target/ppc: fix unreachable code in fpu_helper.c
[qemu.git] / hw / block / m25p80.c
blob81ba3da4df1073dca68fe527e549ee49fb6fe0cc
1 /*
2 * ST M25P80 emulator. Emulate all SPI flash devices based on the m25p80 command
3 * set. Known devices table current as of Jun/2012 and taken from linux.
4 * See drivers/mtd/devices/m25p80.c.
6 * Copyright (C) 2011 Edgar E. Iglesias <edgar.iglesias@gmail.com>
7 * Copyright (C) 2012 Peter A. G. Crosthwaite <peter.crosthwaite@petalogix.com>
8 * Copyright (C) 2012 PetaLogix
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License as
12 * published by the Free Software Foundation; either version 2 or
13 * (at your option) a later version of the License.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
20 * You should have received a copy of the GNU General Public License along
21 * with this program; if not, see <http://www.gnu.org/licenses/>.
24 #include "qemu/osdep.h"
25 #include "qemu/units.h"
26 #include "sysemu/block-backend.h"
27 #include "hw/qdev-properties.h"
28 #include "hw/qdev-properties-system.h"
29 #include "hw/ssi/ssi.h"
30 #include "migration/vmstate.h"
31 #include "qemu/bitops.h"
32 #include "qemu/log.h"
33 #include "qemu/module.h"
34 #include "qemu/error-report.h"
35 #include "qapi/error.h"
36 #include "trace.h"
37 #include "qom/object.h"
39 /* Fields for FlashPartInfo->flags */
41 /* erase capabilities */
42 #define ER_4K 1
43 #define ER_32K 2
44 /* set to allow the page program command to write 0s back to 1. Useful for
45 * modelling EEPROM with SPI flash command set
47 #define EEPROM 0x100
49 /* 16 MiB max in 3 byte address mode */
50 #define MAX_3BYTES_SIZE 0x1000000
52 #define SPI_NOR_MAX_ID_LEN 6
54 typedef struct FlashPartInfo {
55 const char *part_name;
57 * This array stores the ID bytes.
58 * The first three bytes are the JEDIC ID.
59 * JEDEC ID zero means "no ID" (mostly older chips).
61 uint8_t id[SPI_NOR_MAX_ID_LEN];
62 uint8_t id_len;
63 /* there is confusion between manufacturers as to what a sector is. In this
64 * device model, a "sector" is the size that is erased by the ERASE_SECTOR
65 * command (opcode 0xd8).
67 uint32_t sector_size;
68 uint32_t n_sectors;
69 uint32_t page_size;
70 uint16_t flags;
72 * Big sized spi nor are often stacked devices, thus sometime
73 * replace chip erase with die erase.
74 * This field inform how many die is in the chip.
76 uint8_t die_cnt;
77 } FlashPartInfo;
79 /* adapted from linux */
80 /* Used when the "_ext_id" is two bytes at most */
81 #define INFO(_part_name, _jedec_id, _ext_id, _sector_size, _n_sectors, _flags)\
82 .part_name = _part_name,\
83 .id = {\
84 ((_jedec_id) >> 16) & 0xff,\
85 ((_jedec_id) >> 8) & 0xff,\
86 (_jedec_id) & 0xff,\
87 ((_ext_id) >> 8) & 0xff,\
88 (_ext_id) & 0xff,\
89 },\
90 .id_len = (!(_jedec_id) ? 0 : (3 + ((_ext_id) ? 2 : 0))),\
91 .sector_size = (_sector_size),\
92 .n_sectors = (_n_sectors),\
93 .page_size = 256,\
94 .flags = (_flags),\
95 .die_cnt = 0
97 #define INFO6(_part_name, _jedec_id, _ext_id, _sector_size, _n_sectors, _flags)\
98 .part_name = _part_name,\
99 .id = {\
100 ((_jedec_id) >> 16) & 0xff,\
101 ((_jedec_id) >> 8) & 0xff,\
102 (_jedec_id) & 0xff,\
103 ((_ext_id) >> 16) & 0xff,\
104 ((_ext_id) >> 8) & 0xff,\
105 (_ext_id) & 0xff,\
107 .id_len = 6,\
108 .sector_size = (_sector_size),\
109 .n_sectors = (_n_sectors),\
110 .page_size = 256,\
111 .flags = (_flags),\
112 .die_cnt = 0
114 #define INFO_STACKED(_part_name, _jedec_id, _ext_id, _sector_size, _n_sectors,\
115 _flags, _die_cnt)\
116 .part_name = _part_name,\
117 .id = {\
118 ((_jedec_id) >> 16) & 0xff,\
119 ((_jedec_id) >> 8) & 0xff,\
120 (_jedec_id) & 0xff,\
121 ((_ext_id) >> 8) & 0xff,\
122 (_ext_id) & 0xff,\
124 .id_len = (!(_jedec_id) ? 0 : (3 + ((_ext_id) ? 2 : 0))),\
125 .sector_size = (_sector_size),\
126 .n_sectors = (_n_sectors),\
127 .page_size = 256,\
128 .flags = (_flags),\
129 .die_cnt = _die_cnt
131 #define JEDEC_NUMONYX 0x20
132 #define JEDEC_WINBOND 0xEF
133 #define JEDEC_SPANSION 0x01
135 /* Numonyx (Micron) Configuration register macros */
136 #define VCFG_DUMMY 0x1
137 #define VCFG_WRAP_SEQUENTIAL 0x2
138 #define NVCFG_XIP_MODE_DISABLED (7 << 9)
139 #define NVCFG_XIP_MODE_MASK (7 << 9)
140 #define VCFG_XIP_MODE_DISABLED (1 << 3)
141 #define CFG_DUMMY_CLK_LEN 4
142 #define NVCFG_DUMMY_CLK_POS 12
143 #define VCFG_DUMMY_CLK_POS 4
144 #define EVCFG_OUT_DRIVER_STRENGTH_DEF 7
145 #define EVCFG_VPP_ACCELERATOR (1 << 3)
146 #define EVCFG_RESET_HOLD_ENABLED (1 << 4)
147 #define NVCFG_DUAL_IO_MASK (1 << 2)
148 #define EVCFG_DUAL_IO_DISABLED (1 << 6)
149 #define NVCFG_QUAD_IO_MASK (1 << 3)
150 #define EVCFG_QUAD_IO_DISABLED (1 << 7)
151 #define NVCFG_4BYTE_ADDR_MASK (1 << 0)
152 #define NVCFG_LOWER_SEGMENT_MASK (1 << 1)
154 /* Numonyx (Micron) Flag Status Register macros */
155 #define FSR_4BYTE_ADDR_MODE_ENABLED 0x1
156 #define FSR_FLASH_READY (1 << 7)
158 /* Spansion configuration registers macros. */
159 #define SPANSION_QUAD_CFG_POS 0
160 #define SPANSION_QUAD_CFG_LEN 1
161 #define SPANSION_DUMMY_CLK_POS 0
162 #define SPANSION_DUMMY_CLK_LEN 4
163 #define SPANSION_ADDR_LEN_POS 7
164 #define SPANSION_ADDR_LEN_LEN 1
167 * Spansion read mode command length in bytes,
168 * the mode is currently not supported.
171 #define SPANSION_CONTINUOUS_READ_MODE_CMD_LEN 1
172 #define WINBOND_CONTINUOUS_READ_MODE_CMD_LEN 1
174 static const FlashPartInfo known_devices[] = {
175 /* Atmel -- some are (confusingly) marketed as "DataFlash" */
176 { INFO("at25fs010", 0x1f6601, 0, 32 << 10, 4, ER_4K) },
177 { INFO("at25fs040", 0x1f6604, 0, 64 << 10, 8, ER_4K) },
179 { INFO("at25df041a", 0x1f4401, 0, 64 << 10, 8, ER_4K) },
180 { INFO("at25df321a", 0x1f4701, 0, 64 << 10, 64, ER_4K) },
181 { INFO("at25df641", 0x1f4800, 0, 64 << 10, 128, ER_4K) },
183 { INFO("at26f004", 0x1f0400, 0, 64 << 10, 8, ER_4K) },
184 { INFO("at26df081a", 0x1f4501, 0, 64 << 10, 16, ER_4K) },
185 { INFO("at26df161a", 0x1f4601, 0, 64 << 10, 32, ER_4K) },
186 { INFO("at26df321", 0x1f4700, 0, 64 << 10, 64, ER_4K) },
188 { INFO("at45db081d", 0x1f2500, 0, 64 << 10, 16, ER_4K) },
190 /* Atmel EEPROMS - it is assumed, that don't care bit in command
191 * is set to 0. Block protection is not supported.
193 { INFO("at25128a-nonjedec", 0x0, 0, 1, 131072, EEPROM) },
194 { INFO("at25256a-nonjedec", 0x0, 0, 1, 262144, EEPROM) },
196 /* EON -- en25xxx */
197 { INFO("en25f32", 0x1c3116, 0, 64 << 10, 64, ER_4K) },
198 { INFO("en25p32", 0x1c2016, 0, 64 << 10, 64, 0) },
199 { INFO("en25q32b", 0x1c3016, 0, 64 << 10, 64, 0) },
200 { INFO("en25p64", 0x1c2017, 0, 64 << 10, 128, 0) },
201 { INFO("en25q64", 0x1c3017, 0, 64 << 10, 128, ER_4K) },
203 /* GigaDevice */
204 { INFO("gd25q32", 0xc84016, 0, 64 << 10, 64, ER_4K) },
205 { INFO("gd25q64", 0xc84017, 0, 64 << 10, 128, ER_4K) },
207 /* Intel/Numonyx -- xxxs33b */
208 { INFO("160s33b", 0x898911, 0, 64 << 10, 32, 0) },
209 { INFO("320s33b", 0x898912, 0, 64 << 10, 64, 0) },
210 { INFO("640s33b", 0x898913, 0, 64 << 10, 128, 0) },
211 { INFO("n25q064", 0x20ba17, 0, 64 << 10, 128, 0) },
213 /* ISSI */
214 { INFO("is25lq040b", 0x9d4013, 0, 64 << 10, 8, ER_4K) },
215 { INFO("is25lp080d", 0x9d6014, 0, 64 << 10, 16, ER_4K) },
216 { INFO("is25lp016d", 0x9d6015, 0, 64 << 10, 32, ER_4K) },
217 { INFO("is25lp032", 0x9d6016, 0, 64 << 10, 64, ER_4K) },
218 { INFO("is25lp064", 0x9d6017, 0, 64 << 10, 128, ER_4K) },
219 { INFO("is25lp128", 0x9d6018, 0, 64 << 10, 256, ER_4K) },
220 { INFO("is25lp256", 0x9d6019, 0, 64 << 10, 512, ER_4K) },
221 { INFO("is25wp032", 0x9d7016, 0, 64 << 10, 64, ER_4K) },
222 { INFO("is25wp064", 0x9d7017, 0, 64 << 10, 128, ER_4K) },
223 { INFO("is25wp128", 0x9d7018, 0, 64 << 10, 256, ER_4K) },
224 { INFO("is25wp256", 0x9d7019, 0, 64 << 10, 512, ER_4K) },
226 /* Macronix */
227 { INFO("mx25l2005a", 0xc22012, 0, 64 << 10, 4, ER_4K) },
228 { INFO("mx25l4005a", 0xc22013, 0, 64 << 10, 8, ER_4K) },
229 { INFO("mx25l8005", 0xc22014, 0, 64 << 10, 16, 0) },
230 { INFO("mx25l1606e", 0xc22015, 0, 64 << 10, 32, ER_4K) },
231 { INFO("mx25l3205d", 0xc22016, 0, 64 << 10, 64, 0) },
232 { INFO("mx25l6405d", 0xc22017, 0, 64 << 10, 128, 0) },
233 { INFO("mx25l12805d", 0xc22018, 0, 64 << 10, 256, 0) },
234 { INFO("mx25l12855e", 0xc22618, 0, 64 << 10, 256, 0) },
235 { INFO6("mx25l25635e", 0xc22019, 0xc22019, 64 << 10, 512, 0) },
236 { INFO("mx25l25655e", 0xc22619, 0, 64 << 10, 512, 0) },
237 { INFO("mx66l51235f", 0xc2201a, 0, 64 << 10, 1024, ER_4K | ER_32K) },
238 { INFO("mx66u51235f", 0xc2253a, 0, 64 << 10, 1024, ER_4K | ER_32K) },
239 { INFO("mx66u1g45g", 0xc2253b, 0, 64 << 10, 2048, ER_4K | ER_32K) },
240 { INFO("mx66l1g45g", 0xc2201b, 0, 64 << 10, 2048, ER_4K | ER_32K) },
242 /* Micron */
243 { INFO("n25q032a11", 0x20bb16, 0, 64 << 10, 64, ER_4K) },
244 { INFO("n25q032a13", 0x20ba16, 0, 64 << 10, 64, ER_4K) },
245 { INFO("n25q064a11", 0x20bb17, 0, 64 << 10, 128, ER_4K) },
246 { INFO("n25q064a13", 0x20ba17, 0, 64 << 10, 128, ER_4K) },
247 { INFO("n25q128a11", 0x20bb18, 0, 64 << 10, 256, ER_4K) },
248 { INFO("n25q128a13", 0x20ba18, 0, 64 << 10, 256, ER_4K) },
249 { INFO("n25q256a11", 0x20bb19, 0, 64 << 10, 512, ER_4K) },
250 { INFO("n25q256a13", 0x20ba19, 0, 64 << 10, 512, ER_4K) },
251 { INFO("n25q512a11", 0x20bb20, 0, 64 << 10, 1024, ER_4K) },
252 { INFO("n25q512a13", 0x20ba20, 0, 64 << 10, 1024, ER_4K) },
253 { INFO("n25q128", 0x20ba18, 0, 64 << 10, 256, 0) },
254 { INFO("n25q256a", 0x20ba19, 0, 64 << 10, 512, ER_4K) },
255 { INFO("n25q512a", 0x20ba20, 0, 64 << 10, 1024, ER_4K) },
256 { INFO("n25q512ax3", 0x20ba20, 0x1000, 64 << 10, 1024, ER_4K) },
257 { INFO("mt25ql512ab", 0x20ba20, 0x1044, 64 << 10, 1024, ER_4K | ER_32K) },
258 { INFO_STACKED("mt35xu01g", 0x2c5b1b, 0x104100, 128 << 10, 1024,
259 ER_4K | ER_32K, 2) },
260 { INFO_STACKED("n25q00", 0x20ba21, 0x1000, 64 << 10, 2048, ER_4K, 4) },
261 { INFO_STACKED("n25q00a", 0x20bb21, 0x1000, 64 << 10, 2048, ER_4K, 4) },
262 { INFO_STACKED("mt25ql01g", 0x20ba21, 0x1040, 64 << 10, 2048, ER_4K, 2) },
263 { INFO_STACKED("mt25qu01g", 0x20bb21, 0x1040, 64 << 10, 2048, ER_4K, 2) },
264 { INFO_STACKED("mt25ql02g", 0x20ba22, 0x1040, 64 << 10, 4096, ER_4K | ER_32K, 2) },
265 { INFO_STACKED("mt25qu02g", 0x20bb22, 0x1040, 64 << 10, 4096, ER_4K | ER_32K, 2) },
267 /* Spansion -- single (large) sector size only, at least
268 * for the chips listed here (without boot sectors).
270 { INFO("s25sl032p", 0x010215, 0x4d00, 64 << 10, 64, ER_4K) },
271 { INFO("s25sl064p", 0x010216, 0x4d00, 64 << 10, 128, ER_4K) },
272 { INFO("s25fl256s0", 0x010219, 0x4d00, 256 << 10, 128, 0) },
273 { INFO("s25fl256s1", 0x010219, 0x4d01, 64 << 10, 512, 0) },
274 { INFO6("s25fl512s", 0x010220, 0x4d0080, 256 << 10, 256, 0) },
275 { INFO6("s70fl01gs", 0x010221, 0x4d0080, 256 << 10, 512, 0) },
276 { INFO("s25sl12800", 0x012018, 0x0300, 256 << 10, 64, 0) },
277 { INFO("s25sl12801", 0x012018, 0x0301, 64 << 10, 256, 0) },
278 { INFO("s25fl129p0", 0x012018, 0x4d00, 256 << 10, 64, 0) },
279 { INFO("s25fl129p1", 0x012018, 0x4d01, 64 << 10, 256, 0) },
280 { INFO("s25sl004a", 0x010212, 0, 64 << 10, 8, 0) },
281 { INFO("s25sl008a", 0x010213, 0, 64 << 10, 16, 0) },
282 { INFO("s25sl016a", 0x010214, 0, 64 << 10, 32, 0) },
283 { INFO("s25sl032a", 0x010215, 0, 64 << 10, 64, 0) },
284 { INFO("s25sl064a", 0x010216, 0, 64 << 10, 128, 0) },
285 { INFO("s25fl016k", 0xef4015, 0, 64 << 10, 32, ER_4K | ER_32K) },
286 { INFO("s25fl064k", 0xef4017, 0, 64 << 10, 128, ER_4K | ER_32K) },
288 /* Spansion -- boot sectors support */
289 { INFO6("s25fs512s", 0x010220, 0x4d0081, 256 << 10, 256, 0) },
290 { INFO6("s70fs01gs", 0x010221, 0x4d0081, 256 << 10, 512, 0) },
292 /* SST -- large erase sizes are "overlays", "sectors" are 4<< 10 */
293 { INFO("sst25vf040b", 0xbf258d, 0, 64 << 10, 8, ER_4K) },
294 { INFO("sst25vf080b", 0xbf258e, 0, 64 << 10, 16, ER_4K) },
295 { INFO("sst25vf016b", 0xbf2541, 0, 64 << 10, 32, ER_4K) },
296 { INFO("sst25vf032b", 0xbf254a, 0, 64 << 10, 64, ER_4K) },
297 { INFO("sst25wf512", 0xbf2501, 0, 64 << 10, 1, ER_4K) },
298 { INFO("sst25wf010", 0xbf2502, 0, 64 << 10, 2, ER_4K) },
299 { INFO("sst25wf020", 0xbf2503, 0, 64 << 10, 4, ER_4K) },
300 { INFO("sst25wf040", 0xbf2504, 0, 64 << 10, 8, ER_4K) },
301 { INFO("sst25wf080", 0xbf2505, 0, 64 << 10, 16, ER_4K) },
303 /* ST Microelectronics -- newer production may have feature updates */
304 { INFO("m25p05", 0x202010, 0, 32 << 10, 2, 0) },
305 { INFO("m25p10", 0x202011, 0, 32 << 10, 4, 0) },
306 { INFO("m25p20", 0x202012, 0, 64 << 10, 4, 0) },
307 { INFO("m25p40", 0x202013, 0, 64 << 10, 8, 0) },
308 { INFO("m25p80", 0x202014, 0, 64 << 10, 16, 0) },
309 { INFO("m25p16", 0x202015, 0, 64 << 10, 32, 0) },
310 { INFO("m25p32", 0x202016, 0, 64 << 10, 64, 0) },
311 { INFO("m25p64", 0x202017, 0, 64 << 10, 128, 0) },
312 { INFO("m25p128", 0x202018, 0, 256 << 10, 64, 0) },
313 { INFO("n25q032", 0x20ba16, 0, 64 << 10, 64, 0) },
315 { INFO("m45pe10", 0x204011, 0, 64 << 10, 2, 0) },
316 { INFO("m45pe80", 0x204014, 0, 64 << 10, 16, 0) },
317 { INFO("m45pe16", 0x204015, 0, 64 << 10, 32, 0) },
319 { INFO("m25pe20", 0x208012, 0, 64 << 10, 4, 0) },
320 { INFO("m25pe80", 0x208014, 0, 64 << 10, 16, 0) },
321 { INFO("m25pe16", 0x208015, 0, 64 << 10, 32, ER_4K) },
323 { INFO("m25px32", 0x207116, 0, 64 << 10, 64, ER_4K) },
324 { INFO("m25px32-s0", 0x207316, 0, 64 << 10, 64, ER_4K) },
325 { INFO("m25px32-s1", 0x206316, 0, 64 << 10, 64, ER_4K) },
326 { INFO("m25px64", 0x207117, 0, 64 << 10, 128, 0) },
328 /* Winbond -- w25x "blocks" are 64k, "sectors" are 4KiB */
329 { INFO("w25x10", 0xef3011, 0, 64 << 10, 2, ER_4K) },
330 { INFO("w25x20", 0xef3012, 0, 64 << 10, 4, ER_4K) },
331 { INFO("w25x40", 0xef3013, 0, 64 << 10, 8, ER_4K) },
332 { INFO("w25x80", 0xef3014, 0, 64 << 10, 16, ER_4K) },
333 { INFO("w25x16", 0xef3015, 0, 64 << 10, 32, ER_4K) },
334 { INFO("w25x32", 0xef3016, 0, 64 << 10, 64, ER_4K) },
335 { INFO("w25q32", 0xef4016, 0, 64 << 10, 64, ER_4K) },
336 { INFO("w25q32dw", 0xef6016, 0, 64 << 10, 64, ER_4K) },
337 { INFO("w25x64", 0xef3017, 0, 64 << 10, 128, ER_4K) },
338 { INFO("w25q64", 0xef4017, 0, 64 << 10, 128, ER_4K) },
339 { INFO("w25q80", 0xef5014, 0, 64 << 10, 16, ER_4K) },
340 { INFO("w25q80bl", 0xef4014, 0, 64 << 10, 16, ER_4K) },
341 { INFO("w25q256", 0xef4019, 0, 64 << 10, 512, ER_4K) },
342 { INFO("w25q512jv", 0xef4020, 0, 64 << 10, 1024, ER_4K) },
343 { INFO("w25q01jvq", 0xef4021, 0, 64 << 10, 2048, ER_4K) },
346 typedef enum {
347 NOP = 0,
348 WRSR = 0x1,
349 WRDI = 0x4,
350 RDSR = 0x5,
351 WREN = 0x6,
352 BRRD = 0x16,
353 BRWR = 0x17,
354 JEDEC_READ = 0x9f,
355 BULK_ERASE_60 = 0x60,
356 BULK_ERASE = 0xc7,
357 READ_FSR = 0x70,
358 RDCR = 0x15,
360 READ = 0x03,
361 READ4 = 0x13,
362 FAST_READ = 0x0b,
363 FAST_READ4 = 0x0c,
364 DOR = 0x3b,
365 DOR4 = 0x3c,
366 QOR = 0x6b,
367 QOR4 = 0x6c,
368 DIOR = 0xbb,
369 DIOR4 = 0xbc,
370 QIOR = 0xeb,
371 QIOR4 = 0xec,
373 PP = 0x02,
374 PP4 = 0x12,
375 PP4_4 = 0x3e,
376 DPP = 0xa2,
377 QPP = 0x32,
378 QPP_4 = 0x34,
379 RDID_90 = 0x90,
380 RDID_AB = 0xab,
381 AAI_WP = 0xad,
383 ERASE_4K = 0x20,
384 ERASE4_4K = 0x21,
385 ERASE_32K = 0x52,
386 ERASE4_32K = 0x5c,
387 ERASE_SECTOR = 0xd8,
388 ERASE4_SECTOR = 0xdc,
390 EN_4BYTE_ADDR = 0xB7,
391 EX_4BYTE_ADDR = 0xE9,
393 EXTEND_ADDR_READ = 0xC8,
394 EXTEND_ADDR_WRITE = 0xC5,
396 RESET_ENABLE = 0x66,
397 RESET_MEMORY = 0x99,
400 * Micron: 0x35 - enable QPI
401 * Spansion: 0x35 - read control register
403 RDCR_EQIO = 0x35,
404 RSTQIO = 0xf5,
406 RNVCR = 0xB5,
407 WNVCR = 0xB1,
409 RVCR = 0x85,
410 WVCR = 0x81,
412 REVCR = 0x65,
413 WEVCR = 0x61,
415 DIE_ERASE = 0xC4,
416 } FlashCMD;
418 typedef enum {
419 STATE_IDLE,
420 STATE_PAGE_PROGRAM,
421 STATE_READ,
422 STATE_COLLECTING_DATA,
423 STATE_COLLECTING_VAR_LEN_DATA,
424 STATE_READING_DATA,
425 } CMDState;
427 typedef enum {
428 MAN_SPANSION,
429 MAN_MACRONIX,
430 MAN_NUMONYX,
431 MAN_WINBOND,
432 MAN_SST,
433 MAN_ISSI,
434 MAN_GENERIC,
435 } Manufacturer;
437 typedef enum {
438 MODE_STD = 0,
439 MODE_DIO = 1,
440 MODE_QIO = 2
441 } SPIMode;
443 #define M25P80_INTERNAL_DATA_BUFFER_SZ 16
445 struct Flash {
446 SSIPeripheral parent_obj;
448 BlockBackend *blk;
450 uint8_t *storage;
451 uint32_t size;
452 int page_size;
454 uint8_t state;
455 uint8_t data[M25P80_INTERNAL_DATA_BUFFER_SZ];
456 uint32_t len;
457 uint32_t pos;
458 bool data_read_loop;
459 uint8_t needed_bytes;
460 uint8_t cmd_in_progress;
461 uint32_t cur_addr;
462 uint32_t nonvolatile_cfg;
463 /* Configuration register for Macronix */
464 uint32_t volatile_cfg;
465 uint32_t enh_volatile_cfg;
466 /* Spansion cfg registers. */
467 uint8_t spansion_cr1nv;
468 uint8_t spansion_cr2nv;
469 uint8_t spansion_cr3nv;
470 uint8_t spansion_cr4nv;
471 uint8_t spansion_cr1v;
472 uint8_t spansion_cr2v;
473 uint8_t spansion_cr3v;
474 uint8_t spansion_cr4v;
475 bool write_enable;
476 bool four_bytes_address_mode;
477 bool reset_enable;
478 bool quad_enable;
479 bool aai_enable;
480 uint8_t ear;
482 int64_t dirty_page;
484 const FlashPartInfo *pi;
488 struct M25P80Class {
489 SSIPeripheralClass parent_class;
490 FlashPartInfo *pi;
493 #define TYPE_M25P80 "m25p80-generic"
494 OBJECT_DECLARE_TYPE(Flash, M25P80Class, M25P80)
496 static inline Manufacturer get_man(Flash *s)
498 switch (s->pi->id[0]) {
499 case 0x20:
500 return MAN_NUMONYX;
501 case 0xEF:
502 return MAN_WINBOND;
503 case 0x01:
504 return MAN_SPANSION;
505 case 0xC2:
506 return MAN_MACRONIX;
507 case 0xBF:
508 return MAN_SST;
509 case 0x9D:
510 return MAN_ISSI;
511 default:
512 return MAN_GENERIC;
516 static void blk_sync_complete(void *opaque, int ret)
518 QEMUIOVector *iov = opaque;
520 qemu_iovec_destroy(iov);
521 g_free(iov);
523 /* do nothing. Masters do not directly interact with the backing store,
524 * only the working copy so no mutexing required.
528 static void flash_sync_page(Flash *s, int page)
530 QEMUIOVector *iov;
532 if (!s->blk || !blk_is_writable(s->blk)) {
533 return;
536 iov = g_new(QEMUIOVector, 1);
537 qemu_iovec_init(iov, 1);
538 qemu_iovec_add(iov, s->storage + page * s->pi->page_size,
539 s->pi->page_size);
540 blk_aio_pwritev(s->blk, page * s->pi->page_size, iov, 0,
541 blk_sync_complete, iov);
544 static inline void flash_sync_area(Flash *s, int64_t off, int64_t len)
546 QEMUIOVector *iov;
548 if (!s->blk || !blk_is_writable(s->blk)) {
549 return;
552 assert(!(len % BDRV_SECTOR_SIZE));
553 iov = g_new(QEMUIOVector, 1);
554 qemu_iovec_init(iov, 1);
555 qemu_iovec_add(iov, s->storage + off, len);
556 blk_aio_pwritev(s->blk, off, iov, 0, blk_sync_complete, iov);
559 static void flash_erase(Flash *s, int offset, FlashCMD cmd)
561 uint32_t len;
562 uint8_t capa_to_assert = 0;
564 switch (cmd) {
565 case ERASE_4K:
566 case ERASE4_4K:
567 len = 4 * KiB;
568 capa_to_assert = ER_4K;
569 break;
570 case ERASE_32K:
571 case ERASE4_32K:
572 len = 32 * KiB;
573 capa_to_assert = ER_32K;
574 break;
575 case ERASE_SECTOR:
576 case ERASE4_SECTOR:
577 len = s->pi->sector_size;
578 break;
579 case BULK_ERASE:
580 len = s->size;
581 break;
582 case DIE_ERASE:
583 if (s->pi->die_cnt) {
584 len = s->size / s->pi->die_cnt;
585 offset = offset & (~(len - 1));
586 } else {
587 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: die erase is not supported"
588 " by device\n");
589 return;
591 break;
592 default:
593 abort();
596 trace_m25p80_flash_erase(s, offset, len);
598 if ((s->pi->flags & capa_to_assert) != capa_to_assert) {
599 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: %d erase size not supported by"
600 " device\n", len);
603 if (!s->write_enable) {
604 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: erase with write protect!\n");
605 return;
607 memset(s->storage + offset, 0xff, len);
608 flash_sync_area(s, offset, len);
611 static inline void flash_sync_dirty(Flash *s, int64_t newpage)
613 if (s->dirty_page >= 0 && s->dirty_page != newpage) {
614 flash_sync_page(s, s->dirty_page);
615 s->dirty_page = newpage;
619 static inline
620 void flash_write8(Flash *s, uint32_t addr, uint8_t data)
622 uint32_t page = addr / s->pi->page_size;
623 uint8_t prev = s->storage[s->cur_addr];
625 if (!s->write_enable) {
626 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: write with write protect!\n");
627 return;
630 if ((prev ^ data) & data) {
631 trace_m25p80_programming_zero_to_one(s, addr, prev, data);
634 if (s->pi->flags & EEPROM) {
635 s->storage[s->cur_addr] = data;
636 } else {
637 s->storage[s->cur_addr] &= data;
640 flash_sync_dirty(s, page);
641 s->dirty_page = page;
644 static inline int get_addr_length(Flash *s)
646 /* check if eeprom is in use */
647 if (s->pi->flags == EEPROM) {
648 return 2;
651 switch (s->cmd_in_progress) {
652 case PP4:
653 case PP4_4:
654 case QPP_4:
655 case READ4:
656 case QIOR4:
657 case ERASE4_4K:
658 case ERASE4_32K:
659 case ERASE4_SECTOR:
660 case FAST_READ4:
661 case DOR4:
662 case QOR4:
663 case DIOR4:
664 return 4;
665 default:
666 return s->four_bytes_address_mode ? 4 : 3;
670 static void complete_collecting_data(Flash *s)
672 int i, n;
674 n = get_addr_length(s);
675 s->cur_addr = (n == 3 ? s->ear : 0);
676 for (i = 0; i < n; ++i) {
677 s->cur_addr <<= 8;
678 s->cur_addr |= s->data[i];
681 s->cur_addr &= s->size - 1;
683 s->state = STATE_IDLE;
685 trace_m25p80_complete_collecting(s, s->cmd_in_progress, n, s->ear,
686 s->cur_addr);
688 switch (s->cmd_in_progress) {
689 case DPP:
690 case QPP:
691 case QPP_4:
692 case PP:
693 case PP4:
694 case PP4_4:
695 s->state = STATE_PAGE_PROGRAM;
696 break;
697 case AAI_WP:
698 /* AAI programming starts from the even address */
699 s->cur_addr &= ~BIT(0);
700 s->state = STATE_PAGE_PROGRAM;
701 break;
702 case READ:
703 case READ4:
704 case FAST_READ:
705 case FAST_READ4:
706 case DOR:
707 case DOR4:
708 case QOR:
709 case QOR4:
710 case DIOR:
711 case DIOR4:
712 case QIOR:
713 case QIOR4:
714 s->state = STATE_READ;
715 break;
716 case ERASE_4K:
717 case ERASE4_4K:
718 case ERASE_32K:
719 case ERASE4_32K:
720 case ERASE_SECTOR:
721 case ERASE4_SECTOR:
722 case DIE_ERASE:
723 flash_erase(s, s->cur_addr, s->cmd_in_progress);
724 break;
725 case WRSR:
726 switch (get_man(s)) {
727 case MAN_SPANSION:
728 s->quad_enable = !!(s->data[1] & 0x02);
729 break;
730 case MAN_ISSI:
731 s->quad_enable = extract32(s->data[0], 6, 1);
732 break;
733 case MAN_MACRONIX:
734 s->quad_enable = extract32(s->data[0], 6, 1);
735 if (s->len > 1) {
736 s->volatile_cfg = s->data[1];
737 s->four_bytes_address_mode = extract32(s->data[1], 5, 1);
739 break;
740 default:
741 break;
743 if (s->write_enable) {
744 s->write_enable = false;
746 break;
747 case BRWR:
748 case EXTEND_ADDR_WRITE:
749 s->ear = s->data[0];
750 break;
751 case WNVCR:
752 s->nonvolatile_cfg = s->data[0] | (s->data[1] << 8);
753 break;
754 case WVCR:
755 s->volatile_cfg = s->data[0];
756 break;
757 case WEVCR:
758 s->enh_volatile_cfg = s->data[0];
759 break;
760 case RDID_90:
761 case RDID_AB:
762 if (get_man(s) == MAN_SST) {
763 if (s->cur_addr <= 1) {
764 if (s->cur_addr) {
765 s->data[0] = s->pi->id[2];
766 s->data[1] = s->pi->id[0];
767 } else {
768 s->data[0] = s->pi->id[0];
769 s->data[1] = s->pi->id[2];
771 s->pos = 0;
772 s->len = 2;
773 s->data_read_loop = true;
774 s->state = STATE_READING_DATA;
775 } else {
776 qemu_log_mask(LOG_GUEST_ERROR,
777 "M25P80: Invalid read id address\n");
779 } else {
780 qemu_log_mask(LOG_GUEST_ERROR,
781 "M25P80: Read id (command 0x90/0xAB) is not supported"
782 " by device\n");
784 break;
785 default:
786 break;
790 static void reset_memory(Flash *s)
792 s->cmd_in_progress = NOP;
793 s->cur_addr = 0;
794 s->ear = 0;
795 s->four_bytes_address_mode = false;
796 s->len = 0;
797 s->needed_bytes = 0;
798 s->pos = 0;
799 s->state = STATE_IDLE;
800 s->write_enable = false;
801 s->reset_enable = false;
802 s->quad_enable = false;
803 s->aai_enable = false;
805 switch (get_man(s)) {
806 case MAN_NUMONYX:
807 s->volatile_cfg = 0;
808 s->volatile_cfg |= VCFG_DUMMY;
809 s->volatile_cfg |= VCFG_WRAP_SEQUENTIAL;
810 if ((s->nonvolatile_cfg & NVCFG_XIP_MODE_MASK)
811 == NVCFG_XIP_MODE_DISABLED) {
812 s->volatile_cfg |= VCFG_XIP_MODE_DISABLED;
814 s->volatile_cfg |= deposit32(s->volatile_cfg,
815 VCFG_DUMMY_CLK_POS,
816 CFG_DUMMY_CLK_LEN,
817 extract32(s->nonvolatile_cfg,
818 NVCFG_DUMMY_CLK_POS,
819 CFG_DUMMY_CLK_LEN)
822 s->enh_volatile_cfg = 0;
823 s->enh_volatile_cfg |= EVCFG_OUT_DRIVER_STRENGTH_DEF;
824 s->enh_volatile_cfg |= EVCFG_VPP_ACCELERATOR;
825 s->enh_volatile_cfg |= EVCFG_RESET_HOLD_ENABLED;
826 if (s->nonvolatile_cfg & NVCFG_DUAL_IO_MASK) {
827 s->enh_volatile_cfg |= EVCFG_DUAL_IO_DISABLED;
829 if (s->nonvolatile_cfg & NVCFG_QUAD_IO_MASK) {
830 s->enh_volatile_cfg |= EVCFG_QUAD_IO_DISABLED;
832 if (!(s->nonvolatile_cfg & NVCFG_4BYTE_ADDR_MASK)) {
833 s->four_bytes_address_mode = true;
835 if (!(s->nonvolatile_cfg & NVCFG_LOWER_SEGMENT_MASK)) {
836 s->ear = s->size / MAX_3BYTES_SIZE - 1;
838 break;
839 case MAN_MACRONIX:
840 s->volatile_cfg = 0x7;
841 break;
842 case MAN_SPANSION:
843 s->spansion_cr1v = s->spansion_cr1nv;
844 s->spansion_cr2v = s->spansion_cr2nv;
845 s->spansion_cr3v = s->spansion_cr3nv;
846 s->spansion_cr4v = s->spansion_cr4nv;
847 s->quad_enable = extract32(s->spansion_cr1v,
848 SPANSION_QUAD_CFG_POS,
849 SPANSION_QUAD_CFG_LEN
851 s->four_bytes_address_mode = extract32(s->spansion_cr2v,
852 SPANSION_ADDR_LEN_POS,
853 SPANSION_ADDR_LEN_LEN
855 break;
856 default:
857 break;
860 trace_m25p80_reset_done(s);
863 static uint8_t numonyx_mode(Flash *s)
865 if (!(s->enh_volatile_cfg & EVCFG_QUAD_IO_DISABLED)) {
866 return MODE_QIO;
867 } else if (!(s->enh_volatile_cfg & EVCFG_DUAL_IO_DISABLED)) {
868 return MODE_DIO;
869 } else {
870 return MODE_STD;
874 static uint8_t numonyx_extract_cfg_num_dummies(Flash *s)
876 uint8_t num_dummies;
877 uint8_t mode;
878 assert(get_man(s) == MAN_NUMONYX);
880 mode = numonyx_mode(s);
881 num_dummies = extract32(s->volatile_cfg, 4, 4);
883 if (num_dummies == 0x0 || num_dummies == 0xf) {
884 switch (s->cmd_in_progress) {
885 case QIOR:
886 case QIOR4:
887 num_dummies = 10;
888 break;
889 default:
890 num_dummies = (mode == MODE_QIO) ? 10 : 8;
891 break;
895 return num_dummies;
898 static void decode_fast_read_cmd(Flash *s)
900 s->needed_bytes = get_addr_length(s);
901 switch (get_man(s)) {
902 /* Dummy cycles - modeled with bytes writes instead of bits */
903 case MAN_SST:
904 s->needed_bytes += 1;
905 break;
906 case MAN_WINBOND:
907 s->needed_bytes += 8;
908 break;
909 case MAN_NUMONYX:
910 s->needed_bytes += numonyx_extract_cfg_num_dummies(s);
911 break;
912 case MAN_MACRONIX:
913 if (extract32(s->volatile_cfg, 6, 2) == 1) {
914 s->needed_bytes += 6;
915 } else {
916 s->needed_bytes += 8;
918 break;
919 case MAN_SPANSION:
920 s->needed_bytes += extract32(s->spansion_cr2v,
921 SPANSION_DUMMY_CLK_POS,
922 SPANSION_DUMMY_CLK_LEN
924 break;
925 case MAN_ISSI:
927 * The Fast Read instruction code is followed by address bytes and
928 * dummy cycles, transmitted via the SI line.
930 * The number of dummy cycles is configurable but this is currently
931 * unmodeled, hence the default value 8 is used.
933 * QPI (Quad Peripheral Interface) mode has different default value
934 * of dummy cycles, but this is unsupported at the time being.
936 s->needed_bytes += 1;
937 break;
938 default:
939 break;
941 s->pos = 0;
942 s->len = 0;
943 s->state = STATE_COLLECTING_DATA;
946 static void decode_dio_read_cmd(Flash *s)
948 s->needed_bytes = get_addr_length(s);
949 /* Dummy cycles modeled with bytes writes instead of bits */
950 switch (get_man(s)) {
951 case MAN_WINBOND:
952 s->needed_bytes += WINBOND_CONTINUOUS_READ_MODE_CMD_LEN;
953 break;
954 case MAN_SPANSION:
955 s->needed_bytes += SPANSION_CONTINUOUS_READ_MODE_CMD_LEN;
956 s->needed_bytes += extract32(s->spansion_cr2v,
957 SPANSION_DUMMY_CLK_POS,
958 SPANSION_DUMMY_CLK_LEN
960 break;
961 case MAN_NUMONYX:
962 s->needed_bytes += numonyx_extract_cfg_num_dummies(s);
963 break;
964 case MAN_MACRONIX:
965 switch (extract32(s->volatile_cfg, 6, 2)) {
966 case 1:
967 s->needed_bytes += 6;
968 break;
969 case 2:
970 s->needed_bytes += 8;
971 break;
972 default:
973 s->needed_bytes += 4;
974 break;
976 break;
977 case MAN_ISSI:
979 * The Fast Read Dual I/O instruction code is followed by address bytes
980 * and dummy cycles, transmitted via the IO1 and IO0 line.
982 * The number of dummy cycles is configurable but this is currently
983 * unmodeled, hence the default value 4 is used.
985 s->needed_bytes += 1;
986 break;
987 default:
988 break;
990 s->pos = 0;
991 s->len = 0;
992 s->state = STATE_COLLECTING_DATA;
995 static void decode_qio_read_cmd(Flash *s)
997 s->needed_bytes = get_addr_length(s);
998 /* Dummy cycles modeled with bytes writes instead of bits */
999 switch (get_man(s)) {
1000 case MAN_WINBOND:
1001 s->needed_bytes += WINBOND_CONTINUOUS_READ_MODE_CMD_LEN;
1002 s->needed_bytes += 4;
1003 break;
1004 case MAN_SPANSION:
1005 s->needed_bytes += SPANSION_CONTINUOUS_READ_MODE_CMD_LEN;
1006 s->needed_bytes += extract32(s->spansion_cr2v,
1007 SPANSION_DUMMY_CLK_POS,
1008 SPANSION_DUMMY_CLK_LEN
1010 break;
1011 case MAN_NUMONYX:
1012 s->needed_bytes += numonyx_extract_cfg_num_dummies(s);
1013 break;
1014 case MAN_MACRONIX:
1015 switch (extract32(s->volatile_cfg, 6, 2)) {
1016 case 1:
1017 s->needed_bytes += 4;
1018 break;
1019 case 2:
1020 s->needed_bytes += 8;
1021 break;
1022 default:
1023 s->needed_bytes += 6;
1024 break;
1026 break;
1027 case MAN_ISSI:
1029 * The Fast Read Quad I/O instruction code is followed by address bytes
1030 * and dummy cycles, transmitted via the IO3, IO2, IO1 and IO0 line.
1032 * The number of dummy cycles is configurable but this is currently
1033 * unmodeled, hence the default value 6 is used.
1035 * QPI (Quad Peripheral Interface) mode has different default value
1036 * of dummy cycles, but this is unsupported at the time being.
1038 s->needed_bytes += 3;
1039 break;
1040 default:
1041 break;
1043 s->pos = 0;
1044 s->len = 0;
1045 s->state = STATE_COLLECTING_DATA;
1048 static bool is_valid_aai_cmd(uint32_t cmd)
1050 return cmd == AAI_WP || cmd == WRDI || cmd == RDSR;
1053 static void decode_new_cmd(Flash *s, uint32_t value)
1055 int i;
1057 s->cmd_in_progress = value;
1058 trace_m25p80_command_decoded(s, value);
1060 if (value != RESET_MEMORY) {
1061 s->reset_enable = false;
1064 if (get_man(s) == MAN_SST && s->aai_enable && !is_valid_aai_cmd(value)) {
1065 qemu_log_mask(LOG_GUEST_ERROR,
1066 "M25P80: Invalid cmd within AAI programming sequence");
1069 switch (value) {
1071 case ERASE_4K:
1072 case ERASE4_4K:
1073 case ERASE_32K:
1074 case ERASE4_32K:
1075 case ERASE_SECTOR:
1076 case ERASE4_SECTOR:
1077 case PP:
1078 case PP4:
1079 case DIE_ERASE:
1080 case RDID_90:
1081 case RDID_AB:
1082 s->needed_bytes = get_addr_length(s);
1083 s->pos = 0;
1084 s->len = 0;
1085 s->state = STATE_COLLECTING_DATA;
1086 break;
1087 case READ:
1088 case READ4:
1089 if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) == MODE_STD) {
1090 s->needed_bytes = get_addr_length(s);
1091 s->pos = 0;
1092 s->len = 0;
1093 s->state = STATE_COLLECTING_DATA;
1094 } else {
1095 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute cmd %x in "
1096 "DIO or QIO mode\n", s->cmd_in_progress);
1098 break;
1099 case DPP:
1100 if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) != MODE_QIO) {
1101 s->needed_bytes = get_addr_length(s);
1102 s->pos = 0;
1103 s->len = 0;
1104 s->state = STATE_COLLECTING_DATA;
1105 } else {
1106 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute cmd %x in "
1107 "QIO mode\n", s->cmd_in_progress);
1109 break;
1110 case QPP:
1111 case QPP_4:
1112 case PP4_4:
1113 if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) != MODE_DIO) {
1114 s->needed_bytes = get_addr_length(s);
1115 s->pos = 0;
1116 s->len = 0;
1117 s->state = STATE_COLLECTING_DATA;
1118 } else {
1119 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute cmd %x in "
1120 "DIO mode\n", s->cmd_in_progress);
1122 break;
1124 case FAST_READ:
1125 case FAST_READ4:
1126 decode_fast_read_cmd(s);
1127 break;
1128 case DOR:
1129 case DOR4:
1130 if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) != MODE_QIO) {
1131 decode_fast_read_cmd(s);
1132 } else {
1133 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute cmd %x in "
1134 "QIO mode\n", s->cmd_in_progress);
1136 break;
1137 case QOR:
1138 case QOR4:
1139 if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) != MODE_DIO) {
1140 decode_fast_read_cmd(s);
1141 } else {
1142 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute cmd %x in "
1143 "DIO mode\n", s->cmd_in_progress);
1145 break;
1147 case DIOR:
1148 case DIOR4:
1149 if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) != MODE_QIO) {
1150 decode_dio_read_cmd(s);
1151 } else {
1152 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute cmd %x in "
1153 "QIO mode\n", s->cmd_in_progress);
1155 break;
1157 case QIOR:
1158 case QIOR4:
1159 if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) != MODE_DIO) {
1160 decode_qio_read_cmd(s);
1161 } else {
1162 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute cmd %x in "
1163 "DIO mode\n", s->cmd_in_progress);
1165 break;
1167 case WRSR:
1168 if (s->write_enable) {
1169 switch (get_man(s)) {
1170 case MAN_SPANSION:
1171 s->needed_bytes = 2;
1172 s->state = STATE_COLLECTING_DATA;
1173 break;
1174 case MAN_MACRONIX:
1175 s->needed_bytes = 2;
1176 s->state = STATE_COLLECTING_VAR_LEN_DATA;
1177 break;
1178 default:
1179 s->needed_bytes = 1;
1180 s->state = STATE_COLLECTING_DATA;
1182 s->pos = 0;
1184 break;
1186 case WRDI:
1187 s->write_enable = false;
1188 if (get_man(s) == MAN_SST) {
1189 s->aai_enable = false;
1191 break;
1192 case WREN:
1193 s->write_enable = true;
1194 break;
1196 case RDSR:
1197 s->data[0] = (!!s->write_enable) << 1;
1198 if (get_man(s) == MAN_MACRONIX || get_man(s) == MAN_ISSI) {
1199 s->data[0] |= (!!s->quad_enable) << 6;
1201 if (get_man(s) == MAN_SST) {
1202 s->data[0] |= (!!s->aai_enable) << 6;
1205 s->pos = 0;
1206 s->len = 1;
1207 s->data_read_loop = true;
1208 s->state = STATE_READING_DATA;
1209 break;
1211 case READ_FSR:
1212 s->data[0] = FSR_FLASH_READY;
1213 if (s->four_bytes_address_mode) {
1214 s->data[0] |= FSR_4BYTE_ADDR_MODE_ENABLED;
1216 s->pos = 0;
1217 s->len = 1;
1218 s->data_read_loop = true;
1219 s->state = STATE_READING_DATA;
1220 break;
1222 case JEDEC_READ:
1223 if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) == MODE_STD) {
1224 trace_m25p80_populated_jedec(s);
1225 for (i = 0; i < s->pi->id_len; i++) {
1226 s->data[i] = s->pi->id[i];
1228 for (; i < SPI_NOR_MAX_ID_LEN; i++) {
1229 s->data[i] = 0;
1232 s->len = SPI_NOR_MAX_ID_LEN;
1233 s->pos = 0;
1234 s->state = STATE_READING_DATA;
1235 } else {
1236 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute JEDEC read "
1237 "in DIO or QIO mode\n");
1239 break;
1241 case RDCR:
1242 s->data[0] = s->volatile_cfg & 0xFF;
1243 s->data[0] |= (!!s->four_bytes_address_mode) << 5;
1244 s->pos = 0;
1245 s->len = 1;
1246 s->state = STATE_READING_DATA;
1247 break;
1249 case BULK_ERASE_60:
1250 case BULK_ERASE:
1251 if (s->write_enable) {
1252 trace_m25p80_chip_erase(s);
1253 flash_erase(s, 0, BULK_ERASE);
1254 } else {
1255 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: chip erase with write "
1256 "protect!\n");
1258 break;
1259 case NOP:
1260 break;
1261 case EN_4BYTE_ADDR:
1262 s->four_bytes_address_mode = true;
1263 break;
1264 case EX_4BYTE_ADDR:
1265 s->four_bytes_address_mode = false;
1266 break;
1267 case BRRD:
1268 case EXTEND_ADDR_READ:
1269 s->data[0] = s->ear;
1270 s->pos = 0;
1271 s->len = 1;
1272 s->state = STATE_READING_DATA;
1273 break;
1274 case BRWR:
1275 case EXTEND_ADDR_WRITE:
1276 if (s->write_enable) {
1277 s->needed_bytes = 1;
1278 s->pos = 0;
1279 s->len = 0;
1280 s->state = STATE_COLLECTING_DATA;
1282 break;
1283 case RNVCR:
1284 s->data[0] = s->nonvolatile_cfg & 0xFF;
1285 s->data[1] = (s->nonvolatile_cfg >> 8) & 0xFF;
1286 s->pos = 0;
1287 s->len = 2;
1288 s->state = STATE_READING_DATA;
1289 break;
1290 case WNVCR:
1291 if (s->write_enable && get_man(s) == MAN_NUMONYX) {
1292 s->needed_bytes = 2;
1293 s->pos = 0;
1294 s->len = 0;
1295 s->state = STATE_COLLECTING_DATA;
1297 break;
1298 case RVCR:
1299 s->data[0] = s->volatile_cfg & 0xFF;
1300 s->pos = 0;
1301 s->len = 1;
1302 s->state = STATE_READING_DATA;
1303 break;
1304 case WVCR:
1305 if (s->write_enable) {
1306 s->needed_bytes = 1;
1307 s->pos = 0;
1308 s->len = 0;
1309 s->state = STATE_COLLECTING_DATA;
1311 break;
1312 case REVCR:
1313 s->data[0] = s->enh_volatile_cfg & 0xFF;
1314 s->pos = 0;
1315 s->len = 1;
1316 s->state = STATE_READING_DATA;
1317 break;
1318 case WEVCR:
1319 if (s->write_enable) {
1320 s->needed_bytes = 1;
1321 s->pos = 0;
1322 s->len = 0;
1323 s->state = STATE_COLLECTING_DATA;
1325 break;
1326 case RESET_ENABLE:
1327 s->reset_enable = true;
1328 break;
1329 case RESET_MEMORY:
1330 if (s->reset_enable) {
1331 reset_memory(s);
1333 break;
1334 case RDCR_EQIO:
1335 switch (get_man(s)) {
1336 case MAN_SPANSION:
1337 s->data[0] = (!!s->quad_enable) << 1;
1338 s->pos = 0;
1339 s->len = 1;
1340 s->state = STATE_READING_DATA;
1341 break;
1342 case MAN_MACRONIX:
1343 s->quad_enable = true;
1344 break;
1345 default:
1346 break;
1348 break;
1349 case RSTQIO:
1350 s->quad_enable = false;
1351 break;
1352 case AAI_WP:
1353 if (get_man(s) == MAN_SST) {
1354 if (s->write_enable) {
1355 if (s->aai_enable) {
1356 s->state = STATE_PAGE_PROGRAM;
1357 } else {
1358 s->aai_enable = true;
1359 s->needed_bytes = get_addr_length(s);
1360 s->state = STATE_COLLECTING_DATA;
1362 } else {
1363 qemu_log_mask(LOG_GUEST_ERROR,
1364 "M25P80: AAI_WP with write protect\n");
1366 } else {
1367 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Unknown cmd %x\n", value);
1369 break;
1370 default:
1371 s->pos = 0;
1372 s->len = 1;
1373 s->state = STATE_READING_DATA;
1374 s->data_read_loop = true;
1375 s->data[0] = 0;
1376 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Unknown cmd %x\n", value);
1377 break;
1381 static int m25p80_cs(SSIPeripheral *ss, bool select)
1383 Flash *s = M25P80(ss);
1385 if (select) {
1386 if (s->state == STATE_COLLECTING_VAR_LEN_DATA) {
1387 complete_collecting_data(s);
1389 s->len = 0;
1390 s->pos = 0;
1391 s->state = STATE_IDLE;
1392 flash_sync_dirty(s, -1);
1393 s->data_read_loop = false;
1396 trace_m25p80_select(s, select ? "de" : "");
1398 return 0;
1401 static uint32_t m25p80_transfer8(SSIPeripheral *ss, uint32_t tx)
1403 Flash *s = M25P80(ss);
1404 uint32_t r = 0;
1406 trace_m25p80_transfer(s, s->state, s->len, s->needed_bytes, s->pos,
1407 s->cur_addr, (uint8_t)tx);
1409 switch (s->state) {
1411 case STATE_PAGE_PROGRAM:
1412 trace_m25p80_page_program(s, s->cur_addr, (uint8_t)tx);
1413 flash_write8(s, s->cur_addr, (uint8_t)tx);
1414 s->cur_addr = (s->cur_addr + 1) & (s->size - 1);
1416 if (get_man(s) == MAN_SST && s->aai_enable && s->cur_addr == 0) {
1418 * There is no wrap mode during AAI programming once the highest
1419 * unprotected memory address is reached. The Write-Enable-Latch
1420 * bit is automatically reset, and AAI programming mode aborts.
1422 s->write_enable = false;
1423 s->aai_enable = false;
1426 break;
1428 case STATE_READ:
1429 r = s->storage[s->cur_addr];
1430 trace_m25p80_read_byte(s, s->cur_addr, (uint8_t)r);
1431 s->cur_addr = (s->cur_addr + 1) & (s->size - 1);
1432 break;
1434 case STATE_COLLECTING_DATA:
1435 case STATE_COLLECTING_VAR_LEN_DATA:
1437 if (s->len >= M25P80_INTERNAL_DATA_BUFFER_SZ) {
1438 qemu_log_mask(LOG_GUEST_ERROR,
1439 "M25P80: Write overrun internal data buffer. "
1440 "SPI controller (QEMU emulator or guest driver) "
1441 "is misbehaving\n");
1442 s->len = s->pos = 0;
1443 s->state = STATE_IDLE;
1444 break;
1447 s->data[s->len] = (uint8_t)tx;
1448 s->len++;
1450 if (s->len == s->needed_bytes) {
1451 complete_collecting_data(s);
1453 break;
1455 case STATE_READING_DATA:
1457 if (s->pos >= M25P80_INTERNAL_DATA_BUFFER_SZ) {
1458 qemu_log_mask(LOG_GUEST_ERROR,
1459 "M25P80: Read overrun internal data buffer. "
1460 "SPI controller (QEMU emulator or guest driver) "
1461 "is misbehaving\n");
1462 s->len = s->pos = 0;
1463 s->state = STATE_IDLE;
1464 break;
1467 r = s->data[s->pos];
1468 trace_m25p80_read_data(s, s->pos, (uint8_t)r);
1469 s->pos++;
1470 if (s->pos == s->len) {
1471 s->pos = 0;
1472 if (!s->data_read_loop) {
1473 s->state = STATE_IDLE;
1476 break;
1478 default:
1479 case STATE_IDLE:
1480 decode_new_cmd(s, (uint8_t)tx);
1481 break;
1484 return r;
1487 static void m25p80_realize(SSIPeripheral *ss, Error **errp)
1489 Flash *s = M25P80(ss);
1490 M25P80Class *mc = M25P80_GET_CLASS(s);
1491 int ret;
1493 s->pi = mc->pi;
1495 s->size = s->pi->sector_size * s->pi->n_sectors;
1496 s->dirty_page = -1;
1498 if (s->blk) {
1499 uint64_t perm = BLK_PERM_CONSISTENT_READ |
1500 (blk_supports_write_perm(s->blk) ? BLK_PERM_WRITE : 0);
1501 ret = blk_set_perm(s->blk, perm, BLK_PERM_ALL, errp);
1502 if (ret < 0) {
1503 return;
1506 trace_m25p80_binding(s);
1507 s->storage = blk_blockalign(s->blk, s->size);
1509 if (blk_pread(s->blk, 0, s->storage, s->size) != s->size) {
1510 error_setg(errp, "failed to read the initial flash content");
1511 return;
1513 } else {
1514 trace_m25p80_binding_no_bdrv(s);
1515 s->storage = blk_blockalign(NULL, s->size);
1516 memset(s->storage, 0xFF, s->size);
1520 static void m25p80_reset(DeviceState *d)
1522 Flash *s = M25P80(d);
1524 reset_memory(s);
1527 static int m25p80_pre_save(void *opaque)
1529 flash_sync_dirty((Flash *)opaque, -1);
1531 return 0;
1534 static Property m25p80_properties[] = {
1535 /* This is default value for Micron flash */
1536 DEFINE_PROP_BOOL("write-enable", Flash, write_enable, false),
1537 DEFINE_PROP_UINT32("nonvolatile-cfg", Flash, nonvolatile_cfg, 0x8FFF),
1538 DEFINE_PROP_UINT8("spansion-cr1nv", Flash, spansion_cr1nv, 0x0),
1539 DEFINE_PROP_UINT8("spansion-cr2nv", Flash, spansion_cr2nv, 0x8),
1540 DEFINE_PROP_UINT8("spansion-cr3nv", Flash, spansion_cr3nv, 0x2),
1541 DEFINE_PROP_UINT8("spansion-cr4nv", Flash, spansion_cr4nv, 0x10),
1542 DEFINE_PROP_DRIVE("drive", Flash, blk),
1543 DEFINE_PROP_END_OF_LIST(),
1546 static int m25p80_pre_load(void *opaque)
1548 Flash *s = (Flash *)opaque;
1550 s->data_read_loop = false;
1551 return 0;
1554 static bool m25p80_data_read_loop_needed(void *opaque)
1556 Flash *s = (Flash *)opaque;
1558 return s->data_read_loop;
1561 static const VMStateDescription vmstate_m25p80_data_read_loop = {
1562 .name = "m25p80/data_read_loop",
1563 .version_id = 1,
1564 .minimum_version_id = 1,
1565 .needed = m25p80_data_read_loop_needed,
1566 .fields = (VMStateField[]) {
1567 VMSTATE_BOOL(data_read_loop, Flash),
1568 VMSTATE_END_OF_LIST()
1572 static bool m25p80_aai_enable_needed(void *opaque)
1574 Flash *s = (Flash *)opaque;
1576 return s->aai_enable;
1579 static const VMStateDescription vmstate_m25p80_aai_enable = {
1580 .name = "m25p80/aai_enable",
1581 .version_id = 1,
1582 .minimum_version_id = 1,
1583 .needed = m25p80_aai_enable_needed,
1584 .fields = (VMStateField[]) {
1585 VMSTATE_BOOL(aai_enable, Flash),
1586 VMSTATE_END_OF_LIST()
1590 static const VMStateDescription vmstate_m25p80 = {
1591 .name = "m25p80",
1592 .version_id = 0,
1593 .minimum_version_id = 0,
1594 .pre_save = m25p80_pre_save,
1595 .pre_load = m25p80_pre_load,
1596 .fields = (VMStateField[]) {
1597 VMSTATE_UINT8(state, Flash),
1598 VMSTATE_UINT8_ARRAY(data, Flash, M25P80_INTERNAL_DATA_BUFFER_SZ),
1599 VMSTATE_UINT32(len, Flash),
1600 VMSTATE_UINT32(pos, Flash),
1601 VMSTATE_UINT8(needed_bytes, Flash),
1602 VMSTATE_UINT8(cmd_in_progress, Flash),
1603 VMSTATE_UINT32(cur_addr, Flash),
1604 VMSTATE_BOOL(write_enable, Flash),
1605 VMSTATE_BOOL(reset_enable, Flash),
1606 VMSTATE_UINT8(ear, Flash),
1607 VMSTATE_BOOL(four_bytes_address_mode, Flash),
1608 VMSTATE_UINT32(nonvolatile_cfg, Flash),
1609 VMSTATE_UINT32(volatile_cfg, Flash),
1610 VMSTATE_UINT32(enh_volatile_cfg, Flash),
1611 VMSTATE_BOOL(quad_enable, Flash),
1612 VMSTATE_UINT8(spansion_cr1nv, Flash),
1613 VMSTATE_UINT8(spansion_cr2nv, Flash),
1614 VMSTATE_UINT8(spansion_cr3nv, Flash),
1615 VMSTATE_UINT8(spansion_cr4nv, Flash),
1616 VMSTATE_END_OF_LIST()
1618 .subsections = (const VMStateDescription * []) {
1619 &vmstate_m25p80_data_read_loop,
1620 &vmstate_m25p80_aai_enable,
1621 NULL
1625 static void m25p80_class_init(ObjectClass *klass, void *data)
1627 DeviceClass *dc = DEVICE_CLASS(klass);
1628 SSIPeripheralClass *k = SSI_PERIPHERAL_CLASS(klass);
1629 M25P80Class *mc = M25P80_CLASS(klass);
1631 k->realize = m25p80_realize;
1632 k->transfer = m25p80_transfer8;
1633 k->set_cs = m25p80_cs;
1634 k->cs_polarity = SSI_CS_LOW;
1635 dc->vmsd = &vmstate_m25p80;
1636 device_class_set_props(dc, m25p80_properties);
1637 dc->reset = m25p80_reset;
1638 mc->pi = data;
1641 static const TypeInfo m25p80_info = {
1642 .name = TYPE_M25P80,
1643 .parent = TYPE_SSI_PERIPHERAL,
1644 .instance_size = sizeof(Flash),
1645 .class_size = sizeof(M25P80Class),
1646 .abstract = true,
1649 static void m25p80_register_types(void)
1651 int i;
1653 type_register_static(&m25p80_info);
1654 for (i = 0; i < ARRAY_SIZE(known_devices); ++i) {
1655 TypeInfo ti = {
1656 .name = known_devices[i].part_name,
1657 .parent = TYPE_M25P80,
1658 .class_init = m25p80_class_init,
1659 .class_data = (void *)&known_devices[i],
1661 type_register(&ti);
1665 type_init(m25p80_register_types)