block: Use child_of_bds in remaining places
[qemu.git] / target / arm / vec_helper.c
blob50a499299fd1fa0f01548b0c7756dc1bd25e0533
1 /*
2 * ARM AdvSIMD / SVE Vector Operations
4 * Copyright (c) 2018 Linaro
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
21 #include "cpu.h"
22 #include "exec/helper-proto.h"
23 #include "tcg/tcg-gvec-desc.h"
24 #include "fpu/softfloat.h"
27 /* Note that vector data is stored in host-endian 64-bit chunks,
28 so addressing units smaller than that needs a host-endian fixup. */
29 #ifdef HOST_WORDS_BIGENDIAN
30 #define H1(x) ((x) ^ 7)
31 #define H2(x) ((x) ^ 3)
32 #define H4(x) ((x) ^ 1)
33 #else
34 #define H1(x) (x)
35 #define H2(x) (x)
36 #define H4(x) (x)
37 #endif
39 static void clear_tail(void *vd, uintptr_t opr_sz, uintptr_t max_sz)
41 uint64_t *d = vd + opr_sz;
42 uintptr_t i;
44 for (i = opr_sz; i < max_sz; i += 8) {
45 *d++ = 0;
49 /* Signed saturating rounding doubling multiply-accumulate high half, 16-bit */
50 static int16_t inl_qrdmlah_s16(int16_t src1, int16_t src2,
51 int16_t src3, uint32_t *sat)
53 /* Simplify:
54 * = ((a3 << 16) + ((e1 * e2) << 1) + (1 << 15)) >> 16
55 * = ((a3 << 15) + (e1 * e2) + (1 << 14)) >> 15
57 int32_t ret = (int32_t)src1 * src2;
58 ret = ((int32_t)src3 << 15) + ret + (1 << 14);
59 ret >>= 15;
60 if (ret != (int16_t)ret) {
61 *sat = 1;
62 ret = (ret < 0 ? -0x8000 : 0x7fff);
64 return ret;
67 uint32_t HELPER(neon_qrdmlah_s16)(CPUARMState *env, uint32_t src1,
68 uint32_t src2, uint32_t src3)
70 uint32_t *sat = &env->vfp.qc[0];
71 uint16_t e1 = inl_qrdmlah_s16(src1, src2, src3, sat);
72 uint16_t e2 = inl_qrdmlah_s16(src1 >> 16, src2 >> 16, src3 >> 16, sat);
73 return deposit32(e1, 16, 16, e2);
76 void HELPER(gvec_qrdmlah_s16)(void *vd, void *vn, void *vm,
77 void *vq, uint32_t desc)
79 uintptr_t opr_sz = simd_oprsz(desc);
80 int16_t *d = vd;
81 int16_t *n = vn;
82 int16_t *m = vm;
83 uintptr_t i;
85 for (i = 0; i < opr_sz / 2; ++i) {
86 d[i] = inl_qrdmlah_s16(n[i], m[i], d[i], vq);
88 clear_tail(d, opr_sz, simd_maxsz(desc));
91 /* Signed saturating rounding doubling multiply-subtract high half, 16-bit */
92 static int16_t inl_qrdmlsh_s16(int16_t src1, int16_t src2,
93 int16_t src3, uint32_t *sat)
95 /* Similarly, using subtraction:
96 * = ((a3 << 16) - ((e1 * e2) << 1) + (1 << 15)) >> 16
97 * = ((a3 << 15) - (e1 * e2) + (1 << 14)) >> 15
99 int32_t ret = (int32_t)src1 * src2;
100 ret = ((int32_t)src3 << 15) - ret + (1 << 14);
101 ret >>= 15;
102 if (ret != (int16_t)ret) {
103 *sat = 1;
104 ret = (ret < 0 ? -0x8000 : 0x7fff);
106 return ret;
109 uint32_t HELPER(neon_qrdmlsh_s16)(CPUARMState *env, uint32_t src1,
110 uint32_t src2, uint32_t src3)
112 uint32_t *sat = &env->vfp.qc[0];
113 uint16_t e1 = inl_qrdmlsh_s16(src1, src2, src3, sat);
114 uint16_t e2 = inl_qrdmlsh_s16(src1 >> 16, src2 >> 16, src3 >> 16, sat);
115 return deposit32(e1, 16, 16, e2);
118 void HELPER(gvec_qrdmlsh_s16)(void *vd, void *vn, void *vm,
119 void *vq, uint32_t desc)
121 uintptr_t opr_sz = simd_oprsz(desc);
122 int16_t *d = vd;
123 int16_t *n = vn;
124 int16_t *m = vm;
125 uintptr_t i;
127 for (i = 0; i < opr_sz / 2; ++i) {
128 d[i] = inl_qrdmlsh_s16(n[i], m[i], d[i], vq);
130 clear_tail(d, opr_sz, simd_maxsz(desc));
133 /* Signed saturating rounding doubling multiply-accumulate high half, 32-bit */
134 static int32_t inl_qrdmlah_s32(int32_t src1, int32_t src2,
135 int32_t src3, uint32_t *sat)
137 /* Simplify similarly to int_qrdmlah_s16 above. */
138 int64_t ret = (int64_t)src1 * src2;
139 ret = ((int64_t)src3 << 31) + ret + (1 << 30);
140 ret >>= 31;
141 if (ret != (int32_t)ret) {
142 *sat = 1;
143 ret = (ret < 0 ? INT32_MIN : INT32_MAX);
145 return ret;
148 uint32_t HELPER(neon_qrdmlah_s32)(CPUARMState *env, int32_t src1,
149 int32_t src2, int32_t src3)
151 uint32_t *sat = &env->vfp.qc[0];
152 return inl_qrdmlah_s32(src1, src2, src3, sat);
155 void HELPER(gvec_qrdmlah_s32)(void *vd, void *vn, void *vm,
156 void *vq, uint32_t desc)
158 uintptr_t opr_sz = simd_oprsz(desc);
159 int32_t *d = vd;
160 int32_t *n = vn;
161 int32_t *m = vm;
162 uintptr_t i;
164 for (i = 0; i < opr_sz / 4; ++i) {
165 d[i] = inl_qrdmlah_s32(n[i], m[i], d[i], vq);
167 clear_tail(d, opr_sz, simd_maxsz(desc));
170 /* Signed saturating rounding doubling multiply-subtract high half, 32-bit */
171 static int32_t inl_qrdmlsh_s32(int32_t src1, int32_t src2,
172 int32_t src3, uint32_t *sat)
174 /* Simplify similarly to int_qrdmlsh_s16 above. */
175 int64_t ret = (int64_t)src1 * src2;
176 ret = ((int64_t)src3 << 31) - ret + (1 << 30);
177 ret >>= 31;
178 if (ret != (int32_t)ret) {
179 *sat = 1;
180 ret = (ret < 0 ? INT32_MIN : INT32_MAX);
182 return ret;
185 uint32_t HELPER(neon_qrdmlsh_s32)(CPUARMState *env, int32_t src1,
186 int32_t src2, int32_t src3)
188 uint32_t *sat = &env->vfp.qc[0];
189 return inl_qrdmlsh_s32(src1, src2, src3, sat);
192 void HELPER(gvec_qrdmlsh_s32)(void *vd, void *vn, void *vm,
193 void *vq, uint32_t desc)
195 uintptr_t opr_sz = simd_oprsz(desc);
196 int32_t *d = vd;
197 int32_t *n = vn;
198 int32_t *m = vm;
199 uintptr_t i;
201 for (i = 0; i < opr_sz / 4; ++i) {
202 d[i] = inl_qrdmlsh_s32(n[i], m[i], d[i], vq);
204 clear_tail(d, opr_sz, simd_maxsz(desc));
207 /* Integer 8 and 16-bit dot-product.
209 * Note that for the loops herein, host endianness does not matter
210 * with respect to the ordering of data within the 64-bit lanes.
211 * All elements are treated equally, no matter where they are.
214 void HELPER(gvec_sdot_b)(void *vd, void *vn, void *vm, uint32_t desc)
216 intptr_t i, opr_sz = simd_oprsz(desc);
217 uint32_t *d = vd;
218 int8_t *n = vn, *m = vm;
220 for (i = 0; i < opr_sz / 4; ++i) {
221 d[i] += n[i * 4 + 0] * m[i * 4 + 0]
222 + n[i * 4 + 1] * m[i * 4 + 1]
223 + n[i * 4 + 2] * m[i * 4 + 2]
224 + n[i * 4 + 3] * m[i * 4 + 3];
226 clear_tail(d, opr_sz, simd_maxsz(desc));
229 void HELPER(gvec_udot_b)(void *vd, void *vn, void *vm, uint32_t desc)
231 intptr_t i, opr_sz = simd_oprsz(desc);
232 uint32_t *d = vd;
233 uint8_t *n = vn, *m = vm;
235 for (i = 0; i < opr_sz / 4; ++i) {
236 d[i] += n[i * 4 + 0] * m[i * 4 + 0]
237 + n[i * 4 + 1] * m[i * 4 + 1]
238 + n[i * 4 + 2] * m[i * 4 + 2]
239 + n[i * 4 + 3] * m[i * 4 + 3];
241 clear_tail(d, opr_sz, simd_maxsz(desc));
244 void HELPER(gvec_sdot_h)(void *vd, void *vn, void *vm, uint32_t desc)
246 intptr_t i, opr_sz = simd_oprsz(desc);
247 uint64_t *d = vd;
248 int16_t *n = vn, *m = vm;
250 for (i = 0; i < opr_sz / 8; ++i) {
251 d[i] += (int64_t)n[i * 4 + 0] * m[i * 4 + 0]
252 + (int64_t)n[i * 4 + 1] * m[i * 4 + 1]
253 + (int64_t)n[i * 4 + 2] * m[i * 4 + 2]
254 + (int64_t)n[i * 4 + 3] * m[i * 4 + 3];
256 clear_tail(d, opr_sz, simd_maxsz(desc));
259 void HELPER(gvec_udot_h)(void *vd, void *vn, void *vm, uint32_t desc)
261 intptr_t i, opr_sz = simd_oprsz(desc);
262 uint64_t *d = vd;
263 uint16_t *n = vn, *m = vm;
265 for (i = 0; i < opr_sz / 8; ++i) {
266 d[i] += (uint64_t)n[i * 4 + 0] * m[i * 4 + 0]
267 + (uint64_t)n[i * 4 + 1] * m[i * 4 + 1]
268 + (uint64_t)n[i * 4 + 2] * m[i * 4 + 2]
269 + (uint64_t)n[i * 4 + 3] * m[i * 4 + 3];
271 clear_tail(d, opr_sz, simd_maxsz(desc));
274 void HELPER(gvec_sdot_idx_b)(void *vd, void *vn, void *vm, uint32_t desc)
276 intptr_t i, segend, opr_sz = simd_oprsz(desc), opr_sz_4 = opr_sz / 4;
277 intptr_t index = simd_data(desc);
278 uint32_t *d = vd;
279 int8_t *n = vn;
280 int8_t *m_indexed = (int8_t *)vm + index * 4;
282 /* Notice the special case of opr_sz == 8, from aa64/aa32 advsimd.
283 * Otherwise opr_sz is a multiple of 16.
285 segend = MIN(4, opr_sz_4);
286 i = 0;
287 do {
288 int8_t m0 = m_indexed[i * 4 + 0];
289 int8_t m1 = m_indexed[i * 4 + 1];
290 int8_t m2 = m_indexed[i * 4 + 2];
291 int8_t m3 = m_indexed[i * 4 + 3];
293 do {
294 d[i] += n[i * 4 + 0] * m0
295 + n[i * 4 + 1] * m1
296 + n[i * 4 + 2] * m2
297 + n[i * 4 + 3] * m3;
298 } while (++i < segend);
299 segend = i + 4;
300 } while (i < opr_sz_4);
302 clear_tail(d, opr_sz, simd_maxsz(desc));
305 void HELPER(gvec_udot_idx_b)(void *vd, void *vn, void *vm, uint32_t desc)
307 intptr_t i, segend, opr_sz = simd_oprsz(desc), opr_sz_4 = opr_sz / 4;
308 intptr_t index = simd_data(desc);
309 uint32_t *d = vd;
310 uint8_t *n = vn;
311 uint8_t *m_indexed = (uint8_t *)vm + index * 4;
313 /* Notice the special case of opr_sz == 8, from aa64/aa32 advsimd.
314 * Otherwise opr_sz is a multiple of 16.
316 segend = MIN(4, opr_sz_4);
317 i = 0;
318 do {
319 uint8_t m0 = m_indexed[i * 4 + 0];
320 uint8_t m1 = m_indexed[i * 4 + 1];
321 uint8_t m2 = m_indexed[i * 4 + 2];
322 uint8_t m3 = m_indexed[i * 4 + 3];
324 do {
325 d[i] += n[i * 4 + 0] * m0
326 + n[i * 4 + 1] * m1
327 + n[i * 4 + 2] * m2
328 + n[i * 4 + 3] * m3;
329 } while (++i < segend);
330 segend = i + 4;
331 } while (i < opr_sz_4);
333 clear_tail(d, opr_sz, simd_maxsz(desc));
336 void HELPER(gvec_sdot_idx_h)(void *vd, void *vn, void *vm, uint32_t desc)
338 intptr_t i, opr_sz = simd_oprsz(desc), opr_sz_8 = opr_sz / 8;
339 intptr_t index = simd_data(desc);
340 uint64_t *d = vd;
341 int16_t *n = vn;
342 int16_t *m_indexed = (int16_t *)vm + index * 4;
344 /* This is supported by SVE only, so opr_sz is always a multiple of 16.
345 * Process the entire segment all at once, writing back the results
346 * only after we've consumed all of the inputs.
348 for (i = 0; i < opr_sz_8 ; i += 2) {
349 uint64_t d0, d1;
351 d0 = n[i * 4 + 0] * (int64_t)m_indexed[i * 4 + 0];
352 d0 += n[i * 4 + 1] * (int64_t)m_indexed[i * 4 + 1];
353 d0 += n[i * 4 + 2] * (int64_t)m_indexed[i * 4 + 2];
354 d0 += n[i * 4 + 3] * (int64_t)m_indexed[i * 4 + 3];
355 d1 = n[i * 4 + 4] * (int64_t)m_indexed[i * 4 + 0];
356 d1 += n[i * 4 + 5] * (int64_t)m_indexed[i * 4 + 1];
357 d1 += n[i * 4 + 6] * (int64_t)m_indexed[i * 4 + 2];
358 d1 += n[i * 4 + 7] * (int64_t)m_indexed[i * 4 + 3];
360 d[i + 0] += d0;
361 d[i + 1] += d1;
364 clear_tail(d, opr_sz, simd_maxsz(desc));
367 void HELPER(gvec_udot_idx_h)(void *vd, void *vn, void *vm, uint32_t desc)
369 intptr_t i, opr_sz = simd_oprsz(desc), opr_sz_8 = opr_sz / 8;
370 intptr_t index = simd_data(desc);
371 uint64_t *d = vd;
372 uint16_t *n = vn;
373 uint16_t *m_indexed = (uint16_t *)vm + index * 4;
375 /* This is supported by SVE only, so opr_sz is always a multiple of 16.
376 * Process the entire segment all at once, writing back the results
377 * only after we've consumed all of the inputs.
379 for (i = 0; i < opr_sz_8 ; i += 2) {
380 uint64_t d0, d1;
382 d0 = n[i * 4 + 0] * (uint64_t)m_indexed[i * 4 + 0];
383 d0 += n[i * 4 + 1] * (uint64_t)m_indexed[i * 4 + 1];
384 d0 += n[i * 4 + 2] * (uint64_t)m_indexed[i * 4 + 2];
385 d0 += n[i * 4 + 3] * (uint64_t)m_indexed[i * 4 + 3];
386 d1 = n[i * 4 + 4] * (uint64_t)m_indexed[i * 4 + 0];
387 d1 += n[i * 4 + 5] * (uint64_t)m_indexed[i * 4 + 1];
388 d1 += n[i * 4 + 6] * (uint64_t)m_indexed[i * 4 + 2];
389 d1 += n[i * 4 + 7] * (uint64_t)m_indexed[i * 4 + 3];
391 d[i + 0] += d0;
392 d[i + 1] += d1;
395 clear_tail(d, opr_sz, simd_maxsz(desc));
398 void HELPER(gvec_fcaddh)(void *vd, void *vn, void *vm,
399 void *vfpst, uint32_t desc)
401 uintptr_t opr_sz = simd_oprsz(desc);
402 float16 *d = vd;
403 float16 *n = vn;
404 float16 *m = vm;
405 float_status *fpst = vfpst;
406 uint32_t neg_real = extract32(desc, SIMD_DATA_SHIFT, 1);
407 uint32_t neg_imag = neg_real ^ 1;
408 uintptr_t i;
410 /* Shift boolean to the sign bit so we can xor to negate. */
411 neg_real <<= 15;
412 neg_imag <<= 15;
414 for (i = 0; i < opr_sz / 2; i += 2) {
415 float16 e0 = n[H2(i)];
416 float16 e1 = m[H2(i + 1)] ^ neg_imag;
417 float16 e2 = n[H2(i + 1)];
418 float16 e3 = m[H2(i)] ^ neg_real;
420 d[H2(i)] = float16_add(e0, e1, fpst);
421 d[H2(i + 1)] = float16_add(e2, e3, fpst);
423 clear_tail(d, opr_sz, simd_maxsz(desc));
426 void HELPER(gvec_fcadds)(void *vd, void *vn, void *vm,
427 void *vfpst, uint32_t desc)
429 uintptr_t opr_sz = simd_oprsz(desc);
430 float32 *d = vd;
431 float32 *n = vn;
432 float32 *m = vm;
433 float_status *fpst = vfpst;
434 uint32_t neg_real = extract32(desc, SIMD_DATA_SHIFT, 1);
435 uint32_t neg_imag = neg_real ^ 1;
436 uintptr_t i;
438 /* Shift boolean to the sign bit so we can xor to negate. */
439 neg_real <<= 31;
440 neg_imag <<= 31;
442 for (i = 0; i < opr_sz / 4; i += 2) {
443 float32 e0 = n[H4(i)];
444 float32 e1 = m[H4(i + 1)] ^ neg_imag;
445 float32 e2 = n[H4(i + 1)];
446 float32 e3 = m[H4(i)] ^ neg_real;
448 d[H4(i)] = float32_add(e0, e1, fpst);
449 d[H4(i + 1)] = float32_add(e2, e3, fpst);
451 clear_tail(d, opr_sz, simd_maxsz(desc));
454 void HELPER(gvec_fcaddd)(void *vd, void *vn, void *vm,
455 void *vfpst, uint32_t desc)
457 uintptr_t opr_sz = simd_oprsz(desc);
458 float64 *d = vd;
459 float64 *n = vn;
460 float64 *m = vm;
461 float_status *fpst = vfpst;
462 uint64_t neg_real = extract64(desc, SIMD_DATA_SHIFT, 1);
463 uint64_t neg_imag = neg_real ^ 1;
464 uintptr_t i;
466 /* Shift boolean to the sign bit so we can xor to negate. */
467 neg_real <<= 63;
468 neg_imag <<= 63;
470 for (i = 0; i < opr_sz / 8; i += 2) {
471 float64 e0 = n[i];
472 float64 e1 = m[i + 1] ^ neg_imag;
473 float64 e2 = n[i + 1];
474 float64 e3 = m[i] ^ neg_real;
476 d[i] = float64_add(e0, e1, fpst);
477 d[i + 1] = float64_add(e2, e3, fpst);
479 clear_tail(d, opr_sz, simd_maxsz(desc));
482 void HELPER(gvec_fcmlah)(void *vd, void *vn, void *vm,
483 void *vfpst, uint32_t desc)
485 uintptr_t opr_sz = simd_oprsz(desc);
486 float16 *d = vd;
487 float16 *n = vn;
488 float16 *m = vm;
489 float_status *fpst = vfpst;
490 intptr_t flip = extract32(desc, SIMD_DATA_SHIFT, 1);
491 uint32_t neg_imag = extract32(desc, SIMD_DATA_SHIFT + 1, 1);
492 uint32_t neg_real = flip ^ neg_imag;
493 uintptr_t i;
495 /* Shift boolean to the sign bit so we can xor to negate. */
496 neg_real <<= 15;
497 neg_imag <<= 15;
499 for (i = 0; i < opr_sz / 2; i += 2) {
500 float16 e2 = n[H2(i + flip)];
501 float16 e1 = m[H2(i + flip)] ^ neg_real;
502 float16 e4 = e2;
503 float16 e3 = m[H2(i + 1 - flip)] ^ neg_imag;
505 d[H2(i)] = float16_muladd(e2, e1, d[H2(i)], 0, fpst);
506 d[H2(i + 1)] = float16_muladd(e4, e3, d[H2(i + 1)], 0, fpst);
508 clear_tail(d, opr_sz, simd_maxsz(desc));
511 void HELPER(gvec_fcmlah_idx)(void *vd, void *vn, void *vm,
512 void *vfpst, uint32_t desc)
514 uintptr_t opr_sz = simd_oprsz(desc);
515 float16 *d = vd;
516 float16 *n = vn;
517 float16 *m = vm;
518 float_status *fpst = vfpst;
519 intptr_t flip = extract32(desc, SIMD_DATA_SHIFT, 1);
520 uint32_t neg_imag = extract32(desc, SIMD_DATA_SHIFT + 1, 1);
521 intptr_t index = extract32(desc, SIMD_DATA_SHIFT + 2, 2);
522 uint32_t neg_real = flip ^ neg_imag;
523 intptr_t elements = opr_sz / sizeof(float16);
524 intptr_t eltspersegment = 16 / sizeof(float16);
525 intptr_t i, j;
527 /* Shift boolean to the sign bit so we can xor to negate. */
528 neg_real <<= 15;
529 neg_imag <<= 15;
531 for (i = 0; i < elements; i += eltspersegment) {
532 float16 mr = m[H2(i + 2 * index + 0)];
533 float16 mi = m[H2(i + 2 * index + 1)];
534 float16 e1 = neg_real ^ (flip ? mi : mr);
535 float16 e3 = neg_imag ^ (flip ? mr : mi);
537 for (j = i; j < i + eltspersegment; j += 2) {
538 float16 e2 = n[H2(j + flip)];
539 float16 e4 = e2;
541 d[H2(j)] = float16_muladd(e2, e1, d[H2(j)], 0, fpst);
542 d[H2(j + 1)] = float16_muladd(e4, e3, d[H2(j + 1)], 0, fpst);
545 clear_tail(d, opr_sz, simd_maxsz(desc));
548 void HELPER(gvec_fcmlas)(void *vd, void *vn, void *vm,
549 void *vfpst, uint32_t desc)
551 uintptr_t opr_sz = simd_oprsz(desc);
552 float32 *d = vd;
553 float32 *n = vn;
554 float32 *m = vm;
555 float_status *fpst = vfpst;
556 intptr_t flip = extract32(desc, SIMD_DATA_SHIFT, 1);
557 uint32_t neg_imag = extract32(desc, SIMD_DATA_SHIFT + 1, 1);
558 uint32_t neg_real = flip ^ neg_imag;
559 uintptr_t i;
561 /* Shift boolean to the sign bit so we can xor to negate. */
562 neg_real <<= 31;
563 neg_imag <<= 31;
565 for (i = 0; i < opr_sz / 4; i += 2) {
566 float32 e2 = n[H4(i + flip)];
567 float32 e1 = m[H4(i + flip)] ^ neg_real;
568 float32 e4 = e2;
569 float32 e3 = m[H4(i + 1 - flip)] ^ neg_imag;
571 d[H4(i)] = float32_muladd(e2, e1, d[H4(i)], 0, fpst);
572 d[H4(i + 1)] = float32_muladd(e4, e3, d[H4(i + 1)], 0, fpst);
574 clear_tail(d, opr_sz, simd_maxsz(desc));
577 void HELPER(gvec_fcmlas_idx)(void *vd, void *vn, void *vm,
578 void *vfpst, uint32_t desc)
580 uintptr_t opr_sz = simd_oprsz(desc);
581 float32 *d = vd;
582 float32 *n = vn;
583 float32 *m = vm;
584 float_status *fpst = vfpst;
585 intptr_t flip = extract32(desc, SIMD_DATA_SHIFT, 1);
586 uint32_t neg_imag = extract32(desc, SIMD_DATA_SHIFT + 1, 1);
587 intptr_t index = extract32(desc, SIMD_DATA_SHIFT + 2, 2);
588 uint32_t neg_real = flip ^ neg_imag;
589 intptr_t elements = opr_sz / sizeof(float32);
590 intptr_t eltspersegment = 16 / sizeof(float32);
591 intptr_t i, j;
593 /* Shift boolean to the sign bit so we can xor to negate. */
594 neg_real <<= 31;
595 neg_imag <<= 31;
597 for (i = 0; i < elements; i += eltspersegment) {
598 float32 mr = m[H4(i + 2 * index + 0)];
599 float32 mi = m[H4(i + 2 * index + 1)];
600 float32 e1 = neg_real ^ (flip ? mi : mr);
601 float32 e3 = neg_imag ^ (flip ? mr : mi);
603 for (j = i; j < i + eltspersegment; j += 2) {
604 float32 e2 = n[H4(j + flip)];
605 float32 e4 = e2;
607 d[H4(j)] = float32_muladd(e2, e1, d[H4(j)], 0, fpst);
608 d[H4(j + 1)] = float32_muladd(e4, e3, d[H4(j + 1)], 0, fpst);
611 clear_tail(d, opr_sz, simd_maxsz(desc));
614 void HELPER(gvec_fcmlad)(void *vd, void *vn, void *vm,
615 void *vfpst, uint32_t desc)
617 uintptr_t opr_sz = simd_oprsz(desc);
618 float64 *d = vd;
619 float64 *n = vn;
620 float64 *m = vm;
621 float_status *fpst = vfpst;
622 intptr_t flip = extract32(desc, SIMD_DATA_SHIFT, 1);
623 uint64_t neg_imag = extract32(desc, SIMD_DATA_SHIFT + 1, 1);
624 uint64_t neg_real = flip ^ neg_imag;
625 uintptr_t i;
627 /* Shift boolean to the sign bit so we can xor to negate. */
628 neg_real <<= 63;
629 neg_imag <<= 63;
631 for (i = 0; i < opr_sz / 8; i += 2) {
632 float64 e2 = n[i + flip];
633 float64 e1 = m[i + flip] ^ neg_real;
634 float64 e4 = e2;
635 float64 e3 = m[i + 1 - flip] ^ neg_imag;
637 d[i] = float64_muladd(e2, e1, d[i], 0, fpst);
638 d[i + 1] = float64_muladd(e4, e3, d[i + 1], 0, fpst);
640 clear_tail(d, opr_sz, simd_maxsz(desc));
643 #define DO_2OP(NAME, FUNC, TYPE) \
644 void HELPER(NAME)(void *vd, void *vn, void *stat, uint32_t desc) \
646 intptr_t i, oprsz = simd_oprsz(desc); \
647 TYPE *d = vd, *n = vn; \
648 for (i = 0; i < oprsz / sizeof(TYPE); i++) { \
649 d[i] = FUNC(n[i], stat); \
651 clear_tail(d, oprsz, simd_maxsz(desc)); \
654 DO_2OP(gvec_frecpe_h, helper_recpe_f16, float16)
655 DO_2OP(gvec_frecpe_s, helper_recpe_f32, float32)
656 DO_2OP(gvec_frecpe_d, helper_recpe_f64, float64)
658 DO_2OP(gvec_frsqrte_h, helper_rsqrte_f16, float16)
659 DO_2OP(gvec_frsqrte_s, helper_rsqrte_f32, float32)
660 DO_2OP(gvec_frsqrte_d, helper_rsqrte_f64, float64)
662 #undef DO_2OP
664 /* Floating-point trigonometric starting value.
665 * See the ARM ARM pseudocode function FPTrigSMul.
667 static float16 float16_ftsmul(float16 op1, uint16_t op2, float_status *stat)
669 float16 result = float16_mul(op1, op1, stat);
670 if (!float16_is_any_nan(result)) {
671 result = float16_set_sign(result, op2 & 1);
673 return result;
676 static float32 float32_ftsmul(float32 op1, uint32_t op2, float_status *stat)
678 float32 result = float32_mul(op1, op1, stat);
679 if (!float32_is_any_nan(result)) {
680 result = float32_set_sign(result, op2 & 1);
682 return result;
685 static float64 float64_ftsmul(float64 op1, uint64_t op2, float_status *stat)
687 float64 result = float64_mul(op1, op1, stat);
688 if (!float64_is_any_nan(result)) {
689 result = float64_set_sign(result, op2 & 1);
691 return result;
694 static float32 float32_abd(float32 op1, float32 op2, float_status *stat)
696 return float32_abs(float32_sub(op1, op2, stat));
699 #define DO_3OP(NAME, FUNC, TYPE) \
700 void HELPER(NAME)(void *vd, void *vn, void *vm, void *stat, uint32_t desc) \
702 intptr_t i, oprsz = simd_oprsz(desc); \
703 TYPE *d = vd, *n = vn, *m = vm; \
704 for (i = 0; i < oprsz / sizeof(TYPE); i++) { \
705 d[i] = FUNC(n[i], m[i], stat); \
707 clear_tail(d, oprsz, simd_maxsz(desc)); \
710 DO_3OP(gvec_fadd_h, float16_add, float16)
711 DO_3OP(gvec_fadd_s, float32_add, float32)
712 DO_3OP(gvec_fadd_d, float64_add, float64)
714 DO_3OP(gvec_fsub_h, float16_sub, float16)
715 DO_3OP(gvec_fsub_s, float32_sub, float32)
716 DO_3OP(gvec_fsub_d, float64_sub, float64)
718 DO_3OP(gvec_fmul_h, float16_mul, float16)
719 DO_3OP(gvec_fmul_s, float32_mul, float32)
720 DO_3OP(gvec_fmul_d, float64_mul, float64)
722 DO_3OP(gvec_ftsmul_h, float16_ftsmul, float16)
723 DO_3OP(gvec_ftsmul_s, float32_ftsmul, float32)
724 DO_3OP(gvec_ftsmul_d, float64_ftsmul, float64)
726 DO_3OP(gvec_fabd_s, float32_abd, float32)
728 #ifdef TARGET_AARCH64
730 DO_3OP(gvec_recps_h, helper_recpsf_f16, float16)
731 DO_3OP(gvec_recps_s, helper_recpsf_f32, float32)
732 DO_3OP(gvec_recps_d, helper_recpsf_f64, float64)
734 DO_3OP(gvec_rsqrts_h, helper_rsqrtsf_f16, float16)
735 DO_3OP(gvec_rsqrts_s, helper_rsqrtsf_f32, float32)
736 DO_3OP(gvec_rsqrts_d, helper_rsqrtsf_f64, float64)
738 #endif
739 #undef DO_3OP
741 /* For the indexed ops, SVE applies the index per 128-bit vector segment.
742 * For AdvSIMD, there is of course only one such vector segment.
745 #define DO_MUL_IDX(NAME, TYPE, H) \
746 void HELPER(NAME)(void *vd, void *vn, void *vm, void *stat, uint32_t desc) \
748 intptr_t i, j, oprsz = simd_oprsz(desc), segment = 16 / sizeof(TYPE); \
749 intptr_t idx = simd_data(desc); \
750 TYPE *d = vd, *n = vn, *m = vm; \
751 for (i = 0; i < oprsz / sizeof(TYPE); i += segment) { \
752 TYPE mm = m[H(i + idx)]; \
753 for (j = 0; j < segment; j++) { \
754 d[i + j] = TYPE##_mul(n[i + j], mm, stat); \
757 clear_tail(d, oprsz, simd_maxsz(desc)); \
760 DO_MUL_IDX(gvec_fmul_idx_h, float16, H2)
761 DO_MUL_IDX(gvec_fmul_idx_s, float32, H4)
762 DO_MUL_IDX(gvec_fmul_idx_d, float64, )
764 #undef DO_MUL_IDX
766 #define DO_FMLA_IDX(NAME, TYPE, H) \
767 void HELPER(NAME)(void *vd, void *vn, void *vm, void *va, \
768 void *stat, uint32_t desc) \
770 intptr_t i, j, oprsz = simd_oprsz(desc), segment = 16 / sizeof(TYPE); \
771 TYPE op1_neg = extract32(desc, SIMD_DATA_SHIFT, 1); \
772 intptr_t idx = desc >> (SIMD_DATA_SHIFT + 1); \
773 TYPE *d = vd, *n = vn, *m = vm, *a = va; \
774 op1_neg <<= (8 * sizeof(TYPE) - 1); \
775 for (i = 0; i < oprsz / sizeof(TYPE); i += segment) { \
776 TYPE mm = m[H(i + idx)]; \
777 for (j = 0; j < segment; j++) { \
778 d[i + j] = TYPE##_muladd(n[i + j] ^ op1_neg, \
779 mm, a[i + j], 0, stat); \
782 clear_tail(d, oprsz, simd_maxsz(desc)); \
785 DO_FMLA_IDX(gvec_fmla_idx_h, float16, H2)
786 DO_FMLA_IDX(gvec_fmla_idx_s, float32, H4)
787 DO_FMLA_IDX(gvec_fmla_idx_d, float64, )
789 #undef DO_FMLA_IDX
791 #define DO_SAT(NAME, WTYPE, TYPEN, TYPEM, OP, MIN, MAX) \
792 void HELPER(NAME)(void *vd, void *vq, void *vn, void *vm, uint32_t desc) \
794 intptr_t i, oprsz = simd_oprsz(desc); \
795 TYPEN *d = vd, *n = vn; TYPEM *m = vm; \
796 bool q = false; \
797 for (i = 0; i < oprsz / sizeof(TYPEN); i++) { \
798 WTYPE dd = (WTYPE)n[i] OP m[i]; \
799 if (dd < MIN) { \
800 dd = MIN; \
801 q = true; \
802 } else if (dd > MAX) { \
803 dd = MAX; \
804 q = true; \
806 d[i] = dd; \
808 if (q) { \
809 uint32_t *qc = vq; \
810 qc[0] = 1; \
812 clear_tail(d, oprsz, simd_maxsz(desc)); \
815 DO_SAT(gvec_uqadd_b, int, uint8_t, uint8_t, +, 0, UINT8_MAX)
816 DO_SAT(gvec_uqadd_h, int, uint16_t, uint16_t, +, 0, UINT16_MAX)
817 DO_SAT(gvec_uqadd_s, int64_t, uint32_t, uint32_t, +, 0, UINT32_MAX)
819 DO_SAT(gvec_sqadd_b, int, int8_t, int8_t, +, INT8_MIN, INT8_MAX)
820 DO_SAT(gvec_sqadd_h, int, int16_t, int16_t, +, INT16_MIN, INT16_MAX)
821 DO_SAT(gvec_sqadd_s, int64_t, int32_t, int32_t, +, INT32_MIN, INT32_MAX)
823 DO_SAT(gvec_uqsub_b, int, uint8_t, uint8_t, -, 0, UINT8_MAX)
824 DO_SAT(gvec_uqsub_h, int, uint16_t, uint16_t, -, 0, UINT16_MAX)
825 DO_SAT(gvec_uqsub_s, int64_t, uint32_t, uint32_t, -, 0, UINT32_MAX)
827 DO_SAT(gvec_sqsub_b, int, int8_t, int8_t, -, INT8_MIN, INT8_MAX)
828 DO_SAT(gvec_sqsub_h, int, int16_t, int16_t, -, INT16_MIN, INT16_MAX)
829 DO_SAT(gvec_sqsub_s, int64_t, int32_t, int32_t, -, INT32_MIN, INT32_MAX)
831 #undef DO_SAT
833 void HELPER(gvec_uqadd_d)(void *vd, void *vq, void *vn,
834 void *vm, uint32_t desc)
836 intptr_t i, oprsz = simd_oprsz(desc);
837 uint64_t *d = vd, *n = vn, *m = vm;
838 bool q = false;
840 for (i = 0; i < oprsz / 8; i++) {
841 uint64_t nn = n[i], mm = m[i], dd = nn + mm;
842 if (dd < nn) {
843 dd = UINT64_MAX;
844 q = true;
846 d[i] = dd;
848 if (q) {
849 uint32_t *qc = vq;
850 qc[0] = 1;
852 clear_tail(d, oprsz, simd_maxsz(desc));
855 void HELPER(gvec_uqsub_d)(void *vd, void *vq, void *vn,
856 void *vm, uint32_t desc)
858 intptr_t i, oprsz = simd_oprsz(desc);
859 uint64_t *d = vd, *n = vn, *m = vm;
860 bool q = false;
862 for (i = 0; i < oprsz / 8; i++) {
863 uint64_t nn = n[i], mm = m[i], dd = nn - mm;
864 if (nn < mm) {
865 dd = 0;
866 q = true;
868 d[i] = dd;
870 if (q) {
871 uint32_t *qc = vq;
872 qc[0] = 1;
874 clear_tail(d, oprsz, simd_maxsz(desc));
877 void HELPER(gvec_sqadd_d)(void *vd, void *vq, void *vn,
878 void *vm, uint32_t desc)
880 intptr_t i, oprsz = simd_oprsz(desc);
881 int64_t *d = vd, *n = vn, *m = vm;
882 bool q = false;
884 for (i = 0; i < oprsz / 8; i++) {
885 int64_t nn = n[i], mm = m[i], dd = nn + mm;
886 if (((dd ^ nn) & ~(nn ^ mm)) & INT64_MIN) {
887 dd = (nn >> 63) ^ ~INT64_MIN;
888 q = true;
890 d[i] = dd;
892 if (q) {
893 uint32_t *qc = vq;
894 qc[0] = 1;
896 clear_tail(d, oprsz, simd_maxsz(desc));
899 void HELPER(gvec_sqsub_d)(void *vd, void *vq, void *vn,
900 void *vm, uint32_t desc)
902 intptr_t i, oprsz = simd_oprsz(desc);
903 int64_t *d = vd, *n = vn, *m = vm;
904 bool q = false;
906 for (i = 0; i < oprsz / 8; i++) {
907 int64_t nn = n[i], mm = m[i], dd = nn - mm;
908 if (((dd ^ nn) & (nn ^ mm)) & INT64_MIN) {
909 dd = (nn >> 63) ^ ~INT64_MIN;
910 q = true;
912 d[i] = dd;
914 if (q) {
915 uint32_t *qc = vq;
916 qc[0] = 1;
918 clear_tail(d, oprsz, simd_maxsz(desc));
922 #define DO_SRA(NAME, TYPE) \
923 void HELPER(NAME)(void *vd, void *vn, uint32_t desc) \
925 intptr_t i, oprsz = simd_oprsz(desc); \
926 int shift = simd_data(desc); \
927 TYPE *d = vd, *n = vn; \
928 for (i = 0; i < oprsz / sizeof(TYPE); i++) { \
929 d[i] += n[i] >> shift; \
931 clear_tail(d, oprsz, simd_maxsz(desc)); \
934 DO_SRA(gvec_ssra_b, int8_t)
935 DO_SRA(gvec_ssra_h, int16_t)
936 DO_SRA(gvec_ssra_s, int32_t)
937 DO_SRA(gvec_ssra_d, int64_t)
939 DO_SRA(gvec_usra_b, uint8_t)
940 DO_SRA(gvec_usra_h, uint16_t)
941 DO_SRA(gvec_usra_s, uint32_t)
942 DO_SRA(gvec_usra_d, uint64_t)
944 #undef DO_SRA
946 #define DO_RSHR(NAME, TYPE) \
947 void HELPER(NAME)(void *vd, void *vn, uint32_t desc) \
949 intptr_t i, oprsz = simd_oprsz(desc); \
950 int shift = simd_data(desc); \
951 TYPE *d = vd, *n = vn; \
952 for (i = 0; i < oprsz / sizeof(TYPE); i++) { \
953 TYPE tmp = n[i] >> (shift - 1); \
954 d[i] = (tmp >> 1) + (tmp & 1); \
956 clear_tail(d, oprsz, simd_maxsz(desc)); \
959 DO_RSHR(gvec_srshr_b, int8_t)
960 DO_RSHR(gvec_srshr_h, int16_t)
961 DO_RSHR(gvec_srshr_s, int32_t)
962 DO_RSHR(gvec_srshr_d, int64_t)
964 DO_RSHR(gvec_urshr_b, uint8_t)
965 DO_RSHR(gvec_urshr_h, uint16_t)
966 DO_RSHR(gvec_urshr_s, uint32_t)
967 DO_RSHR(gvec_urshr_d, uint64_t)
969 #undef DO_RSHR
971 #define DO_RSRA(NAME, TYPE) \
972 void HELPER(NAME)(void *vd, void *vn, uint32_t desc) \
974 intptr_t i, oprsz = simd_oprsz(desc); \
975 int shift = simd_data(desc); \
976 TYPE *d = vd, *n = vn; \
977 for (i = 0; i < oprsz / sizeof(TYPE); i++) { \
978 TYPE tmp = n[i] >> (shift - 1); \
979 d[i] += (tmp >> 1) + (tmp & 1); \
981 clear_tail(d, oprsz, simd_maxsz(desc)); \
984 DO_RSRA(gvec_srsra_b, int8_t)
985 DO_RSRA(gvec_srsra_h, int16_t)
986 DO_RSRA(gvec_srsra_s, int32_t)
987 DO_RSRA(gvec_srsra_d, int64_t)
989 DO_RSRA(gvec_ursra_b, uint8_t)
990 DO_RSRA(gvec_ursra_h, uint16_t)
991 DO_RSRA(gvec_ursra_s, uint32_t)
992 DO_RSRA(gvec_ursra_d, uint64_t)
994 #undef DO_RSRA
996 #define DO_SRI(NAME, TYPE) \
997 void HELPER(NAME)(void *vd, void *vn, uint32_t desc) \
999 intptr_t i, oprsz = simd_oprsz(desc); \
1000 int shift = simd_data(desc); \
1001 TYPE *d = vd, *n = vn; \
1002 for (i = 0; i < oprsz / sizeof(TYPE); i++) { \
1003 d[i] = deposit64(d[i], 0, sizeof(TYPE) * 8 - shift, n[i] >> shift); \
1005 clear_tail(d, oprsz, simd_maxsz(desc)); \
1008 DO_SRI(gvec_sri_b, uint8_t)
1009 DO_SRI(gvec_sri_h, uint16_t)
1010 DO_SRI(gvec_sri_s, uint32_t)
1011 DO_SRI(gvec_sri_d, uint64_t)
1013 #undef DO_SRI
1015 #define DO_SLI(NAME, TYPE) \
1016 void HELPER(NAME)(void *vd, void *vn, uint32_t desc) \
1018 intptr_t i, oprsz = simd_oprsz(desc); \
1019 int shift = simd_data(desc); \
1020 TYPE *d = vd, *n = vn; \
1021 for (i = 0; i < oprsz / sizeof(TYPE); i++) { \
1022 d[i] = deposit64(d[i], shift, sizeof(TYPE) * 8 - shift, n[i]); \
1024 clear_tail(d, oprsz, simd_maxsz(desc)); \
1027 DO_SLI(gvec_sli_b, uint8_t)
1028 DO_SLI(gvec_sli_h, uint16_t)
1029 DO_SLI(gvec_sli_s, uint32_t)
1030 DO_SLI(gvec_sli_d, uint64_t)
1032 #undef DO_SLI
1035 * Convert float16 to float32, raising no exceptions and
1036 * preserving exceptional values, including SNaN.
1037 * This is effectively an unpack+repack operation.
1039 static float32 float16_to_float32_by_bits(uint32_t f16, bool fz16)
1041 const int f16_bias = 15;
1042 const int f32_bias = 127;
1043 uint32_t sign = extract32(f16, 15, 1);
1044 uint32_t exp = extract32(f16, 10, 5);
1045 uint32_t frac = extract32(f16, 0, 10);
1047 if (exp == 0x1f) {
1048 /* Inf or NaN */
1049 exp = 0xff;
1050 } else if (exp == 0) {
1051 /* Zero or denormal. */
1052 if (frac != 0) {
1053 if (fz16) {
1054 frac = 0;
1055 } else {
1057 * Denormal; these are all normal float32.
1058 * Shift the fraction so that the msb is at bit 11,
1059 * then remove bit 11 as the implicit bit of the
1060 * normalized float32. Note that we still go through
1061 * the shift for normal numbers below, to put the
1062 * float32 fraction at the right place.
1064 int shift = clz32(frac) - 21;
1065 frac = (frac << shift) & 0x3ff;
1066 exp = f32_bias - f16_bias - shift + 1;
1069 } else {
1070 /* Normal number; adjust the bias. */
1071 exp += f32_bias - f16_bias;
1073 sign <<= 31;
1074 exp <<= 23;
1075 frac <<= 23 - 10;
1077 return sign | exp | frac;
1080 static uint64_t load4_f16(uint64_t *ptr, int is_q, int is_2)
1083 * Branchless load of u32[0], u64[0], u32[1], or u64[1].
1084 * Load the 2nd qword iff is_q & is_2.
1085 * Shift to the 2nd dword iff !is_q & is_2.
1086 * For !is_q & !is_2, the upper bits of the result are garbage.
1088 return ptr[is_q & is_2] >> ((is_2 & ~is_q) << 5);
1092 * Note that FMLAL requires oprsz == 8 or oprsz == 16,
1093 * as there is not yet SVE versions that might use blocking.
1096 static void do_fmlal(float32 *d, void *vn, void *vm, float_status *fpst,
1097 uint32_t desc, bool fz16)
1099 intptr_t i, oprsz = simd_oprsz(desc);
1100 int is_s = extract32(desc, SIMD_DATA_SHIFT, 1);
1101 int is_2 = extract32(desc, SIMD_DATA_SHIFT + 1, 1);
1102 int is_q = oprsz == 16;
1103 uint64_t n_4, m_4;
1105 /* Pre-load all of the f16 data, avoiding overlap issues. */
1106 n_4 = load4_f16(vn, is_q, is_2);
1107 m_4 = load4_f16(vm, is_q, is_2);
1109 /* Negate all inputs for FMLSL at once. */
1110 if (is_s) {
1111 n_4 ^= 0x8000800080008000ull;
1114 for (i = 0; i < oprsz / 4; i++) {
1115 float32 n_1 = float16_to_float32_by_bits(n_4 >> (i * 16), fz16);
1116 float32 m_1 = float16_to_float32_by_bits(m_4 >> (i * 16), fz16);
1117 d[H4(i)] = float32_muladd(n_1, m_1, d[H4(i)], 0, fpst);
1119 clear_tail(d, oprsz, simd_maxsz(desc));
1122 void HELPER(gvec_fmlal_a32)(void *vd, void *vn, void *vm,
1123 void *venv, uint32_t desc)
1125 CPUARMState *env = venv;
1126 do_fmlal(vd, vn, vm, &env->vfp.standard_fp_status, desc,
1127 get_flush_inputs_to_zero(&env->vfp.fp_status_f16));
1130 void HELPER(gvec_fmlal_a64)(void *vd, void *vn, void *vm,
1131 void *venv, uint32_t desc)
1133 CPUARMState *env = venv;
1134 do_fmlal(vd, vn, vm, &env->vfp.fp_status, desc,
1135 get_flush_inputs_to_zero(&env->vfp.fp_status_f16));
1138 static void do_fmlal_idx(float32 *d, void *vn, void *vm, float_status *fpst,
1139 uint32_t desc, bool fz16)
1141 intptr_t i, oprsz = simd_oprsz(desc);
1142 int is_s = extract32(desc, SIMD_DATA_SHIFT, 1);
1143 int is_2 = extract32(desc, SIMD_DATA_SHIFT + 1, 1);
1144 int index = extract32(desc, SIMD_DATA_SHIFT + 2, 3);
1145 int is_q = oprsz == 16;
1146 uint64_t n_4;
1147 float32 m_1;
1149 /* Pre-load all of the f16 data, avoiding overlap issues. */
1150 n_4 = load4_f16(vn, is_q, is_2);
1152 /* Negate all inputs for FMLSL at once. */
1153 if (is_s) {
1154 n_4 ^= 0x8000800080008000ull;
1157 m_1 = float16_to_float32_by_bits(((float16 *)vm)[H2(index)], fz16);
1159 for (i = 0; i < oprsz / 4; i++) {
1160 float32 n_1 = float16_to_float32_by_bits(n_4 >> (i * 16), fz16);
1161 d[H4(i)] = float32_muladd(n_1, m_1, d[H4(i)], 0, fpst);
1163 clear_tail(d, oprsz, simd_maxsz(desc));
1166 void HELPER(gvec_fmlal_idx_a32)(void *vd, void *vn, void *vm,
1167 void *venv, uint32_t desc)
1169 CPUARMState *env = venv;
1170 do_fmlal_idx(vd, vn, vm, &env->vfp.standard_fp_status, desc,
1171 get_flush_inputs_to_zero(&env->vfp.fp_status_f16));
1174 void HELPER(gvec_fmlal_idx_a64)(void *vd, void *vn, void *vm,
1175 void *venv, uint32_t desc)
1177 CPUARMState *env = venv;
1178 do_fmlal_idx(vd, vn, vm, &env->vfp.fp_status, desc,
1179 get_flush_inputs_to_zero(&env->vfp.fp_status_f16));
1182 void HELPER(gvec_sshl_b)(void *vd, void *vn, void *vm, uint32_t desc)
1184 intptr_t i, opr_sz = simd_oprsz(desc);
1185 int8_t *d = vd, *n = vn, *m = vm;
1187 for (i = 0; i < opr_sz; ++i) {
1188 int8_t mm = m[i];
1189 int8_t nn = n[i];
1190 int8_t res = 0;
1191 if (mm >= 0) {
1192 if (mm < 8) {
1193 res = nn << mm;
1195 } else {
1196 res = nn >> (mm > -8 ? -mm : 7);
1198 d[i] = res;
1200 clear_tail(d, opr_sz, simd_maxsz(desc));
1203 void HELPER(gvec_sshl_h)(void *vd, void *vn, void *vm, uint32_t desc)
1205 intptr_t i, opr_sz = simd_oprsz(desc);
1206 int16_t *d = vd, *n = vn, *m = vm;
1208 for (i = 0; i < opr_sz / 2; ++i) {
1209 int8_t mm = m[i]; /* only 8 bits of shift are significant */
1210 int16_t nn = n[i];
1211 int16_t res = 0;
1212 if (mm >= 0) {
1213 if (mm < 16) {
1214 res = nn << mm;
1216 } else {
1217 res = nn >> (mm > -16 ? -mm : 15);
1219 d[i] = res;
1221 clear_tail(d, opr_sz, simd_maxsz(desc));
1224 void HELPER(gvec_ushl_b)(void *vd, void *vn, void *vm, uint32_t desc)
1226 intptr_t i, opr_sz = simd_oprsz(desc);
1227 uint8_t *d = vd, *n = vn, *m = vm;
1229 for (i = 0; i < opr_sz; ++i) {
1230 int8_t mm = m[i];
1231 uint8_t nn = n[i];
1232 uint8_t res = 0;
1233 if (mm >= 0) {
1234 if (mm < 8) {
1235 res = nn << mm;
1237 } else {
1238 if (mm > -8) {
1239 res = nn >> -mm;
1242 d[i] = res;
1244 clear_tail(d, opr_sz, simd_maxsz(desc));
1247 void HELPER(gvec_ushl_h)(void *vd, void *vn, void *vm, uint32_t desc)
1249 intptr_t i, opr_sz = simd_oprsz(desc);
1250 uint16_t *d = vd, *n = vn, *m = vm;
1252 for (i = 0; i < opr_sz / 2; ++i) {
1253 int8_t mm = m[i]; /* only 8 bits of shift are significant */
1254 uint16_t nn = n[i];
1255 uint16_t res = 0;
1256 if (mm >= 0) {
1257 if (mm < 16) {
1258 res = nn << mm;
1260 } else {
1261 if (mm > -16) {
1262 res = nn >> -mm;
1265 d[i] = res;
1267 clear_tail(d, opr_sz, simd_maxsz(desc));
1271 * 8x8->8 polynomial multiply.
1273 * Polynomial multiplication is like integer multiplication except the
1274 * partial products are XORed, not added.
1276 * TODO: expose this as a generic vector operation, as it is a common
1277 * crypto building block.
1279 void HELPER(gvec_pmul_b)(void *vd, void *vn, void *vm, uint32_t desc)
1281 intptr_t i, j, opr_sz = simd_oprsz(desc);
1282 uint64_t *d = vd, *n = vn, *m = vm;
1284 for (i = 0; i < opr_sz / 8; ++i) {
1285 uint64_t nn = n[i];
1286 uint64_t mm = m[i];
1287 uint64_t rr = 0;
1289 for (j = 0; j < 8; ++j) {
1290 uint64_t mask = (nn & 0x0101010101010101ull) * 0xff;
1291 rr ^= mm & mask;
1292 mm = (mm << 1) & 0xfefefefefefefefeull;
1293 nn >>= 1;
1295 d[i] = rr;
1297 clear_tail(d, opr_sz, simd_maxsz(desc));
1301 * 64x64->128 polynomial multiply.
1302 * Because of the lanes are not accessed in strict columns,
1303 * this probably cannot be turned into a generic helper.
1305 void HELPER(gvec_pmull_q)(void *vd, void *vn, void *vm, uint32_t desc)
1307 intptr_t i, j, opr_sz = simd_oprsz(desc);
1308 intptr_t hi = simd_data(desc);
1309 uint64_t *d = vd, *n = vn, *m = vm;
1311 for (i = 0; i < opr_sz / 8; i += 2) {
1312 uint64_t nn = n[i + hi];
1313 uint64_t mm = m[i + hi];
1314 uint64_t rhi = 0;
1315 uint64_t rlo = 0;
1317 /* Bit 0 can only influence the low 64-bit result. */
1318 if (nn & 1) {
1319 rlo = mm;
1322 for (j = 1; j < 64; ++j) {
1323 uint64_t mask = -((nn >> j) & 1);
1324 rlo ^= (mm << j) & mask;
1325 rhi ^= (mm >> (64 - j)) & mask;
1327 d[i] = rlo;
1328 d[i + 1] = rhi;
1330 clear_tail(d, opr_sz, simd_maxsz(desc));
1334 * 8x8->16 polynomial multiply.
1336 * The byte inputs are expanded to (or extracted from) half-words.
1337 * Note that neon and sve2 get the inputs from different positions.
1338 * This allows 4 bytes to be processed in parallel with uint64_t.
1341 static uint64_t expand_byte_to_half(uint64_t x)
1343 return (x & 0x000000ff)
1344 | ((x & 0x0000ff00) << 8)
1345 | ((x & 0x00ff0000) << 16)
1346 | ((x & 0xff000000) << 24);
1349 static uint64_t pmull_h(uint64_t op1, uint64_t op2)
1351 uint64_t result = 0;
1352 int i;
1354 for (i = 0; i < 8; ++i) {
1355 uint64_t mask = (op1 & 0x0001000100010001ull) * 0xffff;
1356 result ^= op2 & mask;
1357 op1 >>= 1;
1358 op2 <<= 1;
1360 return result;
1363 void HELPER(neon_pmull_h)(void *vd, void *vn, void *vm, uint32_t desc)
1365 int hi = simd_data(desc);
1366 uint64_t *d = vd, *n = vn, *m = vm;
1367 uint64_t nn = n[hi], mm = m[hi];
1369 d[0] = pmull_h(expand_byte_to_half(nn), expand_byte_to_half(mm));
1370 nn >>= 32;
1371 mm >>= 32;
1372 d[1] = pmull_h(expand_byte_to_half(nn), expand_byte_to_half(mm));
1374 clear_tail(d, 16, simd_maxsz(desc));
1377 #ifdef TARGET_AARCH64
1378 void HELPER(sve2_pmull_h)(void *vd, void *vn, void *vm, uint32_t desc)
1380 int shift = simd_data(desc) * 8;
1381 intptr_t i, opr_sz = simd_oprsz(desc);
1382 uint64_t *d = vd, *n = vn, *m = vm;
1384 for (i = 0; i < opr_sz / 8; ++i) {
1385 uint64_t nn = (n[i] >> shift) & 0x00ff00ff00ff00ffull;
1386 uint64_t mm = (m[i] >> shift) & 0x00ff00ff00ff00ffull;
1388 d[i] = pmull_h(nn, mm);
1391 #endif
1393 #define DO_CMP0(NAME, TYPE, OP) \
1394 void HELPER(NAME)(void *vd, void *vn, uint32_t desc) \
1396 intptr_t i, opr_sz = simd_oprsz(desc); \
1397 for (i = 0; i < opr_sz; i += sizeof(TYPE)) { \
1398 TYPE nn = *(TYPE *)(vn + i); \
1399 *(TYPE *)(vd + i) = -(nn OP 0); \
1401 clear_tail(vd, opr_sz, simd_maxsz(desc)); \
1404 DO_CMP0(gvec_ceq0_b, int8_t, ==)
1405 DO_CMP0(gvec_clt0_b, int8_t, <)
1406 DO_CMP0(gvec_cle0_b, int8_t, <=)
1407 DO_CMP0(gvec_cgt0_b, int8_t, >)
1408 DO_CMP0(gvec_cge0_b, int8_t, >=)
1410 DO_CMP0(gvec_ceq0_h, int16_t, ==)
1411 DO_CMP0(gvec_clt0_h, int16_t, <)
1412 DO_CMP0(gvec_cle0_h, int16_t, <=)
1413 DO_CMP0(gvec_cgt0_h, int16_t, >)
1414 DO_CMP0(gvec_cge0_h, int16_t, >=)
1416 #undef DO_CMP0
1418 #define DO_ABD(NAME, TYPE) \
1419 void HELPER(NAME)(void *vd, void *vn, void *vm, uint32_t desc) \
1421 intptr_t i, opr_sz = simd_oprsz(desc); \
1422 TYPE *d = vd, *n = vn, *m = vm; \
1424 for (i = 0; i < opr_sz / sizeof(TYPE); ++i) { \
1425 d[i] = n[i] < m[i] ? m[i] - n[i] : n[i] - m[i]; \
1427 clear_tail(d, opr_sz, simd_maxsz(desc)); \
1430 DO_ABD(gvec_sabd_b, int8_t)
1431 DO_ABD(gvec_sabd_h, int16_t)
1432 DO_ABD(gvec_sabd_s, int32_t)
1433 DO_ABD(gvec_sabd_d, int64_t)
1435 DO_ABD(gvec_uabd_b, uint8_t)
1436 DO_ABD(gvec_uabd_h, uint16_t)
1437 DO_ABD(gvec_uabd_s, uint32_t)
1438 DO_ABD(gvec_uabd_d, uint64_t)
1440 #undef DO_ABD
1442 #define DO_ABA(NAME, TYPE) \
1443 void HELPER(NAME)(void *vd, void *vn, void *vm, uint32_t desc) \
1445 intptr_t i, opr_sz = simd_oprsz(desc); \
1446 TYPE *d = vd, *n = vn, *m = vm; \
1448 for (i = 0; i < opr_sz / sizeof(TYPE); ++i) { \
1449 d[i] += n[i] < m[i] ? m[i] - n[i] : n[i] - m[i]; \
1451 clear_tail(d, opr_sz, simd_maxsz(desc)); \
1454 DO_ABA(gvec_saba_b, int8_t)
1455 DO_ABA(gvec_saba_h, int16_t)
1456 DO_ABA(gvec_saba_s, int32_t)
1457 DO_ABA(gvec_saba_d, int64_t)
1459 DO_ABA(gvec_uaba_b, uint8_t)
1460 DO_ABA(gvec_uaba_h, uint16_t)
1461 DO_ABA(gvec_uaba_s, uint32_t)
1462 DO_ABA(gvec_uaba_d, uint64_t)
1464 #undef DO_ABA