block: Use child_of_bds in remaining places
[qemu.git] / target / arm / kvm64.c
blobf09ed9f4df349446f017927bd65c965e3952a956
1 /*
2 * ARM implementation of KVM hooks, 64 bit specific code
4 * Copyright Mian-M. Hamayun 2013, Virtual Open Systems
5 * Copyright Alex Bennée 2014, Linaro
7 * This work is licensed under the terms of the GNU GPL, version 2 or later.
8 * See the COPYING file in the top-level directory.
12 #include "qemu/osdep.h"
13 #include <sys/ioctl.h>
14 #include <sys/ptrace.h>
16 #include <linux/elf.h>
17 #include <linux/kvm.h>
19 #include "qemu-common.h"
20 #include "cpu.h"
21 #include "qemu/timer.h"
22 #include "qemu/error-report.h"
23 #include "qemu/host-utils.h"
24 #include "qemu/main-loop.h"
25 #include "exec/gdbstub.h"
26 #include "sysemu/runstate.h"
27 #include "sysemu/kvm.h"
28 #include "sysemu/kvm_int.h"
29 #include "kvm_arm.h"
30 #include "internals.h"
31 #include "hw/acpi/acpi.h"
32 #include "hw/acpi/ghes.h"
33 #include "hw/arm/virt.h"
35 static bool have_guest_debug;
38 * Although the ARM implementation of hardware assisted debugging
39 * allows for different breakpoints per-core, the current GDB
40 * interface treats them as a global pool of registers (which seems to
41 * be the case for x86, ppc and s390). As a result we store one copy
42 * of registers which is used for all active cores.
44 * Write access is serialised by virtue of the GDB protocol which
45 * updates things. Read access (i.e. when the values are copied to the
46 * vCPU) is also gated by GDB's run control.
48 * This is not unreasonable as most of the time debugging kernels you
49 * never know which core will eventually execute your function.
52 typedef struct {
53 uint64_t bcr;
54 uint64_t bvr;
55 } HWBreakpoint;
57 /* The watchpoint registers can cover more area than the requested
58 * watchpoint so we need to store the additional information
59 * somewhere. We also need to supply a CPUWatchpoint to the GDB stub
60 * when the watchpoint is hit.
62 typedef struct {
63 uint64_t wcr;
64 uint64_t wvr;
65 CPUWatchpoint details;
66 } HWWatchpoint;
68 /* Maximum and current break/watch point counts */
69 int max_hw_bps, max_hw_wps;
70 GArray *hw_breakpoints, *hw_watchpoints;
72 #define cur_hw_wps (hw_watchpoints->len)
73 #define cur_hw_bps (hw_breakpoints->len)
74 #define get_hw_bp(i) (&g_array_index(hw_breakpoints, HWBreakpoint, i))
75 #define get_hw_wp(i) (&g_array_index(hw_watchpoints, HWWatchpoint, i))
77 /**
78 * kvm_arm_init_debug() - check for guest debug capabilities
79 * @cs: CPUState
81 * kvm_check_extension returns the number of debug registers we have
82 * or 0 if we have none.
85 static void kvm_arm_init_debug(CPUState *cs)
87 have_guest_debug = kvm_check_extension(cs->kvm_state,
88 KVM_CAP_SET_GUEST_DEBUG);
90 max_hw_wps = kvm_check_extension(cs->kvm_state, KVM_CAP_GUEST_DEBUG_HW_WPS);
91 hw_watchpoints = g_array_sized_new(true, true,
92 sizeof(HWWatchpoint), max_hw_wps);
94 max_hw_bps = kvm_check_extension(cs->kvm_state, KVM_CAP_GUEST_DEBUG_HW_BPS);
95 hw_breakpoints = g_array_sized_new(true, true,
96 sizeof(HWBreakpoint), max_hw_bps);
97 return;
101 * insert_hw_breakpoint()
102 * @addr: address of breakpoint
104 * See ARM ARM D2.9.1 for details but here we are only going to create
105 * simple un-linked breakpoints (i.e. we don't chain breakpoints
106 * together to match address and context or vmid). The hardware is
107 * capable of fancier matching but that will require exposing that
108 * fanciness to GDB's interface
110 * DBGBCR<n>_EL1, Debug Breakpoint Control Registers
112 * 31 24 23 20 19 16 15 14 13 12 9 8 5 4 3 2 1 0
113 * +------+------+-------+-----+----+------+-----+------+-----+---+
114 * | RES0 | BT | LBN | SSC | HMC| RES0 | BAS | RES0 | PMC | E |
115 * +------+------+-------+-----+----+------+-----+------+-----+---+
117 * BT: Breakpoint type (0 = unlinked address match)
118 * LBN: Linked BP number (0 = unused)
119 * SSC/HMC/PMC: Security, Higher and Priv access control (Table D-12)
120 * BAS: Byte Address Select (RES1 for AArch64)
121 * E: Enable bit
123 * DBGBVR<n>_EL1, Debug Breakpoint Value Registers
125 * 63 53 52 49 48 2 1 0
126 * +------+-----------+----------+-----+
127 * | RESS | VA[52:49] | VA[48:2] | 0 0 |
128 * +------+-----------+----------+-----+
130 * Depending on the addressing mode bits the top bits of the register
131 * are a sign extension of the highest applicable VA bit. Some
132 * versions of GDB don't do it correctly so we ensure they are correct
133 * here so future PC comparisons will work properly.
136 static int insert_hw_breakpoint(target_ulong addr)
138 HWBreakpoint brk = {
139 .bcr = 0x1, /* BCR E=1, enable */
140 .bvr = sextract64(addr, 0, 53)
143 if (cur_hw_bps >= max_hw_bps) {
144 return -ENOBUFS;
147 brk.bcr = deposit32(brk.bcr, 1, 2, 0x3); /* PMC = 11 */
148 brk.bcr = deposit32(brk.bcr, 5, 4, 0xf); /* BAS = RES1 */
150 g_array_append_val(hw_breakpoints, brk);
152 return 0;
156 * delete_hw_breakpoint()
157 * @pc: address of breakpoint
159 * Delete a breakpoint and shuffle any above down
162 static int delete_hw_breakpoint(target_ulong pc)
164 int i;
165 for (i = 0; i < hw_breakpoints->len; i++) {
166 HWBreakpoint *brk = get_hw_bp(i);
167 if (brk->bvr == pc) {
168 g_array_remove_index(hw_breakpoints, i);
169 return 0;
172 return -ENOENT;
176 * insert_hw_watchpoint()
177 * @addr: address of watch point
178 * @len: size of area
179 * @type: type of watch point
181 * See ARM ARM D2.10. As with the breakpoints we can do some advanced
182 * stuff if we want to. The watch points can be linked with the break
183 * points above to make them context aware. However for simplicity
184 * currently we only deal with simple read/write watch points.
186 * D7.3.11 DBGWCR<n>_EL1, Debug Watchpoint Control Registers
188 * 31 29 28 24 23 21 20 19 16 15 14 13 12 5 4 3 2 1 0
189 * +------+-------+------+----+-----+-----+-----+-----+-----+-----+---+
190 * | RES0 | MASK | RES0 | WT | LBN | SSC | HMC | BAS | LSC | PAC | E |
191 * +------+-------+------+----+-----+-----+-----+-----+-----+-----+---+
193 * MASK: num bits addr mask (0=none,01/10=res,11=3 bits (8 bytes))
194 * WT: 0 - unlinked, 1 - linked (not currently used)
195 * LBN: Linked BP number (not currently used)
196 * SSC/HMC/PAC: Security, Higher and Priv access control (Table D2-11)
197 * BAS: Byte Address Select
198 * LSC: Load/Store control (01: load, 10: store, 11: both)
199 * E: Enable
201 * The bottom 2 bits of the value register are masked. Therefore to
202 * break on any sizes smaller than an unaligned word you need to set
203 * MASK=0, BAS=bit per byte in question. For larger regions (^2) you
204 * need to ensure you mask the address as required and set BAS=0xff
207 static int insert_hw_watchpoint(target_ulong addr,
208 target_ulong len, int type)
210 HWWatchpoint wp = {
211 .wcr = 1, /* E=1, enable */
212 .wvr = addr & (~0x7ULL),
213 .details = { .vaddr = addr, .len = len }
216 if (cur_hw_wps >= max_hw_wps) {
217 return -ENOBUFS;
221 * HMC=0 SSC=0 PAC=3 will hit EL0 or EL1, any security state,
222 * valid whether EL3 is implemented or not
224 wp.wcr = deposit32(wp.wcr, 1, 2, 3);
226 switch (type) {
227 case GDB_WATCHPOINT_READ:
228 wp.wcr = deposit32(wp.wcr, 3, 2, 1);
229 wp.details.flags = BP_MEM_READ;
230 break;
231 case GDB_WATCHPOINT_WRITE:
232 wp.wcr = deposit32(wp.wcr, 3, 2, 2);
233 wp.details.flags = BP_MEM_WRITE;
234 break;
235 case GDB_WATCHPOINT_ACCESS:
236 wp.wcr = deposit32(wp.wcr, 3, 2, 3);
237 wp.details.flags = BP_MEM_ACCESS;
238 break;
239 default:
240 g_assert_not_reached();
241 break;
243 if (len <= 8) {
244 /* we align the address and set the bits in BAS */
245 int off = addr & 0x7;
246 int bas = (1 << len) - 1;
248 wp.wcr = deposit32(wp.wcr, 5 + off, 8 - off, bas);
249 } else {
250 /* For ranges above 8 bytes we need to be a power of 2 */
251 if (is_power_of_2(len)) {
252 int bits = ctz64(len);
254 wp.wvr &= ~((1 << bits) - 1);
255 wp.wcr = deposit32(wp.wcr, 24, 4, bits);
256 wp.wcr = deposit32(wp.wcr, 5, 8, 0xff);
257 } else {
258 return -ENOBUFS;
262 g_array_append_val(hw_watchpoints, wp);
263 return 0;
267 static bool check_watchpoint_in_range(int i, target_ulong addr)
269 HWWatchpoint *wp = get_hw_wp(i);
270 uint64_t addr_top, addr_bottom = wp->wvr;
271 int bas = extract32(wp->wcr, 5, 8);
272 int mask = extract32(wp->wcr, 24, 4);
274 if (mask) {
275 addr_top = addr_bottom + (1 << mask);
276 } else {
277 /* BAS must be contiguous but can offset against the base
278 * address in DBGWVR */
279 addr_bottom = addr_bottom + ctz32(bas);
280 addr_top = addr_bottom + clo32(bas);
283 if (addr >= addr_bottom && addr <= addr_top) {
284 return true;
287 return false;
291 * delete_hw_watchpoint()
292 * @addr: address of breakpoint
294 * Delete a breakpoint and shuffle any above down
297 static int delete_hw_watchpoint(target_ulong addr,
298 target_ulong len, int type)
300 int i;
301 for (i = 0; i < cur_hw_wps; i++) {
302 if (check_watchpoint_in_range(i, addr)) {
303 g_array_remove_index(hw_watchpoints, i);
304 return 0;
307 return -ENOENT;
311 int kvm_arch_insert_hw_breakpoint(target_ulong addr,
312 target_ulong len, int type)
314 switch (type) {
315 case GDB_BREAKPOINT_HW:
316 return insert_hw_breakpoint(addr);
317 break;
318 case GDB_WATCHPOINT_READ:
319 case GDB_WATCHPOINT_WRITE:
320 case GDB_WATCHPOINT_ACCESS:
321 return insert_hw_watchpoint(addr, len, type);
322 default:
323 return -ENOSYS;
327 int kvm_arch_remove_hw_breakpoint(target_ulong addr,
328 target_ulong len, int type)
330 switch (type) {
331 case GDB_BREAKPOINT_HW:
332 return delete_hw_breakpoint(addr);
333 break;
334 case GDB_WATCHPOINT_READ:
335 case GDB_WATCHPOINT_WRITE:
336 case GDB_WATCHPOINT_ACCESS:
337 return delete_hw_watchpoint(addr, len, type);
338 default:
339 return -ENOSYS;
344 void kvm_arch_remove_all_hw_breakpoints(void)
346 if (cur_hw_wps > 0) {
347 g_array_remove_range(hw_watchpoints, 0, cur_hw_wps);
349 if (cur_hw_bps > 0) {
350 g_array_remove_range(hw_breakpoints, 0, cur_hw_bps);
354 void kvm_arm_copy_hw_debug_data(struct kvm_guest_debug_arch *ptr)
356 int i;
357 memset(ptr, 0, sizeof(struct kvm_guest_debug_arch));
359 for (i = 0; i < max_hw_wps; i++) {
360 HWWatchpoint *wp = get_hw_wp(i);
361 ptr->dbg_wcr[i] = wp->wcr;
362 ptr->dbg_wvr[i] = wp->wvr;
364 for (i = 0; i < max_hw_bps; i++) {
365 HWBreakpoint *bp = get_hw_bp(i);
366 ptr->dbg_bcr[i] = bp->bcr;
367 ptr->dbg_bvr[i] = bp->bvr;
371 bool kvm_arm_hw_debug_active(CPUState *cs)
373 return ((cur_hw_wps > 0) || (cur_hw_bps > 0));
376 static bool find_hw_breakpoint(CPUState *cpu, target_ulong pc)
378 int i;
380 for (i = 0; i < cur_hw_bps; i++) {
381 HWBreakpoint *bp = get_hw_bp(i);
382 if (bp->bvr == pc) {
383 return true;
386 return false;
389 static CPUWatchpoint *find_hw_watchpoint(CPUState *cpu, target_ulong addr)
391 int i;
393 for (i = 0; i < cur_hw_wps; i++) {
394 if (check_watchpoint_in_range(i, addr)) {
395 return &get_hw_wp(i)->details;
398 return NULL;
401 static bool kvm_arm_pmu_set_attr(CPUState *cs, struct kvm_device_attr *attr)
403 int err;
405 err = kvm_vcpu_ioctl(cs, KVM_HAS_DEVICE_ATTR, attr);
406 if (err != 0) {
407 error_report("PMU: KVM_HAS_DEVICE_ATTR: %s", strerror(-err));
408 return false;
411 err = kvm_vcpu_ioctl(cs, KVM_SET_DEVICE_ATTR, attr);
412 if (err != 0) {
413 error_report("PMU: KVM_SET_DEVICE_ATTR: %s", strerror(-err));
414 return false;
417 return true;
420 void kvm_arm_pmu_init(CPUState *cs)
422 struct kvm_device_attr attr = {
423 .group = KVM_ARM_VCPU_PMU_V3_CTRL,
424 .attr = KVM_ARM_VCPU_PMU_V3_INIT,
427 if (!ARM_CPU(cs)->has_pmu) {
428 return;
430 if (!kvm_arm_pmu_set_attr(cs, &attr)) {
431 error_report("failed to init PMU");
432 abort();
436 void kvm_arm_pmu_set_irq(CPUState *cs, int irq)
438 struct kvm_device_attr attr = {
439 .group = KVM_ARM_VCPU_PMU_V3_CTRL,
440 .addr = (intptr_t)&irq,
441 .attr = KVM_ARM_VCPU_PMU_V3_IRQ,
444 if (!ARM_CPU(cs)->has_pmu) {
445 return;
447 if (!kvm_arm_pmu_set_attr(cs, &attr)) {
448 error_report("failed to set irq for PMU");
449 abort();
453 static int read_sys_reg32(int fd, uint32_t *pret, uint64_t id)
455 uint64_t ret;
456 struct kvm_one_reg idreg = { .id = id, .addr = (uintptr_t)&ret };
457 int err;
459 assert((id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64);
460 err = ioctl(fd, KVM_GET_ONE_REG, &idreg);
461 if (err < 0) {
462 return -1;
464 *pret = ret;
465 return 0;
468 static int read_sys_reg64(int fd, uint64_t *pret, uint64_t id)
470 struct kvm_one_reg idreg = { .id = id, .addr = (uintptr_t)pret };
472 assert((id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64);
473 return ioctl(fd, KVM_GET_ONE_REG, &idreg);
476 bool kvm_arm_get_host_cpu_features(ARMHostCPUFeatures *ahcf)
478 /* Identify the feature bits corresponding to the host CPU, and
479 * fill out the ARMHostCPUClass fields accordingly. To do this
480 * we have to create a scratch VM, create a single CPU inside it,
481 * and then query that CPU for the relevant ID registers.
483 int fdarray[3];
484 bool sve_supported;
485 uint64_t features = 0;
486 uint64_t t;
487 int err;
489 /* Old kernels may not know about the PREFERRED_TARGET ioctl: however
490 * we know these will only support creating one kind of guest CPU,
491 * which is its preferred CPU type. Fortunately these old kernels
492 * support only a very limited number of CPUs.
494 static const uint32_t cpus_to_try[] = {
495 KVM_ARM_TARGET_AEM_V8,
496 KVM_ARM_TARGET_FOUNDATION_V8,
497 KVM_ARM_TARGET_CORTEX_A57,
498 QEMU_KVM_ARM_TARGET_NONE
501 * target = -1 informs kvm_arm_create_scratch_host_vcpu()
502 * to use the preferred target
504 struct kvm_vcpu_init init = { .target = -1, };
506 if (!kvm_arm_create_scratch_host_vcpu(cpus_to_try, fdarray, &init)) {
507 return false;
510 ahcf->target = init.target;
511 ahcf->dtb_compatible = "arm,arm-v8";
513 err = read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64pfr0,
514 ARM64_SYS_REG(3, 0, 0, 4, 0));
515 if (unlikely(err < 0)) {
517 * Before v4.15, the kernel only exposed a limited number of system
518 * registers, not including any of the interesting AArch64 ID regs.
519 * For the most part we could leave these fields as zero with minimal
520 * effect, since this does not affect the values seen by the guest.
522 * However, it could cause problems down the line for QEMU,
523 * so provide a minimal v8.0 default.
525 * ??? Could read MIDR and use knowledge from cpu64.c.
526 * ??? Could map a page of memory into our temp guest and
527 * run the tiniest of hand-crafted kernels to extract
528 * the values seen by the guest.
529 * ??? Either of these sounds like too much effort just
530 * to work around running a modern host kernel.
532 ahcf->isar.id_aa64pfr0 = 0x00000011; /* EL1&0, AArch64 only */
533 err = 0;
534 } else {
535 err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64pfr1,
536 ARM64_SYS_REG(3, 0, 0, 4, 1));
537 err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64dfr0,
538 ARM64_SYS_REG(3, 0, 0, 5, 0));
539 err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64dfr1,
540 ARM64_SYS_REG(3, 0, 0, 5, 1));
541 err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64isar0,
542 ARM64_SYS_REG(3, 0, 0, 6, 0));
543 err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64isar1,
544 ARM64_SYS_REG(3, 0, 0, 6, 1));
545 err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64mmfr0,
546 ARM64_SYS_REG(3, 0, 0, 7, 0));
547 err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64mmfr1,
548 ARM64_SYS_REG(3, 0, 0, 7, 1));
549 err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64mmfr2,
550 ARM64_SYS_REG(3, 0, 0, 7, 2));
553 * Note that if AArch32 support is not present in the host,
554 * the AArch32 sysregs are present to be read, but will
555 * return UNKNOWN values. This is neither better nor worse
556 * than skipping the reads and leaving 0, as we must avoid
557 * considering the values in every case.
559 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_dfr0,
560 ARM64_SYS_REG(3, 0, 0, 1, 2));
561 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr0,
562 ARM64_SYS_REG(3, 0, 0, 1, 4));
563 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr1,
564 ARM64_SYS_REG(3, 0, 0, 1, 5));
565 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr2,
566 ARM64_SYS_REG(3, 0, 0, 1, 6));
567 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr3,
568 ARM64_SYS_REG(3, 0, 0, 1, 7));
569 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar0,
570 ARM64_SYS_REG(3, 0, 0, 2, 0));
571 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar1,
572 ARM64_SYS_REG(3, 0, 0, 2, 1));
573 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar2,
574 ARM64_SYS_REG(3, 0, 0, 2, 2));
575 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar3,
576 ARM64_SYS_REG(3, 0, 0, 2, 3));
577 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar4,
578 ARM64_SYS_REG(3, 0, 0, 2, 4));
579 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar5,
580 ARM64_SYS_REG(3, 0, 0, 2, 5));
581 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr4,
582 ARM64_SYS_REG(3, 0, 0, 2, 6));
583 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar6,
584 ARM64_SYS_REG(3, 0, 0, 2, 7));
586 err |= read_sys_reg32(fdarray[2], &ahcf->isar.mvfr0,
587 ARM64_SYS_REG(3, 0, 0, 3, 0));
588 err |= read_sys_reg32(fdarray[2], &ahcf->isar.mvfr1,
589 ARM64_SYS_REG(3, 0, 0, 3, 1));
590 err |= read_sys_reg32(fdarray[2], &ahcf->isar.mvfr2,
591 ARM64_SYS_REG(3, 0, 0, 3, 2));
594 * DBGDIDR is a bit complicated because the kernel doesn't
595 * provide an accessor for it in 64-bit mode, which is what this
596 * scratch VM is in, and there's no architected "64-bit sysreg
597 * which reads the same as the 32-bit register" the way there is
598 * for other ID registers. Instead we synthesize a value from the
599 * AArch64 ID_AA64DFR0, the same way the kernel code in
600 * arch/arm64/kvm/sys_regs.c:trap_dbgidr() does.
601 * We only do this if the CPU supports AArch32 at EL1.
603 if (FIELD_EX32(ahcf->isar.id_aa64pfr0, ID_AA64PFR0, EL1) >= 2) {
604 int wrps = FIELD_EX64(ahcf->isar.id_aa64dfr0, ID_AA64DFR0, WRPS);
605 int brps = FIELD_EX64(ahcf->isar.id_aa64dfr0, ID_AA64DFR0, BRPS);
606 int ctx_cmps =
607 FIELD_EX64(ahcf->isar.id_aa64dfr0, ID_AA64DFR0, CTX_CMPS);
608 int version = 6; /* ARMv8 debug architecture */
609 bool has_el3 =
610 !!FIELD_EX32(ahcf->isar.id_aa64pfr0, ID_AA64PFR0, EL3);
611 uint32_t dbgdidr = 0;
613 dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, WRPS, wrps);
614 dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, BRPS, brps);
615 dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, CTX_CMPS, ctx_cmps);
616 dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, VERSION, version);
617 dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, NSUHD_IMP, has_el3);
618 dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, SE_IMP, has_el3);
619 dbgdidr |= (1 << 15); /* RES1 bit */
620 ahcf->isar.dbgdidr = dbgdidr;
624 sve_supported = ioctl(fdarray[0], KVM_CHECK_EXTENSION, KVM_CAP_ARM_SVE) > 0;
626 kvm_arm_destroy_scratch_host_vcpu(fdarray);
628 if (err < 0) {
629 return false;
632 /* Add feature bits that can't appear until after VCPU init. */
633 if (sve_supported) {
634 t = ahcf->isar.id_aa64pfr0;
635 t = FIELD_DP64(t, ID_AA64PFR0, SVE, 1);
636 ahcf->isar.id_aa64pfr0 = t;
640 * We can assume any KVM supporting CPU is at least a v8
641 * with VFPv4+Neon; this in turn implies most of the other
642 * feature bits.
644 features |= 1ULL << ARM_FEATURE_V8;
645 features |= 1ULL << ARM_FEATURE_NEON;
646 features |= 1ULL << ARM_FEATURE_AARCH64;
647 features |= 1ULL << ARM_FEATURE_PMU;
648 features |= 1ULL << ARM_FEATURE_GENERIC_TIMER;
650 ahcf->features = features;
652 return true;
655 bool kvm_arm_aarch32_supported(CPUState *cpu)
657 KVMState *s = KVM_STATE(current_accel());
659 return kvm_check_extension(s, KVM_CAP_ARM_EL1_32BIT);
662 bool kvm_arm_sve_supported(CPUState *cpu)
664 KVMState *s = KVM_STATE(current_accel());
666 return kvm_check_extension(s, KVM_CAP_ARM_SVE);
669 QEMU_BUILD_BUG_ON(KVM_ARM64_SVE_VQ_MIN != 1);
671 void kvm_arm_sve_get_vls(CPUState *cs, unsigned long *map)
673 /* Only call this function if kvm_arm_sve_supported() returns true. */
674 static uint64_t vls[KVM_ARM64_SVE_VLS_WORDS];
675 static bool probed;
676 uint32_t vq = 0;
677 int i, j;
679 bitmap_clear(map, 0, ARM_MAX_VQ);
682 * KVM ensures all host CPUs support the same set of vector lengths.
683 * So we only need to create the scratch VCPUs once and then cache
684 * the results.
686 if (!probed) {
687 struct kvm_vcpu_init init = {
688 .target = -1,
689 .features[0] = (1 << KVM_ARM_VCPU_SVE),
691 struct kvm_one_reg reg = {
692 .id = KVM_REG_ARM64_SVE_VLS,
693 .addr = (uint64_t)&vls[0],
695 int fdarray[3], ret;
697 probed = true;
699 if (!kvm_arm_create_scratch_host_vcpu(NULL, fdarray, &init)) {
700 error_report("failed to create scratch VCPU with SVE enabled");
701 abort();
703 ret = ioctl(fdarray[2], KVM_GET_ONE_REG, &reg);
704 kvm_arm_destroy_scratch_host_vcpu(fdarray);
705 if (ret) {
706 error_report("failed to get KVM_REG_ARM64_SVE_VLS: %s",
707 strerror(errno));
708 abort();
711 for (i = KVM_ARM64_SVE_VLS_WORDS - 1; i >= 0; --i) {
712 if (vls[i]) {
713 vq = 64 - clz64(vls[i]) + i * 64;
714 break;
717 if (vq > ARM_MAX_VQ) {
718 warn_report("KVM supports vector lengths larger than "
719 "QEMU can enable");
723 for (i = 0; i < KVM_ARM64_SVE_VLS_WORDS; ++i) {
724 if (!vls[i]) {
725 continue;
727 for (j = 1; j <= 64; ++j) {
728 vq = j + i * 64;
729 if (vq > ARM_MAX_VQ) {
730 return;
732 if (vls[i] & (1UL << (j - 1))) {
733 set_bit(vq - 1, map);
739 static int kvm_arm_sve_set_vls(CPUState *cs)
741 uint64_t vls[KVM_ARM64_SVE_VLS_WORDS] = {0};
742 struct kvm_one_reg reg = {
743 .id = KVM_REG_ARM64_SVE_VLS,
744 .addr = (uint64_t)&vls[0],
746 ARMCPU *cpu = ARM_CPU(cs);
747 uint32_t vq;
748 int i, j;
750 assert(cpu->sve_max_vq <= KVM_ARM64_SVE_VQ_MAX);
752 for (vq = 1; vq <= cpu->sve_max_vq; ++vq) {
753 if (test_bit(vq - 1, cpu->sve_vq_map)) {
754 i = (vq - 1) / 64;
755 j = (vq - 1) % 64;
756 vls[i] |= 1UL << j;
760 return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
763 #define ARM_CPU_ID_MPIDR 3, 0, 0, 0, 5
765 int kvm_arch_init_vcpu(CPUState *cs)
767 int ret;
768 uint64_t mpidr;
769 ARMCPU *cpu = ARM_CPU(cs);
770 CPUARMState *env = &cpu->env;
772 if (cpu->kvm_target == QEMU_KVM_ARM_TARGET_NONE ||
773 !object_dynamic_cast(OBJECT(cpu), TYPE_AARCH64_CPU)) {
774 error_report("KVM is not supported for this guest CPU type");
775 return -EINVAL;
778 qemu_add_vm_change_state_handler(kvm_arm_vm_state_change, cs);
780 /* Determine init features for this CPU */
781 memset(cpu->kvm_init_features, 0, sizeof(cpu->kvm_init_features));
782 if (cpu->start_powered_off) {
783 cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_POWER_OFF;
785 if (kvm_check_extension(cs->kvm_state, KVM_CAP_ARM_PSCI_0_2)) {
786 cpu->psci_version = 2;
787 cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_PSCI_0_2;
789 if (!arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
790 cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_EL1_32BIT;
792 if (!kvm_check_extension(cs->kvm_state, KVM_CAP_ARM_PMU_V3)) {
793 cpu->has_pmu = false;
795 if (cpu->has_pmu) {
796 cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_PMU_V3;
797 } else {
798 env->features &= ~(1ULL << ARM_FEATURE_PMU);
800 if (cpu_isar_feature(aa64_sve, cpu)) {
801 assert(kvm_arm_sve_supported(cs));
802 cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_SVE;
805 /* Do KVM_ARM_VCPU_INIT ioctl */
806 ret = kvm_arm_vcpu_init(cs);
807 if (ret) {
808 return ret;
811 if (cpu_isar_feature(aa64_sve, cpu)) {
812 ret = kvm_arm_sve_set_vls(cs);
813 if (ret) {
814 return ret;
816 ret = kvm_arm_vcpu_finalize(cs, KVM_ARM_VCPU_SVE);
817 if (ret) {
818 return ret;
823 * When KVM is in use, PSCI is emulated in-kernel and not by qemu.
824 * Currently KVM has its own idea about MPIDR assignment, so we
825 * override our defaults with what we get from KVM.
827 ret = kvm_get_one_reg(cs, ARM64_SYS_REG(ARM_CPU_ID_MPIDR), &mpidr);
828 if (ret) {
829 return ret;
831 cpu->mp_affinity = mpidr & ARM64_AFFINITY_MASK;
833 kvm_arm_init_debug(cs);
835 /* Check whether user space can specify guest syndrome value */
836 kvm_arm_init_serror_injection(cs);
838 return kvm_arm_init_cpreg_list(cpu);
841 int kvm_arch_destroy_vcpu(CPUState *cs)
843 return 0;
846 bool kvm_arm_reg_syncs_via_cpreg_list(uint64_t regidx)
848 /* Return true if the regidx is a register we should synchronize
849 * via the cpreg_tuples array (ie is not a core or sve reg that
850 * we sync by hand in kvm_arch_get/put_registers())
852 switch (regidx & KVM_REG_ARM_COPROC_MASK) {
853 case KVM_REG_ARM_CORE:
854 case KVM_REG_ARM64_SVE:
855 return false;
856 default:
857 return true;
861 typedef struct CPRegStateLevel {
862 uint64_t regidx;
863 int level;
864 } CPRegStateLevel;
866 /* All system registers not listed in the following table are assumed to be
867 * of the level KVM_PUT_RUNTIME_STATE. If a register should be written less
868 * often, you must add it to this table with a state of either
869 * KVM_PUT_RESET_STATE or KVM_PUT_FULL_STATE.
871 static const CPRegStateLevel non_runtime_cpregs[] = {
872 { KVM_REG_ARM_TIMER_CNT, KVM_PUT_FULL_STATE },
875 int kvm_arm_cpreg_level(uint64_t regidx)
877 int i;
879 for (i = 0; i < ARRAY_SIZE(non_runtime_cpregs); i++) {
880 const CPRegStateLevel *l = &non_runtime_cpregs[i];
881 if (l->regidx == regidx) {
882 return l->level;
886 return KVM_PUT_RUNTIME_STATE;
889 /* Callers must hold the iothread mutex lock */
890 static void kvm_inject_arm_sea(CPUState *c)
892 ARMCPU *cpu = ARM_CPU(c);
893 CPUARMState *env = &cpu->env;
894 CPUClass *cc = CPU_GET_CLASS(c);
895 uint32_t esr;
896 bool same_el;
898 c->exception_index = EXCP_DATA_ABORT;
899 env->exception.target_el = 1;
902 * Set the DFSC to synchronous external abort and set FnV to not valid,
903 * this will tell guest the FAR_ELx is UNKNOWN for this abort.
905 same_el = arm_current_el(env) == env->exception.target_el;
906 esr = syn_data_abort_no_iss(same_el, 1, 0, 0, 0, 0, 0x10);
908 env->exception.syndrome = esr;
910 cc->do_interrupt(c);
913 #define AARCH64_CORE_REG(x) (KVM_REG_ARM64 | KVM_REG_SIZE_U64 | \
914 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
916 #define AARCH64_SIMD_CORE_REG(x) (KVM_REG_ARM64 | KVM_REG_SIZE_U128 | \
917 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
919 #define AARCH64_SIMD_CTRL_REG(x) (KVM_REG_ARM64 | KVM_REG_SIZE_U32 | \
920 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
922 static int kvm_arch_put_fpsimd(CPUState *cs)
924 CPUARMState *env = &ARM_CPU(cs)->env;
925 struct kvm_one_reg reg;
926 int i, ret;
928 for (i = 0; i < 32; i++) {
929 uint64_t *q = aa64_vfp_qreg(env, i);
930 #ifdef HOST_WORDS_BIGENDIAN
931 uint64_t fp_val[2] = { q[1], q[0] };
932 reg.addr = (uintptr_t)fp_val;
933 #else
934 reg.addr = (uintptr_t)q;
935 #endif
936 reg.id = AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]);
937 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
938 if (ret) {
939 return ret;
943 return 0;
947 * KVM SVE registers come in slices where ZREGs have a slice size of 2048 bits
948 * and PREGS and the FFR have a slice size of 256 bits. However we simply hard
949 * code the slice index to zero for now as it's unlikely we'll need more than
950 * one slice for quite some time.
952 static int kvm_arch_put_sve(CPUState *cs)
954 ARMCPU *cpu = ARM_CPU(cs);
955 CPUARMState *env = &cpu->env;
956 uint64_t tmp[ARM_MAX_VQ * 2];
957 uint64_t *r;
958 struct kvm_one_reg reg;
959 int n, ret;
961 for (n = 0; n < KVM_ARM64_SVE_NUM_ZREGS; ++n) {
962 r = sve_bswap64(tmp, &env->vfp.zregs[n].d[0], cpu->sve_max_vq * 2);
963 reg.addr = (uintptr_t)r;
964 reg.id = KVM_REG_ARM64_SVE_ZREG(n, 0);
965 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
966 if (ret) {
967 return ret;
971 for (n = 0; n < KVM_ARM64_SVE_NUM_PREGS; ++n) {
972 r = sve_bswap64(tmp, r = &env->vfp.pregs[n].p[0],
973 DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
974 reg.addr = (uintptr_t)r;
975 reg.id = KVM_REG_ARM64_SVE_PREG(n, 0);
976 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
977 if (ret) {
978 return ret;
982 r = sve_bswap64(tmp, &env->vfp.pregs[FFR_PRED_NUM].p[0],
983 DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
984 reg.addr = (uintptr_t)r;
985 reg.id = KVM_REG_ARM64_SVE_FFR(0);
986 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
987 if (ret) {
988 return ret;
991 return 0;
994 int kvm_arch_put_registers(CPUState *cs, int level)
996 struct kvm_one_reg reg;
997 uint64_t val;
998 uint32_t fpr;
999 int i, ret;
1000 unsigned int el;
1002 ARMCPU *cpu = ARM_CPU(cs);
1003 CPUARMState *env = &cpu->env;
1005 /* If we are in AArch32 mode then we need to copy the AArch32 regs to the
1006 * AArch64 registers before pushing them out to 64-bit KVM.
1008 if (!is_a64(env)) {
1009 aarch64_sync_32_to_64(env);
1012 for (i = 0; i < 31; i++) {
1013 reg.id = AARCH64_CORE_REG(regs.regs[i]);
1014 reg.addr = (uintptr_t) &env->xregs[i];
1015 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1016 if (ret) {
1017 return ret;
1021 /* KVM puts SP_EL0 in regs.sp and SP_EL1 in regs.sp_el1. On the
1022 * QEMU side we keep the current SP in xregs[31] as well.
1024 aarch64_save_sp(env, 1);
1026 reg.id = AARCH64_CORE_REG(regs.sp);
1027 reg.addr = (uintptr_t) &env->sp_el[0];
1028 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1029 if (ret) {
1030 return ret;
1033 reg.id = AARCH64_CORE_REG(sp_el1);
1034 reg.addr = (uintptr_t) &env->sp_el[1];
1035 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1036 if (ret) {
1037 return ret;
1040 /* Note that KVM thinks pstate is 64 bit but we use a uint32_t */
1041 if (is_a64(env)) {
1042 val = pstate_read(env);
1043 } else {
1044 val = cpsr_read(env);
1046 reg.id = AARCH64_CORE_REG(regs.pstate);
1047 reg.addr = (uintptr_t) &val;
1048 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1049 if (ret) {
1050 return ret;
1053 reg.id = AARCH64_CORE_REG(regs.pc);
1054 reg.addr = (uintptr_t) &env->pc;
1055 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1056 if (ret) {
1057 return ret;
1060 reg.id = AARCH64_CORE_REG(elr_el1);
1061 reg.addr = (uintptr_t) &env->elr_el[1];
1062 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1063 if (ret) {
1064 return ret;
1067 /* Saved Program State Registers
1069 * Before we restore from the banked_spsr[] array we need to
1070 * ensure that any modifications to env->spsr are correctly
1071 * reflected in the banks.
1073 el = arm_current_el(env);
1074 if (el > 0 && !is_a64(env)) {
1075 i = bank_number(env->uncached_cpsr & CPSR_M);
1076 env->banked_spsr[i] = env->spsr;
1079 /* KVM 0-4 map to QEMU banks 1-5 */
1080 for (i = 0; i < KVM_NR_SPSR; i++) {
1081 reg.id = AARCH64_CORE_REG(spsr[i]);
1082 reg.addr = (uintptr_t) &env->banked_spsr[i + 1];
1083 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1084 if (ret) {
1085 return ret;
1089 if (cpu_isar_feature(aa64_sve, cpu)) {
1090 ret = kvm_arch_put_sve(cs);
1091 } else {
1092 ret = kvm_arch_put_fpsimd(cs);
1094 if (ret) {
1095 return ret;
1098 reg.addr = (uintptr_t)(&fpr);
1099 fpr = vfp_get_fpsr(env);
1100 reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpsr);
1101 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1102 if (ret) {
1103 return ret;
1106 reg.addr = (uintptr_t)(&fpr);
1107 fpr = vfp_get_fpcr(env);
1108 reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpcr);
1109 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1110 if (ret) {
1111 return ret;
1114 write_cpustate_to_list(cpu, true);
1116 if (!write_list_to_kvmstate(cpu, level)) {
1117 return -EINVAL;
1121 * Setting VCPU events should be triggered after syncing the registers
1122 * to avoid overwriting potential changes made by KVM upon calling
1123 * KVM_SET_VCPU_EVENTS ioctl
1125 ret = kvm_put_vcpu_events(cpu);
1126 if (ret) {
1127 return ret;
1130 kvm_arm_sync_mpstate_to_kvm(cpu);
1132 return ret;
1135 static int kvm_arch_get_fpsimd(CPUState *cs)
1137 CPUARMState *env = &ARM_CPU(cs)->env;
1138 struct kvm_one_reg reg;
1139 int i, ret;
1141 for (i = 0; i < 32; i++) {
1142 uint64_t *q = aa64_vfp_qreg(env, i);
1143 reg.id = AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]);
1144 reg.addr = (uintptr_t)q;
1145 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
1146 if (ret) {
1147 return ret;
1148 } else {
1149 #ifdef HOST_WORDS_BIGENDIAN
1150 uint64_t t;
1151 t = q[0], q[0] = q[1], q[1] = t;
1152 #endif
1156 return 0;
1160 * KVM SVE registers come in slices where ZREGs have a slice size of 2048 bits
1161 * and PREGS and the FFR have a slice size of 256 bits. However we simply hard
1162 * code the slice index to zero for now as it's unlikely we'll need more than
1163 * one slice for quite some time.
1165 static int kvm_arch_get_sve(CPUState *cs)
1167 ARMCPU *cpu = ARM_CPU(cs);
1168 CPUARMState *env = &cpu->env;
1169 struct kvm_one_reg reg;
1170 uint64_t *r;
1171 int n, ret;
1173 for (n = 0; n < KVM_ARM64_SVE_NUM_ZREGS; ++n) {
1174 r = &env->vfp.zregs[n].d[0];
1175 reg.addr = (uintptr_t)r;
1176 reg.id = KVM_REG_ARM64_SVE_ZREG(n, 0);
1177 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
1178 if (ret) {
1179 return ret;
1181 sve_bswap64(r, r, cpu->sve_max_vq * 2);
1184 for (n = 0; n < KVM_ARM64_SVE_NUM_PREGS; ++n) {
1185 r = &env->vfp.pregs[n].p[0];
1186 reg.addr = (uintptr_t)r;
1187 reg.id = KVM_REG_ARM64_SVE_PREG(n, 0);
1188 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
1189 if (ret) {
1190 return ret;
1192 sve_bswap64(r, r, DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
1195 r = &env->vfp.pregs[FFR_PRED_NUM].p[0];
1196 reg.addr = (uintptr_t)r;
1197 reg.id = KVM_REG_ARM64_SVE_FFR(0);
1198 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
1199 if (ret) {
1200 return ret;
1202 sve_bswap64(r, r, DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
1204 return 0;
1207 int kvm_arch_get_registers(CPUState *cs)
1209 struct kvm_one_reg reg;
1210 uint64_t val;
1211 unsigned int el;
1212 uint32_t fpr;
1213 int i, ret;
1215 ARMCPU *cpu = ARM_CPU(cs);
1216 CPUARMState *env = &cpu->env;
1218 for (i = 0; i < 31; i++) {
1219 reg.id = AARCH64_CORE_REG(regs.regs[i]);
1220 reg.addr = (uintptr_t) &env->xregs[i];
1221 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
1222 if (ret) {
1223 return ret;
1227 reg.id = AARCH64_CORE_REG(regs.sp);
1228 reg.addr = (uintptr_t) &env->sp_el[0];
1229 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
1230 if (ret) {
1231 return ret;
1234 reg.id = AARCH64_CORE_REG(sp_el1);
1235 reg.addr = (uintptr_t) &env->sp_el[1];
1236 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
1237 if (ret) {
1238 return ret;
1241 reg.id = AARCH64_CORE_REG(regs.pstate);
1242 reg.addr = (uintptr_t) &val;
1243 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
1244 if (ret) {
1245 return ret;
1248 env->aarch64 = ((val & PSTATE_nRW) == 0);
1249 if (is_a64(env)) {
1250 pstate_write(env, val);
1251 } else {
1252 cpsr_write(env, val, 0xffffffff, CPSRWriteRaw);
1255 /* KVM puts SP_EL0 in regs.sp and SP_EL1 in regs.sp_el1. On the
1256 * QEMU side we keep the current SP in xregs[31] as well.
1258 aarch64_restore_sp(env, 1);
1260 reg.id = AARCH64_CORE_REG(regs.pc);
1261 reg.addr = (uintptr_t) &env->pc;
1262 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
1263 if (ret) {
1264 return ret;
1267 /* If we are in AArch32 mode then we need to sync the AArch32 regs with the
1268 * incoming AArch64 regs received from 64-bit KVM.
1269 * We must perform this after all of the registers have been acquired from
1270 * the kernel.
1272 if (!is_a64(env)) {
1273 aarch64_sync_64_to_32(env);
1276 reg.id = AARCH64_CORE_REG(elr_el1);
1277 reg.addr = (uintptr_t) &env->elr_el[1];
1278 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
1279 if (ret) {
1280 return ret;
1283 /* Fetch the SPSR registers
1285 * KVM SPSRs 0-4 map to QEMU banks 1-5
1287 for (i = 0; i < KVM_NR_SPSR; i++) {
1288 reg.id = AARCH64_CORE_REG(spsr[i]);
1289 reg.addr = (uintptr_t) &env->banked_spsr[i + 1];
1290 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
1291 if (ret) {
1292 return ret;
1296 el = arm_current_el(env);
1297 if (el > 0 && !is_a64(env)) {
1298 i = bank_number(env->uncached_cpsr & CPSR_M);
1299 env->spsr = env->banked_spsr[i];
1302 if (cpu_isar_feature(aa64_sve, cpu)) {
1303 ret = kvm_arch_get_sve(cs);
1304 } else {
1305 ret = kvm_arch_get_fpsimd(cs);
1307 if (ret) {
1308 return ret;
1311 reg.addr = (uintptr_t)(&fpr);
1312 reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpsr);
1313 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
1314 if (ret) {
1315 return ret;
1317 vfp_set_fpsr(env, fpr);
1319 reg.addr = (uintptr_t)(&fpr);
1320 reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpcr);
1321 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
1322 if (ret) {
1323 return ret;
1325 vfp_set_fpcr(env, fpr);
1327 ret = kvm_get_vcpu_events(cpu);
1328 if (ret) {
1329 return ret;
1332 if (!write_kvmstate_to_list(cpu)) {
1333 return -EINVAL;
1335 /* Note that it's OK to have registers which aren't in CPUState,
1336 * so we can ignore a failure return here.
1338 write_list_to_cpustate(cpu);
1340 kvm_arm_sync_mpstate_to_qemu(cpu);
1342 /* TODO: other registers */
1343 return ret;
1346 void kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr)
1348 ram_addr_t ram_addr;
1349 hwaddr paddr;
1350 Object *obj = qdev_get_machine();
1351 VirtMachineState *vms = VIRT_MACHINE(obj);
1352 bool acpi_enabled = virt_is_acpi_enabled(vms);
1354 assert(code == BUS_MCEERR_AR || code == BUS_MCEERR_AO);
1356 if (acpi_enabled && addr &&
1357 object_property_get_bool(obj, "ras", NULL)) {
1358 ram_addr = qemu_ram_addr_from_host(addr);
1359 if (ram_addr != RAM_ADDR_INVALID &&
1360 kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) {
1361 kvm_hwpoison_page_add(ram_addr);
1363 * If this is a BUS_MCEERR_AR, we know we have been called
1364 * synchronously from the vCPU thread, so we can easily
1365 * synchronize the state and inject an error.
1367 * TODO: we currently don't tell the guest at all about
1368 * BUS_MCEERR_AO. In that case we might either be being
1369 * called synchronously from the vCPU thread, or a bit
1370 * later from the main thread, so doing the injection of
1371 * the error would be more complicated.
1373 if (code == BUS_MCEERR_AR) {
1374 kvm_cpu_synchronize_state(c);
1375 if (!acpi_ghes_record_errors(ACPI_HEST_SRC_ID_SEA, paddr)) {
1376 kvm_inject_arm_sea(c);
1377 } else {
1378 error_report("failed to record the error");
1379 abort();
1382 return;
1384 if (code == BUS_MCEERR_AO) {
1385 error_report("Hardware memory error at addr %p for memory used by "
1386 "QEMU itself instead of guest system!", addr);
1390 if (code == BUS_MCEERR_AR) {
1391 error_report("Hardware memory error!");
1392 exit(1);
1396 /* C6.6.29 BRK instruction */
1397 static const uint32_t brk_insn = 0xd4200000;
1399 int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
1401 if (have_guest_debug) {
1402 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 4, 0) ||
1403 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&brk_insn, 4, 1)) {
1404 return -EINVAL;
1406 return 0;
1407 } else {
1408 error_report("guest debug not supported on this kernel");
1409 return -EINVAL;
1413 int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
1415 static uint32_t brk;
1417 if (have_guest_debug) {
1418 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&brk, 4, 0) ||
1419 brk != brk_insn ||
1420 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 4, 1)) {
1421 return -EINVAL;
1423 return 0;
1424 } else {
1425 error_report("guest debug not supported on this kernel");
1426 return -EINVAL;
1430 /* See v8 ARM ARM D7.2.27 ESR_ELx, Exception Syndrome Register
1432 * To minimise translating between kernel and user-space the kernel
1433 * ABI just provides user-space with the full exception syndrome
1434 * register value to be decoded in QEMU.
1437 bool kvm_arm_handle_debug(CPUState *cs, struct kvm_debug_exit_arch *debug_exit)
1439 int hsr_ec = syn_get_ec(debug_exit->hsr);
1440 ARMCPU *cpu = ARM_CPU(cs);
1441 CPUClass *cc = CPU_GET_CLASS(cs);
1442 CPUARMState *env = &cpu->env;
1444 /* Ensure PC is synchronised */
1445 kvm_cpu_synchronize_state(cs);
1447 switch (hsr_ec) {
1448 case EC_SOFTWARESTEP:
1449 if (cs->singlestep_enabled) {
1450 return true;
1451 } else {
1453 * The kernel should have suppressed the guest's ability to
1454 * single step at this point so something has gone wrong.
1456 error_report("%s: guest single-step while debugging unsupported"
1457 " (%"PRIx64", %"PRIx32")",
1458 __func__, env->pc, debug_exit->hsr);
1459 return false;
1461 break;
1462 case EC_AA64_BKPT:
1463 if (kvm_find_sw_breakpoint(cs, env->pc)) {
1464 return true;
1466 break;
1467 case EC_BREAKPOINT:
1468 if (find_hw_breakpoint(cs, env->pc)) {
1469 return true;
1471 break;
1472 case EC_WATCHPOINT:
1474 CPUWatchpoint *wp = find_hw_watchpoint(cs, debug_exit->far);
1475 if (wp) {
1476 cs->watchpoint_hit = wp;
1477 return true;
1479 break;
1481 default:
1482 error_report("%s: unhandled debug exit (%"PRIx32", %"PRIx64")",
1483 __func__, debug_exit->hsr, env->pc);
1486 /* If we are not handling the debug exception it must belong to
1487 * the guest. Let's re-use the existing TCG interrupt code to set
1488 * everything up properly.
1490 cs->exception_index = EXCP_BKPT;
1491 env->exception.syndrome = debug_exit->hsr;
1492 env->exception.vaddress = debug_exit->far;
1493 env->exception.target_el = 1;
1494 qemu_mutex_lock_iothread();
1495 cc->do_interrupt(cs);
1496 qemu_mutex_unlock_iothread();
1498 return false;