trace: add arguments to bdrv_co_io_em() trace event
[qemu.git] / target-arm / helper.c
blobd3a3ba207f0d40c1df9a13118ce61a4e788ffed8
1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <string.h>
5 #include "cpu.h"
6 #include "gdbstub.h"
7 #include "helper.h"
8 #include "qemu-common.h"
9 #include "host-utils.h"
10 #if !defined(CONFIG_USER_ONLY)
11 #include "hw/loader.h"
12 #endif
14 static uint32_t cortexa9_cp15_c0_c1[8] =
15 { 0x1031, 0x11, 0x000, 0, 0x00100103, 0x20000000, 0x01230000, 0x00002111 };
17 static uint32_t cortexa9_cp15_c0_c2[8] =
18 { 0x00101111, 0x13112111, 0x21232041, 0x11112131, 0x00111142, 0, 0, 0 };
20 static uint32_t cortexa8_cp15_c0_c1[8] =
21 { 0x1031, 0x11, 0x400, 0, 0x31100003, 0x20000000, 0x01202000, 0x11 };
23 static uint32_t cortexa8_cp15_c0_c2[8] =
24 { 0x00101111, 0x12112111, 0x21232031, 0x11112131, 0x00111142, 0, 0, 0 };
26 static uint32_t mpcore_cp15_c0_c1[8] =
27 { 0x111, 0x1, 0, 0x2, 0x01100103, 0x10020302, 0x01222000, 0 };
29 static uint32_t mpcore_cp15_c0_c2[8] =
30 { 0x00100011, 0x12002111, 0x11221011, 0x01102131, 0x141, 0, 0, 0 };
32 static uint32_t arm1136_cp15_c0_c1[8] =
33 { 0x111, 0x1, 0x2, 0x3, 0x01130003, 0x10030302, 0x01222110, 0 };
35 static uint32_t arm1136_cp15_c0_c2[8] =
36 { 0x00140011, 0x12002111, 0x11231111, 0x01102131, 0x141, 0, 0, 0 };
38 static uint32_t arm1176_cp15_c0_c1[8] =
39 { 0x111, 0x11, 0x33, 0, 0x01130003, 0x10030302, 0x01222100, 0 };
41 static uint32_t arm1176_cp15_c0_c2[8] =
42 { 0x0140011, 0x12002111, 0x11231121, 0x01102131, 0x01141, 0, 0, 0 };
44 static uint32_t cpu_arm_find_by_name(const char *name);
46 static inline void set_feature(CPUARMState *env, int feature)
48 env->features |= 1u << feature;
51 static void cpu_reset_model_id(CPUARMState *env, uint32_t id)
53 env->cp15.c0_cpuid = id;
54 switch (id) {
55 case ARM_CPUID_ARM926:
56 set_feature(env, ARM_FEATURE_V4T);
57 set_feature(env, ARM_FEATURE_V5);
58 set_feature(env, ARM_FEATURE_VFP);
59 env->vfp.xregs[ARM_VFP_FPSID] = 0x41011090;
60 env->cp15.c0_cachetype = 0x1dd20d2;
61 env->cp15.c1_sys = 0x00090078;
62 break;
63 case ARM_CPUID_ARM946:
64 set_feature(env, ARM_FEATURE_V4T);
65 set_feature(env, ARM_FEATURE_V5);
66 set_feature(env, ARM_FEATURE_MPU);
67 env->cp15.c0_cachetype = 0x0f004006;
68 env->cp15.c1_sys = 0x00000078;
69 break;
70 case ARM_CPUID_ARM1026:
71 set_feature(env, ARM_FEATURE_V4T);
72 set_feature(env, ARM_FEATURE_V5);
73 set_feature(env, ARM_FEATURE_VFP);
74 set_feature(env, ARM_FEATURE_AUXCR);
75 env->vfp.xregs[ARM_VFP_FPSID] = 0x410110a0;
76 env->cp15.c0_cachetype = 0x1dd20d2;
77 env->cp15.c1_sys = 0x00090078;
78 break;
79 case ARM_CPUID_ARM1136:
80 /* This is the 1136 r1, which is a v6K core */
81 set_feature(env, ARM_FEATURE_V6K);
82 /* Fall through */
83 case ARM_CPUID_ARM1136_R2:
84 /* What qemu calls "arm1136_r2" is actually the 1136 r0p2, ie an
85 * older core than plain "arm1136". In particular this does not
86 * have the v6K features.
88 set_feature(env, ARM_FEATURE_V4T);
89 set_feature(env, ARM_FEATURE_V5);
90 set_feature(env, ARM_FEATURE_V6);
91 set_feature(env, ARM_FEATURE_VFP);
92 set_feature(env, ARM_FEATURE_AUXCR);
93 /* These ID register values are correct for 1136 but may be wrong
94 * for 1136_r2 (in particular r0p2 does not actually implement most
95 * of the ID registers).
97 env->vfp.xregs[ARM_VFP_FPSID] = 0x410120b4;
98 env->vfp.xregs[ARM_VFP_MVFR0] = 0x11111111;
99 env->vfp.xregs[ARM_VFP_MVFR1] = 0x00000000;
100 memcpy(env->cp15.c0_c1, arm1136_cp15_c0_c1, 8 * sizeof(uint32_t));
101 memcpy(env->cp15.c0_c2, arm1136_cp15_c0_c2, 8 * sizeof(uint32_t));
102 env->cp15.c0_cachetype = 0x1dd20d2;
103 env->cp15.c1_sys = 0x00050078;
104 break;
105 case ARM_CPUID_ARM1176:
106 set_feature(env, ARM_FEATURE_V4T);
107 set_feature(env, ARM_FEATURE_V5);
108 set_feature(env, ARM_FEATURE_V6);
109 set_feature(env, ARM_FEATURE_V6K);
110 set_feature(env, ARM_FEATURE_VFP);
111 set_feature(env, ARM_FEATURE_AUXCR);
112 set_feature(env, ARM_FEATURE_VAPA);
113 env->vfp.xregs[ARM_VFP_FPSID] = 0x410120b5;
114 env->vfp.xregs[ARM_VFP_MVFR0] = 0x11111111;
115 env->vfp.xregs[ARM_VFP_MVFR1] = 0x00000000;
116 memcpy(env->cp15.c0_c1, arm1176_cp15_c0_c1, 8 * sizeof(uint32_t));
117 memcpy(env->cp15.c0_c2, arm1176_cp15_c0_c2, 8 * sizeof(uint32_t));
118 env->cp15.c0_cachetype = 0x1dd20d2;
119 env->cp15.c1_sys = 0x00050078;
120 break;
121 case ARM_CPUID_ARM11MPCORE:
122 set_feature(env, ARM_FEATURE_V4T);
123 set_feature(env, ARM_FEATURE_V5);
124 set_feature(env, ARM_FEATURE_V6);
125 set_feature(env, ARM_FEATURE_V6K);
126 set_feature(env, ARM_FEATURE_VFP);
127 set_feature(env, ARM_FEATURE_AUXCR);
128 set_feature(env, ARM_FEATURE_VAPA);
129 env->vfp.xregs[ARM_VFP_FPSID] = 0x410120b4;
130 env->vfp.xregs[ARM_VFP_MVFR0] = 0x11111111;
131 env->vfp.xregs[ARM_VFP_MVFR1] = 0x00000000;
132 memcpy(env->cp15.c0_c1, mpcore_cp15_c0_c1, 8 * sizeof(uint32_t));
133 memcpy(env->cp15.c0_c2, mpcore_cp15_c0_c2, 8 * sizeof(uint32_t));
134 env->cp15.c0_cachetype = 0x1dd20d2;
135 break;
136 case ARM_CPUID_CORTEXA8:
137 set_feature(env, ARM_FEATURE_V4T);
138 set_feature(env, ARM_FEATURE_V5);
139 set_feature(env, ARM_FEATURE_V6);
140 set_feature(env, ARM_FEATURE_V6K);
141 set_feature(env, ARM_FEATURE_V7);
142 set_feature(env, ARM_FEATURE_AUXCR);
143 set_feature(env, ARM_FEATURE_THUMB2);
144 set_feature(env, ARM_FEATURE_VFP);
145 set_feature(env, ARM_FEATURE_VFP3);
146 set_feature(env, ARM_FEATURE_NEON);
147 set_feature(env, ARM_FEATURE_THUMB2EE);
148 env->vfp.xregs[ARM_VFP_FPSID] = 0x410330c0;
149 env->vfp.xregs[ARM_VFP_MVFR0] = 0x11110222;
150 env->vfp.xregs[ARM_VFP_MVFR1] = 0x00011100;
151 memcpy(env->cp15.c0_c1, cortexa8_cp15_c0_c1, 8 * sizeof(uint32_t));
152 memcpy(env->cp15.c0_c2, cortexa8_cp15_c0_c2, 8 * sizeof(uint32_t));
153 env->cp15.c0_cachetype = 0x82048004;
154 env->cp15.c0_clid = (1 << 27) | (2 << 24) | 3;
155 env->cp15.c0_ccsid[0] = 0xe007e01a; /* 16k L1 dcache. */
156 env->cp15.c0_ccsid[1] = 0x2007e01a; /* 16k L1 icache. */
157 env->cp15.c0_ccsid[2] = 0xf0000000; /* No L2 icache. */
158 env->cp15.c1_sys = 0x00c50078;
159 break;
160 case ARM_CPUID_CORTEXA9:
161 set_feature(env, ARM_FEATURE_V4T);
162 set_feature(env, ARM_FEATURE_V5);
163 set_feature(env, ARM_FEATURE_V6);
164 set_feature(env, ARM_FEATURE_V6K);
165 set_feature(env, ARM_FEATURE_V7);
166 set_feature(env, ARM_FEATURE_AUXCR);
167 set_feature(env, ARM_FEATURE_THUMB2);
168 set_feature(env, ARM_FEATURE_VFP);
169 set_feature(env, ARM_FEATURE_VFP3);
170 set_feature(env, ARM_FEATURE_VFP_FP16);
171 set_feature(env, ARM_FEATURE_NEON);
172 set_feature(env, ARM_FEATURE_THUMB2EE);
173 /* Note that A9 supports the MP extensions even for
174 * A9UP and single-core A9MP (which are both different
175 * and valid configurations; we don't model A9UP).
177 set_feature(env, ARM_FEATURE_V7MP);
178 env->vfp.xregs[ARM_VFP_FPSID] = 0x41034000; /* Guess */
179 env->vfp.xregs[ARM_VFP_MVFR0] = 0x11110222;
180 env->vfp.xregs[ARM_VFP_MVFR1] = 0x01111111;
181 memcpy(env->cp15.c0_c1, cortexa9_cp15_c0_c1, 8 * sizeof(uint32_t));
182 memcpy(env->cp15.c0_c2, cortexa9_cp15_c0_c2, 8 * sizeof(uint32_t));
183 env->cp15.c0_cachetype = 0x80038003;
184 env->cp15.c0_clid = (1 << 27) | (1 << 24) | 3;
185 env->cp15.c0_ccsid[0] = 0xe00fe015; /* 16k L1 dcache. */
186 env->cp15.c0_ccsid[1] = 0x200fe015; /* 16k L1 icache. */
187 env->cp15.c1_sys = 0x00c50078;
188 break;
189 case ARM_CPUID_CORTEXM3:
190 set_feature(env, ARM_FEATURE_V4T);
191 set_feature(env, ARM_FEATURE_V5);
192 set_feature(env, ARM_FEATURE_V6);
193 set_feature(env, ARM_FEATURE_THUMB2);
194 set_feature(env, ARM_FEATURE_V7);
195 set_feature(env, ARM_FEATURE_M);
196 set_feature(env, ARM_FEATURE_DIV);
197 break;
198 case ARM_CPUID_ANY: /* For userspace emulation. */
199 set_feature(env, ARM_FEATURE_V4T);
200 set_feature(env, ARM_FEATURE_V5);
201 set_feature(env, ARM_FEATURE_V6);
202 set_feature(env, ARM_FEATURE_V6K);
203 set_feature(env, ARM_FEATURE_V7);
204 set_feature(env, ARM_FEATURE_THUMB2);
205 set_feature(env, ARM_FEATURE_VFP);
206 set_feature(env, ARM_FEATURE_VFP3);
207 set_feature(env, ARM_FEATURE_VFP_FP16);
208 set_feature(env, ARM_FEATURE_NEON);
209 set_feature(env, ARM_FEATURE_THUMB2EE);
210 set_feature(env, ARM_FEATURE_DIV);
211 set_feature(env, ARM_FEATURE_V7MP);
212 break;
213 case ARM_CPUID_TI915T:
214 case ARM_CPUID_TI925T:
215 set_feature(env, ARM_FEATURE_V4T);
216 set_feature(env, ARM_FEATURE_OMAPCP);
217 env->cp15.c0_cpuid = ARM_CPUID_TI925T; /* Depends on wiring. */
218 env->cp15.c0_cachetype = 0x5109149;
219 env->cp15.c1_sys = 0x00000070;
220 env->cp15.c15_i_max = 0x000;
221 env->cp15.c15_i_min = 0xff0;
222 break;
223 case ARM_CPUID_PXA250:
224 case ARM_CPUID_PXA255:
225 case ARM_CPUID_PXA260:
226 case ARM_CPUID_PXA261:
227 case ARM_CPUID_PXA262:
228 set_feature(env, ARM_FEATURE_V4T);
229 set_feature(env, ARM_FEATURE_V5);
230 set_feature(env, ARM_FEATURE_XSCALE);
231 /* JTAG_ID is ((id << 28) | 0x09265013) */
232 env->cp15.c0_cachetype = 0xd172172;
233 env->cp15.c1_sys = 0x00000078;
234 break;
235 case ARM_CPUID_PXA270_A0:
236 case ARM_CPUID_PXA270_A1:
237 case ARM_CPUID_PXA270_B0:
238 case ARM_CPUID_PXA270_B1:
239 case ARM_CPUID_PXA270_C0:
240 case ARM_CPUID_PXA270_C5:
241 set_feature(env, ARM_FEATURE_V4T);
242 set_feature(env, ARM_FEATURE_V5);
243 set_feature(env, ARM_FEATURE_XSCALE);
244 /* JTAG_ID is ((id << 28) | 0x09265013) */
245 set_feature(env, ARM_FEATURE_IWMMXT);
246 env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
247 env->cp15.c0_cachetype = 0xd172172;
248 env->cp15.c1_sys = 0x00000078;
249 break;
250 case ARM_CPUID_SA1100:
251 case ARM_CPUID_SA1110:
252 set_feature(env, ARM_FEATURE_STRONGARM);
253 env->cp15.c1_sys = 0x00000070;
254 break;
255 default:
256 cpu_abort(env, "Bad CPU ID: %x\n", id);
257 break;
260 /* Some features automatically imply others: */
261 if (arm_feature(env, ARM_FEATURE_V7)) {
262 set_feature(env, ARM_FEATURE_VAPA);
266 void cpu_reset(CPUARMState *env)
268 uint32_t id;
270 if (qemu_loglevel_mask(CPU_LOG_RESET)) {
271 qemu_log("CPU Reset (CPU %d)\n", env->cpu_index);
272 log_cpu_state(env, 0);
275 id = env->cp15.c0_cpuid;
276 memset(env, 0, offsetof(CPUARMState, breakpoints));
277 if (id)
278 cpu_reset_model_id(env, id);
279 #if defined (CONFIG_USER_ONLY)
280 env->uncached_cpsr = ARM_CPU_MODE_USR;
281 /* For user mode we must enable access to coprocessors */
282 env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
283 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
284 env->cp15.c15_cpar = 3;
285 } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
286 env->cp15.c15_cpar = 1;
288 #else
289 /* SVC mode with interrupts disabled. */
290 env->uncached_cpsr = ARM_CPU_MODE_SVC | CPSR_A | CPSR_F | CPSR_I;
291 /* On ARMv7-M the CPSR_I is the value of the PRIMASK register, and is
292 clear at reset. Initial SP and PC are loaded from ROM. */
293 if (IS_M(env)) {
294 uint32_t pc;
295 uint8_t *rom;
296 env->uncached_cpsr &= ~CPSR_I;
297 rom = rom_ptr(0);
298 if (rom) {
299 /* We should really use ldl_phys here, in case the guest
300 modified flash and reset itself. However images
301 loaded via -kenrel have not been copied yet, so load the
302 values directly from there. */
303 env->regs[13] = ldl_p(rom);
304 pc = ldl_p(rom + 4);
305 env->thumb = pc & 1;
306 env->regs[15] = pc & ~1;
309 env->vfp.xregs[ARM_VFP_FPEXC] = 0;
310 env->cp15.c2_base_mask = 0xffffc000u;
311 /* v7 performance monitor control register: same implementor
312 * field as main ID register, and we implement no event counters.
314 env->cp15.c9_pmcr = (id & 0xff000000);
315 #endif
316 set_flush_to_zero(1, &env->vfp.standard_fp_status);
317 set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
318 set_default_nan_mode(1, &env->vfp.standard_fp_status);
319 set_float_detect_tininess(float_tininess_before_rounding,
320 &env->vfp.fp_status);
321 set_float_detect_tininess(float_tininess_before_rounding,
322 &env->vfp.standard_fp_status);
323 tlb_flush(env, 1);
326 static int vfp_gdb_get_reg(CPUState *env, uint8_t *buf, int reg)
328 int nregs;
330 /* VFP data registers are always little-endian. */
331 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
332 if (reg < nregs) {
333 stfq_le_p(buf, env->vfp.regs[reg]);
334 return 8;
336 if (arm_feature(env, ARM_FEATURE_NEON)) {
337 /* Aliases for Q regs. */
338 nregs += 16;
339 if (reg < nregs) {
340 stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]);
341 stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]);
342 return 16;
345 switch (reg - nregs) {
346 case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
347 case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4;
348 case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
350 return 0;
353 static int vfp_gdb_set_reg(CPUState *env, uint8_t *buf, int reg)
355 int nregs;
357 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
358 if (reg < nregs) {
359 env->vfp.regs[reg] = ldfq_le_p(buf);
360 return 8;
362 if (arm_feature(env, ARM_FEATURE_NEON)) {
363 nregs += 16;
364 if (reg < nregs) {
365 env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf);
366 env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8);
367 return 16;
370 switch (reg - nregs) {
371 case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
372 case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4;
373 case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
375 return 0;
378 CPUARMState *cpu_arm_init(const char *cpu_model)
380 CPUARMState *env;
381 uint32_t id;
382 static int inited = 0;
384 id = cpu_arm_find_by_name(cpu_model);
385 if (id == 0)
386 return NULL;
387 env = g_malloc0(sizeof(CPUARMState));
388 cpu_exec_init(env);
389 if (!inited) {
390 inited = 1;
391 arm_translate_init();
394 env->cpu_model_str = cpu_model;
395 env->cp15.c0_cpuid = id;
396 cpu_reset(env);
397 if (arm_feature(env, ARM_FEATURE_NEON)) {
398 gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg,
399 51, "arm-neon.xml", 0);
400 } else if (arm_feature(env, ARM_FEATURE_VFP3)) {
401 gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg,
402 35, "arm-vfp3.xml", 0);
403 } else if (arm_feature(env, ARM_FEATURE_VFP)) {
404 gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg,
405 19, "arm-vfp.xml", 0);
407 qemu_init_vcpu(env);
408 return env;
411 struct arm_cpu_t {
412 uint32_t id;
413 const char *name;
416 static const struct arm_cpu_t arm_cpu_names[] = {
417 { ARM_CPUID_ARM926, "arm926"},
418 { ARM_CPUID_ARM946, "arm946"},
419 { ARM_CPUID_ARM1026, "arm1026"},
420 { ARM_CPUID_ARM1136, "arm1136"},
421 { ARM_CPUID_ARM1136_R2, "arm1136-r2"},
422 { ARM_CPUID_ARM1176, "arm1176"},
423 { ARM_CPUID_ARM11MPCORE, "arm11mpcore"},
424 { ARM_CPUID_CORTEXM3, "cortex-m3"},
425 { ARM_CPUID_CORTEXA8, "cortex-a8"},
426 { ARM_CPUID_CORTEXA9, "cortex-a9"},
427 { ARM_CPUID_TI925T, "ti925t" },
428 { ARM_CPUID_PXA250, "pxa250" },
429 { ARM_CPUID_SA1100, "sa1100" },
430 { ARM_CPUID_SA1110, "sa1110" },
431 { ARM_CPUID_PXA255, "pxa255" },
432 { ARM_CPUID_PXA260, "pxa260" },
433 { ARM_CPUID_PXA261, "pxa261" },
434 { ARM_CPUID_PXA262, "pxa262" },
435 { ARM_CPUID_PXA270, "pxa270" },
436 { ARM_CPUID_PXA270_A0, "pxa270-a0" },
437 { ARM_CPUID_PXA270_A1, "pxa270-a1" },
438 { ARM_CPUID_PXA270_B0, "pxa270-b0" },
439 { ARM_CPUID_PXA270_B1, "pxa270-b1" },
440 { ARM_CPUID_PXA270_C0, "pxa270-c0" },
441 { ARM_CPUID_PXA270_C5, "pxa270-c5" },
442 { ARM_CPUID_ANY, "any"},
443 { 0, NULL}
446 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf)
448 int i;
450 (*cpu_fprintf)(f, "Available CPUs:\n");
451 for (i = 0; arm_cpu_names[i].name; i++) {
452 (*cpu_fprintf)(f, " %s\n", arm_cpu_names[i].name);
456 /* return 0 if not found */
457 static uint32_t cpu_arm_find_by_name(const char *name)
459 int i;
460 uint32_t id;
462 id = 0;
463 for (i = 0; arm_cpu_names[i].name; i++) {
464 if (strcmp(name, arm_cpu_names[i].name) == 0) {
465 id = arm_cpu_names[i].id;
466 break;
469 return id;
472 void cpu_arm_close(CPUARMState *env)
474 free(env);
477 uint32_t cpsr_read(CPUARMState *env)
479 int ZF;
480 ZF = (env->ZF == 0);
481 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
482 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
483 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
484 | ((env->condexec_bits & 0xfc) << 8)
485 | (env->GE << 16);
488 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
490 if (mask & CPSR_NZCV) {
491 env->ZF = (~val) & CPSR_Z;
492 env->NF = val;
493 env->CF = (val >> 29) & 1;
494 env->VF = (val << 3) & 0x80000000;
496 if (mask & CPSR_Q)
497 env->QF = ((val & CPSR_Q) != 0);
498 if (mask & CPSR_T)
499 env->thumb = ((val & CPSR_T) != 0);
500 if (mask & CPSR_IT_0_1) {
501 env->condexec_bits &= ~3;
502 env->condexec_bits |= (val >> 25) & 3;
504 if (mask & CPSR_IT_2_7) {
505 env->condexec_bits &= 3;
506 env->condexec_bits |= (val >> 8) & 0xfc;
508 if (mask & CPSR_GE) {
509 env->GE = (val >> 16) & 0xf;
512 if ((env->uncached_cpsr ^ val) & mask & CPSR_M) {
513 switch_mode(env, val & CPSR_M);
515 mask &= ~CACHED_CPSR_BITS;
516 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
519 /* Sign/zero extend */
520 uint32_t HELPER(sxtb16)(uint32_t x)
522 uint32_t res;
523 res = (uint16_t)(int8_t)x;
524 res |= (uint32_t)(int8_t)(x >> 16) << 16;
525 return res;
528 uint32_t HELPER(uxtb16)(uint32_t x)
530 uint32_t res;
531 res = (uint16_t)(uint8_t)x;
532 res |= (uint32_t)(uint8_t)(x >> 16) << 16;
533 return res;
536 uint32_t HELPER(clz)(uint32_t x)
538 return clz32(x);
541 int32_t HELPER(sdiv)(int32_t num, int32_t den)
543 if (den == 0)
544 return 0;
545 if (num == INT_MIN && den == -1)
546 return INT_MIN;
547 return num / den;
550 uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
552 if (den == 0)
553 return 0;
554 return num / den;
557 uint32_t HELPER(rbit)(uint32_t x)
559 x = ((x & 0xff000000) >> 24)
560 | ((x & 0x00ff0000) >> 8)
561 | ((x & 0x0000ff00) << 8)
562 | ((x & 0x000000ff) << 24);
563 x = ((x & 0xf0f0f0f0) >> 4)
564 | ((x & 0x0f0f0f0f) << 4);
565 x = ((x & 0x88888888) >> 3)
566 | ((x & 0x44444444) >> 1)
567 | ((x & 0x22222222) << 1)
568 | ((x & 0x11111111) << 3);
569 return x;
572 uint32_t HELPER(abs)(uint32_t x)
574 return ((int32_t)x < 0) ? -x : x;
577 #if defined(CONFIG_USER_ONLY)
579 void do_interrupt (CPUState *env)
581 env->exception_index = -1;
584 int cpu_arm_handle_mmu_fault (CPUState *env, target_ulong address, int rw,
585 int mmu_idx)
587 if (rw == 2) {
588 env->exception_index = EXCP_PREFETCH_ABORT;
589 env->cp15.c6_insn = address;
590 } else {
591 env->exception_index = EXCP_DATA_ABORT;
592 env->cp15.c6_data = address;
594 return 1;
597 /* These should probably raise undefined insn exceptions. */
598 void HELPER(set_cp)(CPUState *env, uint32_t insn, uint32_t val)
600 int op1 = (insn >> 8) & 0xf;
601 cpu_abort(env, "cp%i insn %08x\n", op1, insn);
602 return;
605 uint32_t HELPER(get_cp)(CPUState *env, uint32_t insn)
607 int op1 = (insn >> 8) & 0xf;
608 cpu_abort(env, "cp%i insn %08x\n", op1, insn);
609 return 0;
612 void HELPER(set_cp15)(CPUState *env, uint32_t insn, uint32_t val)
614 cpu_abort(env, "cp15 insn %08x\n", insn);
617 uint32_t HELPER(get_cp15)(CPUState *env, uint32_t insn)
619 cpu_abort(env, "cp15 insn %08x\n", insn);
622 /* These should probably raise undefined insn exceptions. */
623 void HELPER(v7m_msr)(CPUState *env, uint32_t reg, uint32_t val)
625 cpu_abort(env, "v7m_mrs %d\n", reg);
628 uint32_t HELPER(v7m_mrs)(CPUState *env, uint32_t reg)
630 cpu_abort(env, "v7m_mrs %d\n", reg);
631 return 0;
634 void switch_mode(CPUState *env, int mode)
636 if (mode != ARM_CPU_MODE_USR)
637 cpu_abort(env, "Tried to switch out of user mode\n");
640 void HELPER(set_r13_banked)(CPUState *env, uint32_t mode, uint32_t val)
642 cpu_abort(env, "banked r13 write\n");
645 uint32_t HELPER(get_r13_banked)(CPUState *env, uint32_t mode)
647 cpu_abort(env, "banked r13 read\n");
648 return 0;
651 #else
653 extern int semihosting_enabled;
655 /* Map CPU modes onto saved register banks. */
656 static inline int bank_number (int mode)
658 switch (mode) {
659 case ARM_CPU_MODE_USR:
660 case ARM_CPU_MODE_SYS:
661 return 0;
662 case ARM_CPU_MODE_SVC:
663 return 1;
664 case ARM_CPU_MODE_ABT:
665 return 2;
666 case ARM_CPU_MODE_UND:
667 return 3;
668 case ARM_CPU_MODE_IRQ:
669 return 4;
670 case ARM_CPU_MODE_FIQ:
671 return 5;
673 cpu_abort(cpu_single_env, "Bad mode %x\n", mode);
674 return -1;
677 void switch_mode(CPUState *env, int mode)
679 int old_mode;
680 int i;
682 old_mode = env->uncached_cpsr & CPSR_M;
683 if (mode == old_mode)
684 return;
686 if (old_mode == ARM_CPU_MODE_FIQ) {
687 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
688 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
689 } else if (mode == ARM_CPU_MODE_FIQ) {
690 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
691 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
694 i = bank_number(old_mode);
695 env->banked_r13[i] = env->regs[13];
696 env->banked_r14[i] = env->regs[14];
697 env->banked_spsr[i] = env->spsr;
699 i = bank_number(mode);
700 env->regs[13] = env->banked_r13[i];
701 env->regs[14] = env->banked_r14[i];
702 env->spsr = env->banked_spsr[i];
705 static void v7m_push(CPUARMState *env, uint32_t val)
707 env->regs[13] -= 4;
708 stl_phys(env->regs[13], val);
711 static uint32_t v7m_pop(CPUARMState *env)
713 uint32_t val;
714 val = ldl_phys(env->regs[13]);
715 env->regs[13] += 4;
716 return val;
719 /* Switch to V7M main or process stack pointer. */
720 static void switch_v7m_sp(CPUARMState *env, int process)
722 uint32_t tmp;
723 if (env->v7m.current_sp != process) {
724 tmp = env->v7m.other_sp;
725 env->v7m.other_sp = env->regs[13];
726 env->regs[13] = tmp;
727 env->v7m.current_sp = process;
731 static void do_v7m_exception_exit(CPUARMState *env)
733 uint32_t type;
734 uint32_t xpsr;
736 type = env->regs[15];
737 if (env->v7m.exception != 0)
738 armv7m_nvic_complete_irq(env->nvic, env->v7m.exception);
740 /* Switch to the target stack. */
741 switch_v7m_sp(env, (type & 4) != 0);
742 /* Pop registers. */
743 env->regs[0] = v7m_pop(env);
744 env->regs[1] = v7m_pop(env);
745 env->regs[2] = v7m_pop(env);
746 env->regs[3] = v7m_pop(env);
747 env->regs[12] = v7m_pop(env);
748 env->regs[14] = v7m_pop(env);
749 env->regs[15] = v7m_pop(env);
750 xpsr = v7m_pop(env);
751 xpsr_write(env, xpsr, 0xfffffdff);
752 /* Undo stack alignment. */
753 if (xpsr & 0x200)
754 env->regs[13] |= 4;
755 /* ??? The exception return type specifies Thread/Handler mode. However
756 this is also implied by the xPSR value. Not sure what to do
757 if there is a mismatch. */
758 /* ??? Likewise for mismatches between the CONTROL register and the stack
759 pointer. */
762 static void do_interrupt_v7m(CPUARMState *env)
764 uint32_t xpsr = xpsr_read(env);
765 uint32_t lr;
766 uint32_t addr;
768 lr = 0xfffffff1;
769 if (env->v7m.current_sp)
770 lr |= 4;
771 if (env->v7m.exception == 0)
772 lr |= 8;
774 /* For exceptions we just mark as pending on the NVIC, and let that
775 handle it. */
776 /* TODO: Need to escalate if the current priority is higher than the
777 one we're raising. */
778 switch (env->exception_index) {
779 case EXCP_UDEF:
780 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE);
781 return;
782 case EXCP_SWI:
783 env->regs[15] += 2;
784 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC);
785 return;
786 case EXCP_PREFETCH_ABORT:
787 case EXCP_DATA_ABORT:
788 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM);
789 return;
790 case EXCP_BKPT:
791 if (semihosting_enabled) {
792 int nr;
793 nr = lduw_code(env->regs[15]) & 0xff;
794 if (nr == 0xab) {
795 env->regs[15] += 2;
796 env->regs[0] = do_arm_semihosting(env);
797 return;
800 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG);
801 return;
802 case EXCP_IRQ:
803 env->v7m.exception = armv7m_nvic_acknowledge_irq(env->nvic);
804 break;
805 case EXCP_EXCEPTION_EXIT:
806 do_v7m_exception_exit(env);
807 return;
808 default:
809 cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index);
810 return; /* Never happens. Keep compiler happy. */
813 /* Align stack pointer. */
814 /* ??? Should only do this if Configuration Control Register
815 STACKALIGN bit is set. */
816 if (env->regs[13] & 4) {
817 env->regs[13] -= 4;
818 xpsr |= 0x200;
820 /* Switch to the handler mode. */
821 v7m_push(env, xpsr);
822 v7m_push(env, env->regs[15]);
823 v7m_push(env, env->regs[14]);
824 v7m_push(env, env->regs[12]);
825 v7m_push(env, env->regs[3]);
826 v7m_push(env, env->regs[2]);
827 v7m_push(env, env->regs[1]);
828 v7m_push(env, env->regs[0]);
829 switch_v7m_sp(env, 0);
830 env->uncached_cpsr &= ~CPSR_IT;
831 env->regs[14] = lr;
832 addr = ldl_phys(env->v7m.vecbase + env->v7m.exception * 4);
833 env->regs[15] = addr & 0xfffffffe;
834 env->thumb = addr & 1;
837 /* Handle a CPU exception. */
838 void do_interrupt(CPUARMState *env)
840 uint32_t addr;
841 uint32_t mask;
842 int new_mode;
843 uint32_t offset;
845 if (IS_M(env)) {
846 do_interrupt_v7m(env);
847 return;
849 /* TODO: Vectored interrupt controller. */
850 switch (env->exception_index) {
851 case EXCP_UDEF:
852 new_mode = ARM_CPU_MODE_UND;
853 addr = 0x04;
854 mask = CPSR_I;
855 if (env->thumb)
856 offset = 2;
857 else
858 offset = 4;
859 break;
860 case EXCP_SWI:
861 if (semihosting_enabled) {
862 /* Check for semihosting interrupt. */
863 if (env->thumb) {
864 mask = lduw_code(env->regs[15] - 2) & 0xff;
865 } else {
866 mask = ldl_code(env->regs[15] - 4) & 0xffffff;
868 /* Only intercept calls from privileged modes, to provide some
869 semblance of security. */
870 if (((mask == 0x123456 && !env->thumb)
871 || (mask == 0xab && env->thumb))
872 && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
873 env->regs[0] = do_arm_semihosting(env);
874 return;
877 new_mode = ARM_CPU_MODE_SVC;
878 addr = 0x08;
879 mask = CPSR_I;
880 /* The PC already points to the next instruction. */
881 offset = 0;
882 break;
883 case EXCP_BKPT:
884 /* See if this is a semihosting syscall. */
885 if (env->thumb && semihosting_enabled) {
886 mask = lduw_code(env->regs[15]) & 0xff;
887 if (mask == 0xab
888 && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
889 env->regs[15] += 2;
890 env->regs[0] = do_arm_semihosting(env);
891 return;
894 env->cp15.c5_insn = 2;
895 /* Fall through to prefetch abort. */
896 case EXCP_PREFETCH_ABORT:
897 new_mode = ARM_CPU_MODE_ABT;
898 addr = 0x0c;
899 mask = CPSR_A | CPSR_I;
900 offset = 4;
901 break;
902 case EXCP_DATA_ABORT:
903 new_mode = ARM_CPU_MODE_ABT;
904 addr = 0x10;
905 mask = CPSR_A | CPSR_I;
906 offset = 8;
907 break;
908 case EXCP_IRQ:
909 new_mode = ARM_CPU_MODE_IRQ;
910 addr = 0x18;
911 /* Disable IRQ and imprecise data aborts. */
912 mask = CPSR_A | CPSR_I;
913 offset = 4;
914 break;
915 case EXCP_FIQ:
916 new_mode = ARM_CPU_MODE_FIQ;
917 addr = 0x1c;
918 /* Disable FIQ, IRQ and imprecise data aborts. */
919 mask = CPSR_A | CPSR_I | CPSR_F;
920 offset = 4;
921 break;
922 default:
923 cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index);
924 return; /* Never happens. Keep compiler happy. */
926 /* High vectors. */
927 if (env->cp15.c1_sys & (1 << 13)) {
928 addr += 0xffff0000;
930 switch_mode (env, new_mode);
931 env->spsr = cpsr_read(env);
932 /* Clear IT bits. */
933 env->condexec_bits = 0;
934 /* Switch to the new mode, and to the correct instruction set. */
935 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
936 env->uncached_cpsr |= mask;
937 /* this is a lie, as the was no c1_sys on V4T/V5, but who cares
938 * and we should just guard the thumb mode on V4 */
939 if (arm_feature(env, ARM_FEATURE_V4T)) {
940 env->thumb = (env->cp15.c1_sys & (1 << 30)) != 0;
942 env->regs[14] = env->regs[15] + offset;
943 env->regs[15] = addr;
944 env->interrupt_request |= CPU_INTERRUPT_EXITTB;
947 /* Check section/page access permissions.
948 Returns the page protection flags, or zero if the access is not
949 permitted. */
950 static inline int check_ap(CPUState *env, int ap, int domain, int access_type,
951 int is_user)
953 int prot_ro;
955 if (domain == 3)
956 return PAGE_READ | PAGE_WRITE;
958 if (access_type == 1)
959 prot_ro = 0;
960 else
961 prot_ro = PAGE_READ;
963 switch (ap) {
964 case 0:
965 if (access_type == 1)
966 return 0;
967 switch ((env->cp15.c1_sys >> 8) & 3) {
968 case 1:
969 return is_user ? 0 : PAGE_READ;
970 case 2:
971 return PAGE_READ;
972 default:
973 return 0;
975 case 1:
976 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
977 case 2:
978 if (is_user)
979 return prot_ro;
980 else
981 return PAGE_READ | PAGE_WRITE;
982 case 3:
983 return PAGE_READ | PAGE_WRITE;
984 case 4: /* Reserved. */
985 return 0;
986 case 5:
987 return is_user ? 0 : prot_ro;
988 case 6:
989 return prot_ro;
990 case 7:
991 if (!arm_feature (env, ARM_FEATURE_V6K))
992 return 0;
993 return prot_ro;
994 default:
995 abort();
999 static uint32_t get_level1_table_address(CPUState *env, uint32_t address)
1001 uint32_t table;
1003 if (address & env->cp15.c2_mask)
1004 table = env->cp15.c2_base1 & 0xffffc000;
1005 else
1006 table = env->cp15.c2_base0 & env->cp15.c2_base_mask;
1008 table |= (address >> 18) & 0x3ffc;
1009 return table;
1012 static int get_phys_addr_v5(CPUState *env, uint32_t address, int access_type,
1013 int is_user, uint32_t *phys_ptr, int *prot,
1014 target_ulong *page_size)
1016 int code;
1017 uint32_t table;
1018 uint32_t desc;
1019 int type;
1020 int ap;
1021 int domain;
1022 uint32_t phys_addr;
1024 /* Pagetable walk. */
1025 /* Lookup l1 descriptor. */
1026 table = get_level1_table_address(env, address);
1027 desc = ldl_phys(table);
1028 type = (desc & 3);
1029 domain = (env->cp15.c3 >> ((desc >> 4) & 0x1e)) & 3;
1030 if (type == 0) {
1031 /* Section translation fault. */
1032 code = 5;
1033 goto do_fault;
1035 if (domain == 0 || domain == 2) {
1036 if (type == 2)
1037 code = 9; /* Section domain fault. */
1038 else
1039 code = 11; /* Page domain fault. */
1040 goto do_fault;
1042 if (type == 2) {
1043 /* 1Mb section. */
1044 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
1045 ap = (desc >> 10) & 3;
1046 code = 13;
1047 *page_size = 1024 * 1024;
1048 } else {
1049 /* Lookup l2 entry. */
1050 if (type == 1) {
1051 /* Coarse pagetable. */
1052 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
1053 } else {
1054 /* Fine pagetable. */
1055 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
1057 desc = ldl_phys(table);
1058 switch (desc & 3) {
1059 case 0: /* Page translation fault. */
1060 code = 7;
1061 goto do_fault;
1062 case 1: /* 64k page. */
1063 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
1064 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
1065 *page_size = 0x10000;
1066 break;
1067 case 2: /* 4k page. */
1068 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
1069 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
1070 *page_size = 0x1000;
1071 break;
1072 case 3: /* 1k page. */
1073 if (type == 1) {
1074 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
1075 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
1076 } else {
1077 /* Page translation fault. */
1078 code = 7;
1079 goto do_fault;
1081 } else {
1082 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
1084 ap = (desc >> 4) & 3;
1085 *page_size = 0x400;
1086 break;
1087 default:
1088 /* Never happens, but compiler isn't smart enough to tell. */
1089 abort();
1091 code = 15;
1093 *prot = check_ap(env, ap, domain, access_type, is_user);
1094 if (!*prot) {
1095 /* Access permission fault. */
1096 goto do_fault;
1098 *prot |= PAGE_EXEC;
1099 *phys_ptr = phys_addr;
1100 return 0;
1101 do_fault:
1102 return code | (domain << 4);
1105 static int get_phys_addr_v6(CPUState *env, uint32_t address, int access_type,
1106 int is_user, uint32_t *phys_ptr, int *prot,
1107 target_ulong *page_size)
1109 int code;
1110 uint32_t table;
1111 uint32_t desc;
1112 uint32_t xn;
1113 int type;
1114 int ap;
1115 int domain;
1116 uint32_t phys_addr;
1118 /* Pagetable walk. */
1119 /* Lookup l1 descriptor. */
1120 table = get_level1_table_address(env, address);
1121 desc = ldl_phys(table);
1122 type = (desc & 3);
1123 if (type == 0) {
1124 /* Section translation fault. */
1125 code = 5;
1126 domain = 0;
1127 goto do_fault;
1128 } else if (type == 2 && (desc & (1 << 18))) {
1129 /* Supersection. */
1130 domain = 0;
1131 } else {
1132 /* Section or page. */
1133 domain = (desc >> 4) & 0x1e;
1135 domain = (env->cp15.c3 >> domain) & 3;
1136 if (domain == 0 || domain == 2) {
1137 if (type == 2)
1138 code = 9; /* Section domain fault. */
1139 else
1140 code = 11; /* Page domain fault. */
1141 goto do_fault;
1143 if (type == 2) {
1144 if (desc & (1 << 18)) {
1145 /* Supersection. */
1146 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
1147 *page_size = 0x1000000;
1148 } else {
1149 /* Section. */
1150 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
1151 *page_size = 0x100000;
1153 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
1154 xn = desc & (1 << 4);
1155 code = 13;
1156 } else {
1157 /* Lookup l2 entry. */
1158 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
1159 desc = ldl_phys(table);
1160 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
1161 switch (desc & 3) {
1162 case 0: /* Page translation fault. */
1163 code = 7;
1164 goto do_fault;
1165 case 1: /* 64k page. */
1166 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
1167 xn = desc & (1 << 15);
1168 *page_size = 0x10000;
1169 break;
1170 case 2: case 3: /* 4k page. */
1171 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
1172 xn = desc & 1;
1173 *page_size = 0x1000;
1174 break;
1175 default:
1176 /* Never happens, but compiler isn't smart enough to tell. */
1177 abort();
1179 code = 15;
1181 if (domain == 3) {
1182 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
1183 } else {
1184 if (xn && access_type == 2)
1185 goto do_fault;
1187 /* The simplified model uses AP[0] as an access control bit. */
1188 if ((env->cp15.c1_sys & (1 << 29)) && (ap & 1) == 0) {
1189 /* Access flag fault. */
1190 code = (code == 15) ? 6 : 3;
1191 goto do_fault;
1193 *prot = check_ap(env, ap, domain, access_type, is_user);
1194 if (!*prot) {
1195 /* Access permission fault. */
1196 goto do_fault;
1198 if (!xn) {
1199 *prot |= PAGE_EXEC;
1202 *phys_ptr = phys_addr;
1203 return 0;
1204 do_fault:
1205 return code | (domain << 4);
1208 static int get_phys_addr_mpu(CPUState *env, uint32_t address, int access_type,
1209 int is_user, uint32_t *phys_ptr, int *prot)
1211 int n;
1212 uint32_t mask;
1213 uint32_t base;
1215 *phys_ptr = address;
1216 for (n = 7; n >= 0; n--) {
1217 base = env->cp15.c6_region[n];
1218 if ((base & 1) == 0)
1219 continue;
1220 mask = 1 << ((base >> 1) & 0x1f);
1221 /* Keep this shift separate from the above to avoid an
1222 (undefined) << 32. */
1223 mask = (mask << 1) - 1;
1224 if (((base ^ address) & ~mask) == 0)
1225 break;
1227 if (n < 0)
1228 return 2;
1230 if (access_type == 2) {
1231 mask = env->cp15.c5_insn;
1232 } else {
1233 mask = env->cp15.c5_data;
1235 mask = (mask >> (n * 4)) & 0xf;
1236 switch (mask) {
1237 case 0:
1238 return 1;
1239 case 1:
1240 if (is_user)
1241 return 1;
1242 *prot = PAGE_READ | PAGE_WRITE;
1243 break;
1244 case 2:
1245 *prot = PAGE_READ;
1246 if (!is_user)
1247 *prot |= PAGE_WRITE;
1248 break;
1249 case 3:
1250 *prot = PAGE_READ | PAGE_WRITE;
1251 break;
1252 case 5:
1253 if (is_user)
1254 return 1;
1255 *prot = PAGE_READ;
1256 break;
1257 case 6:
1258 *prot = PAGE_READ;
1259 break;
1260 default:
1261 /* Bad permission. */
1262 return 1;
1264 *prot |= PAGE_EXEC;
1265 return 0;
1268 static inline int get_phys_addr(CPUState *env, uint32_t address,
1269 int access_type, int is_user,
1270 uint32_t *phys_ptr, int *prot,
1271 target_ulong *page_size)
1273 /* Fast Context Switch Extension. */
1274 if (address < 0x02000000)
1275 address += env->cp15.c13_fcse;
1277 if ((env->cp15.c1_sys & 1) == 0) {
1278 /* MMU/MPU disabled. */
1279 *phys_ptr = address;
1280 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
1281 *page_size = TARGET_PAGE_SIZE;
1282 return 0;
1283 } else if (arm_feature(env, ARM_FEATURE_MPU)) {
1284 *page_size = TARGET_PAGE_SIZE;
1285 return get_phys_addr_mpu(env, address, access_type, is_user, phys_ptr,
1286 prot);
1287 } else if (env->cp15.c1_sys & (1 << 23)) {
1288 return get_phys_addr_v6(env, address, access_type, is_user, phys_ptr,
1289 prot, page_size);
1290 } else {
1291 return get_phys_addr_v5(env, address, access_type, is_user, phys_ptr,
1292 prot, page_size);
1296 int cpu_arm_handle_mmu_fault (CPUState *env, target_ulong address,
1297 int access_type, int mmu_idx)
1299 uint32_t phys_addr;
1300 target_ulong page_size;
1301 int prot;
1302 int ret, is_user;
1304 is_user = mmu_idx == MMU_USER_IDX;
1305 ret = get_phys_addr(env, address, access_type, is_user, &phys_addr, &prot,
1306 &page_size);
1307 if (ret == 0) {
1308 /* Map a single [sub]page. */
1309 phys_addr &= ~(uint32_t)0x3ff;
1310 address &= ~(uint32_t)0x3ff;
1311 tlb_set_page (env, address, phys_addr, prot, mmu_idx, page_size);
1312 return 0;
1315 if (access_type == 2) {
1316 env->cp15.c5_insn = ret;
1317 env->cp15.c6_insn = address;
1318 env->exception_index = EXCP_PREFETCH_ABORT;
1319 } else {
1320 env->cp15.c5_data = ret;
1321 if (access_type == 1 && arm_feature(env, ARM_FEATURE_V6))
1322 env->cp15.c5_data |= (1 << 11);
1323 env->cp15.c6_data = address;
1324 env->exception_index = EXCP_DATA_ABORT;
1326 return 1;
1329 target_phys_addr_t cpu_get_phys_page_debug(CPUState *env, target_ulong addr)
1331 uint32_t phys_addr;
1332 target_ulong page_size;
1333 int prot;
1334 int ret;
1336 ret = get_phys_addr(env, addr, 0, 0, &phys_addr, &prot, &page_size);
1338 if (ret != 0)
1339 return -1;
1341 return phys_addr;
1344 void HELPER(set_cp)(CPUState *env, uint32_t insn, uint32_t val)
1346 int cp_num = (insn >> 8) & 0xf;
1347 int cp_info = (insn >> 5) & 7;
1348 int src = (insn >> 16) & 0xf;
1349 int operand = insn & 0xf;
1351 if (env->cp[cp_num].cp_write)
1352 env->cp[cp_num].cp_write(env->cp[cp_num].opaque,
1353 cp_info, src, operand, val);
1356 uint32_t HELPER(get_cp)(CPUState *env, uint32_t insn)
1358 int cp_num = (insn >> 8) & 0xf;
1359 int cp_info = (insn >> 5) & 7;
1360 int dest = (insn >> 16) & 0xf;
1361 int operand = insn & 0xf;
1363 if (env->cp[cp_num].cp_read)
1364 return env->cp[cp_num].cp_read(env->cp[cp_num].opaque,
1365 cp_info, dest, operand);
1366 return 0;
1369 /* Return basic MPU access permission bits. */
1370 static uint32_t simple_mpu_ap_bits(uint32_t val)
1372 uint32_t ret;
1373 uint32_t mask;
1374 int i;
1375 ret = 0;
1376 mask = 3;
1377 for (i = 0; i < 16; i += 2) {
1378 ret |= (val >> i) & mask;
1379 mask <<= 2;
1381 return ret;
1384 /* Pad basic MPU access permission bits to extended format. */
1385 static uint32_t extended_mpu_ap_bits(uint32_t val)
1387 uint32_t ret;
1388 uint32_t mask;
1389 int i;
1390 ret = 0;
1391 mask = 3;
1392 for (i = 0; i < 16; i += 2) {
1393 ret |= (val & mask) << i;
1394 mask <<= 2;
1396 return ret;
1399 void HELPER(set_cp15)(CPUState *env, uint32_t insn, uint32_t val)
1401 int op1;
1402 int op2;
1403 int crm;
1405 op1 = (insn >> 21) & 7;
1406 op2 = (insn >> 5) & 7;
1407 crm = insn & 0xf;
1408 switch ((insn >> 16) & 0xf) {
1409 case 0:
1410 /* ID codes. */
1411 if (arm_feature(env, ARM_FEATURE_XSCALE))
1412 break;
1413 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1414 break;
1415 if (arm_feature(env, ARM_FEATURE_V7)
1416 && op1 == 2 && crm == 0 && op2 == 0) {
1417 env->cp15.c0_cssel = val & 0xf;
1418 break;
1420 goto bad_reg;
1421 case 1: /* System configuration. */
1422 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1423 op2 = 0;
1424 switch (op2) {
1425 case 0:
1426 if (!arm_feature(env, ARM_FEATURE_XSCALE) || crm == 0)
1427 env->cp15.c1_sys = val;
1428 /* ??? Lots of these bits are not implemented. */
1429 /* This may enable/disable the MMU, so do a TLB flush. */
1430 tlb_flush(env, 1);
1431 break;
1432 case 1: /* Auxiliary control register. */
1433 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
1434 env->cp15.c1_xscaleauxcr = val;
1435 break;
1437 /* Not implemented. */
1438 break;
1439 case 2:
1440 if (arm_feature(env, ARM_FEATURE_XSCALE))
1441 goto bad_reg;
1442 if (env->cp15.c1_coproc != val) {
1443 env->cp15.c1_coproc = val;
1444 /* ??? Is this safe when called from within a TB? */
1445 tb_flush(env);
1447 break;
1448 default:
1449 goto bad_reg;
1451 break;
1452 case 2: /* MMU Page table control / MPU cache control. */
1453 if (arm_feature(env, ARM_FEATURE_MPU)) {
1454 switch (op2) {
1455 case 0:
1456 env->cp15.c2_data = val;
1457 break;
1458 case 1:
1459 env->cp15.c2_insn = val;
1460 break;
1461 default:
1462 goto bad_reg;
1464 } else {
1465 switch (op2) {
1466 case 0:
1467 env->cp15.c2_base0 = val;
1468 break;
1469 case 1:
1470 env->cp15.c2_base1 = val;
1471 break;
1472 case 2:
1473 val &= 7;
1474 env->cp15.c2_control = val;
1475 env->cp15.c2_mask = ~(((uint32_t)0xffffffffu) >> val);
1476 env->cp15.c2_base_mask = ~((uint32_t)0x3fffu >> val);
1477 break;
1478 default:
1479 goto bad_reg;
1482 break;
1483 case 3: /* MMU Domain access control / MPU write buffer control. */
1484 env->cp15.c3 = val;
1485 tlb_flush(env, 1); /* Flush TLB as domain not tracked in TLB */
1486 break;
1487 case 4: /* Reserved. */
1488 goto bad_reg;
1489 case 5: /* MMU Fault status / MPU access permission. */
1490 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1491 op2 = 0;
1492 switch (op2) {
1493 case 0:
1494 if (arm_feature(env, ARM_FEATURE_MPU))
1495 val = extended_mpu_ap_bits(val);
1496 env->cp15.c5_data = val;
1497 break;
1498 case 1:
1499 if (arm_feature(env, ARM_FEATURE_MPU))
1500 val = extended_mpu_ap_bits(val);
1501 env->cp15.c5_insn = val;
1502 break;
1503 case 2:
1504 if (!arm_feature(env, ARM_FEATURE_MPU))
1505 goto bad_reg;
1506 env->cp15.c5_data = val;
1507 break;
1508 case 3:
1509 if (!arm_feature(env, ARM_FEATURE_MPU))
1510 goto bad_reg;
1511 env->cp15.c5_insn = val;
1512 break;
1513 default:
1514 goto bad_reg;
1516 break;
1517 case 6: /* MMU Fault address / MPU base/size. */
1518 if (arm_feature(env, ARM_FEATURE_MPU)) {
1519 if (crm >= 8)
1520 goto bad_reg;
1521 env->cp15.c6_region[crm] = val;
1522 } else {
1523 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1524 op2 = 0;
1525 switch (op2) {
1526 case 0:
1527 env->cp15.c6_data = val;
1528 break;
1529 case 1: /* ??? This is WFAR on armv6 */
1530 case 2:
1531 env->cp15.c6_insn = val;
1532 break;
1533 default:
1534 goto bad_reg;
1537 break;
1538 case 7: /* Cache control. */
1539 env->cp15.c15_i_max = 0x000;
1540 env->cp15.c15_i_min = 0xff0;
1541 if (op1 != 0) {
1542 goto bad_reg;
1544 /* No cache, so nothing to do except VA->PA translations. */
1545 if (arm_feature(env, ARM_FEATURE_VAPA)) {
1546 switch (crm) {
1547 case 4:
1548 if (arm_feature(env, ARM_FEATURE_V7)) {
1549 env->cp15.c7_par = val & 0xfffff6ff;
1550 } else {
1551 env->cp15.c7_par = val & 0xfffff1ff;
1553 break;
1554 case 8: {
1555 uint32_t phys_addr;
1556 target_ulong page_size;
1557 int prot;
1558 int ret, is_user = op2 & 2;
1559 int access_type = op2 & 1;
1561 if (op2 & 4) {
1562 /* Other states are only available with TrustZone */
1563 goto bad_reg;
1565 ret = get_phys_addr(env, val, access_type, is_user,
1566 &phys_addr, &prot, &page_size);
1567 if (ret == 0) {
1568 /* We do not set any attribute bits in the PAR */
1569 if (page_size == (1 << 24)
1570 && arm_feature(env, ARM_FEATURE_V7)) {
1571 env->cp15.c7_par = (phys_addr & 0xff000000) | 1 << 1;
1572 } else {
1573 env->cp15.c7_par = phys_addr & 0xfffff000;
1575 } else {
1576 env->cp15.c7_par = ((ret & (10 << 1)) >> 5) |
1577 ((ret & (12 << 1)) >> 6) |
1578 ((ret & 0xf) << 1) | 1;
1580 break;
1584 break;
1585 case 8: /* MMU TLB control. */
1586 switch (op2) {
1587 case 0: /* Invalidate all. */
1588 tlb_flush(env, 0);
1589 break;
1590 case 1: /* Invalidate single TLB entry. */
1591 tlb_flush_page(env, val & TARGET_PAGE_MASK);
1592 break;
1593 case 2: /* Invalidate on ASID. */
1594 tlb_flush(env, val == 0);
1595 break;
1596 case 3: /* Invalidate single entry on MVA. */
1597 /* ??? This is like case 1, but ignores ASID. */
1598 tlb_flush(env, 1);
1599 break;
1600 default:
1601 goto bad_reg;
1603 break;
1604 case 9:
1605 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1606 break;
1607 if (arm_feature(env, ARM_FEATURE_STRONGARM))
1608 break; /* Ignore ReadBuffer access */
1609 switch (crm) {
1610 case 0: /* Cache lockdown. */
1611 switch (op1) {
1612 case 0: /* L1 cache. */
1613 switch (op2) {
1614 case 0:
1615 env->cp15.c9_data = val;
1616 break;
1617 case 1:
1618 env->cp15.c9_insn = val;
1619 break;
1620 default:
1621 goto bad_reg;
1623 break;
1624 case 1: /* L2 cache. */
1625 /* Ignore writes to L2 lockdown/auxiliary registers. */
1626 break;
1627 default:
1628 goto bad_reg;
1630 break;
1631 case 1: /* TCM memory region registers. */
1632 /* Not implemented. */
1633 goto bad_reg;
1634 case 12: /* Performance monitor control */
1635 /* Performance monitors are implementation defined in v7,
1636 * but with an ARM recommended set of registers, which we
1637 * follow (although we don't actually implement any counters)
1639 if (!arm_feature(env, ARM_FEATURE_V7)) {
1640 goto bad_reg;
1642 switch (op2) {
1643 case 0: /* performance monitor control register */
1644 /* only the DP, X, D and E bits are writable */
1645 env->cp15.c9_pmcr &= ~0x39;
1646 env->cp15.c9_pmcr |= (val & 0x39);
1647 break;
1648 case 1: /* Count enable set register */
1649 val &= (1 << 31);
1650 env->cp15.c9_pmcnten |= val;
1651 break;
1652 case 2: /* Count enable clear */
1653 val &= (1 << 31);
1654 env->cp15.c9_pmcnten &= ~val;
1655 break;
1656 case 3: /* Overflow flag status */
1657 env->cp15.c9_pmovsr &= ~val;
1658 break;
1659 case 4: /* Software increment */
1660 /* RAZ/WI since we don't implement the software-count event */
1661 break;
1662 case 5: /* Event counter selection register */
1663 /* Since we don't implement any events, writing to this register
1664 * is actually UNPREDICTABLE. So we choose to RAZ/WI.
1666 break;
1667 default:
1668 goto bad_reg;
1670 break;
1671 case 13: /* Performance counters */
1672 if (!arm_feature(env, ARM_FEATURE_V7)) {
1673 goto bad_reg;
1675 switch (op2) {
1676 case 0: /* Cycle count register: not implemented, so RAZ/WI */
1677 break;
1678 case 1: /* Event type select */
1679 env->cp15.c9_pmxevtyper = val & 0xff;
1680 break;
1681 case 2: /* Event count register */
1682 /* Unimplemented (we have no events), RAZ/WI */
1683 break;
1684 default:
1685 goto bad_reg;
1687 break;
1688 case 14: /* Performance monitor control */
1689 if (!arm_feature(env, ARM_FEATURE_V7)) {
1690 goto bad_reg;
1692 switch (op2) {
1693 case 0: /* user enable */
1694 env->cp15.c9_pmuserenr = val & 1;
1695 /* changes access rights for cp registers, so flush tbs */
1696 tb_flush(env);
1697 break;
1698 case 1: /* interrupt enable set */
1699 /* We have no event counters so only the C bit can be changed */
1700 val &= (1 << 31);
1701 env->cp15.c9_pminten |= val;
1702 break;
1703 case 2: /* interrupt enable clear */
1704 val &= (1 << 31);
1705 env->cp15.c9_pminten &= ~val;
1706 break;
1708 break;
1709 default:
1710 goto bad_reg;
1712 break;
1713 case 10: /* MMU TLB lockdown. */
1714 /* ??? TLB lockdown not implemented. */
1715 break;
1716 case 12: /* Reserved. */
1717 goto bad_reg;
1718 case 13: /* Process ID. */
1719 switch (op2) {
1720 case 0:
1721 /* Unlike real hardware the qemu TLB uses virtual addresses,
1722 not modified virtual addresses, so this causes a TLB flush.
1724 if (env->cp15.c13_fcse != val)
1725 tlb_flush(env, 1);
1726 env->cp15.c13_fcse = val;
1727 break;
1728 case 1:
1729 /* This changes the ASID, so do a TLB flush. */
1730 if (env->cp15.c13_context != val
1731 && !arm_feature(env, ARM_FEATURE_MPU))
1732 tlb_flush(env, 0);
1733 env->cp15.c13_context = val;
1734 break;
1735 default:
1736 goto bad_reg;
1738 break;
1739 case 14: /* Reserved. */
1740 goto bad_reg;
1741 case 15: /* Implementation specific. */
1742 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
1743 if (op2 == 0 && crm == 1) {
1744 if (env->cp15.c15_cpar != (val & 0x3fff)) {
1745 /* Changes cp0 to cp13 behavior, so needs a TB flush. */
1746 tb_flush(env);
1747 env->cp15.c15_cpar = val & 0x3fff;
1749 break;
1751 goto bad_reg;
1753 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
1754 switch (crm) {
1755 case 0:
1756 break;
1757 case 1: /* Set TI925T configuration. */
1758 env->cp15.c15_ticonfig = val & 0xe7;
1759 env->cp15.c0_cpuid = (val & (1 << 5)) ? /* OS_TYPE bit */
1760 ARM_CPUID_TI915T : ARM_CPUID_TI925T;
1761 break;
1762 case 2: /* Set I_max. */
1763 env->cp15.c15_i_max = val;
1764 break;
1765 case 3: /* Set I_min. */
1766 env->cp15.c15_i_min = val;
1767 break;
1768 case 4: /* Set thread-ID. */
1769 env->cp15.c15_threadid = val & 0xffff;
1770 break;
1771 case 8: /* Wait-for-interrupt (deprecated). */
1772 cpu_interrupt(env, CPU_INTERRUPT_HALT);
1773 break;
1774 default:
1775 goto bad_reg;
1778 break;
1780 return;
1781 bad_reg:
1782 /* ??? For debugging only. Should raise illegal instruction exception. */
1783 cpu_abort(env, "Unimplemented cp15 register write (c%d, c%d, {%d, %d})\n",
1784 (insn >> 16) & 0xf, crm, op1, op2);
1787 uint32_t HELPER(get_cp15)(CPUState *env, uint32_t insn)
1789 int op1;
1790 int op2;
1791 int crm;
1793 op1 = (insn >> 21) & 7;
1794 op2 = (insn >> 5) & 7;
1795 crm = insn & 0xf;
1796 switch ((insn >> 16) & 0xf) {
1797 case 0: /* ID codes. */
1798 switch (op1) {
1799 case 0:
1800 switch (crm) {
1801 case 0:
1802 switch (op2) {
1803 case 0: /* Device ID. */
1804 return env->cp15.c0_cpuid;
1805 case 1: /* Cache Type. */
1806 return env->cp15.c0_cachetype;
1807 case 2: /* TCM status. */
1808 return 0;
1809 case 3: /* TLB type register. */
1810 return 0; /* No lockable TLB entries. */
1811 case 5: /* MPIDR */
1812 /* The MPIDR was standardised in v7; prior to
1813 * this it was implemented only in the 11MPCore.
1814 * For all other pre-v7 cores it does not exist.
1816 if (arm_feature(env, ARM_FEATURE_V7) ||
1817 ARM_CPUID(env) == ARM_CPUID_ARM11MPCORE) {
1818 int mpidr = env->cpu_index;
1819 /* We don't support setting cluster ID ([8..11])
1820 * so these bits always RAZ.
1822 if (arm_feature(env, ARM_FEATURE_V7MP)) {
1823 mpidr |= (1 << 31);
1824 /* Cores which are uniprocessor (non-coherent)
1825 * but still implement the MP extensions set
1826 * bit 30. (For instance, A9UP.) However we do
1827 * not currently model any of those cores.
1830 return mpidr;
1832 /* otherwise fall through to the unimplemented-reg case */
1833 default:
1834 goto bad_reg;
1836 case 1:
1837 if (!arm_feature(env, ARM_FEATURE_V6))
1838 goto bad_reg;
1839 return env->cp15.c0_c1[op2];
1840 case 2:
1841 if (!arm_feature(env, ARM_FEATURE_V6))
1842 goto bad_reg;
1843 return env->cp15.c0_c2[op2];
1844 case 3: case 4: case 5: case 6: case 7:
1845 return 0;
1846 default:
1847 goto bad_reg;
1849 case 1:
1850 /* These registers aren't documented on arm11 cores. However
1851 Linux looks at them anyway. */
1852 if (!arm_feature(env, ARM_FEATURE_V6))
1853 goto bad_reg;
1854 if (crm != 0)
1855 goto bad_reg;
1856 if (!arm_feature(env, ARM_FEATURE_V7))
1857 return 0;
1859 switch (op2) {
1860 case 0:
1861 return env->cp15.c0_ccsid[env->cp15.c0_cssel];
1862 case 1:
1863 return env->cp15.c0_clid;
1864 case 7:
1865 return 0;
1867 goto bad_reg;
1868 case 2:
1869 if (op2 != 0 || crm != 0)
1870 goto bad_reg;
1871 return env->cp15.c0_cssel;
1872 default:
1873 goto bad_reg;
1875 case 1: /* System configuration. */
1876 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1877 op2 = 0;
1878 switch (op2) {
1879 case 0: /* Control register. */
1880 return env->cp15.c1_sys;
1881 case 1: /* Auxiliary control register. */
1882 if (arm_feature(env, ARM_FEATURE_XSCALE))
1883 return env->cp15.c1_xscaleauxcr;
1884 if (!arm_feature(env, ARM_FEATURE_AUXCR))
1885 goto bad_reg;
1886 switch (ARM_CPUID(env)) {
1887 case ARM_CPUID_ARM1026:
1888 return 1;
1889 case ARM_CPUID_ARM1136:
1890 case ARM_CPUID_ARM1136_R2:
1891 case ARM_CPUID_ARM1176:
1892 return 7;
1893 case ARM_CPUID_ARM11MPCORE:
1894 return 1;
1895 case ARM_CPUID_CORTEXA8:
1896 return 2;
1897 case ARM_CPUID_CORTEXA9:
1898 return 0;
1899 default:
1900 goto bad_reg;
1902 case 2: /* Coprocessor access register. */
1903 if (arm_feature(env, ARM_FEATURE_XSCALE))
1904 goto bad_reg;
1905 return env->cp15.c1_coproc;
1906 default:
1907 goto bad_reg;
1909 case 2: /* MMU Page table control / MPU cache control. */
1910 if (arm_feature(env, ARM_FEATURE_MPU)) {
1911 switch (op2) {
1912 case 0:
1913 return env->cp15.c2_data;
1914 break;
1915 case 1:
1916 return env->cp15.c2_insn;
1917 break;
1918 default:
1919 goto bad_reg;
1921 } else {
1922 switch (op2) {
1923 case 0:
1924 return env->cp15.c2_base0;
1925 case 1:
1926 return env->cp15.c2_base1;
1927 case 2:
1928 return env->cp15.c2_control;
1929 default:
1930 goto bad_reg;
1933 case 3: /* MMU Domain access control / MPU write buffer control. */
1934 return env->cp15.c3;
1935 case 4: /* Reserved. */
1936 goto bad_reg;
1937 case 5: /* MMU Fault status / MPU access permission. */
1938 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1939 op2 = 0;
1940 switch (op2) {
1941 case 0:
1942 if (arm_feature(env, ARM_FEATURE_MPU))
1943 return simple_mpu_ap_bits(env->cp15.c5_data);
1944 return env->cp15.c5_data;
1945 case 1:
1946 if (arm_feature(env, ARM_FEATURE_MPU))
1947 return simple_mpu_ap_bits(env->cp15.c5_data);
1948 return env->cp15.c5_insn;
1949 case 2:
1950 if (!arm_feature(env, ARM_FEATURE_MPU))
1951 goto bad_reg;
1952 return env->cp15.c5_data;
1953 case 3:
1954 if (!arm_feature(env, ARM_FEATURE_MPU))
1955 goto bad_reg;
1956 return env->cp15.c5_insn;
1957 default:
1958 goto bad_reg;
1960 case 6: /* MMU Fault address. */
1961 if (arm_feature(env, ARM_FEATURE_MPU)) {
1962 if (crm >= 8)
1963 goto bad_reg;
1964 return env->cp15.c6_region[crm];
1965 } else {
1966 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1967 op2 = 0;
1968 switch (op2) {
1969 case 0:
1970 return env->cp15.c6_data;
1971 case 1:
1972 if (arm_feature(env, ARM_FEATURE_V6)) {
1973 /* Watchpoint Fault Adrress. */
1974 return 0; /* Not implemented. */
1975 } else {
1976 /* Instruction Fault Adrress. */
1977 /* Arm9 doesn't have an IFAR, but implementing it anyway
1978 shouldn't do any harm. */
1979 return env->cp15.c6_insn;
1981 case 2:
1982 if (arm_feature(env, ARM_FEATURE_V6)) {
1983 /* Instruction Fault Adrress. */
1984 return env->cp15.c6_insn;
1985 } else {
1986 goto bad_reg;
1988 default:
1989 goto bad_reg;
1992 case 7: /* Cache control. */
1993 if (crm == 4 && op1 == 0 && op2 == 0) {
1994 return env->cp15.c7_par;
1996 /* FIXME: Should only clear Z flag if destination is r15. */
1997 env->ZF = 0;
1998 return 0;
1999 case 8: /* MMU TLB control. */
2000 goto bad_reg;
2001 case 9:
2002 switch (crm) {
2003 case 0: /* Cache lockdown */
2004 switch (op1) {
2005 case 0: /* L1 cache. */
2006 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
2007 return 0;
2009 switch (op2) {
2010 case 0:
2011 return env->cp15.c9_data;
2012 case 1:
2013 return env->cp15.c9_insn;
2014 default:
2015 goto bad_reg;
2017 case 1: /* L2 cache */
2018 if (crm != 0) {
2019 goto bad_reg;
2021 /* L2 Lockdown and Auxiliary control. */
2022 return 0;
2023 default:
2024 goto bad_reg;
2026 break;
2027 case 12: /* Performance monitor control */
2028 if (!arm_feature(env, ARM_FEATURE_V7)) {
2029 goto bad_reg;
2031 switch (op2) {
2032 case 0: /* performance monitor control register */
2033 return env->cp15.c9_pmcr;
2034 case 1: /* count enable set */
2035 case 2: /* count enable clear */
2036 return env->cp15.c9_pmcnten;
2037 case 3: /* overflow flag status */
2038 return env->cp15.c9_pmovsr;
2039 case 4: /* software increment */
2040 case 5: /* event counter selection register */
2041 return 0; /* Unimplemented, RAZ/WI */
2042 default:
2043 goto bad_reg;
2045 case 13: /* Performance counters */
2046 if (!arm_feature(env, ARM_FEATURE_V7)) {
2047 goto bad_reg;
2049 switch (op2) {
2050 case 1: /* Event type select */
2051 return env->cp15.c9_pmxevtyper;
2052 case 0: /* Cycle count register */
2053 case 2: /* Event count register */
2054 /* Unimplemented, so RAZ/WI */
2055 return 0;
2056 default:
2057 goto bad_reg;
2059 case 14: /* Performance monitor control */
2060 if (!arm_feature(env, ARM_FEATURE_V7)) {
2061 goto bad_reg;
2063 switch (op2) {
2064 case 0: /* user enable */
2065 return env->cp15.c9_pmuserenr;
2066 case 1: /* interrupt enable set */
2067 case 2: /* interrupt enable clear */
2068 return env->cp15.c9_pminten;
2069 default:
2070 goto bad_reg;
2072 default:
2073 goto bad_reg;
2075 break;
2076 case 10: /* MMU TLB lockdown. */
2077 /* ??? TLB lockdown not implemented. */
2078 return 0;
2079 case 11: /* TCM DMA control. */
2080 case 12: /* Reserved. */
2081 goto bad_reg;
2082 case 13: /* Process ID. */
2083 switch (op2) {
2084 case 0:
2085 return env->cp15.c13_fcse;
2086 case 1:
2087 return env->cp15.c13_context;
2088 default:
2089 goto bad_reg;
2091 case 14: /* Reserved. */
2092 goto bad_reg;
2093 case 15: /* Implementation specific. */
2094 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
2095 if (op2 == 0 && crm == 1)
2096 return env->cp15.c15_cpar;
2098 goto bad_reg;
2100 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
2101 switch (crm) {
2102 case 0:
2103 return 0;
2104 case 1: /* Read TI925T configuration. */
2105 return env->cp15.c15_ticonfig;
2106 case 2: /* Read I_max. */
2107 return env->cp15.c15_i_max;
2108 case 3: /* Read I_min. */
2109 return env->cp15.c15_i_min;
2110 case 4: /* Read thread-ID. */
2111 return env->cp15.c15_threadid;
2112 case 8: /* TI925T_status */
2113 return 0;
2115 /* TODO: Peripheral port remap register:
2116 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt
2117 * controller base address at $rn & ~0xfff and map size of
2118 * 0x200 << ($rn & 0xfff), when MMU is off. */
2119 goto bad_reg;
2121 return 0;
2123 bad_reg:
2124 /* ??? For debugging only. Should raise illegal instruction exception. */
2125 cpu_abort(env, "Unimplemented cp15 register read (c%d, c%d, {%d, %d})\n",
2126 (insn >> 16) & 0xf, crm, op1, op2);
2127 return 0;
2130 void HELPER(set_r13_banked)(CPUState *env, uint32_t mode, uint32_t val)
2132 if ((env->uncached_cpsr & CPSR_M) == mode) {
2133 env->regs[13] = val;
2134 } else {
2135 env->banked_r13[bank_number(mode)] = val;
2139 uint32_t HELPER(get_r13_banked)(CPUState *env, uint32_t mode)
2141 if ((env->uncached_cpsr & CPSR_M) == mode) {
2142 return env->regs[13];
2143 } else {
2144 return env->banked_r13[bank_number(mode)];
2148 uint32_t HELPER(v7m_mrs)(CPUState *env, uint32_t reg)
2150 switch (reg) {
2151 case 0: /* APSR */
2152 return xpsr_read(env) & 0xf8000000;
2153 case 1: /* IAPSR */
2154 return xpsr_read(env) & 0xf80001ff;
2155 case 2: /* EAPSR */
2156 return xpsr_read(env) & 0xff00fc00;
2157 case 3: /* xPSR */
2158 return xpsr_read(env) & 0xff00fdff;
2159 case 5: /* IPSR */
2160 return xpsr_read(env) & 0x000001ff;
2161 case 6: /* EPSR */
2162 return xpsr_read(env) & 0x0700fc00;
2163 case 7: /* IEPSR */
2164 return xpsr_read(env) & 0x0700edff;
2165 case 8: /* MSP */
2166 return env->v7m.current_sp ? env->v7m.other_sp : env->regs[13];
2167 case 9: /* PSP */
2168 return env->v7m.current_sp ? env->regs[13] : env->v7m.other_sp;
2169 case 16: /* PRIMASK */
2170 return (env->uncached_cpsr & CPSR_I) != 0;
2171 case 17: /* BASEPRI */
2172 case 18: /* BASEPRI_MAX */
2173 return env->v7m.basepri;
2174 case 19: /* FAULTMASK */
2175 return (env->uncached_cpsr & CPSR_F) != 0;
2176 case 20: /* CONTROL */
2177 return env->v7m.control;
2178 default:
2179 /* ??? For debugging only. */
2180 cpu_abort(env, "Unimplemented system register read (%d)\n", reg);
2181 return 0;
2185 void HELPER(v7m_msr)(CPUState *env, uint32_t reg, uint32_t val)
2187 switch (reg) {
2188 case 0: /* APSR */
2189 xpsr_write(env, val, 0xf8000000);
2190 break;
2191 case 1: /* IAPSR */
2192 xpsr_write(env, val, 0xf8000000);
2193 break;
2194 case 2: /* EAPSR */
2195 xpsr_write(env, val, 0xfe00fc00);
2196 break;
2197 case 3: /* xPSR */
2198 xpsr_write(env, val, 0xfe00fc00);
2199 break;
2200 case 5: /* IPSR */
2201 /* IPSR bits are readonly. */
2202 break;
2203 case 6: /* EPSR */
2204 xpsr_write(env, val, 0x0600fc00);
2205 break;
2206 case 7: /* IEPSR */
2207 xpsr_write(env, val, 0x0600fc00);
2208 break;
2209 case 8: /* MSP */
2210 if (env->v7m.current_sp)
2211 env->v7m.other_sp = val;
2212 else
2213 env->regs[13] = val;
2214 break;
2215 case 9: /* PSP */
2216 if (env->v7m.current_sp)
2217 env->regs[13] = val;
2218 else
2219 env->v7m.other_sp = val;
2220 break;
2221 case 16: /* PRIMASK */
2222 if (val & 1)
2223 env->uncached_cpsr |= CPSR_I;
2224 else
2225 env->uncached_cpsr &= ~CPSR_I;
2226 break;
2227 case 17: /* BASEPRI */
2228 env->v7m.basepri = val & 0xff;
2229 break;
2230 case 18: /* BASEPRI_MAX */
2231 val &= 0xff;
2232 if (val != 0 && (val < env->v7m.basepri || env->v7m.basepri == 0))
2233 env->v7m.basepri = val;
2234 break;
2235 case 19: /* FAULTMASK */
2236 if (val & 1)
2237 env->uncached_cpsr |= CPSR_F;
2238 else
2239 env->uncached_cpsr &= ~CPSR_F;
2240 break;
2241 case 20: /* CONTROL */
2242 env->v7m.control = val & 3;
2243 switch_v7m_sp(env, (val & 2) != 0);
2244 break;
2245 default:
2246 /* ??? For debugging only. */
2247 cpu_abort(env, "Unimplemented system register write (%d)\n", reg);
2248 return;
2252 void cpu_arm_set_cp_io(CPUARMState *env, int cpnum,
2253 ARMReadCPFunc *cp_read, ARMWriteCPFunc *cp_write,
2254 void *opaque)
2256 if (cpnum < 0 || cpnum > 14) {
2257 cpu_abort(env, "Bad coprocessor number: %i\n", cpnum);
2258 return;
2261 env->cp[cpnum].cp_read = cp_read;
2262 env->cp[cpnum].cp_write = cp_write;
2263 env->cp[cpnum].opaque = opaque;
2266 #endif
2268 /* Note that signed overflow is undefined in C. The following routines are
2269 careful to use unsigned types where modulo arithmetic is required.
2270 Failure to do so _will_ break on newer gcc. */
2272 /* Signed saturating arithmetic. */
2274 /* Perform 16-bit signed saturating addition. */
2275 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
2277 uint16_t res;
2279 res = a + b;
2280 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
2281 if (a & 0x8000)
2282 res = 0x8000;
2283 else
2284 res = 0x7fff;
2286 return res;
2289 /* Perform 8-bit signed saturating addition. */
2290 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
2292 uint8_t res;
2294 res = a + b;
2295 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
2296 if (a & 0x80)
2297 res = 0x80;
2298 else
2299 res = 0x7f;
2301 return res;
2304 /* Perform 16-bit signed saturating subtraction. */
2305 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
2307 uint16_t res;
2309 res = a - b;
2310 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
2311 if (a & 0x8000)
2312 res = 0x8000;
2313 else
2314 res = 0x7fff;
2316 return res;
2319 /* Perform 8-bit signed saturating subtraction. */
2320 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
2322 uint8_t res;
2324 res = a - b;
2325 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
2326 if (a & 0x80)
2327 res = 0x80;
2328 else
2329 res = 0x7f;
2331 return res;
2334 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
2335 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
2336 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
2337 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
2338 #define PFX q
2340 #include "op_addsub.h"
2342 /* Unsigned saturating arithmetic. */
2343 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
2345 uint16_t res;
2346 res = a + b;
2347 if (res < a)
2348 res = 0xffff;
2349 return res;
2352 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
2354 if (a > b)
2355 return a - b;
2356 else
2357 return 0;
2360 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
2362 uint8_t res;
2363 res = a + b;
2364 if (res < a)
2365 res = 0xff;
2366 return res;
2369 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
2371 if (a > b)
2372 return a - b;
2373 else
2374 return 0;
2377 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
2378 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
2379 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
2380 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
2381 #define PFX uq
2383 #include "op_addsub.h"
2385 /* Signed modulo arithmetic. */
2386 #define SARITH16(a, b, n, op) do { \
2387 int32_t sum; \
2388 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
2389 RESULT(sum, n, 16); \
2390 if (sum >= 0) \
2391 ge |= 3 << (n * 2); \
2392 } while(0)
2394 #define SARITH8(a, b, n, op) do { \
2395 int32_t sum; \
2396 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
2397 RESULT(sum, n, 8); \
2398 if (sum >= 0) \
2399 ge |= 1 << n; \
2400 } while(0)
2403 #define ADD16(a, b, n) SARITH16(a, b, n, +)
2404 #define SUB16(a, b, n) SARITH16(a, b, n, -)
2405 #define ADD8(a, b, n) SARITH8(a, b, n, +)
2406 #define SUB8(a, b, n) SARITH8(a, b, n, -)
2407 #define PFX s
2408 #define ARITH_GE
2410 #include "op_addsub.h"
2412 /* Unsigned modulo arithmetic. */
2413 #define ADD16(a, b, n) do { \
2414 uint32_t sum; \
2415 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
2416 RESULT(sum, n, 16); \
2417 if ((sum >> 16) == 1) \
2418 ge |= 3 << (n * 2); \
2419 } while(0)
2421 #define ADD8(a, b, n) do { \
2422 uint32_t sum; \
2423 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
2424 RESULT(sum, n, 8); \
2425 if ((sum >> 8) == 1) \
2426 ge |= 1 << n; \
2427 } while(0)
2429 #define SUB16(a, b, n) do { \
2430 uint32_t sum; \
2431 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
2432 RESULT(sum, n, 16); \
2433 if ((sum >> 16) == 0) \
2434 ge |= 3 << (n * 2); \
2435 } while(0)
2437 #define SUB8(a, b, n) do { \
2438 uint32_t sum; \
2439 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
2440 RESULT(sum, n, 8); \
2441 if ((sum >> 8) == 0) \
2442 ge |= 1 << n; \
2443 } while(0)
2445 #define PFX u
2446 #define ARITH_GE
2448 #include "op_addsub.h"
2450 /* Halved signed arithmetic. */
2451 #define ADD16(a, b, n) \
2452 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
2453 #define SUB16(a, b, n) \
2454 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
2455 #define ADD8(a, b, n) \
2456 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
2457 #define SUB8(a, b, n) \
2458 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
2459 #define PFX sh
2461 #include "op_addsub.h"
2463 /* Halved unsigned arithmetic. */
2464 #define ADD16(a, b, n) \
2465 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
2466 #define SUB16(a, b, n) \
2467 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
2468 #define ADD8(a, b, n) \
2469 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
2470 #define SUB8(a, b, n) \
2471 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
2472 #define PFX uh
2474 #include "op_addsub.h"
2476 static inline uint8_t do_usad(uint8_t a, uint8_t b)
2478 if (a > b)
2479 return a - b;
2480 else
2481 return b - a;
2484 /* Unsigned sum of absolute byte differences. */
2485 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
2487 uint32_t sum;
2488 sum = do_usad(a, b);
2489 sum += do_usad(a >> 8, b >> 8);
2490 sum += do_usad(a >> 16, b >>16);
2491 sum += do_usad(a >> 24, b >> 24);
2492 return sum;
2495 /* For ARMv6 SEL instruction. */
2496 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
2498 uint32_t mask;
2500 mask = 0;
2501 if (flags & 1)
2502 mask |= 0xff;
2503 if (flags & 2)
2504 mask |= 0xff00;
2505 if (flags & 4)
2506 mask |= 0xff0000;
2507 if (flags & 8)
2508 mask |= 0xff000000;
2509 return (a & mask) | (b & ~mask);
2512 uint32_t HELPER(logicq_cc)(uint64_t val)
2514 return (val >> 32) | (val != 0);
2517 /* VFP support. We follow the convention used for VFP instrunctions:
2518 Single precition routines have a "s" suffix, double precision a
2519 "d" suffix. */
2521 /* Convert host exception flags to vfp form. */
2522 static inline int vfp_exceptbits_from_host(int host_bits)
2524 int target_bits = 0;
2526 if (host_bits & float_flag_invalid)
2527 target_bits |= 1;
2528 if (host_bits & float_flag_divbyzero)
2529 target_bits |= 2;
2530 if (host_bits & float_flag_overflow)
2531 target_bits |= 4;
2532 if (host_bits & (float_flag_underflow | float_flag_output_denormal))
2533 target_bits |= 8;
2534 if (host_bits & float_flag_inexact)
2535 target_bits |= 0x10;
2536 if (host_bits & float_flag_input_denormal)
2537 target_bits |= 0x80;
2538 return target_bits;
2541 uint32_t HELPER(vfp_get_fpscr)(CPUState *env)
2543 int i;
2544 uint32_t fpscr;
2546 fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff)
2547 | (env->vfp.vec_len << 16)
2548 | (env->vfp.vec_stride << 20);
2549 i = get_float_exception_flags(&env->vfp.fp_status);
2550 i |= get_float_exception_flags(&env->vfp.standard_fp_status);
2551 fpscr |= vfp_exceptbits_from_host(i);
2552 return fpscr;
2555 uint32_t vfp_get_fpscr(CPUState *env)
2557 return HELPER(vfp_get_fpscr)(env);
2560 /* Convert vfp exception flags to target form. */
2561 static inline int vfp_exceptbits_to_host(int target_bits)
2563 int host_bits = 0;
2565 if (target_bits & 1)
2566 host_bits |= float_flag_invalid;
2567 if (target_bits & 2)
2568 host_bits |= float_flag_divbyzero;
2569 if (target_bits & 4)
2570 host_bits |= float_flag_overflow;
2571 if (target_bits & 8)
2572 host_bits |= float_flag_underflow;
2573 if (target_bits & 0x10)
2574 host_bits |= float_flag_inexact;
2575 if (target_bits & 0x80)
2576 host_bits |= float_flag_input_denormal;
2577 return host_bits;
2580 void HELPER(vfp_set_fpscr)(CPUState *env, uint32_t val)
2582 int i;
2583 uint32_t changed;
2585 changed = env->vfp.xregs[ARM_VFP_FPSCR];
2586 env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff);
2587 env->vfp.vec_len = (val >> 16) & 7;
2588 env->vfp.vec_stride = (val >> 20) & 3;
2590 changed ^= val;
2591 if (changed & (3 << 22)) {
2592 i = (val >> 22) & 3;
2593 switch (i) {
2594 case 0:
2595 i = float_round_nearest_even;
2596 break;
2597 case 1:
2598 i = float_round_up;
2599 break;
2600 case 2:
2601 i = float_round_down;
2602 break;
2603 case 3:
2604 i = float_round_to_zero;
2605 break;
2607 set_float_rounding_mode(i, &env->vfp.fp_status);
2609 if (changed & (1 << 24)) {
2610 set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
2611 set_flush_inputs_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
2613 if (changed & (1 << 25))
2614 set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status);
2616 i = vfp_exceptbits_to_host(val);
2617 set_float_exception_flags(i, &env->vfp.fp_status);
2618 set_float_exception_flags(0, &env->vfp.standard_fp_status);
2621 void vfp_set_fpscr(CPUState *env, uint32_t val)
2623 HELPER(vfp_set_fpscr)(env, val);
2626 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
2628 #define VFP_BINOP(name) \
2629 float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
2631 float_status *fpst = fpstp; \
2632 return float32_ ## name(a, b, fpst); \
2634 float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
2636 float_status *fpst = fpstp; \
2637 return float64_ ## name(a, b, fpst); \
2639 VFP_BINOP(add)
2640 VFP_BINOP(sub)
2641 VFP_BINOP(mul)
2642 VFP_BINOP(div)
2643 #undef VFP_BINOP
2645 float32 VFP_HELPER(neg, s)(float32 a)
2647 return float32_chs(a);
2650 float64 VFP_HELPER(neg, d)(float64 a)
2652 return float64_chs(a);
2655 float32 VFP_HELPER(abs, s)(float32 a)
2657 return float32_abs(a);
2660 float64 VFP_HELPER(abs, d)(float64 a)
2662 return float64_abs(a);
2665 float32 VFP_HELPER(sqrt, s)(float32 a, CPUState *env)
2667 return float32_sqrt(a, &env->vfp.fp_status);
2670 float64 VFP_HELPER(sqrt, d)(float64 a, CPUState *env)
2672 return float64_sqrt(a, &env->vfp.fp_status);
2675 /* XXX: check quiet/signaling case */
2676 #define DO_VFP_cmp(p, type) \
2677 void VFP_HELPER(cmp, p)(type a, type b, CPUState *env) \
2679 uint32_t flags; \
2680 switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
2681 case 0: flags = 0x6; break; \
2682 case -1: flags = 0x8; break; \
2683 case 1: flags = 0x2; break; \
2684 default: case 2: flags = 0x3; break; \
2686 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
2687 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
2689 void VFP_HELPER(cmpe, p)(type a, type b, CPUState *env) \
2691 uint32_t flags; \
2692 switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
2693 case 0: flags = 0x6; break; \
2694 case -1: flags = 0x8; break; \
2695 case 1: flags = 0x2; break; \
2696 default: case 2: flags = 0x3; break; \
2698 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
2699 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
2701 DO_VFP_cmp(s, float32)
2702 DO_VFP_cmp(d, float64)
2703 #undef DO_VFP_cmp
2705 /* Integer to float and float to integer conversions */
2707 #define CONV_ITOF(name, fsz, sign) \
2708 float##fsz HELPER(name)(uint32_t x, void *fpstp) \
2710 float_status *fpst = fpstp; \
2711 return sign##int32_to_##float##fsz(x, fpst); \
2714 #define CONV_FTOI(name, fsz, sign, round) \
2715 uint32_t HELPER(name)(float##fsz x, void *fpstp) \
2717 float_status *fpst = fpstp; \
2718 if (float##fsz##_is_any_nan(x)) { \
2719 float_raise(float_flag_invalid, fpst); \
2720 return 0; \
2722 return float##fsz##_to_##sign##int32##round(x, fpst); \
2725 #define FLOAT_CONVS(name, p, fsz, sign) \
2726 CONV_ITOF(vfp_##name##to##p, fsz, sign) \
2727 CONV_FTOI(vfp_to##name##p, fsz, sign, ) \
2728 CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero)
2730 FLOAT_CONVS(si, s, 32, )
2731 FLOAT_CONVS(si, d, 64, )
2732 FLOAT_CONVS(ui, s, 32, u)
2733 FLOAT_CONVS(ui, d, 64, u)
2735 #undef CONV_ITOF
2736 #undef CONV_FTOI
2737 #undef FLOAT_CONVS
2739 /* floating point conversion */
2740 float64 VFP_HELPER(fcvtd, s)(float32 x, CPUState *env)
2742 float64 r = float32_to_float64(x, &env->vfp.fp_status);
2743 /* ARM requires that S<->D conversion of any kind of NaN generates
2744 * a quiet NaN by forcing the most significant frac bit to 1.
2746 return float64_maybe_silence_nan(r);
2749 float32 VFP_HELPER(fcvts, d)(float64 x, CPUState *env)
2751 float32 r = float64_to_float32(x, &env->vfp.fp_status);
2752 /* ARM requires that S<->D conversion of any kind of NaN generates
2753 * a quiet NaN by forcing the most significant frac bit to 1.
2755 return float32_maybe_silence_nan(r);
2758 /* VFP3 fixed point conversion. */
2759 #define VFP_CONV_FIX(name, p, fsz, itype, sign) \
2760 float##fsz HELPER(vfp_##name##to##p)(uint##fsz##_t x, uint32_t shift, \
2761 void *fpstp) \
2763 float_status *fpst = fpstp; \
2764 float##fsz tmp; \
2765 tmp = sign##int32_to_##float##fsz((itype##_t)x, fpst); \
2766 return float##fsz##_scalbn(tmp, -(int)shift, fpst); \
2768 uint##fsz##_t HELPER(vfp_to##name##p)(float##fsz x, uint32_t shift, \
2769 void *fpstp) \
2771 float_status *fpst = fpstp; \
2772 float##fsz tmp; \
2773 if (float##fsz##_is_any_nan(x)) { \
2774 float_raise(float_flag_invalid, fpst); \
2775 return 0; \
2777 tmp = float##fsz##_scalbn(x, shift, fpst); \
2778 return float##fsz##_to_##itype##_round_to_zero(tmp, fpst); \
2781 VFP_CONV_FIX(sh, d, 64, int16, )
2782 VFP_CONV_FIX(sl, d, 64, int32, )
2783 VFP_CONV_FIX(uh, d, 64, uint16, u)
2784 VFP_CONV_FIX(ul, d, 64, uint32, u)
2785 VFP_CONV_FIX(sh, s, 32, int16, )
2786 VFP_CONV_FIX(sl, s, 32, int32, )
2787 VFP_CONV_FIX(uh, s, 32, uint16, u)
2788 VFP_CONV_FIX(ul, s, 32, uint32, u)
2789 #undef VFP_CONV_FIX
2791 /* Half precision conversions. */
2792 static float32 do_fcvt_f16_to_f32(uint32_t a, CPUState *env, float_status *s)
2794 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
2795 float32 r = float16_to_float32(make_float16(a), ieee, s);
2796 if (ieee) {
2797 return float32_maybe_silence_nan(r);
2799 return r;
2802 static uint32_t do_fcvt_f32_to_f16(float32 a, CPUState *env, float_status *s)
2804 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
2805 float16 r = float32_to_float16(a, ieee, s);
2806 if (ieee) {
2807 r = float16_maybe_silence_nan(r);
2809 return float16_val(r);
2812 float32 HELPER(neon_fcvt_f16_to_f32)(uint32_t a, CPUState *env)
2814 return do_fcvt_f16_to_f32(a, env, &env->vfp.standard_fp_status);
2817 uint32_t HELPER(neon_fcvt_f32_to_f16)(float32 a, CPUState *env)
2819 return do_fcvt_f32_to_f16(a, env, &env->vfp.standard_fp_status);
2822 float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUState *env)
2824 return do_fcvt_f16_to_f32(a, env, &env->vfp.fp_status);
2827 uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUState *env)
2829 return do_fcvt_f32_to_f16(a, env, &env->vfp.fp_status);
2832 #define float32_two make_float32(0x40000000)
2833 #define float32_three make_float32(0x40400000)
2834 #define float32_one_point_five make_float32(0x3fc00000)
2836 float32 HELPER(recps_f32)(float32 a, float32 b, CPUState *env)
2838 float_status *s = &env->vfp.standard_fp_status;
2839 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
2840 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
2841 if (!(float32_is_zero(a) || float32_is_zero(b))) {
2842 float_raise(float_flag_input_denormal, s);
2844 return float32_two;
2846 return float32_sub(float32_two, float32_mul(a, b, s), s);
2849 float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUState *env)
2851 float_status *s = &env->vfp.standard_fp_status;
2852 float32 product;
2853 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
2854 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
2855 if (!(float32_is_zero(a) || float32_is_zero(b))) {
2856 float_raise(float_flag_input_denormal, s);
2858 return float32_one_point_five;
2860 product = float32_mul(a, b, s);
2861 return float32_div(float32_sub(float32_three, product, s), float32_two, s);
2864 /* NEON helpers. */
2866 /* Constants 256 and 512 are used in some helpers; we avoid relying on
2867 * int->float conversions at run-time. */
2868 #define float64_256 make_float64(0x4070000000000000LL)
2869 #define float64_512 make_float64(0x4080000000000000LL)
2871 /* The algorithm that must be used to calculate the estimate
2872 * is specified by the ARM ARM.
2874 static float64 recip_estimate(float64 a, CPUState *env)
2876 /* These calculations mustn't set any fp exception flags,
2877 * so we use a local copy of the fp_status.
2879 float_status dummy_status = env->vfp.standard_fp_status;
2880 float_status *s = &dummy_status;
2881 /* q = (int)(a * 512.0) */
2882 float64 q = float64_mul(float64_512, a, s);
2883 int64_t q_int = float64_to_int64_round_to_zero(q, s);
2885 /* r = 1.0 / (((double)q + 0.5) / 512.0) */
2886 q = int64_to_float64(q_int, s);
2887 q = float64_add(q, float64_half, s);
2888 q = float64_div(q, float64_512, s);
2889 q = float64_div(float64_one, q, s);
2891 /* s = (int)(256.0 * r + 0.5) */
2892 q = float64_mul(q, float64_256, s);
2893 q = float64_add(q, float64_half, s);
2894 q_int = float64_to_int64_round_to_zero(q, s);
2896 /* return (double)s / 256.0 */
2897 return float64_div(int64_to_float64(q_int, s), float64_256, s);
2900 float32 HELPER(recpe_f32)(float32 a, CPUState *env)
2902 float_status *s = &env->vfp.standard_fp_status;
2903 float64 f64;
2904 uint32_t val32 = float32_val(a);
2906 int result_exp;
2907 int a_exp = (val32 & 0x7f800000) >> 23;
2908 int sign = val32 & 0x80000000;
2910 if (float32_is_any_nan(a)) {
2911 if (float32_is_signaling_nan(a)) {
2912 float_raise(float_flag_invalid, s);
2914 return float32_default_nan;
2915 } else if (float32_is_infinity(a)) {
2916 return float32_set_sign(float32_zero, float32_is_neg(a));
2917 } else if (float32_is_zero_or_denormal(a)) {
2918 if (!float32_is_zero(a)) {
2919 float_raise(float_flag_input_denormal, s);
2921 float_raise(float_flag_divbyzero, s);
2922 return float32_set_sign(float32_infinity, float32_is_neg(a));
2923 } else if (a_exp >= 253) {
2924 float_raise(float_flag_underflow, s);
2925 return float32_set_sign(float32_zero, float32_is_neg(a));
2928 f64 = make_float64((0x3feULL << 52)
2929 | ((int64_t)(val32 & 0x7fffff) << 29));
2931 result_exp = 253 - a_exp;
2933 f64 = recip_estimate(f64, env);
2935 val32 = sign
2936 | ((result_exp & 0xff) << 23)
2937 | ((float64_val(f64) >> 29) & 0x7fffff);
2938 return make_float32(val32);
2941 /* The algorithm that must be used to calculate the estimate
2942 * is specified by the ARM ARM.
2944 static float64 recip_sqrt_estimate(float64 a, CPUState *env)
2946 /* These calculations mustn't set any fp exception flags,
2947 * so we use a local copy of the fp_status.
2949 float_status dummy_status = env->vfp.standard_fp_status;
2950 float_status *s = &dummy_status;
2951 float64 q;
2952 int64_t q_int;
2954 if (float64_lt(a, float64_half, s)) {
2955 /* range 0.25 <= a < 0.5 */
2957 /* a in units of 1/512 rounded down */
2958 /* q0 = (int)(a * 512.0); */
2959 q = float64_mul(float64_512, a, s);
2960 q_int = float64_to_int64_round_to_zero(q, s);
2962 /* reciprocal root r */
2963 /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0); */
2964 q = int64_to_float64(q_int, s);
2965 q = float64_add(q, float64_half, s);
2966 q = float64_div(q, float64_512, s);
2967 q = float64_sqrt(q, s);
2968 q = float64_div(float64_one, q, s);
2969 } else {
2970 /* range 0.5 <= a < 1.0 */
2972 /* a in units of 1/256 rounded down */
2973 /* q1 = (int)(a * 256.0); */
2974 q = float64_mul(float64_256, a, s);
2975 int64_t q_int = float64_to_int64_round_to_zero(q, s);
2977 /* reciprocal root r */
2978 /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */
2979 q = int64_to_float64(q_int, s);
2980 q = float64_add(q, float64_half, s);
2981 q = float64_div(q, float64_256, s);
2982 q = float64_sqrt(q, s);
2983 q = float64_div(float64_one, q, s);
2985 /* r in units of 1/256 rounded to nearest */
2986 /* s = (int)(256.0 * r + 0.5); */
2988 q = float64_mul(q, float64_256,s );
2989 q = float64_add(q, float64_half, s);
2990 q_int = float64_to_int64_round_to_zero(q, s);
2992 /* return (double)s / 256.0;*/
2993 return float64_div(int64_to_float64(q_int, s), float64_256, s);
2996 float32 HELPER(rsqrte_f32)(float32 a, CPUState *env)
2998 float_status *s = &env->vfp.standard_fp_status;
2999 int result_exp;
3000 float64 f64;
3001 uint32_t val;
3002 uint64_t val64;
3004 val = float32_val(a);
3006 if (float32_is_any_nan(a)) {
3007 if (float32_is_signaling_nan(a)) {
3008 float_raise(float_flag_invalid, s);
3010 return float32_default_nan;
3011 } else if (float32_is_zero_or_denormal(a)) {
3012 if (!float32_is_zero(a)) {
3013 float_raise(float_flag_input_denormal, s);
3015 float_raise(float_flag_divbyzero, s);
3016 return float32_set_sign(float32_infinity, float32_is_neg(a));
3017 } else if (float32_is_neg(a)) {
3018 float_raise(float_flag_invalid, s);
3019 return float32_default_nan;
3020 } else if (float32_is_infinity(a)) {
3021 return float32_zero;
3024 /* Normalize to a double-precision value between 0.25 and 1.0,
3025 * preserving the parity of the exponent. */
3026 if ((val & 0x800000) == 0) {
3027 f64 = make_float64(((uint64_t)(val & 0x80000000) << 32)
3028 | (0x3feULL << 52)
3029 | ((uint64_t)(val & 0x7fffff) << 29));
3030 } else {
3031 f64 = make_float64(((uint64_t)(val & 0x80000000) << 32)
3032 | (0x3fdULL << 52)
3033 | ((uint64_t)(val & 0x7fffff) << 29));
3036 result_exp = (380 - ((val & 0x7f800000) >> 23)) / 2;
3038 f64 = recip_sqrt_estimate(f64, env);
3040 val64 = float64_val(f64);
3042 val = ((val64 >> 63) & 0x80000000)
3043 | ((result_exp & 0xff) << 23)
3044 | ((val64 >> 29) & 0x7fffff);
3045 return make_float32(val);
3048 uint32_t HELPER(recpe_u32)(uint32_t a, CPUState *env)
3050 float64 f64;
3052 if ((a & 0x80000000) == 0) {
3053 return 0xffffffff;
3056 f64 = make_float64((0x3feULL << 52)
3057 | ((int64_t)(a & 0x7fffffff) << 21));
3059 f64 = recip_estimate (f64, env);
3061 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
3064 uint32_t HELPER(rsqrte_u32)(uint32_t a, CPUState *env)
3066 float64 f64;
3068 if ((a & 0xc0000000) == 0) {
3069 return 0xffffffff;
3072 if (a & 0x80000000) {
3073 f64 = make_float64((0x3feULL << 52)
3074 | ((uint64_t)(a & 0x7fffffff) << 21));
3075 } else { /* bits 31-30 == '01' */
3076 f64 = make_float64((0x3fdULL << 52)
3077 | ((uint64_t)(a & 0x3fffffff) << 22));
3080 f64 = recip_sqrt_estimate(f64, env);
3082 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
3085 void HELPER(set_teecr)(CPUState *env, uint32_t val)
3087 val &= 1;
3088 if (env->teecr != val) {
3089 env->teecr = val;
3090 tb_flush(env);