2 * i386 emulator main execution loop
4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
24 #include "qemu-barrier.h"
26 #if defined(__sparc__) && !defined(CONFIG_SOLARIS)
27 // Work around ugly bugs in glibc that mangle global register contents
29 #define env cpu_single_env
32 int tb_invalidated_flag
;
34 //#define CONFIG_DEBUG_EXEC
36 int qemu_cpu_has_work(CPUState
*env
)
38 return cpu_has_work(env
);
41 void cpu_loop_exit(void)
43 env
->current_tb
= NULL
;
44 longjmp(env
->jmp_env
, 1);
47 /* exit the current TB from a signal handler. The host registers are
48 restored in a state compatible with the CPU emulator
50 #if defined(CONFIG_SOFTMMU)
51 void cpu_resume_from_signal(CPUState
*env1
, void *puc
)
55 /* XXX: restore cpu registers saved in host registers */
57 env
->exception_index
= -1;
58 longjmp(env
->jmp_env
, 1);
62 /* Execute the code without caching the generated code. An interpreter
63 could be used if available. */
64 static void cpu_exec_nocache(int max_cycles
, TranslationBlock
*orig_tb
)
66 unsigned long next_tb
;
69 /* Should never happen.
70 We only end up here when an existing TB is too long. */
71 if (max_cycles
> CF_COUNT_MASK
)
72 max_cycles
= CF_COUNT_MASK
;
74 tb
= tb_gen_code(env
, orig_tb
->pc
, orig_tb
->cs_base
, orig_tb
->flags
,
77 /* execute the generated code */
78 next_tb
= tcg_qemu_tb_exec(tb
->tc_ptr
);
79 env
->current_tb
= NULL
;
81 if ((next_tb
& 3) == 2) {
82 /* Restore PC. This may happen if async event occurs before
83 the TB starts executing. */
84 cpu_pc_from_tb(env
, tb
);
86 tb_phys_invalidate(tb
, -1);
90 static TranslationBlock
*tb_find_slow(target_ulong pc
,
94 TranslationBlock
*tb
, **ptb1
;
96 tb_page_addr_t phys_pc
, phys_page1
, phys_page2
;
97 target_ulong virt_page2
;
99 tb_invalidated_flag
= 0;
101 /* find translated block using physical mappings */
102 phys_pc
= get_page_addr_code(env
, pc
);
103 phys_page1
= phys_pc
& TARGET_PAGE_MASK
;
105 h
= tb_phys_hash_func(phys_pc
);
106 ptb1
= &tb_phys_hash
[h
];
112 tb
->page_addr
[0] == phys_page1
&&
113 tb
->cs_base
== cs_base
&&
114 tb
->flags
== flags
) {
115 /* check next page if needed */
116 if (tb
->page_addr
[1] != -1) {
117 virt_page2
= (pc
& TARGET_PAGE_MASK
) +
119 phys_page2
= get_page_addr_code(env
, virt_page2
);
120 if (tb
->page_addr
[1] == phys_page2
)
126 ptb1
= &tb
->phys_hash_next
;
129 /* if no translated code available, then translate it now */
130 tb
= tb_gen_code(env
, pc
, cs_base
, flags
, 0);
133 /* Move the last found TB to the head of the list */
135 *ptb1
= tb
->phys_hash_next
;
136 tb
->phys_hash_next
= tb_phys_hash
[h
];
137 tb_phys_hash
[h
] = tb
;
139 /* we add the TB in the virtual pc hash table */
140 env
->tb_jmp_cache
[tb_jmp_cache_hash_func(pc
)] = tb
;
144 static inline TranslationBlock
*tb_find_fast(void)
146 TranslationBlock
*tb
;
147 target_ulong cs_base
, pc
;
150 /* we record a subset of the CPU state. It will
151 always be the same before a given translated block
153 cpu_get_tb_cpu_state(env
, &pc
, &cs_base
, &flags
);
154 tb
= env
->tb_jmp_cache
[tb_jmp_cache_hash_func(pc
)];
155 if (unlikely(!tb
|| tb
->pc
!= pc
|| tb
->cs_base
!= cs_base
||
156 tb
->flags
!= flags
)) {
157 tb
= tb_find_slow(pc
, cs_base
, flags
);
162 static CPUDebugExcpHandler
*debug_excp_handler
;
164 CPUDebugExcpHandler
*cpu_set_debug_excp_handler(CPUDebugExcpHandler
*handler
)
166 CPUDebugExcpHandler
*old_handler
= debug_excp_handler
;
168 debug_excp_handler
= handler
;
172 static void cpu_handle_debug_exception(CPUState
*env
)
176 if (!env
->watchpoint_hit
) {
177 QTAILQ_FOREACH(wp
, &env
->watchpoints
, entry
) {
178 wp
->flags
&= ~BP_WATCHPOINT_HIT
;
181 if (debug_excp_handler
) {
182 debug_excp_handler(env
);
186 /* main execution loop */
188 volatile sig_atomic_t exit_request
;
190 int cpu_exec(CPUState
*env1
)
192 volatile host_reg_t saved_env_reg
;
193 int ret
, interrupt_request
;
194 TranslationBlock
*tb
;
196 unsigned long next_tb
;
199 if (!cpu_has_work(env1
)) {
206 cpu_single_env
= env1
;
208 /* the access to env below is actually saving the global register's
209 value, so that files not including target-xyz/exec.h are free to
211 QEMU_BUILD_BUG_ON (sizeof (saved_env_reg
) != sizeof (env
));
212 saved_env_reg
= (host_reg_t
) env
;
216 if (unlikely(exit_request
)) {
217 env
->exit_request
= 1;
220 #if defined(TARGET_I386)
221 /* put eflags in CPU temporary format */
222 CC_SRC
= env
->eflags
& (CC_O
| CC_S
| CC_Z
| CC_A
| CC_P
| CC_C
);
223 DF
= 1 - (2 * ((env
->eflags
>> 10) & 1));
224 CC_OP
= CC_OP_EFLAGS
;
225 env
->eflags
&= ~(DF_MASK
| CC_O
| CC_S
| CC_Z
| CC_A
| CC_P
| CC_C
);
226 #elif defined(TARGET_SPARC)
227 #elif defined(TARGET_M68K)
228 env
->cc_op
= CC_OP_FLAGS
;
229 env
->cc_dest
= env
->sr
& 0xf;
230 env
->cc_x
= (env
->sr
>> 4) & 1;
231 #elif defined(TARGET_ALPHA)
232 #elif defined(TARGET_ARM)
233 #elif defined(TARGET_UNICORE32)
234 #elif defined(TARGET_PPC)
235 #elif defined(TARGET_LM32)
236 #elif defined(TARGET_MICROBLAZE)
237 #elif defined(TARGET_MIPS)
238 #elif defined(TARGET_SH4)
239 #elif defined(TARGET_CRIS)
240 #elif defined(TARGET_S390X)
243 #error unsupported target CPU
245 env
->exception_index
= -1;
247 /* prepare setjmp context for exception handling */
249 if (setjmp(env
->jmp_env
) == 0) {
250 #if defined(__sparc__) && !defined(CONFIG_SOLARIS)
252 env
= cpu_single_env
;
253 #define env cpu_single_env
255 /* if an exception is pending, we execute it here */
256 if (env
->exception_index
>= 0) {
257 if (env
->exception_index
>= EXCP_INTERRUPT
) {
258 /* exit request from the cpu execution loop */
259 ret
= env
->exception_index
;
260 if (ret
== EXCP_DEBUG
) {
261 cpu_handle_debug_exception(env
);
265 #if defined(CONFIG_USER_ONLY)
266 /* if user mode only, we simulate a fake exception
267 which will be handled outside the cpu execution
269 #if defined(TARGET_I386)
270 do_interrupt_user(env
->exception_index
,
271 env
->exception_is_int
,
273 env
->exception_next_eip
);
274 /* successfully delivered */
275 env
->old_exception
= -1;
277 ret
= env
->exception_index
;
280 #if defined(TARGET_I386)
281 /* simulate a real cpu exception. On i386, it can
282 trigger new exceptions, but we do not handle
283 double or triple faults yet. */
284 do_interrupt(env
->exception_index
,
285 env
->exception_is_int
,
287 env
->exception_next_eip
, 0);
288 /* successfully delivered */
289 env
->old_exception
= -1;
290 #elif defined(TARGET_PPC)
292 #elif defined(TARGET_LM32)
294 #elif defined(TARGET_MICROBLAZE)
296 #elif defined(TARGET_MIPS)
298 #elif defined(TARGET_SPARC)
300 #elif defined(TARGET_ARM)
302 #elif defined(TARGET_UNICORE32)
304 #elif defined(TARGET_SH4)
306 #elif defined(TARGET_ALPHA)
308 #elif defined(TARGET_CRIS)
310 #elif defined(TARGET_M68K)
312 #elif defined(TARGET_S390X)
315 env
->exception_index
= -1;
320 next_tb
= 0; /* force lookup of first TB */
322 interrupt_request
= env
->interrupt_request
;
323 if (unlikely(interrupt_request
)) {
324 if (unlikely(env
->singlestep_enabled
& SSTEP_NOIRQ
)) {
325 /* Mask out external interrupts for this step. */
326 interrupt_request
&= ~CPU_INTERRUPT_SSTEP_MASK
;
328 if (interrupt_request
& CPU_INTERRUPT_DEBUG
) {
329 env
->interrupt_request
&= ~CPU_INTERRUPT_DEBUG
;
330 env
->exception_index
= EXCP_DEBUG
;
333 #if defined(TARGET_ARM) || defined(TARGET_SPARC) || defined(TARGET_MIPS) || \
334 defined(TARGET_PPC) || defined(TARGET_ALPHA) || defined(TARGET_CRIS) || \
335 defined(TARGET_MICROBLAZE) || defined(TARGET_LM32) || defined(TARGET_UNICORE32)
336 if (interrupt_request
& CPU_INTERRUPT_HALT
) {
337 env
->interrupt_request
&= ~CPU_INTERRUPT_HALT
;
339 env
->exception_index
= EXCP_HLT
;
343 #if defined(TARGET_I386)
344 if (interrupt_request
& CPU_INTERRUPT_INIT
) {
345 svm_check_intercept(SVM_EXIT_INIT
);
347 env
->exception_index
= EXCP_HALTED
;
349 } else if (interrupt_request
& CPU_INTERRUPT_SIPI
) {
351 } else if (env
->hflags2
& HF2_GIF_MASK
) {
352 if ((interrupt_request
& CPU_INTERRUPT_SMI
) &&
353 !(env
->hflags
& HF_SMM_MASK
)) {
354 svm_check_intercept(SVM_EXIT_SMI
);
355 env
->interrupt_request
&= ~CPU_INTERRUPT_SMI
;
358 } else if ((interrupt_request
& CPU_INTERRUPT_NMI
) &&
359 !(env
->hflags2
& HF2_NMI_MASK
)) {
360 env
->interrupt_request
&= ~CPU_INTERRUPT_NMI
;
361 env
->hflags2
|= HF2_NMI_MASK
;
362 do_interrupt(EXCP02_NMI
, 0, 0, 0, 1);
364 } else if (interrupt_request
& CPU_INTERRUPT_MCE
) {
365 env
->interrupt_request
&= ~CPU_INTERRUPT_MCE
;
366 do_interrupt(EXCP12_MCHK
, 0, 0, 0, 0);
368 } else if ((interrupt_request
& CPU_INTERRUPT_HARD
) &&
369 (((env
->hflags2
& HF2_VINTR_MASK
) &&
370 (env
->hflags2
& HF2_HIF_MASK
)) ||
371 (!(env
->hflags2
& HF2_VINTR_MASK
) &&
372 (env
->eflags
& IF_MASK
&&
373 !(env
->hflags
& HF_INHIBIT_IRQ_MASK
))))) {
375 svm_check_intercept(SVM_EXIT_INTR
);
376 env
->interrupt_request
&= ~(CPU_INTERRUPT_HARD
| CPU_INTERRUPT_VIRQ
);
377 intno
= cpu_get_pic_interrupt(env
);
378 qemu_log_mask(CPU_LOG_TB_IN_ASM
, "Servicing hardware INT=0x%02x\n", intno
);
379 #if defined(__sparc__) && !defined(CONFIG_SOLARIS)
381 env
= cpu_single_env
;
382 #define env cpu_single_env
384 do_interrupt(intno
, 0, 0, 0, 1);
385 /* ensure that no TB jump will be modified as
386 the program flow was changed */
388 #if !defined(CONFIG_USER_ONLY)
389 } else if ((interrupt_request
& CPU_INTERRUPT_VIRQ
) &&
390 (env
->eflags
& IF_MASK
) &&
391 !(env
->hflags
& HF_INHIBIT_IRQ_MASK
)) {
393 /* FIXME: this should respect TPR */
394 svm_check_intercept(SVM_EXIT_VINTR
);
395 intno
= ldl_phys(env
->vm_vmcb
+ offsetof(struct vmcb
, control
.int_vector
));
396 qemu_log_mask(CPU_LOG_TB_IN_ASM
, "Servicing virtual hardware INT=0x%02x\n", intno
);
397 do_interrupt(intno
, 0, 0, 0, 1);
398 env
->interrupt_request
&= ~CPU_INTERRUPT_VIRQ
;
403 #elif defined(TARGET_PPC)
405 if ((interrupt_request
& CPU_INTERRUPT_RESET
)) {
409 if (interrupt_request
& CPU_INTERRUPT_HARD
) {
410 ppc_hw_interrupt(env
);
411 if (env
->pending_interrupts
== 0)
412 env
->interrupt_request
&= ~CPU_INTERRUPT_HARD
;
415 #elif defined(TARGET_LM32)
416 if ((interrupt_request
& CPU_INTERRUPT_HARD
)
417 && (env
->ie
& IE_IE
)) {
418 env
->exception_index
= EXCP_IRQ
;
422 #elif defined(TARGET_MICROBLAZE)
423 if ((interrupt_request
& CPU_INTERRUPT_HARD
)
424 && (env
->sregs
[SR_MSR
] & MSR_IE
)
425 && !(env
->sregs
[SR_MSR
] & (MSR_EIP
| MSR_BIP
))
426 && !(env
->iflags
& (D_FLAG
| IMM_FLAG
))) {
427 env
->exception_index
= EXCP_IRQ
;
431 #elif defined(TARGET_MIPS)
432 if ((interrupt_request
& CPU_INTERRUPT_HARD
) &&
433 cpu_mips_hw_interrupts_pending(env
)) {
435 env
->exception_index
= EXCP_EXT_INTERRUPT
;
440 #elif defined(TARGET_SPARC)
441 if (interrupt_request
& CPU_INTERRUPT_HARD
) {
442 if (cpu_interrupts_enabled(env
) &&
443 env
->interrupt_index
> 0) {
444 int pil
= env
->interrupt_index
& 0xf;
445 int type
= env
->interrupt_index
& 0xf0;
447 if (((type
== TT_EXTINT
) &&
448 cpu_pil_allowed(env
, pil
)) ||
450 env
->exception_index
= env
->interrupt_index
;
456 #elif defined(TARGET_ARM)
457 if (interrupt_request
& CPU_INTERRUPT_FIQ
458 && !(env
->uncached_cpsr
& CPSR_F
)) {
459 env
->exception_index
= EXCP_FIQ
;
463 /* ARMv7-M interrupt return works by loading a magic value
464 into the PC. On real hardware the load causes the
465 return to occur. The qemu implementation performs the
466 jump normally, then does the exception return when the
467 CPU tries to execute code at the magic address.
468 This will cause the magic PC value to be pushed to
469 the stack if an interrupt occurred at the wrong time.
470 We avoid this by disabling interrupts when
471 pc contains a magic address. */
472 if (interrupt_request
& CPU_INTERRUPT_HARD
473 && ((IS_M(env
) && env
->regs
[15] < 0xfffffff0)
474 || !(env
->uncached_cpsr
& CPSR_I
))) {
475 env
->exception_index
= EXCP_IRQ
;
479 #elif defined(TARGET_UNICORE32)
480 if (interrupt_request
& CPU_INTERRUPT_HARD
481 && !(env
->uncached_asr
& ASR_I
)) {
485 #elif defined(TARGET_SH4)
486 if (interrupt_request
& CPU_INTERRUPT_HARD
) {
490 #elif defined(TARGET_ALPHA)
493 /* ??? This hard-codes the OSF/1 interrupt levels. */
494 switch (env
->pal_mode
? 7 : env
->ps
& PS_INT_MASK
) {
496 if (interrupt_request
& CPU_INTERRUPT_HARD
) {
497 idx
= EXCP_DEV_INTERRUPT
;
501 if (interrupt_request
& CPU_INTERRUPT_TIMER
) {
502 idx
= EXCP_CLK_INTERRUPT
;
506 if (interrupt_request
& CPU_INTERRUPT_SMP
) {
507 idx
= EXCP_SMP_INTERRUPT
;
511 if (interrupt_request
& CPU_INTERRUPT_MCHK
) {
516 env
->exception_index
= idx
;
522 #elif defined(TARGET_CRIS)
523 if (interrupt_request
& CPU_INTERRUPT_HARD
524 && (env
->pregs
[PR_CCS
] & I_FLAG
)
525 && !env
->locked_irq
) {
526 env
->exception_index
= EXCP_IRQ
;
530 if (interrupt_request
& CPU_INTERRUPT_NMI
531 && (env
->pregs
[PR_CCS
] & M_FLAG
)) {
532 env
->exception_index
= EXCP_NMI
;
536 #elif defined(TARGET_M68K)
537 if (interrupt_request
& CPU_INTERRUPT_HARD
538 && ((env
->sr
& SR_I
) >> SR_I_SHIFT
)
539 < env
->pending_level
) {
540 /* Real hardware gets the interrupt vector via an
541 IACK cycle at this point. Current emulated
542 hardware doesn't rely on this, so we
543 provide/save the vector when the interrupt is
545 env
->exception_index
= env
->pending_vector
;
549 #elif defined(TARGET_S390X) && !defined(CONFIG_USER_ONLY)
550 if ((interrupt_request
& CPU_INTERRUPT_HARD
) &&
551 (env
->psw
.mask
& PSW_MASK_EXT
)) {
556 /* Don't use the cached interrupt_request value,
557 do_interrupt may have updated the EXITTB flag. */
558 if (env
->interrupt_request
& CPU_INTERRUPT_EXITTB
) {
559 env
->interrupt_request
&= ~CPU_INTERRUPT_EXITTB
;
560 /* ensure that no TB jump will be modified as
561 the program flow was changed */
565 if (unlikely(env
->exit_request
)) {
566 env
->exit_request
= 0;
567 env
->exception_index
= EXCP_INTERRUPT
;
570 #if defined(DEBUG_DISAS) || defined(CONFIG_DEBUG_EXEC)
571 if (qemu_loglevel_mask(CPU_LOG_TB_CPU
)) {
572 /* restore flags in standard format */
573 #if defined(TARGET_I386)
574 env
->eflags
= env
->eflags
| helper_cc_compute_all(CC_OP
) | (DF
& DF_MASK
);
575 log_cpu_state(env
, X86_DUMP_CCOP
);
576 env
->eflags
&= ~(DF_MASK
| CC_O
| CC_S
| CC_Z
| CC_A
| CC_P
| CC_C
);
577 #elif defined(TARGET_M68K)
578 cpu_m68k_flush_flags(env
, env
->cc_op
);
579 env
->cc_op
= CC_OP_FLAGS
;
580 env
->sr
= (env
->sr
& 0xffe0)
581 | env
->cc_dest
| (env
->cc_x
<< 4);
582 log_cpu_state(env
, 0);
584 log_cpu_state(env
, 0);
587 #endif /* DEBUG_DISAS || CONFIG_DEBUG_EXEC */
590 /* Note: we do it here to avoid a gcc bug on Mac OS X when
591 doing it in tb_find_slow */
592 if (tb_invalidated_flag
) {
593 /* as some TB could have been invalidated because
594 of memory exceptions while generating the code, we
595 must recompute the hash index here */
597 tb_invalidated_flag
= 0;
599 #ifdef CONFIG_DEBUG_EXEC
600 qemu_log_mask(CPU_LOG_EXEC
, "Trace 0x%08lx [" TARGET_FMT_lx
"] %s\n",
601 (long)tb
->tc_ptr
, tb
->pc
,
602 lookup_symbol(tb
->pc
));
604 /* see if we can patch the calling TB. When the TB
605 spans two pages, we cannot safely do a direct
607 if (next_tb
!= 0 && tb
->page_addr
[1] == -1) {
608 tb_add_jump((TranslationBlock
*)(next_tb
& ~3), next_tb
& 3, tb
);
610 spin_unlock(&tb_lock
);
612 /* cpu_interrupt might be called while translating the
613 TB, but before it is linked into a potentially
614 infinite loop and becomes env->current_tb. Avoid
615 starting execution if there is a pending interrupt. */
616 env
->current_tb
= tb
;
618 if (likely(!env
->exit_request
)) {
620 /* execute the generated code */
621 #if defined(__sparc__) && !defined(CONFIG_SOLARIS)
623 env
= cpu_single_env
;
624 #define env cpu_single_env
626 next_tb
= tcg_qemu_tb_exec(tc_ptr
);
627 if ((next_tb
& 3) == 2) {
628 /* Instruction counter expired. */
630 tb
= (TranslationBlock
*)(long)(next_tb
& ~3);
632 cpu_pc_from_tb(env
, tb
);
633 insns_left
= env
->icount_decr
.u32
;
634 if (env
->icount_extra
&& insns_left
>= 0) {
635 /* Refill decrementer and continue execution. */
636 env
->icount_extra
+= insns_left
;
637 if (env
->icount_extra
> 0xffff) {
640 insns_left
= env
->icount_extra
;
642 env
->icount_extra
-= insns_left
;
643 env
->icount_decr
.u16
.low
= insns_left
;
645 if (insns_left
> 0) {
646 /* Execute remaining instructions. */
647 cpu_exec_nocache(insns_left
, tb
);
649 env
->exception_index
= EXCP_INTERRUPT
;
655 env
->current_tb
= NULL
;
656 /* reset soft MMU for next block (it can currently
657 only be set by a memory fault) */
663 #if defined(TARGET_I386)
664 /* restore flags in standard format */
665 env
->eflags
= env
->eflags
| helper_cc_compute_all(CC_OP
) | (DF
& DF_MASK
);
666 #elif defined(TARGET_ARM)
667 /* XXX: Save/restore host fpu exception state?. */
668 #elif defined(TARGET_UNICORE32)
669 #elif defined(TARGET_SPARC)
670 #elif defined(TARGET_PPC)
671 #elif defined(TARGET_LM32)
672 #elif defined(TARGET_M68K)
673 cpu_m68k_flush_flags(env
, env
->cc_op
);
674 env
->cc_op
= CC_OP_FLAGS
;
675 env
->sr
= (env
->sr
& 0xffe0)
676 | env
->cc_dest
| (env
->cc_x
<< 4);
677 #elif defined(TARGET_MICROBLAZE)
678 #elif defined(TARGET_MIPS)
679 #elif defined(TARGET_SH4)
680 #elif defined(TARGET_ALPHA)
681 #elif defined(TARGET_CRIS)
682 #elif defined(TARGET_S390X)
685 #error unsupported target CPU
688 /* restore global registers */
690 env
= (void *) saved_env_reg
;
692 /* fail safe : never use cpu_single_env outside cpu_exec() */
693 cpu_single_env
= NULL
;