that contains
3894 the AES-256 decryption key. This key should be 32-bytes long and be
3895 base64 encoded. The @var{iv} parameter provides the random initialization
3896 vector used for encryption of this particular secret and should be a
3897 base64 encrypted string of the 16-byte IV.
3899 The simplest (insecure) usage is to provide the secret inline
3901 @example
3903 # $QEMU -object secret,id=sec0,data=letmein,format=raw
3905 @end example
3907 The simplest secure usage is to provide the secret via a file
3909 # echo -n "letmein" > mypasswd.txt
3910 # $QEMU -object secret,id=sec0,file=mypasswd.txt,format=raw
3912 For greater security, AES-256-CBC should be used. To illustrate usage,
3913 consider the openssl command line tool which can encrypt the data. Note
3914 that when encrypting, the plaintext must be padded to the cipher block
3915 size (32 bytes) using the standard PKCS#5/6 compatible padding algorithm.
3917 First a master key needs to be created in base64 encoding:
3919 @example
3920 # openssl rand -base64 32 > key.b64
3921 # KEY=$(base64 -d key.b64 | hexdump -v -e '/1 "%02X"')
3922 @end example
3924 Each secret to be encrypted needs to have a random initialization vector
3925 generated. These do not need to be kept secret
3927 @example
3928 # openssl rand -base64 16 > iv.b64
3929 # IV=$(base64 -d iv.b64 | hexdump -v -e '/1 "%02X"')
3930 @end example
3932 The secret to be defined can now be encrypted, in this case we're
3933 telling openssl to base64 encode the result, but it could be left
3934 as raw bytes if desired.
3936 @example
3937 # SECRET=$(echo -n "letmein" |
3938 openssl enc -aes-256-cbc -a -K $KEY -iv $IV)
3939 @end example
3941 When launching QEMU, create a master secret pointing to @code{key.b64}
3942 and specify that to be used to decrypt the user password. Pass the
3943 contents of @code{iv.b64} to the second secret
3945 @example
3946 # $QEMU \
3947 -object secret,id=secmaster0,format=base64,file=key.b64 \
3948 -object secret,id=sec0,keyid=secmaster0,format=base64,\
3949 data=$SECRET,iv=$(<iv.b64)
3950 @end example
3952 @end table
3954 ETEXI
3957 HXCOMM This is the last statement. Insert new options before this line!
3958 STEXI
3959 @end table
3960 ETEXI