2 * QEMU NVM Express Controller
4 * Copyright (c) 2012, Intel Corporation
6 * Written by Keith Busch <keith.busch@intel.com>
8 * This code is licensed under the GNU GPL v2 or later.
12 * Reference Specs: http://www.nvmexpress.org, 1.1, 1.0e
14 * http://www.nvmexpress.org/resources/
19 * -drive file=<file>,if=none,id=<drive_id>
20 * -device nvme,drive=<drive_id>,serial=<serial>,id=<id[optional]>
23 #include <hw/block/block.h>
25 #include <hw/pci/msix.h>
26 #include <hw/pci/pci.h>
27 #include "sysemu/sysemu.h"
28 #include "qapi/visitor.h"
29 #include "sysemu/block-backend.h"
33 static void nvme_process_sq(void *opaque
);
35 static int nvme_check_sqid(NvmeCtrl
*n
, uint16_t sqid
)
37 return sqid
< n
->num_queues
&& n
->sq
[sqid
] != NULL
? 0 : -1;
40 static int nvme_check_cqid(NvmeCtrl
*n
, uint16_t cqid
)
42 return cqid
< n
->num_queues
&& n
->cq
[cqid
] != NULL
? 0 : -1;
45 static void nvme_inc_cq_tail(NvmeCQueue
*cq
)
48 if (cq
->tail
>= cq
->size
) {
50 cq
->phase
= !cq
->phase
;
54 static void nvme_inc_sq_head(NvmeSQueue
*sq
)
56 sq
->head
= (sq
->head
+ 1) % sq
->size
;
59 static uint8_t nvme_cq_full(NvmeCQueue
*cq
)
61 return (cq
->tail
+ 1) % cq
->size
== cq
->head
;
64 static uint8_t nvme_sq_empty(NvmeSQueue
*sq
)
66 return sq
->head
== sq
->tail
;
69 static void nvme_isr_notify(NvmeCtrl
*n
, NvmeCQueue
*cq
)
71 if (cq
->irq_enabled
) {
72 if (msix_enabled(&(n
->parent_obj
))) {
73 msix_notify(&(n
->parent_obj
), cq
->vector
);
75 pci_irq_pulse(&n
->parent_obj
);
80 static uint16_t nvme_map_prp(QEMUSGList
*qsg
, uint64_t prp1
, uint64_t prp2
,
81 uint32_t len
, NvmeCtrl
*n
)
83 hwaddr trans_len
= n
->page_size
- (prp1
% n
->page_size
);
84 trans_len
= MIN(len
, trans_len
);
85 int num_prps
= (len
>> n
->page_bits
) + 1;
88 return NVME_INVALID_FIELD
| NVME_DNR
;
91 pci_dma_sglist_init(qsg
, &n
->parent_obj
, num_prps
);
92 qemu_sglist_add(qsg
, prp1
, trans_len
);
98 if (len
> n
->page_size
) {
99 uint64_t prp_list
[n
->max_prp_ents
];
100 uint32_t nents
, prp_trans
;
103 nents
= (len
+ n
->page_size
- 1) >> n
->page_bits
;
104 prp_trans
= MIN(n
->max_prp_ents
, nents
) * sizeof(uint64_t);
105 pci_dma_read(&n
->parent_obj
, prp2
, (void *)prp_list
, prp_trans
);
107 uint64_t prp_ent
= le64_to_cpu(prp_list
[i
]);
109 if (i
== n
->max_prp_ents
- 1 && len
> n
->page_size
) {
110 if (!prp_ent
|| prp_ent
& (n
->page_size
- 1)) {
115 nents
= (len
+ n
->page_size
- 1) >> n
->page_bits
;
116 prp_trans
= MIN(n
->max_prp_ents
, nents
) * sizeof(uint64_t);
117 pci_dma_read(&n
->parent_obj
, prp_ent
, (void *)prp_list
,
119 prp_ent
= le64_to_cpu(prp_list
[i
]);
122 if (!prp_ent
|| prp_ent
& (n
->page_size
- 1)) {
126 trans_len
= MIN(len
, n
->page_size
);
127 qemu_sglist_add(qsg
, prp_ent
, trans_len
);
132 if (prp2
& (n
->page_size
- 1)) {
135 qemu_sglist_add(qsg
, prp2
, len
);
141 qemu_sglist_destroy(qsg
);
142 return NVME_INVALID_FIELD
| NVME_DNR
;
145 static uint16_t nvme_dma_read_prp(NvmeCtrl
*n
, uint8_t *ptr
, uint32_t len
,
146 uint64_t prp1
, uint64_t prp2
)
150 if (nvme_map_prp(&qsg
, prp1
, prp2
, len
, n
)) {
151 return NVME_INVALID_FIELD
| NVME_DNR
;
153 if (dma_buf_read(ptr
, len
, &qsg
)) {
154 qemu_sglist_destroy(&qsg
);
155 return NVME_INVALID_FIELD
| NVME_DNR
;
160 static void nvme_post_cqes(void *opaque
)
162 NvmeCQueue
*cq
= opaque
;
163 NvmeCtrl
*n
= cq
->ctrl
;
164 NvmeRequest
*req
, *next
;
166 QTAILQ_FOREACH_SAFE(req
, &cq
->req_list
, entry
, next
) {
170 if (nvme_cq_full(cq
)) {
174 QTAILQ_REMOVE(&cq
->req_list
, req
, entry
);
176 req
->cqe
.status
= cpu_to_le16((req
->status
<< 1) | cq
->phase
);
177 req
->cqe
.sq_id
= cpu_to_le16(sq
->sqid
);
178 req
->cqe
.sq_head
= cpu_to_le16(sq
->head
);
179 addr
= cq
->dma_addr
+ cq
->tail
* n
->cqe_size
;
180 nvme_inc_cq_tail(cq
);
181 pci_dma_write(&n
->parent_obj
, addr
, (void *)&req
->cqe
,
183 QTAILQ_INSERT_TAIL(&sq
->req_list
, req
, entry
);
185 nvme_isr_notify(n
, cq
);
188 static void nvme_enqueue_req_completion(NvmeCQueue
*cq
, NvmeRequest
*req
)
190 assert(cq
->cqid
== req
->sq
->cqid
);
191 QTAILQ_REMOVE(&req
->sq
->out_req_list
, req
, entry
);
192 QTAILQ_INSERT_TAIL(&cq
->req_list
, req
, entry
);
193 timer_mod(cq
->timer
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
) + 500);
196 static void nvme_rw_cb(void *opaque
, int ret
)
198 NvmeRequest
*req
= opaque
;
199 NvmeSQueue
*sq
= req
->sq
;
200 NvmeCtrl
*n
= sq
->ctrl
;
201 NvmeCQueue
*cq
= n
->cq
[sq
->cqid
];
203 block_acct_done(blk_get_stats(n
->conf
.blk
), &req
->acct
);
205 req
->status
= NVME_SUCCESS
;
207 req
->status
= NVME_INTERNAL_DEV_ERROR
;
210 qemu_sglist_destroy(&req
->qsg
);
211 nvme_enqueue_req_completion(cq
, req
);
214 static uint16_t nvme_rw(NvmeCtrl
*n
, NvmeNamespace
*ns
, NvmeCmd
*cmd
,
217 NvmeRwCmd
*rw
= (NvmeRwCmd
*)cmd
;
218 uint32_t nlb
= le32_to_cpu(rw
->nlb
) + 1;
219 uint64_t slba
= le64_to_cpu(rw
->slba
);
220 uint64_t prp1
= le64_to_cpu(rw
->prp1
);
221 uint64_t prp2
= le64_to_cpu(rw
->prp2
);
223 uint8_t lba_index
= NVME_ID_NS_FLBAS_INDEX(ns
->id_ns
.flbas
);
224 uint8_t data_shift
= ns
->id_ns
.lbaf
[lba_index
].ds
;
225 uint64_t data_size
= (uint64_t)nlb
<< data_shift
;
226 uint64_t aio_slba
= slba
<< (data_shift
- BDRV_SECTOR_BITS
);
227 int is_write
= rw
->opcode
== NVME_CMD_WRITE
? 1 : 0;
229 if ((slba
+ nlb
) > ns
->id_ns
.nsze
) {
230 return NVME_LBA_RANGE
| NVME_DNR
;
232 if (nvme_map_prp(&req
->qsg
, prp1
, prp2
, data_size
, n
)) {
233 return NVME_INVALID_FIELD
| NVME_DNR
;
235 assert((nlb
<< data_shift
) == req
->qsg
.size
);
237 dma_acct_start(n
->conf
.blk
, &req
->acct
, &req
->qsg
,
238 is_write
? BLOCK_ACCT_WRITE
: BLOCK_ACCT_READ
);
239 req
->aiocb
= is_write
?
240 dma_blk_write(n
->conf
.blk
, &req
->qsg
, aio_slba
, nvme_rw_cb
, req
) :
241 dma_blk_read(n
->conf
.blk
, &req
->qsg
, aio_slba
, nvme_rw_cb
, req
);
243 return NVME_NO_COMPLETE
;
246 static uint16_t nvme_io_cmd(NvmeCtrl
*n
, NvmeCmd
*cmd
, NvmeRequest
*req
)
249 uint32_t nsid
= le32_to_cpu(cmd
->nsid
);
251 if (nsid
== 0 || nsid
> n
->num_namespaces
) {
252 return NVME_INVALID_NSID
| NVME_DNR
;
255 ns
= &n
->namespaces
[nsid
- 1];
256 switch (cmd
->opcode
) {
261 return nvme_rw(n
, ns
, cmd
, req
);
263 return NVME_INVALID_OPCODE
| NVME_DNR
;
267 static void nvme_free_sq(NvmeSQueue
*sq
, NvmeCtrl
*n
)
269 n
->sq
[sq
->sqid
] = NULL
;
270 timer_del(sq
->timer
);
271 timer_free(sq
->timer
);
278 static uint16_t nvme_del_sq(NvmeCtrl
*n
, NvmeCmd
*cmd
)
280 NvmeDeleteQ
*c
= (NvmeDeleteQ
*)cmd
;
281 NvmeRequest
*req
, *next
;
284 uint16_t qid
= le16_to_cpu(c
->qid
);
286 if (!qid
|| nvme_check_sqid(n
, qid
)) {
287 return NVME_INVALID_QID
| NVME_DNR
;
291 while (!QTAILQ_EMPTY(&sq
->out_req_list
)) {
292 req
= QTAILQ_FIRST(&sq
->out_req_list
);
294 blk_aio_cancel(req
->aiocb
);
296 if (!nvme_check_cqid(n
, sq
->cqid
)) {
297 cq
= n
->cq
[sq
->cqid
];
298 QTAILQ_REMOVE(&cq
->sq_list
, sq
, entry
);
301 QTAILQ_FOREACH_SAFE(req
, &cq
->req_list
, entry
, next
) {
303 QTAILQ_REMOVE(&cq
->req_list
, req
, entry
);
304 QTAILQ_INSERT_TAIL(&sq
->req_list
, req
, entry
);
313 static void nvme_init_sq(NvmeSQueue
*sq
, NvmeCtrl
*n
, uint64_t dma_addr
,
314 uint16_t sqid
, uint16_t cqid
, uint16_t size
)
320 sq
->dma_addr
= dma_addr
;
324 sq
->head
= sq
->tail
= 0;
325 sq
->io_req
= g_new(NvmeRequest
, sq
->size
);
327 QTAILQ_INIT(&sq
->req_list
);
328 QTAILQ_INIT(&sq
->out_req_list
);
329 for (i
= 0; i
< sq
->size
; i
++) {
330 sq
->io_req
[i
].sq
= sq
;
331 QTAILQ_INSERT_TAIL(&(sq
->req_list
), &sq
->io_req
[i
], entry
);
333 sq
->timer
= timer_new_ns(QEMU_CLOCK_VIRTUAL
, nvme_process_sq
, sq
);
337 QTAILQ_INSERT_TAIL(&(cq
->sq_list
), sq
, entry
);
341 static uint16_t nvme_create_sq(NvmeCtrl
*n
, NvmeCmd
*cmd
)
344 NvmeCreateSq
*c
= (NvmeCreateSq
*)cmd
;
346 uint16_t cqid
= le16_to_cpu(c
->cqid
);
347 uint16_t sqid
= le16_to_cpu(c
->sqid
);
348 uint16_t qsize
= le16_to_cpu(c
->qsize
);
349 uint16_t qflags
= le16_to_cpu(c
->sq_flags
);
350 uint64_t prp1
= le64_to_cpu(c
->prp1
);
352 if (!cqid
|| nvme_check_cqid(n
, cqid
)) {
353 return NVME_INVALID_CQID
| NVME_DNR
;
355 if (!sqid
|| (sqid
&& !nvme_check_sqid(n
, sqid
))) {
356 return NVME_INVALID_QID
| NVME_DNR
;
358 if (!qsize
|| qsize
> NVME_CAP_MQES(n
->bar
.cap
)) {
359 return NVME_MAX_QSIZE_EXCEEDED
| NVME_DNR
;
361 if (!prp1
|| prp1
& (n
->page_size
- 1)) {
362 return NVME_INVALID_FIELD
| NVME_DNR
;
364 if (!(NVME_SQ_FLAGS_PC(qflags
))) {
365 return NVME_INVALID_FIELD
| NVME_DNR
;
367 sq
= g_malloc0(sizeof(*sq
));
368 nvme_init_sq(sq
, n
, prp1
, sqid
, cqid
, qsize
+ 1);
372 static void nvme_free_cq(NvmeCQueue
*cq
, NvmeCtrl
*n
)
374 n
->cq
[cq
->cqid
] = NULL
;
375 timer_del(cq
->timer
);
376 timer_free(cq
->timer
);
377 msix_vector_unuse(&n
->parent_obj
, cq
->vector
);
383 static uint16_t nvme_del_cq(NvmeCtrl
*n
, NvmeCmd
*cmd
)
385 NvmeDeleteQ
*c
= (NvmeDeleteQ
*)cmd
;
387 uint16_t qid
= le16_to_cpu(c
->qid
);
389 if (!qid
|| nvme_check_cqid(n
, qid
)) {
390 return NVME_INVALID_CQID
| NVME_DNR
;
394 if (!QTAILQ_EMPTY(&cq
->sq_list
)) {
395 return NVME_INVALID_QUEUE_DEL
;
401 static void nvme_init_cq(NvmeCQueue
*cq
, NvmeCtrl
*n
, uint64_t dma_addr
,
402 uint16_t cqid
, uint16_t vector
, uint16_t size
, uint16_t irq_enabled
)
407 cq
->dma_addr
= dma_addr
;
409 cq
->irq_enabled
= irq_enabled
;
411 cq
->head
= cq
->tail
= 0;
412 QTAILQ_INIT(&cq
->req_list
);
413 QTAILQ_INIT(&cq
->sq_list
);
414 msix_vector_use(&n
->parent_obj
, cq
->vector
);
416 cq
->timer
= timer_new_ns(QEMU_CLOCK_VIRTUAL
, nvme_post_cqes
, cq
);
419 static uint16_t nvme_create_cq(NvmeCtrl
*n
, NvmeCmd
*cmd
)
422 NvmeCreateCq
*c
= (NvmeCreateCq
*)cmd
;
423 uint16_t cqid
= le16_to_cpu(c
->cqid
);
424 uint16_t vector
= le16_to_cpu(c
->irq_vector
);
425 uint16_t qsize
= le16_to_cpu(c
->qsize
);
426 uint16_t qflags
= le16_to_cpu(c
->cq_flags
);
427 uint64_t prp1
= le64_to_cpu(c
->prp1
);
429 if (!cqid
|| (cqid
&& !nvme_check_cqid(n
, cqid
))) {
430 return NVME_INVALID_CQID
| NVME_DNR
;
432 if (!qsize
|| qsize
> NVME_CAP_MQES(n
->bar
.cap
)) {
433 return NVME_MAX_QSIZE_EXCEEDED
| NVME_DNR
;
436 return NVME_INVALID_FIELD
| NVME_DNR
;
438 if (vector
> n
->num_queues
) {
439 return NVME_INVALID_IRQ_VECTOR
| NVME_DNR
;
441 if (!(NVME_CQ_FLAGS_PC(qflags
))) {
442 return NVME_INVALID_FIELD
| NVME_DNR
;
445 cq
= g_malloc0(sizeof(*cq
));
446 nvme_init_cq(cq
, n
, prp1
, cqid
, vector
, qsize
+ 1,
447 NVME_CQ_FLAGS_IEN(qflags
));
451 static uint16_t nvme_identify(NvmeCtrl
*n
, NvmeCmd
*cmd
)
454 NvmeIdentify
*c
= (NvmeIdentify
*)cmd
;
455 uint32_t cns
= le32_to_cpu(c
->cns
);
456 uint32_t nsid
= le32_to_cpu(c
->nsid
);
457 uint64_t prp1
= le64_to_cpu(c
->prp1
);
458 uint64_t prp2
= le64_to_cpu(c
->prp2
);
461 return nvme_dma_read_prp(n
, (uint8_t *)&n
->id_ctrl
, sizeof(n
->id_ctrl
),
464 if (nsid
== 0 || nsid
> n
->num_namespaces
) {
465 return NVME_INVALID_NSID
| NVME_DNR
;
468 ns
= &n
->namespaces
[nsid
- 1];
469 return nvme_dma_read_prp(n
, (uint8_t *)&ns
->id_ns
, sizeof(ns
->id_ns
),
473 static uint16_t nvme_get_feature(NvmeCtrl
*n
, NvmeCmd
*cmd
, NvmeRequest
*req
)
475 uint32_t dw10
= le32_to_cpu(cmd
->cdw10
);
478 case NVME_NUMBER_OF_QUEUES
:
480 cpu_to_le32((n
->num_queues
- 1) | ((n
->num_queues
- 1) << 16));
482 case NVME_VOLATILE_WRITE_CACHE
:
483 req
->cqe
.result
= cpu_to_le32(1);
486 return NVME_INVALID_FIELD
| NVME_DNR
;
491 static uint16_t nvme_set_feature(NvmeCtrl
*n
, NvmeCmd
*cmd
, NvmeRequest
*req
)
493 uint32_t dw10
= le32_to_cpu(cmd
->cdw10
);
496 case NVME_NUMBER_OF_QUEUES
:
498 cpu_to_le32((n
->num_queues
- 1) | ((n
->num_queues
- 1) << 16));
501 return NVME_INVALID_FIELD
| NVME_DNR
;
506 static uint16_t nvme_admin_cmd(NvmeCtrl
*n
, NvmeCmd
*cmd
, NvmeRequest
*req
)
508 switch (cmd
->opcode
) {
509 case NVME_ADM_CMD_DELETE_SQ
:
510 return nvme_del_sq(n
, cmd
);
511 case NVME_ADM_CMD_CREATE_SQ
:
512 return nvme_create_sq(n
, cmd
);
513 case NVME_ADM_CMD_DELETE_CQ
:
514 return nvme_del_cq(n
, cmd
);
515 case NVME_ADM_CMD_CREATE_CQ
:
516 return nvme_create_cq(n
, cmd
);
517 case NVME_ADM_CMD_IDENTIFY
:
518 return nvme_identify(n
, cmd
);
519 case NVME_ADM_CMD_SET_FEATURES
:
520 return nvme_set_feature(n
, cmd
, req
);
521 case NVME_ADM_CMD_GET_FEATURES
:
522 return nvme_get_feature(n
, cmd
, req
);
524 return NVME_INVALID_OPCODE
| NVME_DNR
;
528 static void nvme_process_sq(void *opaque
)
530 NvmeSQueue
*sq
= opaque
;
531 NvmeCtrl
*n
= sq
->ctrl
;
532 NvmeCQueue
*cq
= n
->cq
[sq
->cqid
];
539 while (!(nvme_sq_empty(sq
) || QTAILQ_EMPTY(&sq
->req_list
))) {
540 addr
= sq
->dma_addr
+ sq
->head
* n
->sqe_size
;
541 pci_dma_read(&n
->parent_obj
, addr
, (void *)&cmd
, sizeof(cmd
));
542 nvme_inc_sq_head(sq
);
544 req
= QTAILQ_FIRST(&sq
->req_list
);
545 QTAILQ_REMOVE(&sq
->req_list
, req
, entry
);
546 QTAILQ_INSERT_TAIL(&sq
->out_req_list
, req
, entry
);
547 memset(&req
->cqe
, 0, sizeof(req
->cqe
));
548 req
->cqe
.cid
= cmd
.cid
;
550 status
= sq
->sqid
? nvme_io_cmd(n
, &cmd
, req
) :
551 nvme_admin_cmd(n
, &cmd
, req
);
552 if (status
!= NVME_NO_COMPLETE
) {
553 req
->status
= status
;
554 nvme_enqueue_req_completion(cq
, req
);
559 static void nvme_clear_ctrl(NvmeCtrl
*n
)
563 for (i
= 0; i
< n
->num_queues
; i
++) {
564 if (n
->sq
[i
] != NULL
) {
565 nvme_free_sq(n
->sq
[i
], n
);
568 for (i
= 0; i
< n
->num_queues
; i
++) {
569 if (n
->cq
[i
] != NULL
) {
570 nvme_free_cq(n
->cq
[i
], n
);
574 blk_flush(n
->conf
.blk
);
578 static int nvme_start_ctrl(NvmeCtrl
*n
)
580 uint32_t page_bits
= NVME_CC_MPS(n
->bar
.cc
) + 12;
581 uint32_t page_size
= 1 << page_bits
;
583 if (n
->cq
[0] || n
->sq
[0] || !n
->bar
.asq
|| !n
->bar
.acq
||
584 n
->bar
.asq
& (page_size
- 1) || n
->bar
.acq
& (page_size
- 1) ||
585 NVME_CC_MPS(n
->bar
.cc
) < NVME_CAP_MPSMIN(n
->bar
.cap
) ||
586 NVME_CC_MPS(n
->bar
.cc
) > NVME_CAP_MPSMAX(n
->bar
.cap
) ||
587 NVME_CC_IOCQES(n
->bar
.cc
) < NVME_CTRL_CQES_MIN(n
->id_ctrl
.cqes
) ||
588 NVME_CC_IOCQES(n
->bar
.cc
) > NVME_CTRL_CQES_MAX(n
->id_ctrl
.cqes
) ||
589 NVME_CC_IOSQES(n
->bar
.cc
) < NVME_CTRL_SQES_MIN(n
->id_ctrl
.sqes
) ||
590 NVME_CC_IOSQES(n
->bar
.cc
) > NVME_CTRL_SQES_MAX(n
->id_ctrl
.sqes
) ||
591 !NVME_AQA_ASQS(n
->bar
.aqa
) || !NVME_AQA_ACQS(n
->bar
.aqa
)) {
595 n
->page_bits
= page_bits
;
596 n
->page_size
= page_size
;
597 n
->max_prp_ents
= n
->page_size
/ sizeof(uint64_t);
598 n
->cqe_size
= 1 << NVME_CC_IOCQES(n
->bar
.cc
);
599 n
->sqe_size
= 1 << NVME_CC_IOSQES(n
->bar
.cc
);
600 nvme_init_cq(&n
->admin_cq
, n
, n
->bar
.acq
, 0, 0,
601 NVME_AQA_ACQS(n
->bar
.aqa
) + 1, 1);
602 nvme_init_sq(&n
->admin_sq
, n
, n
->bar
.asq
, 0, 0,
603 NVME_AQA_ASQS(n
->bar
.aqa
) + 1);
608 static void nvme_write_bar(NvmeCtrl
*n
, hwaddr offset
, uint64_t data
,
613 n
->bar
.intms
|= data
& 0xffffffff;
614 n
->bar
.intmc
= n
->bar
.intms
;
617 n
->bar
.intms
&= ~(data
& 0xffffffff);
618 n
->bar
.intmc
= n
->bar
.intms
;
621 /* Windows first sends data, then sends enable bit */
622 if (!NVME_CC_EN(data
) && !NVME_CC_EN(n
->bar
.cc
) &&
623 !NVME_CC_SHN(data
) && !NVME_CC_SHN(n
->bar
.cc
))
628 if (NVME_CC_EN(data
) && !NVME_CC_EN(n
->bar
.cc
)) {
630 if (nvme_start_ctrl(n
)) {
631 n
->bar
.csts
= NVME_CSTS_FAILED
;
633 n
->bar
.csts
= NVME_CSTS_READY
;
635 } else if (!NVME_CC_EN(data
) && NVME_CC_EN(n
->bar
.cc
)) {
637 n
->bar
.csts
&= ~NVME_CSTS_READY
;
639 if (NVME_CC_SHN(data
) && !(NVME_CC_SHN(n
->bar
.cc
))) {
642 n
->bar
.csts
|= NVME_CSTS_SHST_COMPLETE
;
643 } else if (!NVME_CC_SHN(data
) && NVME_CC_SHN(n
->bar
.cc
)) {
644 n
->bar
.csts
&= ~NVME_CSTS_SHST_COMPLETE
;
649 n
->bar
.aqa
= data
& 0xffffffff;
655 n
->bar
.asq
|= data
<< 32;
661 n
->bar
.acq
|= data
<< 32;
668 static uint64_t nvme_mmio_read(void *opaque
, hwaddr addr
, unsigned size
)
670 NvmeCtrl
*n
= (NvmeCtrl
*)opaque
;
671 uint8_t *ptr
= (uint8_t *)&n
->bar
;
674 if (addr
< sizeof(n
->bar
)) {
675 memcpy(&val
, ptr
+ addr
, size
);
680 static void nvme_process_db(NvmeCtrl
*n
, hwaddr addr
, int val
)
684 if (addr
& ((1 << 2) - 1)) {
688 if (((addr
- 0x1000) >> 2) & 1) {
689 uint16_t new_head
= val
& 0xffff;
693 qid
= (addr
- (0x1000 + (1 << 2))) >> 3;
694 if (nvme_check_cqid(n
, qid
)) {
699 if (new_head
>= cq
->size
) {
703 start_sqs
= nvme_cq_full(cq
) ? 1 : 0;
707 QTAILQ_FOREACH(sq
, &cq
->sq_list
, entry
) {
708 timer_mod(sq
->timer
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
) + 500);
710 timer_mod(cq
->timer
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
) + 500);
713 if (cq
->tail
!= cq
->head
) {
714 nvme_isr_notify(n
, cq
);
717 uint16_t new_tail
= val
& 0xffff;
720 qid
= (addr
- 0x1000) >> 3;
721 if (nvme_check_sqid(n
, qid
)) {
726 if (new_tail
>= sq
->size
) {
731 timer_mod(sq
->timer
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
) + 500);
735 static void nvme_mmio_write(void *opaque
, hwaddr addr
, uint64_t data
,
738 NvmeCtrl
*n
= (NvmeCtrl
*)opaque
;
739 if (addr
< sizeof(n
->bar
)) {
740 nvme_write_bar(n
, addr
, data
, size
);
741 } else if (addr
>= 0x1000) {
742 nvme_process_db(n
, addr
, data
);
746 static const MemoryRegionOps nvme_mmio_ops
= {
747 .read
= nvme_mmio_read
,
748 .write
= nvme_mmio_write
,
749 .endianness
= DEVICE_LITTLE_ENDIAN
,
751 .min_access_size
= 2,
752 .max_access_size
= 8,
756 static int nvme_init(PCIDevice
*pci_dev
)
758 NvmeCtrl
*n
= NVME(pci_dev
);
759 NvmeIdCtrl
*id
= &n
->id_ctrl
;
769 bs_size
= blk_getlength(n
->conf
.blk
);
774 blkconf_serial(&n
->conf
, &n
->serial
);
778 blkconf_blocksizes(&n
->conf
);
780 pci_conf
= pci_dev
->config
;
781 pci_conf
[PCI_INTERRUPT_PIN
] = 1;
782 pci_config_set_prog_interface(pci_dev
->config
, 0x2);
783 pci_config_set_class(pci_dev
->config
, PCI_CLASS_STORAGE_EXPRESS
);
784 pcie_endpoint_cap_init(&n
->parent_obj
, 0x80);
786 n
->num_namespaces
= 1;
788 n
->reg_size
= 1 << qemu_fls(0x1004 + 2 * (n
->num_queues
+ 1) * 4);
789 n
->ns_size
= bs_size
/ (uint64_t)n
->num_namespaces
;
791 n
->namespaces
= g_new0(NvmeNamespace
, n
->num_namespaces
);
792 n
->sq
= g_new0(NvmeSQueue
*, n
->num_queues
);
793 n
->cq
= g_new0(NvmeCQueue
*, n
->num_queues
);
795 memory_region_init_io(&n
->iomem
, OBJECT(n
), &nvme_mmio_ops
, n
,
796 "nvme", n
->reg_size
);
797 pci_register_bar(&n
->parent_obj
, 0,
798 PCI_BASE_ADDRESS_SPACE_MEMORY
| PCI_BASE_ADDRESS_MEM_TYPE_64
,
800 msix_init_exclusive_bar(&n
->parent_obj
, n
->num_queues
, 4);
802 id
->vid
= cpu_to_le16(pci_get_word(pci_conf
+ PCI_VENDOR_ID
));
803 id
->ssvid
= cpu_to_le16(pci_get_word(pci_conf
+ PCI_SUBSYSTEM_VENDOR_ID
));
804 strpadcpy((char *)id
->mn
, sizeof(id
->mn
), "QEMU NVMe Ctrl", ' ');
805 strpadcpy((char *)id
->fr
, sizeof(id
->fr
), "1.0", ' ');
806 strpadcpy((char *)id
->sn
, sizeof(id
->sn
), n
->serial
, ' ');
811 id
->oacs
= cpu_to_le16(0);
814 id
->sqes
= (0x6 << 4) | 0x6;
815 id
->cqes
= (0x4 << 4) | 0x4;
816 id
->nn
= cpu_to_le32(n
->num_namespaces
);
817 id
->psd
[0].mp
= cpu_to_le16(0x9c4);
818 id
->psd
[0].enlat
= cpu_to_le32(0x10);
819 id
->psd
[0].exlat
= cpu_to_le32(0x4);
822 NVME_CAP_SET_MQES(n
->bar
.cap
, 0x7ff);
823 NVME_CAP_SET_CQR(n
->bar
.cap
, 1);
824 NVME_CAP_SET_AMS(n
->bar
.cap
, 1);
825 NVME_CAP_SET_TO(n
->bar
.cap
, 0xf);
826 NVME_CAP_SET_CSS(n
->bar
.cap
, 1);
827 NVME_CAP_SET_MPSMAX(n
->bar
.cap
, 4);
829 n
->bar
.vs
= 0x00010100;
830 n
->bar
.intmc
= n
->bar
.intms
= 0;
832 for (i
= 0; i
< n
->num_namespaces
; i
++) {
833 NvmeNamespace
*ns
= &n
->namespaces
[i
];
834 NvmeIdNs
*id_ns
= &ns
->id_ns
;
841 id_ns
->lbaf
[0].ds
= BDRV_SECTOR_BITS
;
842 id_ns
->ncap
= id_ns
->nuse
= id_ns
->nsze
=
843 cpu_to_le64(n
->ns_size
>>
844 id_ns
->lbaf
[NVME_ID_NS_FLBAS_INDEX(ns
->id_ns
.flbas
)].ds
);
849 static void nvme_exit(PCIDevice
*pci_dev
)
851 NvmeCtrl
*n
= NVME(pci_dev
);
854 g_free(n
->namespaces
);
857 msix_uninit_exclusive_bar(pci_dev
);
860 static Property nvme_props
[] = {
861 DEFINE_BLOCK_PROPERTIES(NvmeCtrl
, conf
),
862 DEFINE_PROP_STRING("serial", NvmeCtrl
, serial
),
863 DEFINE_PROP_END_OF_LIST(),
866 static const VMStateDescription nvme_vmstate
= {
871 static void nvme_class_init(ObjectClass
*oc
, void *data
)
873 DeviceClass
*dc
= DEVICE_CLASS(oc
);
874 PCIDeviceClass
*pc
= PCI_DEVICE_CLASS(oc
);
876 pc
->init
= nvme_init
;
877 pc
->exit
= nvme_exit
;
878 pc
->class_id
= PCI_CLASS_STORAGE_EXPRESS
;
879 pc
->vendor_id
= PCI_VENDOR_ID_INTEL
;
880 pc
->device_id
= 0x5845;
884 set_bit(DEVICE_CATEGORY_STORAGE
, dc
->categories
);
885 dc
->desc
= "Non-Volatile Memory Express";
886 dc
->props
= nvme_props
;
887 dc
->vmsd
= &nvme_vmstate
;
890 static void nvme_get_bootindex(Object
*obj
, Visitor
*v
, void *opaque
,
891 const char *name
, Error
**errp
)
893 NvmeCtrl
*s
= NVME(obj
);
895 visit_type_int32(v
, &s
->conf
.bootindex
, name
, errp
);
898 static void nvme_set_bootindex(Object
*obj
, Visitor
*v
, void *opaque
,
899 const char *name
, Error
**errp
)
901 NvmeCtrl
*s
= NVME(obj
);
903 Error
*local_err
= NULL
;
905 visit_type_int32(v
, &boot_index
, name
, &local_err
);
909 /* check whether bootindex is present in fw_boot_order list */
910 check_boot_index(boot_index
, &local_err
);
914 /* change bootindex to a new one */
915 s
->conf
.bootindex
= boot_index
;
919 error_propagate(errp
, local_err
);
923 static void nvme_instance_init(Object
*obj
)
925 object_property_add(obj
, "bootindex", "int32",
927 nvme_set_bootindex
, NULL
, NULL
, NULL
);
928 object_property_set_int(obj
, -1, "bootindex", NULL
);
931 static const TypeInfo nvme_info
= {
933 .parent
= TYPE_PCI_DEVICE
,
934 .instance_size
= sizeof(NvmeCtrl
),
935 .class_init
= nvme_class_init
,
936 .instance_init
= nvme_instance_init
,
939 static void nvme_register_types(void)
941 type_register_static(&nvme_info
);
944 type_init(nvme_register_types
)