Open 2.13 development tree
[qemu.git] / hw / arm / boot.c
blob26184bcd7c267d367d6698705d4abafcb546db2e
1 /*
2 * ARM kernel loader.
4 * Copyright (c) 2006-2007 CodeSourcery.
5 * Written by Paul Brook
7 * This code is licensed under the GPL.
8 */
10 #include "qemu/osdep.h"
11 #include "qemu/error-report.h"
12 #include "qapi/error.h"
13 #include <libfdt.h>
14 #include "hw/hw.h"
15 #include "hw/arm/arm.h"
16 #include "hw/arm/linux-boot-if.h"
17 #include "sysemu/kvm.h"
18 #include "sysemu/sysemu.h"
19 #include "sysemu/numa.h"
20 #include "hw/boards.h"
21 #include "hw/loader.h"
22 #include "elf.h"
23 #include "sysemu/device_tree.h"
24 #include "qemu/config-file.h"
25 #include "qemu/option.h"
26 #include "exec/address-spaces.h"
28 /* Kernel boot protocol is specified in the kernel docs
29 * Documentation/arm/Booting and Documentation/arm64/booting.txt
30 * They have different preferred image load offsets from system RAM base.
32 #define KERNEL_ARGS_ADDR 0x100
33 #define KERNEL_LOAD_ADDR 0x00010000
34 #define KERNEL64_LOAD_ADDR 0x00080000
36 #define ARM64_TEXT_OFFSET_OFFSET 8
37 #define ARM64_MAGIC_OFFSET 56
39 static AddressSpace *arm_boot_address_space(ARMCPU *cpu,
40 const struct arm_boot_info *info)
42 /* Return the address space to use for bootloader reads and writes.
43 * We prefer the secure address space if the CPU has it and we're
44 * going to boot the guest into it.
46 int asidx;
47 CPUState *cs = CPU(cpu);
49 if (arm_feature(&cpu->env, ARM_FEATURE_EL3) && info->secure_boot) {
50 asidx = ARMASIdx_S;
51 } else {
52 asidx = ARMASIdx_NS;
55 return cpu_get_address_space(cs, asidx);
58 typedef enum {
59 FIXUP_NONE = 0, /* do nothing */
60 FIXUP_TERMINATOR, /* end of insns */
61 FIXUP_BOARDID, /* overwrite with board ID number */
62 FIXUP_BOARD_SETUP, /* overwrite with board specific setup code address */
63 FIXUP_ARGPTR, /* overwrite with pointer to kernel args */
64 FIXUP_ENTRYPOINT, /* overwrite with kernel entry point */
65 FIXUP_GIC_CPU_IF, /* overwrite with GIC CPU interface address */
66 FIXUP_BOOTREG, /* overwrite with boot register address */
67 FIXUP_DSB, /* overwrite with correct DSB insn for cpu */
68 FIXUP_MAX,
69 } FixupType;
71 typedef struct ARMInsnFixup {
72 uint32_t insn;
73 FixupType fixup;
74 } ARMInsnFixup;
76 static const ARMInsnFixup bootloader_aarch64[] = {
77 { 0x580000c0 }, /* ldr x0, arg ; Load the lower 32-bits of DTB */
78 { 0xaa1f03e1 }, /* mov x1, xzr */
79 { 0xaa1f03e2 }, /* mov x2, xzr */
80 { 0xaa1f03e3 }, /* mov x3, xzr */
81 { 0x58000084 }, /* ldr x4, entry ; Load the lower 32-bits of kernel entry */
82 { 0xd61f0080 }, /* br x4 ; Jump to the kernel entry point */
83 { 0, FIXUP_ARGPTR }, /* arg: .word @DTB Lower 32-bits */
84 { 0 }, /* .word @DTB Higher 32-bits */
85 { 0, FIXUP_ENTRYPOINT }, /* entry: .word @Kernel Entry Lower 32-bits */
86 { 0 }, /* .word @Kernel Entry Higher 32-bits */
87 { 0, FIXUP_TERMINATOR }
90 /* A very small bootloader: call the board-setup code (if needed),
91 * set r0-r2, then jump to the kernel.
92 * If we're not calling boot setup code then we don't copy across
93 * the first BOOTLOADER_NO_BOARD_SETUP_OFFSET insns in this array.
96 static const ARMInsnFixup bootloader[] = {
97 { 0xe28fe004 }, /* add lr, pc, #4 */
98 { 0xe51ff004 }, /* ldr pc, [pc, #-4] */
99 { 0, FIXUP_BOARD_SETUP },
100 #define BOOTLOADER_NO_BOARD_SETUP_OFFSET 3
101 { 0xe3a00000 }, /* mov r0, #0 */
102 { 0xe59f1004 }, /* ldr r1, [pc, #4] */
103 { 0xe59f2004 }, /* ldr r2, [pc, #4] */
104 { 0xe59ff004 }, /* ldr pc, [pc, #4] */
105 { 0, FIXUP_BOARDID },
106 { 0, FIXUP_ARGPTR },
107 { 0, FIXUP_ENTRYPOINT },
108 { 0, FIXUP_TERMINATOR }
111 /* Handling for secondary CPU boot in a multicore system.
112 * Unlike the uniprocessor/primary CPU boot, this is platform
113 * dependent. The default code here is based on the secondary
114 * CPU boot protocol used on realview/vexpress boards, with
115 * some parameterisation to increase its flexibility.
116 * QEMU platform models for which this code is not appropriate
117 * should override write_secondary_boot and secondary_cpu_reset_hook
118 * instead.
120 * This code enables the interrupt controllers for the secondary
121 * CPUs and then puts all the secondary CPUs into a loop waiting
122 * for an interprocessor interrupt and polling a configurable
123 * location for the kernel secondary CPU entry point.
125 #define DSB_INSN 0xf57ff04f
126 #define CP15_DSB_INSN 0xee070f9a /* mcr cp15, 0, r0, c7, c10, 4 */
128 static const ARMInsnFixup smpboot[] = {
129 { 0xe59f2028 }, /* ldr r2, gic_cpu_if */
130 { 0xe59f0028 }, /* ldr r0, bootreg_addr */
131 { 0xe3a01001 }, /* mov r1, #1 */
132 { 0xe5821000 }, /* str r1, [r2] - set GICC_CTLR.Enable */
133 { 0xe3a010ff }, /* mov r1, #0xff */
134 { 0xe5821004 }, /* str r1, [r2, 4] - set GIC_PMR.Priority to 0xff */
135 { 0, FIXUP_DSB }, /* dsb */
136 { 0xe320f003 }, /* wfi */
137 { 0xe5901000 }, /* ldr r1, [r0] */
138 { 0xe1110001 }, /* tst r1, r1 */
139 { 0x0afffffb }, /* beq <wfi> */
140 { 0xe12fff11 }, /* bx r1 */
141 { 0, FIXUP_GIC_CPU_IF }, /* gic_cpu_if: .word 0x.... */
142 { 0, FIXUP_BOOTREG }, /* bootreg_addr: .word 0x.... */
143 { 0, FIXUP_TERMINATOR }
146 static void write_bootloader(const char *name, hwaddr addr,
147 const ARMInsnFixup *insns, uint32_t *fixupcontext,
148 AddressSpace *as)
150 /* Fix up the specified bootloader fragment and write it into
151 * guest memory using rom_add_blob_fixed(). fixupcontext is
152 * an array giving the values to write in for the fixup types
153 * which write a value into the code array.
155 int i, len;
156 uint32_t *code;
158 len = 0;
159 while (insns[len].fixup != FIXUP_TERMINATOR) {
160 len++;
163 code = g_new0(uint32_t, len);
165 for (i = 0; i < len; i++) {
166 uint32_t insn = insns[i].insn;
167 FixupType fixup = insns[i].fixup;
169 switch (fixup) {
170 case FIXUP_NONE:
171 break;
172 case FIXUP_BOARDID:
173 case FIXUP_BOARD_SETUP:
174 case FIXUP_ARGPTR:
175 case FIXUP_ENTRYPOINT:
176 case FIXUP_GIC_CPU_IF:
177 case FIXUP_BOOTREG:
178 case FIXUP_DSB:
179 insn = fixupcontext[fixup];
180 break;
181 default:
182 abort();
184 code[i] = tswap32(insn);
187 rom_add_blob_fixed_as(name, code, len * sizeof(uint32_t), addr, as);
189 g_free(code);
192 static void default_write_secondary(ARMCPU *cpu,
193 const struct arm_boot_info *info)
195 uint32_t fixupcontext[FIXUP_MAX];
196 AddressSpace *as = arm_boot_address_space(cpu, info);
198 fixupcontext[FIXUP_GIC_CPU_IF] = info->gic_cpu_if_addr;
199 fixupcontext[FIXUP_BOOTREG] = info->smp_bootreg_addr;
200 if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
201 fixupcontext[FIXUP_DSB] = DSB_INSN;
202 } else {
203 fixupcontext[FIXUP_DSB] = CP15_DSB_INSN;
206 write_bootloader("smpboot", info->smp_loader_start,
207 smpboot, fixupcontext, as);
210 void arm_write_secure_board_setup_dummy_smc(ARMCPU *cpu,
211 const struct arm_boot_info *info,
212 hwaddr mvbar_addr)
214 AddressSpace *as = arm_boot_address_space(cpu, info);
215 int n;
216 uint32_t mvbar_blob[] = {
217 /* mvbar_addr: secure monitor vectors
218 * Default unimplemented and unused vectors to spin. Makes it
219 * easier to debug (as opposed to the CPU running away).
221 0xeafffffe, /* (spin) */
222 0xeafffffe, /* (spin) */
223 0xe1b0f00e, /* movs pc, lr ;SMC exception return */
224 0xeafffffe, /* (spin) */
225 0xeafffffe, /* (spin) */
226 0xeafffffe, /* (spin) */
227 0xeafffffe, /* (spin) */
228 0xeafffffe, /* (spin) */
230 uint32_t board_setup_blob[] = {
231 /* board setup addr */
232 0xe3a00e00 + (mvbar_addr >> 4), /* mov r0, #mvbar_addr */
233 0xee0c0f30, /* mcr p15, 0, r0, c12, c0, 1 ;set MVBAR */
234 0xee110f11, /* mrc p15, 0, r0, c1 , c1, 0 ;read SCR */
235 0xe3800031, /* orr r0, #0x31 ;enable AW, FW, NS */
236 0xee010f11, /* mcr p15, 0, r0, c1, c1, 0 ;write SCR */
237 0xe1a0100e, /* mov r1, lr ;save LR across SMC */
238 0xe1600070, /* smc #0 ;call monitor to flush SCR */
239 0xe1a0f001, /* mov pc, r1 ;return */
242 /* check that mvbar_addr is correctly aligned and relocatable (using MOV) */
243 assert((mvbar_addr & 0x1f) == 0 && (mvbar_addr >> 4) < 0x100);
245 /* check that these blobs don't overlap */
246 assert((mvbar_addr + sizeof(mvbar_blob) <= info->board_setup_addr)
247 || (info->board_setup_addr + sizeof(board_setup_blob) <= mvbar_addr));
249 for (n = 0; n < ARRAY_SIZE(mvbar_blob); n++) {
250 mvbar_blob[n] = tswap32(mvbar_blob[n]);
252 rom_add_blob_fixed_as("board-setup-mvbar", mvbar_blob, sizeof(mvbar_blob),
253 mvbar_addr, as);
255 for (n = 0; n < ARRAY_SIZE(board_setup_blob); n++) {
256 board_setup_blob[n] = tswap32(board_setup_blob[n]);
258 rom_add_blob_fixed_as("board-setup", board_setup_blob,
259 sizeof(board_setup_blob), info->board_setup_addr, as);
262 static void default_reset_secondary(ARMCPU *cpu,
263 const struct arm_boot_info *info)
265 AddressSpace *as = arm_boot_address_space(cpu, info);
266 CPUState *cs = CPU(cpu);
268 address_space_stl_notdirty(as, info->smp_bootreg_addr,
269 0, MEMTXATTRS_UNSPECIFIED, NULL);
270 cpu_set_pc(cs, info->smp_loader_start);
273 static inline bool have_dtb(const struct arm_boot_info *info)
275 return info->dtb_filename || info->get_dtb;
278 #define WRITE_WORD(p, value) do { \
279 address_space_stl_notdirty(as, p, value, \
280 MEMTXATTRS_UNSPECIFIED, NULL); \
281 p += 4; \
282 } while (0)
284 static void set_kernel_args(const struct arm_boot_info *info, AddressSpace *as)
286 int initrd_size = info->initrd_size;
287 hwaddr base = info->loader_start;
288 hwaddr p;
290 p = base + KERNEL_ARGS_ADDR;
291 /* ATAG_CORE */
292 WRITE_WORD(p, 5);
293 WRITE_WORD(p, 0x54410001);
294 WRITE_WORD(p, 1);
295 WRITE_WORD(p, 0x1000);
296 WRITE_WORD(p, 0);
297 /* ATAG_MEM */
298 /* TODO: handle multiple chips on one ATAG list */
299 WRITE_WORD(p, 4);
300 WRITE_WORD(p, 0x54410002);
301 WRITE_WORD(p, info->ram_size);
302 WRITE_WORD(p, info->loader_start);
303 if (initrd_size) {
304 /* ATAG_INITRD2 */
305 WRITE_WORD(p, 4);
306 WRITE_WORD(p, 0x54420005);
307 WRITE_WORD(p, info->initrd_start);
308 WRITE_WORD(p, initrd_size);
310 if (info->kernel_cmdline && *info->kernel_cmdline) {
311 /* ATAG_CMDLINE */
312 int cmdline_size;
314 cmdline_size = strlen(info->kernel_cmdline);
315 address_space_write(as, p + 8, MEMTXATTRS_UNSPECIFIED,
316 (const uint8_t *)info->kernel_cmdline,
317 cmdline_size + 1);
318 cmdline_size = (cmdline_size >> 2) + 1;
319 WRITE_WORD(p, cmdline_size + 2);
320 WRITE_WORD(p, 0x54410009);
321 p += cmdline_size * 4;
323 if (info->atag_board) {
324 /* ATAG_BOARD */
325 int atag_board_len;
326 uint8_t atag_board_buf[0x1000];
328 atag_board_len = (info->atag_board(info, atag_board_buf) + 3) & ~3;
329 WRITE_WORD(p, (atag_board_len + 8) >> 2);
330 WRITE_WORD(p, 0x414f4d50);
331 address_space_write(as, p, MEMTXATTRS_UNSPECIFIED,
332 atag_board_buf, atag_board_len);
333 p += atag_board_len;
335 /* ATAG_END */
336 WRITE_WORD(p, 0);
337 WRITE_WORD(p, 0);
340 static void set_kernel_args_old(const struct arm_boot_info *info,
341 AddressSpace *as)
343 hwaddr p;
344 const char *s;
345 int initrd_size = info->initrd_size;
346 hwaddr base = info->loader_start;
348 /* see linux/include/asm-arm/setup.h */
349 p = base + KERNEL_ARGS_ADDR;
350 /* page_size */
351 WRITE_WORD(p, 4096);
352 /* nr_pages */
353 WRITE_WORD(p, info->ram_size / 4096);
354 /* ramdisk_size */
355 WRITE_WORD(p, 0);
356 #define FLAG_READONLY 1
357 #define FLAG_RDLOAD 4
358 #define FLAG_RDPROMPT 8
359 /* flags */
360 WRITE_WORD(p, FLAG_READONLY | FLAG_RDLOAD | FLAG_RDPROMPT);
361 /* rootdev */
362 WRITE_WORD(p, (31 << 8) | 0); /* /dev/mtdblock0 */
363 /* video_num_cols */
364 WRITE_WORD(p, 0);
365 /* video_num_rows */
366 WRITE_WORD(p, 0);
367 /* video_x */
368 WRITE_WORD(p, 0);
369 /* video_y */
370 WRITE_WORD(p, 0);
371 /* memc_control_reg */
372 WRITE_WORD(p, 0);
373 /* unsigned char sounddefault */
374 /* unsigned char adfsdrives */
375 /* unsigned char bytes_per_char_h */
376 /* unsigned char bytes_per_char_v */
377 WRITE_WORD(p, 0);
378 /* pages_in_bank[4] */
379 WRITE_WORD(p, 0);
380 WRITE_WORD(p, 0);
381 WRITE_WORD(p, 0);
382 WRITE_WORD(p, 0);
383 /* pages_in_vram */
384 WRITE_WORD(p, 0);
385 /* initrd_start */
386 if (initrd_size) {
387 WRITE_WORD(p, info->initrd_start);
388 } else {
389 WRITE_WORD(p, 0);
391 /* initrd_size */
392 WRITE_WORD(p, initrd_size);
393 /* rd_start */
394 WRITE_WORD(p, 0);
395 /* system_rev */
396 WRITE_WORD(p, 0);
397 /* system_serial_low */
398 WRITE_WORD(p, 0);
399 /* system_serial_high */
400 WRITE_WORD(p, 0);
401 /* mem_fclk_21285 */
402 WRITE_WORD(p, 0);
403 /* zero unused fields */
404 while (p < base + KERNEL_ARGS_ADDR + 256 + 1024) {
405 WRITE_WORD(p, 0);
407 s = info->kernel_cmdline;
408 if (s) {
409 address_space_write(as, p, MEMTXATTRS_UNSPECIFIED,
410 (const uint8_t *)s, strlen(s) + 1);
411 } else {
412 WRITE_WORD(p, 0);
416 static void fdt_add_psci_node(void *fdt)
418 uint32_t cpu_suspend_fn;
419 uint32_t cpu_off_fn;
420 uint32_t cpu_on_fn;
421 uint32_t migrate_fn;
422 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(0));
423 const char *psci_method;
424 int64_t psci_conduit;
425 int rc;
427 psci_conduit = object_property_get_int(OBJECT(armcpu),
428 "psci-conduit",
429 &error_abort);
430 switch (psci_conduit) {
431 case QEMU_PSCI_CONDUIT_DISABLED:
432 return;
433 case QEMU_PSCI_CONDUIT_HVC:
434 psci_method = "hvc";
435 break;
436 case QEMU_PSCI_CONDUIT_SMC:
437 psci_method = "smc";
438 break;
439 default:
440 g_assert_not_reached();
444 * If /psci node is present in provided DTB, assume that no fixup
445 * is necessary and all PSCI configuration should be taken as-is
447 rc = fdt_path_offset(fdt, "/psci");
448 if (rc >= 0) {
449 return;
452 qemu_fdt_add_subnode(fdt, "/psci");
453 if (armcpu->psci_version == 2) {
454 const char comp[] = "arm,psci-0.2\0arm,psci";
455 qemu_fdt_setprop(fdt, "/psci", "compatible", comp, sizeof(comp));
457 cpu_off_fn = QEMU_PSCI_0_2_FN_CPU_OFF;
458 if (arm_feature(&armcpu->env, ARM_FEATURE_AARCH64)) {
459 cpu_suspend_fn = QEMU_PSCI_0_2_FN64_CPU_SUSPEND;
460 cpu_on_fn = QEMU_PSCI_0_2_FN64_CPU_ON;
461 migrate_fn = QEMU_PSCI_0_2_FN64_MIGRATE;
462 } else {
463 cpu_suspend_fn = QEMU_PSCI_0_2_FN_CPU_SUSPEND;
464 cpu_on_fn = QEMU_PSCI_0_2_FN_CPU_ON;
465 migrate_fn = QEMU_PSCI_0_2_FN_MIGRATE;
467 } else {
468 qemu_fdt_setprop_string(fdt, "/psci", "compatible", "arm,psci");
470 cpu_suspend_fn = QEMU_PSCI_0_1_FN_CPU_SUSPEND;
471 cpu_off_fn = QEMU_PSCI_0_1_FN_CPU_OFF;
472 cpu_on_fn = QEMU_PSCI_0_1_FN_CPU_ON;
473 migrate_fn = QEMU_PSCI_0_1_FN_MIGRATE;
476 /* We adopt the PSCI spec's nomenclature, and use 'conduit' to refer
477 * to the instruction that should be used to invoke PSCI functions.
478 * However, the device tree binding uses 'method' instead, so that is
479 * what we should use here.
481 qemu_fdt_setprop_string(fdt, "/psci", "method", psci_method);
483 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_suspend", cpu_suspend_fn);
484 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_off", cpu_off_fn);
485 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_on", cpu_on_fn);
486 qemu_fdt_setprop_cell(fdt, "/psci", "migrate", migrate_fn);
490 * load_dtb() - load a device tree binary image into memory
491 * @addr: the address to load the image at
492 * @binfo: struct describing the boot environment
493 * @addr_limit: upper limit of the available memory area at @addr
494 * @as: address space to load image to
496 * Load a device tree supplied by the machine or by the user with the
497 * '-dtb' command line option, and put it at offset @addr in target
498 * memory.
500 * If @addr_limit contains a meaningful value (i.e., it is strictly greater
501 * than @addr), the device tree is only loaded if its size does not exceed
502 * the limit.
504 * Returns: the size of the device tree image on success,
505 * 0 if the image size exceeds the limit,
506 * -1 on errors.
508 * Note: Must not be called unless have_dtb(binfo) is true.
510 static int load_dtb(hwaddr addr, const struct arm_boot_info *binfo,
511 hwaddr addr_limit, AddressSpace *as)
513 void *fdt = NULL;
514 int size, rc;
515 uint32_t acells, scells;
516 char *nodename;
517 unsigned int i;
518 hwaddr mem_base, mem_len;
520 if (binfo->dtb_filename) {
521 char *filename;
522 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, binfo->dtb_filename);
523 if (!filename) {
524 fprintf(stderr, "Couldn't open dtb file %s\n", binfo->dtb_filename);
525 goto fail;
528 fdt = load_device_tree(filename, &size);
529 if (!fdt) {
530 fprintf(stderr, "Couldn't open dtb file %s\n", filename);
531 g_free(filename);
532 goto fail;
534 g_free(filename);
535 } else {
536 fdt = binfo->get_dtb(binfo, &size);
537 if (!fdt) {
538 fprintf(stderr, "Board was unable to create a dtb blob\n");
539 goto fail;
543 if (addr_limit > addr && size > (addr_limit - addr)) {
544 /* Installing the device tree blob at addr would exceed addr_limit.
545 * Whether this constitutes failure is up to the caller to decide,
546 * so just return 0 as size, i.e., no error.
548 g_free(fdt);
549 return 0;
552 acells = qemu_fdt_getprop_cell(fdt, "/", "#address-cells",
553 NULL, &error_fatal);
554 scells = qemu_fdt_getprop_cell(fdt, "/", "#size-cells",
555 NULL, &error_fatal);
556 if (acells == 0 || scells == 0) {
557 fprintf(stderr, "dtb file invalid (#address-cells or #size-cells 0)\n");
558 goto fail;
561 if (scells < 2 && binfo->ram_size >= (1ULL << 32)) {
562 /* This is user error so deserves a friendlier error message
563 * than the failure of setprop_sized_cells would provide
565 fprintf(stderr, "qemu: dtb file not compatible with "
566 "RAM size > 4GB\n");
567 goto fail;
570 if (nb_numa_nodes > 0) {
572 * Turn the /memory node created before into a NOP node, then create
573 * /memory@addr nodes for all numa nodes respectively.
575 qemu_fdt_nop_node(fdt, "/memory");
576 mem_base = binfo->loader_start;
577 for (i = 0; i < nb_numa_nodes; i++) {
578 mem_len = numa_info[i].node_mem;
579 nodename = g_strdup_printf("/memory@%" PRIx64, mem_base);
580 qemu_fdt_add_subnode(fdt, nodename);
581 qemu_fdt_setprop_string(fdt, nodename, "device_type", "memory");
582 rc = qemu_fdt_setprop_sized_cells(fdt, nodename, "reg",
583 acells, mem_base,
584 scells, mem_len);
585 if (rc < 0) {
586 fprintf(stderr, "couldn't set %s/reg for node %d\n", nodename,
588 goto fail;
591 qemu_fdt_setprop_cell(fdt, nodename, "numa-node-id", i);
592 mem_base += mem_len;
593 g_free(nodename);
595 } else {
596 Error *err = NULL;
598 rc = fdt_path_offset(fdt, "/memory");
599 if (rc < 0) {
600 qemu_fdt_add_subnode(fdt, "/memory");
603 if (!qemu_fdt_getprop(fdt, "/memory", "device_type", NULL, &err)) {
604 qemu_fdt_setprop_string(fdt, "/memory", "device_type", "memory");
607 rc = qemu_fdt_setprop_sized_cells(fdt, "/memory", "reg",
608 acells, binfo->loader_start,
609 scells, binfo->ram_size);
610 if (rc < 0) {
611 fprintf(stderr, "couldn't set /memory/reg\n");
612 goto fail;
616 rc = fdt_path_offset(fdt, "/chosen");
617 if (rc < 0) {
618 qemu_fdt_add_subnode(fdt, "/chosen");
621 if (binfo->kernel_cmdline && *binfo->kernel_cmdline) {
622 rc = qemu_fdt_setprop_string(fdt, "/chosen", "bootargs",
623 binfo->kernel_cmdline);
624 if (rc < 0) {
625 fprintf(stderr, "couldn't set /chosen/bootargs\n");
626 goto fail;
630 if (binfo->initrd_size) {
631 rc = qemu_fdt_setprop_cell(fdt, "/chosen", "linux,initrd-start",
632 binfo->initrd_start);
633 if (rc < 0) {
634 fprintf(stderr, "couldn't set /chosen/linux,initrd-start\n");
635 goto fail;
638 rc = qemu_fdt_setprop_cell(fdt, "/chosen", "linux,initrd-end",
639 binfo->initrd_start + binfo->initrd_size);
640 if (rc < 0) {
641 fprintf(stderr, "couldn't set /chosen/linux,initrd-end\n");
642 goto fail;
646 fdt_add_psci_node(fdt);
648 if (binfo->modify_dtb) {
649 binfo->modify_dtb(binfo, fdt);
652 qemu_fdt_dumpdtb(fdt, size);
654 /* Put the DTB into the memory map as a ROM image: this will ensure
655 * the DTB is copied again upon reset, even if addr points into RAM.
657 rom_add_blob_fixed_as("dtb", fdt, size, addr, as);
659 g_free(fdt);
661 return size;
663 fail:
664 g_free(fdt);
665 return -1;
668 static void do_cpu_reset(void *opaque)
670 ARMCPU *cpu = opaque;
671 CPUState *cs = CPU(cpu);
672 CPUARMState *env = &cpu->env;
673 const struct arm_boot_info *info = env->boot_info;
675 cpu_reset(cs);
676 if (info) {
677 if (!info->is_linux) {
678 int i;
679 /* Jump to the entry point. */
680 uint64_t entry = info->entry;
682 switch (info->endianness) {
683 case ARM_ENDIANNESS_LE:
684 env->cp15.sctlr_el[1] &= ~SCTLR_E0E;
685 for (i = 1; i < 4; ++i) {
686 env->cp15.sctlr_el[i] &= ~SCTLR_EE;
688 env->uncached_cpsr &= ~CPSR_E;
689 break;
690 case ARM_ENDIANNESS_BE8:
691 env->cp15.sctlr_el[1] |= SCTLR_E0E;
692 for (i = 1; i < 4; ++i) {
693 env->cp15.sctlr_el[i] |= SCTLR_EE;
695 env->uncached_cpsr |= CPSR_E;
696 break;
697 case ARM_ENDIANNESS_BE32:
698 env->cp15.sctlr_el[1] |= SCTLR_B;
699 break;
700 case ARM_ENDIANNESS_UNKNOWN:
701 break; /* Board's decision */
702 default:
703 g_assert_not_reached();
706 if (!env->aarch64) {
707 env->thumb = info->entry & 1;
708 entry &= 0xfffffffe;
710 cpu_set_pc(cs, entry);
711 } else {
712 /* If we are booting Linux then we need to check whether we are
713 * booting into secure or non-secure state and adjust the state
714 * accordingly. Out of reset, ARM is defined to be in secure state
715 * (SCR.NS = 0), we change that here if non-secure boot has been
716 * requested.
718 if (arm_feature(env, ARM_FEATURE_EL3)) {
719 /* AArch64 is defined to come out of reset into EL3 if enabled.
720 * If we are booting Linux then we need to adjust our EL as
721 * Linux expects us to be in EL2 or EL1. AArch32 resets into
722 * SVC, which Linux expects, so no privilege/exception level to
723 * adjust.
725 if (env->aarch64) {
726 env->cp15.scr_el3 |= SCR_RW;
727 if (arm_feature(env, ARM_FEATURE_EL2)) {
728 env->cp15.hcr_el2 |= HCR_RW;
729 env->pstate = PSTATE_MODE_EL2h;
730 } else {
731 env->pstate = PSTATE_MODE_EL1h;
733 /* AArch64 kernels never boot in secure mode */
734 assert(!info->secure_boot);
735 /* This hook is only supported for AArch32 currently:
736 * bootloader_aarch64[] will not call the hook, and
737 * the code above has already dropped us into EL2 or EL1.
739 assert(!info->secure_board_setup);
742 if (arm_feature(env, ARM_FEATURE_EL2)) {
743 /* If we have EL2 then Linux expects the HVC insn to work */
744 env->cp15.scr_el3 |= SCR_HCE;
747 /* Set to non-secure if not a secure boot */
748 if (!info->secure_boot &&
749 (cs != first_cpu || !info->secure_board_setup)) {
750 /* Linux expects non-secure state */
751 env->cp15.scr_el3 |= SCR_NS;
755 if (cs == first_cpu) {
756 AddressSpace *as = arm_boot_address_space(cpu, info);
758 cpu_set_pc(cs, info->loader_start);
760 if (!have_dtb(info)) {
761 if (old_param) {
762 set_kernel_args_old(info, as);
763 } else {
764 set_kernel_args(info, as);
767 } else {
768 info->secondary_cpu_reset_hook(cpu, info);
775 * load_image_to_fw_cfg() - Load an image file into an fw_cfg entry identified
776 * by key.
777 * @fw_cfg: The firmware config instance to store the data in.
778 * @size_key: The firmware config key to store the size of the loaded
779 * data under, with fw_cfg_add_i32().
780 * @data_key: The firmware config key to store the loaded data under,
781 * with fw_cfg_add_bytes().
782 * @image_name: The name of the image file to load. If it is NULL, the
783 * function returns without doing anything.
784 * @try_decompress: Whether the image should be decompressed (gunzipped) before
785 * adding it to fw_cfg. If decompression fails, the image is
786 * loaded as-is.
788 * In case of failure, the function prints an error message to stderr and the
789 * process exits with status 1.
791 static void load_image_to_fw_cfg(FWCfgState *fw_cfg, uint16_t size_key,
792 uint16_t data_key, const char *image_name,
793 bool try_decompress)
795 size_t size = -1;
796 uint8_t *data;
798 if (image_name == NULL) {
799 return;
802 if (try_decompress) {
803 size = load_image_gzipped_buffer(image_name,
804 LOAD_IMAGE_MAX_GUNZIP_BYTES, &data);
807 if (size == (size_t)-1) {
808 gchar *contents;
809 gsize length;
811 if (!g_file_get_contents(image_name, &contents, &length, NULL)) {
812 error_report("failed to load \"%s\"", image_name);
813 exit(1);
815 size = length;
816 data = (uint8_t *)contents;
819 fw_cfg_add_i32(fw_cfg, size_key, size);
820 fw_cfg_add_bytes(fw_cfg, data_key, data, size);
823 static int do_arm_linux_init(Object *obj, void *opaque)
825 if (object_dynamic_cast(obj, TYPE_ARM_LINUX_BOOT_IF)) {
826 ARMLinuxBootIf *albif = ARM_LINUX_BOOT_IF(obj);
827 ARMLinuxBootIfClass *albifc = ARM_LINUX_BOOT_IF_GET_CLASS(obj);
828 struct arm_boot_info *info = opaque;
830 if (albifc->arm_linux_init) {
831 albifc->arm_linux_init(albif, info->secure_boot);
834 return 0;
837 static uint64_t arm_load_elf(struct arm_boot_info *info, uint64_t *pentry,
838 uint64_t *lowaddr, uint64_t *highaddr,
839 int elf_machine, AddressSpace *as)
841 bool elf_is64;
842 union {
843 Elf32_Ehdr h32;
844 Elf64_Ehdr h64;
845 } elf_header;
846 int data_swab = 0;
847 bool big_endian;
848 uint64_t ret = -1;
849 Error *err = NULL;
852 load_elf_hdr(info->kernel_filename, &elf_header, &elf_is64, &err);
853 if (err) {
854 error_free(err);
855 return ret;
858 if (elf_is64) {
859 big_endian = elf_header.h64.e_ident[EI_DATA] == ELFDATA2MSB;
860 info->endianness = big_endian ? ARM_ENDIANNESS_BE8
861 : ARM_ENDIANNESS_LE;
862 } else {
863 big_endian = elf_header.h32.e_ident[EI_DATA] == ELFDATA2MSB;
864 if (big_endian) {
865 if (bswap32(elf_header.h32.e_flags) & EF_ARM_BE8) {
866 info->endianness = ARM_ENDIANNESS_BE8;
867 } else {
868 info->endianness = ARM_ENDIANNESS_BE32;
869 /* In BE32, the CPU has a different view of the per-byte
870 * address map than the rest of the system. BE32 ELF files
871 * are organised such that they can be programmed through
872 * the CPU's per-word byte-reversed view of the world. QEMU
873 * however loads ELF files independently of the CPU. So
874 * tell the ELF loader to byte reverse the data for us.
876 data_swab = 2;
878 } else {
879 info->endianness = ARM_ENDIANNESS_LE;
883 ret = load_elf_as(info->kernel_filename, NULL, NULL,
884 pentry, lowaddr, highaddr, big_endian, elf_machine,
885 1, data_swab, as);
886 if (ret <= 0) {
887 /* The header loaded but the image didn't */
888 exit(1);
891 return ret;
894 static uint64_t load_aarch64_image(const char *filename, hwaddr mem_base,
895 hwaddr *entry, AddressSpace *as)
897 hwaddr kernel_load_offset = KERNEL64_LOAD_ADDR;
898 uint8_t *buffer;
899 int size;
901 /* On aarch64, it's the bootloader's job to uncompress the kernel. */
902 size = load_image_gzipped_buffer(filename, LOAD_IMAGE_MAX_GUNZIP_BYTES,
903 &buffer);
905 if (size < 0) {
906 gsize len;
908 /* Load as raw file otherwise */
909 if (!g_file_get_contents(filename, (char **)&buffer, &len, NULL)) {
910 return -1;
912 size = len;
915 /* check the arm64 magic header value -- very old kernels may not have it */
916 if (size > ARM64_MAGIC_OFFSET + 4 &&
917 memcmp(buffer + ARM64_MAGIC_OFFSET, "ARM\x64", 4) == 0) {
918 uint64_t hdrvals[2];
920 /* The arm64 Image header has text_offset and image_size fields at 8 and
921 * 16 bytes into the Image header, respectively. The text_offset field
922 * is only valid if the image_size is non-zero.
924 memcpy(&hdrvals, buffer + ARM64_TEXT_OFFSET_OFFSET, sizeof(hdrvals));
925 if (hdrvals[1] != 0) {
926 kernel_load_offset = le64_to_cpu(hdrvals[0]);
930 *entry = mem_base + kernel_load_offset;
931 rom_add_blob_fixed_as(filename, buffer, size, *entry, as);
933 g_free(buffer);
935 return size;
938 static void arm_load_kernel_notify(Notifier *notifier, void *data)
940 CPUState *cs;
941 int kernel_size;
942 int initrd_size;
943 int is_linux = 0;
944 uint64_t elf_entry, elf_low_addr, elf_high_addr;
945 int elf_machine;
946 hwaddr entry;
947 static const ARMInsnFixup *primary_loader;
948 ArmLoadKernelNotifier *n = DO_UPCAST(ArmLoadKernelNotifier,
949 notifier, notifier);
950 ARMCPU *cpu = n->cpu;
951 struct arm_boot_info *info =
952 container_of(n, struct arm_boot_info, load_kernel_notifier);
953 AddressSpace *as = arm_boot_address_space(cpu, info);
955 /* The board code is not supposed to set secure_board_setup unless
956 * running its code in secure mode is actually possible, and KVM
957 * doesn't support secure.
959 assert(!(info->secure_board_setup && kvm_enabled()));
961 info->dtb_filename = qemu_opt_get(qemu_get_machine_opts(), "dtb");
963 /* Load the kernel. */
964 if (!info->kernel_filename || info->firmware_loaded) {
966 if (have_dtb(info)) {
967 /* If we have a device tree blob, but no kernel to supply it to (or
968 * the kernel is supposed to be loaded by the bootloader), copy the
969 * DTB to the base of RAM for the bootloader to pick up.
971 if (load_dtb(info->loader_start, info, 0, as) < 0) {
972 exit(1);
976 if (info->kernel_filename) {
977 FWCfgState *fw_cfg;
978 bool try_decompressing_kernel;
980 fw_cfg = fw_cfg_find();
981 try_decompressing_kernel = arm_feature(&cpu->env,
982 ARM_FEATURE_AARCH64);
984 /* Expose the kernel, the command line, and the initrd in fw_cfg.
985 * We don't process them here at all, it's all left to the
986 * firmware.
988 load_image_to_fw_cfg(fw_cfg,
989 FW_CFG_KERNEL_SIZE, FW_CFG_KERNEL_DATA,
990 info->kernel_filename,
991 try_decompressing_kernel);
992 load_image_to_fw_cfg(fw_cfg,
993 FW_CFG_INITRD_SIZE, FW_CFG_INITRD_DATA,
994 info->initrd_filename, false);
996 if (info->kernel_cmdline) {
997 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE,
998 strlen(info->kernel_cmdline) + 1);
999 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA,
1000 info->kernel_cmdline);
1004 /* We will start from address 0 (typically a boot ROM image) in the
1005 * same way as hardware.
1007 return;
1010 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1011 primary_loader = bootloader_aarch64;
1012 elf_machine = EM_AARCH64;
1013 } else {
1014 primary_loader = bootloader;
1015 if (!info->write_board_setup) {
1016 primary_loader += BOOTLOADER_NO_BOARD_SETUP_OFFSET;
1018 elf_machine = EM_ARM;
1021 if (!info->secondary_cpu_reset_hook) {
1022 info->secondary_cpu_reset_hook = default_reset_secondary;
1024 if (!info->write_secondary_boot) {
1025 info->write_secondary_boot = default_write_secondary;
1028 if (info->nb_cpus == 0)
1029 info->nb_cpus = 1;
1031 /* We want to put the initrd far enough into RAM that when the
1032 * kernel is uncompressed it will not clobber the initrd. However
1033 * on boards without much RAM we must ensure that we still leave
1034 * enough room for a decent sized initrd, and on boards with large
1035 * amounts of RAM we must avoid the initrd being so far up in RAM
1036 * that it is outside lowmem and inaccessible to the kernel.
1037 * So for boards with less than 256MB of RAM we put the initrd
1038 * halfway into RAM, and for boards with 256MB of RAM or more we put
1039 * the initrd at 128MB.
1041 info->initrd_start = info->loader_start +
1042 MIN(info->ram_size / 2, 128 * 1024 * 1024);
1044 /* Assume that raw images are linux kernels, and ELF images are not. */
1045 kernel_size = arm_load_elf(info, &elf_entry, &elf_low_addr,
1046 &elf_high_addr, elf_machine, as);
1047 if (kernel_size > 0 && have_dtb(info)) {
1048 /* If there is still some room left at the base of RAM, try and put
1049 * the DTB there like we do for images loaded with -bios or -pflash.
1051 if (elf_low_addr > info->loader_start
1052 || elf_high_addr < info->loader_start) {
1053 /* Pass elf_low_addr as address limit to load_dtb if it may be
1054 * pointing into RAM, otherwise pass '0' (no limit)
1056 if (elf_low_addr < info->loader_start) {
1057 elf_low_addr = 0;
1059 if (load_dtb(info->loader_start, info, elf_low_addr, as) < 0) {
1060 exit(1);
1064 entry = elf_entry;
1065 if (kernel_size < 0) {
1066 kernel_size = load_uimage_as(info->kernel_filename, &entry, NULL,
1067 &is_linux, NULL, NULL, as);
1069 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) && kernel_size < 0) {
1070 kernel_size = load_aarch64_image(info->kernel_filename,
1071 info->loader_start, &entry, as);
1072 is_linux = 1;
1073 } else if (kernel_size < 0) {
1074 /* 32-bit ARM */
1075 entry = info->loader_start + KERNEL_LOAD_ADDR;
1076 kernel_size = load_image_targphys_as(info->kernel_filename, entry,
1077 info->ram_size - KERNEL_LOAD_ADDR,
1078 as);
1079 is_linux = 1;
1081 if (kernel_size < 0) {
1082 error_report("could not load kernel '%s'", info->kernel_filename);
1083 exit(1);
1085 info->entry = entry;
1086 if (is_linux) {
1087 uint32_t fixupcontext[FIXUP_MAX];
1089 if (info->initrd_filename) {
1090 initrd_size = load_ramdisk_as(info->initrd_filename,
1091 info->initrd_start,
1092 info->ram_size - info->initrd_start,
1093 as);
1094 if (initrd_size < 0) {
1095 initrd_size = load_image_targphys_as(info->initrd_filename,
1096 info->initrd_start,
1097 info->ram_size -
1098 info->initrd_start,
1099 as);
1101 if (initrd_size < 0) {
1102 error_report("could not load initrd '%s'",
1103 info->initrd_filename);
1104 exit(1);
1106 } else {
1107 initrd_size = 0;
1109 info->initrd_size = initrd_size;
1111 fixupcontext[FIXUP_BOARDID] = info->board_id;
1112 fixupcontext[FIXUP_BOARD_SETUP] = info->board_setup_addr;
1114 /* for device tree boot, we pass the DTB directly in r2. Otherwise
1115 * we point to the kernel args.
1117 if (have_dtb(info)) {
1118 hwaddr align;
1119 hwaddr dtb_start;
1121 if (elf_machine == EM_AARCH64) {
1123 * Some AArch64 kernels on early bootup map the fdt region as
1125 * [ ALIGN_DOWN(fdt, 2MB) ... ALIGN_DOWN(fdt, 2MB) + 2MB ]
1127 * Let's play safe and prealign it to 2MB to give us some space.
1129 align = 2 * 1024 * 1024;
1130 } else {
1132 * Some 32bit kernels will trash anything in the 4K page the
1133 * initrd ends in, so make sure the DTB isn't caught up in that.
1135 align = 4096;
1138 /* Place the DTB after the initrd in memory with alignment. */
1139 dtb_start = QEMU_ALIGN_UP(info->initrd_start + initrd_size, align);
1140 if (load_dtb(dtb_start, info, 0, as) < 0) {
1141 exit(1);
1143 fixupcontext[FIXUP_ARGPTR] = dtb_start;
1144 } else {
1145 fixupcontext[FIXUP_ARGPTR] = info->loader_start + KERNEL_ARGS_ADDR;
1146 if (info->ram_size >= (1ULL << 32)) {
1147 error_report("RAM size must be less than 4GB to boot"
1148 " Linux kernel using ATAGS (try passing a device tree"
1149 " using -dtb)");
1150 exit(1);
1153 fixupcontext[FIXUP_ENTRYPOINT] = entry;
1155 write_bootloader("bootloader", info->loader_start,
1156 primary_loader, fixupcontext, as);
1158 if (info->nb_cpus > 1) {
1159 info->write_secondary_boot(cpu, info);
1161 if (info->write_board_setup) {
1162 info->write_board_setup(cpu, info);
1165 /* Notify devices which need to fake up firmware initialization
1166 * that we're doing a direct kernel boot.
1168 object_child_foreach_recursive(object_get_root(),
1169 do_arm_linux_init, info);
1171 info->is_linux = is_linux;
1173 for (cs = CPU(cpu); cs; cs = CPU_NEXT(cs)) {
1174 ARM_CPU(cs)->env.boot_info = info;
1178 void arm_load_kernel(ARMCPU *cpu, struct arm_boot_info *info)
1180 CPUState *cs;
1182 info->load_kernel_notifier.cpu = cpu;
1183 info->load_kernel_notifier.notifier.notify = arm_load_kernel_notify;
1184 qemu_add_machine_init_done_notifier(&info->load_kernel_notifier.notifier);
1186 /* CPU objects (unlike devices) are not automatically reset on system
1187 * reset, so we must always register a handler to do so. If we're
1188 * actually loading a kernel, the handler is also responsible for
1189 * arranging that we start it correctly.
1191 for (cs = CPU(cpu); cs; cs = CPU_NEXT(cs)) {
1192 qemu_register_reset(do_cpu_reset, ARM_CPU(cs));
1196 static const TypeInfo arm_linux_boot_if_info = {
1197 .name = TYPE_ARM_LINUX_BOOT_IF,
1198 .parent = TYPE_INTERFACE,
1199 .class_size = sizeof(ARMLinuxBootIfClass),
1202 static void arm_linux_boot_register_types(void)
1204 type_register_static(&arm_linux_boot_if_info);
1207 type_init(arm_linux_boot_register_types)